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Abstract

In this study, we extend Cochrane and Saá-Requejo’s (2000) analysis to derive good-

deal bounds on asset prices when investors are concerned about model uncertainty and

seek robust pricing decisions in incomplete markets. Under the assumption that asset

prices are driven by geometric Brownian motion processes, we propose a framework

that is meaningful and very natural for investors’ decision-making problems involving

uncertainty regarding asset price processes and derive closed-form solutions for the pricing

bounds of a European option. Further, we investigate properties of the proposed pricing

bounds and apply these bounds to value a European option whose underlying asset is a

non-traded stock index. We find that, under certain circumstances of model uncertainty,

the proposed pricing bounds can include sufficient amounts of the actual option prices,

which is in contrast with the empirical finding of the good-deal bounds proposed by

Cochrane and Saá-Requejo (2000).
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1 Introduction

One of the most important breakthroughs in modern asset pricing theory is that, un-

der the complete markets assumption, complex financial instruments can be perfectly

replicated by sophisticated dynamic trading strategies that involve simpler securities.

However, in many realistic situations, perfect replication is impracticable and impossi-

ble due to non-traded underlying assets or market frictions, which may further lead to

the collapse of complete-market conditions. To circumvent this problem, several seminal

papers, including Cochrane and Saá-Requejo (2000), Bernardo and Ledoit (2000) and

Carr et al. (2001) propose various novel methods to deal with the valuation of securi-

ties in incomplete markets. In particular, Cochrane and Saá-Requejo (2000) argue that

no portfolio traded in the market has more than twice the market Sharpe ratio. Thus,

they propose an approach to calculate asset pricing bounds conditional on the absence

of arbitrage and high Sharpe ratios. These pricing bounds (hereafter, good-deal bounds)

are useful in situations for which a relative pricing approach is appropriate but perfect

replication is not possible. For example, banks can use these good-deal bounds as bid

and ask prices to synthesize non-traded securities.1

While these good-deal bounds are convenient and useful in certain applications, our

empirical study finds that good-deal bounds are not sufficiently wide to cover the actual

prices of options, particularly during the recent financial crisis. Specifically, we value a

European call option whose underlying asset is the Taiwan Stock Exchange Capitalization

Weighted Stock Index (TAIEX). Because the TAIEX is not a traded asset, we use the

exchange traded fund of the Taiwan 50 index (TWETF) as an approximate hedge and

calculate good-deal bounds conditional on the assumption that no portfolio has more

than twice the Sharpe ratio from January 2, 2006 to December 28, 2012. We find that

approximately 54% of the option prices fall outside the good-deal bounds during the entire

sample period. Even though we widen these pricing bounds associated with four-times

the market Sharpe ratio to allow for “unbelievably good deals,” these pricing bounds

1Cochrane and Saá-Requejo (2000) outline various methods for utilizing good-deal bounds, such as

traders using the bounds as buy and sell points and brokers using these bounds as economic measures of

the accuracy of option pricing formulas.
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are not sufficiently large to cover the option prices. Moreover, we find that during the

financial crisis in late 2008, only 27% of the option prices remained within the good-deal

bounds. These results suggest that good-deal bounds should be used with caution. For

example, our results imply that if banks would use these pricing bounds as bid and ask

prices, these bounds would cause great losses for banks.

A possible cause for these results is that, under the assumption of Cochrane and Saá-

Requejo (2000), investors have perfect knowledge of the true probability law governing

the stochastic processes of asset prices, even in the face of the global financial crisis.

However, in many situations, investors are uncertain regarding the true probability law;

hence, any particular probability law or model used to describe the asset prices would

be subject to potential model misspecification.2 For these reasons, the objective of this

study is to develop an asset pricing model in which investors account explicitly for model

uncertainty in incomplete markets. Inspired by Cochrane and Saá-Requejo (2000), Maen-

hout (2004), and Hansen and Sargent (2008), we derive good-deal bounds that are robust

to a particular type of model misspecification, stemming from the parameter uncertainty

of asset processes. More specifically, we consider a European option whose underlying

asset is non-tradable, but it is correlated with a traded asset. To obtain analytic-form

solutions of pricing bounds, we assume that the non-tradable and traded assets are driven

by geometric Brownian motions with some perturbation parameters. By controlling these

perturbation parameters, we design a collection of models that comprise a broad range

of alternative processes whose Kullback-Leibler divergence from the benchmark model is

bounded by a specified value. Then, we use the collection of models to characterize a

particular form of model misspecification for investors’ decisions. Finally, we solve the

optimization problem encountered by investors who maximize their utilities and consider

the worst-case scenario under circumstances of model misspecification.

