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Abstract

This paper avoids the usual dichotomy between unit-root nonstationarity and station-
arity in testing long-run PPP and re-examine this hypothesis based on the Innovation
Regime-Switching model of Kuan, Huang, and Tsay (2005, JBES). This model permits
the random shock in each period to be permanent or transitory, depending on a swtiching
mechanism, and hence results in distinct dyanmics (unit-root nonstationarity or station-
arity) in different periods. Our empirical study on centuried U.S./U.K. real exchange
rates shows that there are both temporary and permanent influences on the real ex-
change rate such that approximately 42% of the shocks in the long run are more likely to
have a permanent effect. It is also found that transitory shocks dominate in the fixed-rate
regimes, yet permanent shocks play a more important role during the floating regimes.
Thus, long-run PPP is rejected due to the presence of a significant amount of permanent
shocks, and there are still long periods of time in which the deviations from long-run PPP
are only transitory. Moreover, after the distinct effects of shocks are properly accounted
for, the half-life of a given transitory shock is considerably shorter than those reported

in the literature.

Keywords: Innovation regime-switching model, permanent shock, purchasing power

parity, transitory shock.
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1 Introduction

Long-run purchasing power parity (PPP), which asserts that equilibrium exchange rates
tend to equalize the ratio of national price levels, is a fundamental equilibrium relation-
ship in international economics. This long-run relationship is a cornerstone of dynamic
exchange rate models (e.g., Dornbusch, 1976; Mussa, 1982). It also provides a benchmark
exchange rate and hence has some practical appeal to arbitragers and policy makers. See
Officer (1976), Froot and Rogoff (1995), MacDonald (1995) and Rogoff (1996) for com-

prehensive reviews of the PPP theory.

Despite its theoretical importance, long-run PPP received mixed empirical evidences
from different studies. In practice, it is common to test long-run PPP by examining
whether real exchange rate is a stationarity series (or nominal exchange rate is cointe-
grated with price levels in a specific form). Since Adler and Lehmann (1983) and Meese
and Rogoff (1983), there have been numerous researches on long-run PPP that rely mainly
on tests of unit-root, stationarity, and cointegration. Examples include Abuaf and Jo-
rion (1990), Kim (1990), Grilli and Kaminsky (1991), Glen (1992), MacDonald (1993),
Cheung and Lai (1998), Culver and Papell (1999), Kuo and Mikkola (1999), Cuddington
and Liang (2000), Taylor (2002), Lopez, Murray and Papell (2005), Papell (2006), Papell
and Prodan (2006) and Kanas (2006), to name just a few. The conclusions, however,
may vary with the tests (also how these tests are implemented) and the sample periods

considered in these studies.

Although the test power and data span may be responsible for the contradictory
conclusions on long-run PPP, they can not be the only reasons. It should be noted
that the rejection of unit root (stationarity) does not necessarily imply that the series
must be stationary (unit-root nonstationary). It is thus somewhat simplistic to draw a
conclusion about real exchange rate based only on these tests. The dynamic properties
of real exchange rates may be more complex than those of a unit-root model or a linear
stationary model. This leads researchers to consider different models for real exchange
rates, such as the ARFIMA model (Diebold, Husted, and Rush, 1991), stationary models
with breaks (Culver and Papell, 1995; Papell and Prodan, 2006), the Markov-swtiching
model (Engel and Kim, 1999), and the TAR model (Taylor, 2001). These studies are
still restrictive, in the sense that only one model structure is permitted throughout the
sample period. Even for the models with structural breaks or Markov switching, it is the

parameter, not the model per se, that changes with different regimes.