By eliminating investments with high Sharpe ratios, the derived pricing bounds (here-

after referred to as robust good-deal bounds) have several features. First, when mar-

2For example, Pástor and Stambaugh (2001) argue that there exists substantial uncertainty regarding

the model that generates equity premium. Based on empirical analysis, Cochrane (1997) also suggests

that there is a wide band of uncertainty regarding true market return.
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kets are incomplete and investors have perfect knowledge of the data generating pro-

cesses (DGPs) of asset prices, the proposed pricing bounds are reduced to those dis-

cussed in Cochrane and Saá-Requejo (2000). Second, when markets are incomplete but

investors are concerned that the stochastic processes of asset prices are misspecified, our

robust good-deal bounds are wider than those of Cochrane and Saá-Requejo (2000). The

greater the uncertainty regarding the asset price processes, the wider the pricing bounds

appear. This result is rather natural. For example, in practice, the bid-ask spread tends

to be larger when banks are uncertain of their asset price processes. Finally, to provide

a possible explanation for the finding that Cochrane and Saá-Requejo’s (2000) pricing

bounds cannot cover actual prices, a calibration to the TAIEX example in the Taiwan

stock market is re-investigated using our robust good-deal bounds. We find that, under

certain circumstances of model misspecification, the robust good-deal bounds can con-

tain sufficient amounts of actual option prices. More importantly, compared to other

time periods, it is also found that investors were less confident regarding the stochastic

processes of asset prices in the face of the recent financial crisis

The remainder of this paper is organized in the following manner. In section 2, we

describe the good-deal bounds given by Cochrane and Saá-Requejo (2000); moreover,

we also present an empirical study on the TAIEX. In section 3, we introduce robust

good-deal bounds and the study on the TAIEX is re-examined by applying these robust

pricing bounds. In section 4, we present some concluding remarks.

2 Pricing Bounds and an Empirical Study on the TAIEX

2.1 Good-Deal Asset Pricing Bounds

First, we briefly describe the arbitrage-free, good-deal bounds proposed by Cochrane

and Saá-Requejo (2000). Consider a traded basis asset that yields a stream of payoffs

or dividends, Dtdt. Under the assumption of expected utility maximization, the basic

pricing model for the basis asset can be derived in the following manner:

St = IEt

(∫ ∞

τ=0

Λt+τ

Λt

Dt+τdτ

)
, (1)
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where St denotes the price of the basis asset and Λt is a stochastic discount factor. The

process St in (1) is assumed to satisfy

dSt

St

= μSdt+ σSdBt, (2)

where dBt is a Brownian motion with IE(dBtdBt) = 1. Now, consider a derivative whose

underlying asset is non-tradable. This derivative pays continuous dividends at the rate

xc(Vt)dt at time t, where Vt is the value of the non-tradable asset. The process Vt is

assumed to satisfy

dVt

Vt

= μV dt+ σBdBt + σWdWt, (3)

where dWt is a Brownian motion with IE(dWtdWt) = 1 and IE(dBtdWt) = 0.3

Because the payoff xc(Vt) depends on the non-tradable asset, the derivative is not able

to replicate perfectly, and hence the basic pricing model in (1) is not directly applicable for

evaluating this derivative. To deal with this problem, Cochrane and Saá-Requejo (2000)

considered arbitrage-free, good-deal bounds and showed that the lower pricing bound,

ct, can be obtained by solving the following constrained optimization problem:

min
Λτ≥0, t≤τ≤T

IEt

(∫ T

τ=t

Λτ

Λt

xc(Vτ )dτ

)
+ IEt

(
ΛT

Λt

xc(VT )

)
, (4)

subject to the following two constraints: that the discount factor prices the basis as-

sets St correctly at each moment and that the volatility of the discount factor process,

IEt

(
dΛ2

t/Λ
2
t

)
, is less than a pre-specified value:

IEt

(
dΛ2

t

Λ2
t

)
≤ A2dt (5)

with A2 = (1 + h2)/(1 + rf)
2, where rf is the instantaneously risk-free rate and h is

the pre-specified volatility bound. As shown in Hansen and Jagannathan (1991), the

constraint in (5) implies that no portfolio priced by Λt can have a Sharpe ratio greater

than h. That is, the pricing bounds rule out “good deals” with a high Sharpe ratio if h

is sufficiently large. Because Rose (1976) and Cochrane and Saá-Requejo (2000) argue

3Cochrane and Saá-Requejo (2000) consider more general cases in which the driving forces in dSt and

dVt (i.e., dBt and dWt) can be multidimensional vector of independent Brownian motions, and μS , σS ,

μV , σB and σW may not be constant.
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that no portfolio traded in the market has more than twice the market Sharpe ratio, in

practice, the term h can be pre-specified to the value of twice the market Sharpe ratio.