In this paper we avoid the usual dichotomy between unit-root nonstationarity and sta-

tionarity and re-examine long-run PPP based on a flexible model, the Innovation Regime-



Switching (henceforth IRS) model, recently proposed by Kuan, Huang, and Tsay (2005).
Intuitively, it is hard to believe that all random shocks exert only one effect (permanent
or transitory) on future real exchange rate in a long time span. This intuition underpins
the models that allow for breaks and stochastic unit root (e.g., Culver and Papell, 1995;
Papell and Prodan, 2005; Kanas, 2006). It is also supported by the opposite conclusions
on PPP in different regimes (e.g., Grilli and Kaminsky, 1991; Lothian and Taylor, 1996).
As an alternative, the TRS model permits the random shock in each period to be per-
manent or transitory, depending on a swtiching mechanism, and hence admits distinct
dyanmics (unit-root nonstationarity or stationarity) in different periods. Under the IRS
framework, standard unit-root models and stationarity models are just two extreme cases.
By applying the IRS model to real exchange rate, we circumvent the difficulties arising
from unit-root (or stationarity) testing. More importantly, we allow the data to speak
for themselves, rather than putting them in the straitjacket of unit-root nonstationarity

(or stationarity).

Our empirical study on centuried U.S./U.K. real exchange rates reveals interesting
data characteristics. We find the presence of both temporary and permanent influences
on the real exchange rate over the entire sample. The simulation-based tests suggest that
neither an ARIMA model nor an ARMA model can properly characterize the data. It
is also found that transitory shocks dominate in the fixed-rate regimes, yet permanent
shocks play a more important role during the floating regimes. Hence, there are both
mean-reverting and parity-deviating behaviors in this sample. These findings, while
leading to rejection of long-run PPP, indicate that the behavior of real exchange rate is
quite different from that asserted in the literature. First, long-run PPP is rejected due
to the presence of a significant amount of permanent shocks. Second, there are still long
periods of time in which the deviations from long-run PPP are only transitory. These
results are compatible with that of Kanas (2006). They are also consistent with the
existing results that unit-root nonstationarity is more evident in the floating periods and
help to explain why such a conclusion may alter when more pre-float data are included.
Moreover, after the effects of shocks are properly accounted for, the half-life of a given

transitory shock is considerably shorter than those reported in the literature.

The rest of the paper is organized as the following. In section 2, we briefly discuss
the PPP theory and show the danger of relying on unit-root tests to determine PPP.
In section 3, we introduce the IRS model and describe model estimation and hypothesis
testing. The empirical analysis of U.S./U.K. real exchange rate is presented in section 4.
Second 5 concludes the paper. A detailed description of the estimation algorithm is given

in Appendix.



2 Long-Run PPP and Unit Root Tests

Long-run PPP states that the “fundamental” or “equilibrium” exchange rate E} is de-

termined by the ratio of domestic price P, and foreign price Q;:
by
Q

where A is an arbitrary constant. Let E, denote the nominal exchange rate; also let e,

Er=A

p; and g, be the logarithms of Ep, P, and @, respectively. An empirical representation

of the long-run PPP relationship is

e = a+ Bpy + Bogqy + uy, (1)

where @ = In A, and v, is a disturbance capturing the deviation from the logarithm of
the equilibrium exchange rate. A typical approach to testing long-run PPP is to impose
the symmetry condition (3, = —(, = ) and the proportionality condition (5* = 1)
in (1) and check the stationarity property of the logarithm of the real exchange rate,
r, = e, — p; +pi. In the literature, PPP is said to hold in the long run when r, is driven
by transitory shocks, i.e., the deviation from the equilibrium exchange rate is temporary.
When r; has a unit root, the shocks to r, all have a permanent effect, so that long-run
PPP breaks down.