The upper bound ct follows from replacing min with max in the above optimization.

In particular, when there is only one extra noise, dWt, driving dVt, the good-deal

bounds for a European option are given by

ct or ct = V0e
ηTΦ

(
d+ 0.5σV

√
T
)
−Ke−rfTΦ

(
d− 0.5σV

√
T
)
, (6)

where Φ(·) denotes the standard normal cumulative distribution function, K is the strike

price, σ2
V = σ2

B + σ2
W ,

d =
ln(V0/K) + (η + rf)T

σV
√
T

,

η =

[
hV − hS

(
ρ− a

√
A2

h2S
− 1

√
1− ρ2

)]
σV ,

hS =
μS − rf

σS
, hV =

μV − rf
σV

, ρ =
σB
σV

, A2 =
1 + h2

(1 + rf)
2
,

(7)

a = +1 for the upper bound and a = −1 for the lower bound; see Cochrane and Saá-

Requejo (2000) for more details. Note that the larger the term h is (i.e., more “unbe-

lievably good deals” are assumed to survive in markets), the wider the good-deal bounds

appear.

2.2 An Empirical Study on the TAIEX

As an empirical example, we consider a European call option whose underlying asset

is the TAIEX, where the TAIEX is a stock market index for over 700 listed companies

traded on the Taiwan Stock Exchange (TSE). Because the TAIEX is not a traded asset,

we employed the TWETF as an approximate hedge. It must be noted that there is an

unavoidable basis risk between the TAIEX call option and the security TWETF because

TWETF only tracks the Taiwan 50 index, which comprises the top 50 companies traded

on the TSE.4 We used the one-year certificate of deposit interest rate reported by the

Bank of Taiwan as the risk-free rate and collected all the data needed for the period

4Note also that the aggregate market value of these top 50 listed companies accounted for over 70%

of the total market value in the TSE market.
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July 1, 2003 – December 28, 2012 from the Taiwan Economic Journal database. To

ease exposition, the TWETF is represented by St and the TAIEX is represented by Vt.

By applying the maximum likelihood method, we recursively estimated the parameters

in (2) and (3). For example, we used the sample period of July 1, 2003 – January 2, 2006

to estimate the parameters in January 3, 2006 and obtained the estimated parameters

for the subsequent period by using the sample period of July 1, 2003 – January 3,

2006. Employing these estimated parameters, we calculated the market Sharpe ratios

and estimated good-deal bounds in (6) and (7) based on the near-maturity and at-the-

money TAIEX call options. Finally, we calculated the price-to-bounds ratio (hereafter

referred to as the PB ratio) that is defined as

PB ratio =
number of actual option prices that stay within the bounds

number of observations
.

We used this PB ratio to assess the empirical relevance of the good-deal bounds in (6)

and (7). We summarize the PB ratios in Table 1.

It is evident from Table 1 that the PB ratios vary over time. In addition, the PB

ratios increase when the term h increases. For example, conditional on h2 = 2×SR (i.e.,

twice the estimated market Sharpe ratio), the largest PB ratio is approximately 52.59%

in 2010, while the PB ratio is 40.16% in 2008. Further, the PB ratio for the entire

sample period is only approximately 46.84%. In particular, we found that only 27.03% of

the option prices remained within the good-deal bounds during the financial crisis in late

2008. Even when h increased to h4 = 4×SR (i.e., four-times the estimated Sharpe ratio),

the PB ratio was still below 53% during the 2008 financial crisis. In other words, even if

“unbelievably good deals” are assumed to survive in the markets, the derived good-deal

bounds are not sufficiently large to cover the actual option prices. These results suggest

that the good-deal bounds are not sufficiently appropriate to evaluate derivatives whose

underlying asset is the TAIEX. These results also indicate that the good-deal bounds

should be used with caution. For example, when banks use these good-deal bounds as

bid and ask prices, very often they will find that the option prices do not lie within the bid-

ask quotes. Such bid-ask quotes may cause great losses because when the option prices

lie outside the bid-ask quotes, it implies that banks bid higher than actual prices (or offer

6



Table 1: The PB Ratios of Good-Deal Bounds.

2006 2007 2008 2009 2010 2011 2012

h2 = 2× SR 50.00% 46.72% 40.16% 45.42% 52.59% 40.49% 52.40%

h3 = 3× SR 64.92% 67.62% 51.81% 47.81% 72.11% 51.01% 60.40%

h4 = 4× SR 75.81% 80.74% 63.05% 49.80% 83.27% 65.99% 64.80%

2006 ∼ 2012 2008 Financial Crisis

h2 = 2× SR 46.84% 27.03%

h3 = 3× SR 59.37% 39.64%

h4 = 4× SR 69.02% 52.25%

Note: SR denotes the estimated market Sharpe ratio. The PB ratios of the 2008 Financial

Crisis are calculated from Sept. 15, 2008 to Feb. 28, 2009.

lower than actual prices). Moreover, these results imply that the tightening of good-deal

bounds, such as by using the approach of Pyo (2011), may not perform better unless

there is perfect knowledge that the actual prices will remain within the pricing bounds.

This is because when actual prices fall outside good-deal bounds, further tightening the

good-deal bounds may lead to a worse performance.

The finding that the good-deal bounds do not contain sufficient amounts of option

prices can be caused by the methods of estimating parameters, the assumptions of con-

stant parameters, and the number of extra driving forces in dVt. Another possible cause

of this finding is the assumption that investors have perfect knowledge of the true prob-

ability law governing the stochastic processes of asset prices. As suggested by Uppal and

Wang (2003), Anderson et al. (2003), and Maenhout (2004), among many others, this

assumption is too restrictive because in many situations investors are uncertain of the

asset price processes. Therefore, it is desirable to take model uncertainty into account

when studying asset pricing bounds in incomplete markets.
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3 Robust Good-Deal Asset Pricing Bounds

3.1 Robust Good-Deal Bounds

Here, we follow Anderson et al. (2003), Maenhout (2004), and Hansen and Sargent (2008)

and take model uncertainty into consideration. To incorporate uncertainty into investors’

decisions, we extend the equations (2) and (3) by allowing some perturbation parameters:

dSt

St

= (μS + λ1σS)dt+ σSdBt,

dVt

Vt

= (μV + λ1σB + λ2σW )dt+ σBdBt + σWdWt,

(8)

where λ1 and λ2 are unknown perturbation parameters. Note that, compared with

equations (2) and (3), some extra drift terms are added in model (8). The intuition

behind model (8) can be described in the following manner. Let P denote the probability

measure of investors’ knowledge of price processes. It is often the case that the knowledge

of P is based on some estimation results or prior beliefs. Because investors are not sure if

P is the right model, it is natural that they would consider some alternative probability

measures, {Q1,Q2, . . .}, to allow for the possibility of model misspecification. Consider

a possible alternative measure Qξ, which is given by

dP = ξ dQξ,

where ξ is a density function and can be regarded as a Radon-Nikodym derivative. Ac-

cording to Girsanov’s theorem, considering this alternative measure is equivalent to shift-

ing the drift terms in (8). Thus, model (8) can be used to describe the notion that

investors are uncertain regarding the true price processes and thus consider numerous

alternative models.

Of course, not all alternative measures should be considered in our framework; alter-

native measures that are too far away from the reference (or benchmark) measure, that

is, P, could be ignored. To illustrate this, we impose the following restriction:

λ2
1 + λ2

2 ≤ κ2, (9)

to exclude some alternative measures, where κ is a pre-specified value. The larger κ2

is, the more alternative measures that are far away from P are included. When κ = 0,
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it implies that investors have perfect knowledge of the true probability law governing

the stochastic processes of asset prices. The advantages of this constraint are twofold.

First, if the notion of distance between measures is measured by the Kullback-Leibler

divergence, equation (9) implies

DKL

(
St ||St(λ1)

)
≤ κ21 and DKL

(
Vt ||Vt(λ1, λ2)

)
≤ κ22, (10)

where DKL

(
St ||St(λ1)

)
denotes the Kullback-Leibler divergence of St in (8) from St in (2),

and DKL

(
Vt ||Vt(λ1, λ2)

)
measures the discrepancy or divergence of Vt in (8) from Vt

in (3).5 That is, in the sense of the Kullback-Leibler information criterion, a broad range

of alternative models is considered by imposing the restriction in (9). Second, Ben-Tal

and Nemirovski (1999) have shown that the robust solution of a linear programming

problem with an ellipsoidal uncertainty set (that is, λ2
1 + λ2

2 ≤ κ2) is mathematically

tractable.