As pointed out earlier, opposite conclusions on long-run PPP may result when differ-
ent tests and/or different data are used. To be sure, we first evaluate the log of U.S./U.K.
real exchange rate for the period of 1885:01 to 1995:02 and various subperiods classified
according to Grilli and Kaminsky (1991).! Note that this data set has been used by Grilli
and Kaminsky (1991) and Engel and Kim (1999) and is downloaded from the Journal of
Money, Credit and Banking Data Archives. We consider 4 tests: the Augmented Dickey-
Fuller (ADF) test, the ADF-GLS test of Elliott et al. (1996), the P-P test of Phillips and
Perron (1988), and the KPSS test of Kwiatkowski et al. (1992). The testing results are

summarized in Table 1. The ADF test is based on the following regression:

k

A'I”t = Qj + ﬂort_l + Z /BjArt—j + €ty (2)
J=1

! According to Grilli and Kaminsky (1991), the following subperiods are classified as a fixed-rate
regime: 1885:01 — 1919:06 (Classical Gold Standard), 1925:05 — 1931:08 (Gold Exchange Standard), and
1949:10 — 1972:05 (Bretton Woods). The floating regime periods are: 1919:04 — 1925:04 (First Inter-War
floating), 1931:09 — 1939:08 (Second Inter-War floating), 1973:03 — 1995:02 (Post-Bretton Woods). The
rest of periods, 1914:07 — 1919:03 and 1939:09-1949:09, are denoted as Wartime Controls.



Table 1: Unit root tests for the logarithm of the real exchange rate (1885:01 — 1995:02).

Subperiods ADF ADF-GLS P-P KPSS
Data used in Engel and Kim (1999)
(1885:01 ~ 1995:02) —-3.278*  —3.233* —2.678  0.597*
Data used in Grilli and Kaminsky (1991)
(1885:01 ~ 1986:12) —4.022%  —4.027*  —3.711* 0.492*
Classical Gold Standard
(1885:01 ~ 1914:06) —2.506 —2.329* —2.582  0.754*
First Inter-War floating
(1919:04 ~ 1925:04) —2.535 —1.025 —2.584  0.445*
Gold Exchange Standard
(1925:05 ~ 1931:08) —2.462 —0.730 —2.170  0.965*
Second Inter-War floating
(1931:09 ~ 1939:08) —1.866 —1.530 —1.383  0.874*
Bretton Woods
(1949:10 ~ 1972:05) —1.620 —2.075* —1.027  1.555*
Post-Bretton Woods floating
(1973:03 ~ 1995:02) —1.553 —0.752 —1.568 1.128*

Note: The 5% critical values for the ADF, ADF-GLS, P-P, and KPSS statistics
are —2.864, —1.942, —2.864, and 0.463, respectively. Statistical significance at the
5% level is indicated by *.

where Ar, = r, — r,_; denotes the change of r, and ¢, is the disturbance term. The
lag length k in (2) was chosen by the Bayesian information criterion with a maximum
lag length of 12. The ADF-GLS test is based on the specification (2) but substitutes
the GLS detrended data for r,. The P-P test allows for weakly dependent disturbances
without including lagged Ar, in (2). The KPSS test focuses on the null hypothesis of
stationarity around a deterministic mean. The P-P and KPSS tests are computed with
a Newey-West heteroskedastic and autocorrelation consistent estimator for the residual
spectrum at frequency zero. Details of these tests are omitted to save space but can be
found in Stock (1994).

Table 1 shows that there are mixed evidences for long-run PPP, depending on the
test and the sample period being considered. For example, for the data used in Engel
and Kim (1999), the presence of a unit root is rejected at 5% level by the ADF and
ADF-GLS tests but receives support from both the P-P and KPSS tests. As another
example, for the shorter sample period used in Grilli and Kaminsky (1991), the null
hypothesis of a unit root is rejected by the ADF, ADF-GLS and P-P tests at 5% level,
but this hypothesis is unable to rejecte by the KPSS test. In addition, the ADF-GLS
test clearly rejects the unit root hypothesis for the Classical Gold Standard and the



Bretton Woods periods at 5% leve, but the other tests lead to an opposite conclusion.
Only in the floating-rate regime and the Gold Exchange Standard priod are the testing
results more consistent (rejecting long-run PPP). The contradictory results for a given
period are usually attributed to the power properties of different tests and/or the length
of the sample period, cf. Lopez et al. (2005) and Taylor (2002). On the other hand,
the mixed conclusions on PPP across different periods may be an indication that the
dynamic patterns of real exchange rate in fact change from time to time and hence can

not be fully characterized by a unit-root model or a linear stationary model.