Given the framework in (8) that investors are uncertain regarding the true processes

of asset prices, we now discuss the optimization problem encountered by investors. In-

tuitively, when investors are concerned about model uncertainty and disfavour model

misspecification, they entertain more conservative and pessimistic views regarding their

decisions. This concern keeps the investors from choosing the most pessimistic or the

worst-case scenario. Thus, instead of the constrained optimal decision problem in (4),

the investors’ optimization problem involving uncertainty regarding the true processes

are given by

Ct = min
λ1,λ2

min
Λτ≥0, t≤τ≤T

IEt

(∫ T

τ=t

Λτ

Λt

xc(Vτ )dτ

)
+ IEt

(
ΛT

Λt

xc(VT )

)
,

s.t. λ2
1 + λ2

2 ≤ κ2, IEt

(
dΛ2

t

Λ2
t

)
≤ A2dt,

(11)

and subject to the constraint that the selected stochastic discount factor should correctly

price basis assets, where Ct denotes the lower robust pricing bound. Note that the

first minimization (i.e., minλ1,λ2
) in (11) describes the worst-case scenario considered by

5It can be shown that DKL

(
St ||St(λ1)

)
= λ2

1 t/2 and DKL
(
Vt ||Vt(λ1, λ2)

)
= (λ1w1+λ2w2)

2 t/2, where

w1 = σB/(σB + σW ) and w2 = σV /(σB + σW ). By setting k2 = 4max
{
k2
1/t, (k2 + k1w1)

2/(w2
2 + t)

}
, it is

easy to verify that (9) implies equation (10).
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investors. Again, the dynamics of upper bound Ct follow from replacing min with max

in the above optimization.

In general, the robust pricing bounds in (11) can be approximated by using numerical

methods. However, in certain special cases, such as the European call option discussed

in section 2.1, closed-form solutions can be obtained. As shown in the Appendix, the

robust good-deal bounds for European call options are given by

Ct or Ct = V0e
ηTΦ

(
d+ 0.5σV

√
T
)
−Ke−rfTΦ

(
d− 0.5σV

√
T
)
, (12)

where σ2
V = σ2

B + σ2
W ,

d =
ln(V0/K) + (η + rf)T

σV
√
T

,

η =

[
gV − gS

(
ρ− a

√
A2

g2S
− 1

√
1− ρ2

)]
σV ,

gS =
μS + λ∗

1σS − rf
σS

, gV =
μV + λ∗

1σB + λ∗
2σW − rf

σV
, ρ =

σB
σV

,

λ∗
1 = − κhS

κ+A
, λ∗

2 = a
κ
√

(κ+A)2 − h2S
κ+A

, hS =
μS − rf

σS
, A2 =

1 + h2

(1 + rf)
2
,

(13)

a = +1 for the upper bound and a = −1 for the lower bound. With reference to the robust

good-deal bounds in (12), some standard Greeks are also presented in the Appendix (see

Table 3).

Several novel features are evident from (12) and (13). First, when markets are com-

plete and the processes dSt and dVt are correctly specified, equations (12) and (13) are

reduced to the Black-Scholes formula. To see this, let Vt = St and κ = 0. The former

represents the situation that the payoff of Vt can be perfectly replicated by the basis asset

St, while the latter implies that investors have perfect knowledge of the true DGPs of

asset prices. In this case, ρ = 1, λ∗
1 = λ∗

2 = 0 and η in (12) becomes zero. Substituting

these results into equation (12), the Black-Scholes formula appears as a special case. Sec-

ond, when markets are incomplete and dSt and dVt are correctly specified, equations (12)

and (13) become the pricing bounds proposed by Cochrane and Saá-Requejo (2000). This

is simply because κ = 0, and hence λ∗
1 = λ∗

2 = 0.
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Third and more importantly, when markets are incomplete and investors worry about

the worst-case scenario that involves model uncertainty regarding the true price pro-

cesses, the robust good-deal bounds are wider than those discussed in Cochrane and

Saá-Requejo (2000). The greater the uncertainty about the asset processes (i.e., κ in-

creases), the wider the robust pricing bounds appear. Such wider pricing bounds are

mainly attributed to the conservative and pessimistic decisions of investors in (11), not

relaxing the assumption of no-arbitrage or allowing the existence of “unbelievably good

deals.” The intuition of the result is clear. For example, if banks are not sure whether

their asset processes are correctly specified, they may express reservations regarding the

pricing models and widen bid-ask quote prices. The only difference is that equation (12)

provides closed-form solutions to optimally widen bid-ask quotes. To illustrate, Figure 1

presents the lower and upper good-deal bounds (the dashed lines) based on equation (6)

and the following parameter values:

μS = 0.13, σS = 0.14, μV = 0.11, σB = 0.13, σW = 0.06,

V0 = 80, rf = 0.05, K = 100, T = 1/4, ḧ2 = 0.8382,

where ḧ2 = 2 × (0.11 − 0.05)/
√
0.132 + 0.062 ≈ 0.8382. For comparison, Figure 1 also

plots the European call option price derived by the Black-Scholes formula (the dotted

line). Given the same parameter values, Figure 1 also shows the lower and upper robust

good-deal bounds (the solid lines) according to equation (12), with κ = 1. As can be seen

in this figure, the robust good-deal bounds are wider than the pricing bounds discussed

in Cochrane and Saá-Requejo (2000), conditional on the same discount factor volatility

constraint, h = 0.8382.

3.2 Re-examining the TAIEX with Robust Good-Deal Bounds

In this subsection, we re-examine the empirical study in the TAIEX by applying the

robust good-deal bounds. Using the same procedure that was discussed in section 2.2,

we calculate the PB ratios for the robust good-deal bounds in (12) and (13); we summarize

these PB ratios in Table 2. To rule out “good deals” with high Sharpe ratios, in this table

we only present the results of h = h2 and κ = {1, 1.5}. For comparison purposes, we also

11



Cochrane and Saá-Requejo (2000)

Black-Scholes call price

Call Value

Robust good-deal bounds: κ = 1

Stock Price

Figure 1: Upper and lower pricing bounds on a European call option.

present the PB ratios of the good-deal bounds of Cochrane and Saá-Requejo (2000) in

this table (i.e., h2 and κ = 0).

Several features emerge in Table 2. First, the PB ratios of the robust good-deal

bounds vary over different time periods. For example, given that κ = 1, the largest

PB ratio was 85.66% in 2010, while the PB ratio was 65.06% in 2008; the PB ratio

was approximately 71.79% for the entire sample period. In addition, the PB ratios

increase when the level of model uncertainty (i.e., κ) increases.6 Second, compared

with the results of the good-deal bounds (i.e., κ = 0), the PB ratios of the robust

good-deal bounds rise substantially, particularly during the 2008 financial crisis. For

example, during the times of financial crisis in late 2008, the PB ratio increases from

27.03% (κ = 0) to 65.77% (κ = 1.5). This result suggests that to obtain a reasonable

PB ratio, the possibility of model misspecification should be taken into account. Third,

compared with other time periods, the PB ratios during the 2008 financial crisis are the

smallest values, regardless of the values of κ. That is, to sustain the same PB ratio, the

value of κ during the 2008 financial crisis should be larger than these values in other

periods. For example, to sustain the PB ratio at 68.55%, the value of κ was equal to 1 in

2006, while the value of κ should be larger than 1.5 during the financial crisis. This result

implies that the investors entertain more conservative and pessimistic views regarding

6As long as κ increases, the robust good-deal bounds can include all the actual prices.
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Table 2: The PB Ratios of Robust Good-Deal Bounds.

h = h2 2006 2007 2008 2009 2010 2011 2012

κ = 0 50.00% 46.72% 40.16% 45.42% 52.59% 40.49% 52.40%

κ = 1 68.55% 75.00% 65.06% 66.93% 85.66% 72.47% 68.80%

κ = 1.5 74.19% 81.15% 73.09% 75.30% 89.64% 80.16% 73.60%

h = h2 2006 ∼ 2012 2008 Financial Crisis

κ = 0 46.84% 27.03%

κ = 1 71.79% 56.76%

κ = 1.5 78.16% 65.77%

Note: The PB ratios of the 2008 Financial Crisis are calculated from Sept. 15, 2008 to Feb.

28, 2009. For comparison, the PB ratios of Cochrane and Saá-Requejo’s (2000) good-deal

bounds are also presented here (i.e., κ = 0).

their decisions during the 2008 financial crisis.

4 Conclusion

In this study, we developed a framework that formalizes the problem of investors who

are concerned about model uncertainty and seek robust pricing decisions in incomplete

markets. Intuitively, because investors disfavour model misspecification and understand

that the distributions of asset prices are not estimated with perfect precision, they are

more conservative regarding their decisions. This concern may keep investors from choos-

ing the worst-case scenario and leads to wider pricing bounds as compared to Cochrane

and Saá-Requejo’s (2000) good-deal bounds. In addition, when the degree of model un-

certainty is high, investors are less confident regarding their asset price processes, which

may widen the pricing bounds.

For the application, we first assumed that asset prices are driven by geometric Brow-

nian motion processes and then we derived closed-form solutions for the robust pricing

bounds of the European option. By applying the proposed pricing bounds (and the

good-deal bounds) to evaluate a European option whose underlying asset is a non-traded

13



TAIEX, we found several interesting results. First, we found that the good-deal bounds

of Cochrane and Saá-Requejo (2000) are not sufficiently wide to cover the actual prices

of the options. This result suggests that the good-deal bounds may be not applicable

for evaluating these derivatives. More importantly, it implies that tightening the pricing

bounds may not be of significance, unless the actual prices are guaranteed to stay within

the pricing bounds. Second, we find that, under certain circumstances of model uncer-

tainty, the proposed pricing bounds can include the actual prices of the options. Third,

compared to other time periods, we found that investors were less confident regarding

the price processes when faced with the recent financial crisis. This result provides a

possible explanation for the contention that the PB ratios of good-deal bounds tend to

be low during the times of financial crisis in late 2008.
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Appendix

Recall that our objective is to price a European option under the conditions that markets

are incomplete and price processes may be misspecified. Along the lines of Cochrane and

Saá-Requejo (2000) and Hansen and Sargent (2001), our objective is to solve the following

constrained optimization problem for the lower pricing bounds on date t = 0:

min
λ1,λ2

min
Λτ≥0, t≤τ≤T

IEt

(∫ T

τ=t

Λτ

Λt

xc(Vτ )dτ

)
+ IEt

(
ΛT

Λt

xc(VT )

)
,

s.t. λ2
1 + λ2

2 ≤ κ2, IE0

(
dΛ2

t

Λ2
t

)
≤ A2dt,

where κ2 and A2 are pre-specified values and dSt and dVt are given in (8). We adopt

a two-step approach to solve this constrained optimization. In the first step, we solve

the second minimization (i.e., minΛT≥0), provided that λ1 and λ2 are fixed. According

to the proposition 5 of Cochrane and Saá-Requejo (2000), we know that the solution is

given by:

dΛ∗
t

Λ∗
t

= −rfdt− g̈SdBt −
√

A2 − g̈S
2dWt,

where g̈S = (μS + λ1σS − rf)/σS . Thus, together with the specifications of dSt and dVt

in (8), we know that ST , VT and ΛT are jointly lognormally distributed:

ST = S0 exp
[(
μS + λ1σS − 0.5σ2

S

)
T + σS

√
TεB

]
,

VT = V0 exp
[(
μV + λ1σB + λ2σW − 0.5σ2

V

)
T + σB

√
TεB + σW

√
TεW

]
,

Λ∗
T = Λ∗

0 exp

[(− rf − 0.5A2
)
T − g̈S

√
TεB −

√
A2 − g̈S

2
√
TεW

]
,

(14)

where εB and εW are independent N(0, 1) random variables and σ2
V = σ2

B + σ2
W . Now

we want to evaluate a European call option with payoff xc(VT ) = max{0, VT −K} and

xc(Vt) = 0, ∀t < T . Substituting VT in (14) into (VT > K), we find that the option is in

the money only when

δ1 >
ln
(
K/V0

)
−
(
μV + λ1σB + λ2σW − 0.5σ2

V

)
T

σV
√
T

≡ b0,

where δ1 =
(
σBεB + σW εW

)
/σV . For ease of exposition, we let

δ2 =

(
σBεW − σW εB

)
σV

, b1 =
−g̈SσB −

√
A2 − g̈S

2σW
σV

, b2 =
g̈SσW −

√
A2 − g̈S

2σB
σV

.
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Expressing the expected payoff of the call option in terms of these new variables, we

obtain

IE0

[
Λ∗
T

Λ∗
0

max
(
VT −K, 0

)]
=

∫
δ2

∫
δ1>b0

(
V0e

(μV +λ1σB+λ2σW−0.5σ2
V )T+σV

√
Tδ1 −K

)
×

e(−rf−0.5σ2
V )T × eb1

√
Tδ1+b2

√
Tδ2 × 1√

2π
e−0.5δ21 × 1√

2π
e−0.5δ22dδ1dδ2.

Rearranging these terms, we obtain

V0e
ηTΦ

(
d+ 0.5σV

√
T
)
−Ke−rfTΦ

(
d− 0.5σV

√
T
)
, (15)

where

d =
ln(V0/K) + (η + rf)T

σV
√
T

, η =

[
g̈V − g̈S

(
ρ+ 1

√
A2

g̈S
2 − 1

√
1− ρ2

)]
σV ,

g̈V =
μV + λ1σB + λ2σW − rf

σV
,

(16)

and ρ = σB/σV .

Given the previous result in (15), in the second step the optimization problem becomes

min
λ1,λ2

V0e
ηTΦ

(
d+ 0.5σV

√
T
)
−Ke−rfTΦ

(
d− 0.5σV

√
T
)
,

s.t. λ2
1 + λ2

2 ≤ κ2.

Let

L = V0e
ηTΦ

(
d+ 0.5σV

√
T
)
−Ke−rfTΦ

(
d− 0.5σV

√
T
)
− 0.5�(λ2

1 + λ2
2 − κ2)

be the objective function of this optimization problem, where � is the Lagrange multiplier.

The first order conditions of this minimization are

∂L
∂λ1

= V0
∂η

∂λ1

eηT TΦ
(
d+ 0.5σV

√
T
)
+ V0e

ηT ∂

∂λ1

Φ
(
d+ 0.5σV

√
T
)

−Ke−rfT
∂

∂λ1

Φ
(
d− 0.5σV

√
T
)
− �λ1 = 0,

∂L
∂λ2

= V0
∂η

∂λ2

eηT TΦ
(
d+ 0.5σV

√
T
)
+ V0e

ηT ∂

∂λ2

Φ
(
d+ 0.5σV

√
T
)

−Ke−rfT
∂

∂λ2

Φ
(
d− 0.5σV

√
T
)
− �λ2 = 0,

∂L
∂�

= λ2
1 + λ2

2 − κ2 = 0,

(17)
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where

∂η

∂λ1

=
−σV

√
1− ρ2√

A2/g̈S
2 − 1

,
∂η

∂λ2

=
√

1− ρ2σV ,

∂

∂λ1

Φ
(
d± 0.5σV

√
T
)
=

1√
2π

exp
{
− (d± 0.5σV

√
T )2

2

}−√
T
√

1− ρ2√
A2/g̈S

2 − 1
,

∂

∂λ2

Φ
(
d± 0.5σV

√
T
)
=

1√
2π

exp
{
− (d± 0.5σV

√
T )2

2

}(√
T
√

1− ρ2
)
.

Rearranging the first two equations in (17), we obtain

[
1

λ2

− −1

λ1

√
A2/g̈S

2 − 1

]{
V0σV TΦ

(
d+ 0.5σV

√
T
)
+

V0

√
T

2π
exp

(
− (d+ 0.5σV

√
T )2

2

)

− K
√
T√

2π
exp

(
− (rf + η)T − (d− 0.5σV

√
T )2

2

)}
= 0.

Note that the equality holds only when the value within the square brackets is zero:

1

λ2

− −1

λ1

√
A2/g̈S

2 − 1
= 0. (18)

Thus, equation (18), together with the third equation in (17), implies that

λ∗
1 = − κhS

κ+A
, λ∗

2 = −κ
√

(κ+A)2 − h2S
κ+A

,

where hS = (μS − rf)/σS. Thus, substituting λ∗
1 and λ∗

2 into (15) and (16), we obtain the

analytic-form solution of the lower robust good-deal pricing bound. By replacing min

with max in the above optimization, we can obtain the upper robust good-deal pricing

bound. For ease in application, we also present some standard Greeks of robust good-deal

bounds in Table 3.
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Table 3: Greeks of Robust Good-Deal Bounds.

Greeks

delta eηTΦ
(
d+ 0.5σV

√
T
)

gamma eηT

V0σV
√
T
φ
(
d+ 0.5σV

√
T
)

vega V0

√
TeηT

[
a

√
A2−g2S√
1−ρ2

√
TΦ
(
d+ 0.5σV

√
T
)
+ φ

(
d+ 0.5σV

√
T
)]

theta −V0ηe
ηTΦ

(
d+ 0.5σV

√
T
)− rfKe−rfTΦ

(
d− 0.5σV

√
T
)− KσV

2
√
T
e−rfTφ

(
d− 0.5σV

√
T
)

rho −V0σV Te
ηT
[
1− ρ+ a

√
1−ρ2√
A2−g2S

(
σV A2

1+rf
− 1
)]

Φ(d+ 0.5σV
√
T ) + TKe−rfTΦ(d− 0.5σV

√
T )

Note: The term φ(·) denotes the standard normal density function.
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