There have been some attempts to characterize real exchange rate using more com-
plex models. For example, Engel and Kim (1999) built a Markov-swtiching model with
changing volatility across different regimes. In the context of unit-root testing, Culver
and Papell (1995) and Papell and Prodan (2006) based their tests on models that al-
low for structural breaks, whereas Kanas (2006) considered models with random AR
coefficients. In fact, Kanas (2006) found evidence that real exchange rate may exhibit
regime-dependent stationarity such that parity deviation and mean reversion are present

in different periods.

3 IRS Models

In our study, we employ a variant of the IRS model introduced in Kuan et al. (2005).
We shall briefly describe the model specification, estimation and hypothesis testing in

the following subsections; more details of this model can be found in Kuan et al. (2005).

3.1 Model Specification

The IRS model is an unobserved component model consisting of a unit-root component
and a stationarity component such that there is a switching mechanism determining the
prevailing component at each time. Specifically, the logarithm of the real exchange rate,

ry, is expressed as 7, = T1¢ T Tot with

P(B)Arl,t = StUy, 3)
‘I’(B)""o,t = (1 —s5,)vy,

where I'(B) = 1 -~y B — -+ —~,B" and ¥Y(B) = 1 —¢,B — --- — 1, B™ are the
polynomials of the backshift operator B such that they have no common factors and

their roots are all outside the unit circle, s, is a unobserved state variable taking the

value of one or zero, and v, are uncorrelated random variables with mean zero and

2

variances depending on s;: o

.. This model will be referred to as an IRS(n, 1;m) model,



signifying one component (r; ;) has an ARIMA(n, 1,0) structure and the other (r,) has
a stationary AR(m) structure. Compared with the IRS model originally considered by
Kuan et al. (2005), the model (3) allows for more general short-run dynamics in the first
component and accommodates potential asymmetry in volatility across different regimes

by permitting switching variances in the random shocks.

A feature of model (3) is that only one component is activated in a given time period,
depending on the realization of s,. When s, = 1, the first component r, , is excited by the
random shock, while r , keeps evolving according to AR dynamics without the new shock.
As long as s, = 1, the corresponding random shock has a permanent effect on future
T4 (J > 0) and generates unit-root type dynamics. When s, = 0, the random shock
activates 1, while leaving r; ; intact. The random shock thus has a transitory effect on
future r,; and results in stationary AR dynamics. This model specification permits the
effect of a random shock to alternate from time to time and exhibits both nonstationary
and stationary behaviors. In particular, when s, = 1 (s, = 0) with probability one for all

t, the model (3) simply reduces to a conventional unit-root or a stationary AR model.

The reduced form of the IRS model (3) is
re = ATTH(B)svp + UH(B)(1 = s,)vy,

where A = (1 — B), IT*(B) = I'"}(B) and ¥*(B) = ¥~!(B). The first term on the
right-hand side is understood as a flexible stochastic trend whose behavior depends on
the number of s, = 1, whereas the second term is a stationarity component. Moreover,

assuming that the initial variables v; = 0 for ¢ < 0, the decomposition of Beveridge and
Nelson (1981) yields

r,=T*(1)A s, + A7 [T*(B) — T*(1)] s;v, + U*(B)(1 — s,)v,

¢ t t (4)
=1"(1) Z 5;V; + Z:Yt—isivi + Z¢:—i(1 — 5;)v;,
i=1 i=1 i=1

where ¥; and 1} are the coefficients of A™![I'*(B) —TI'*(1)] and U*(B), respectively. The
decomposition of (4) provides an interesting interpretation of r,. As s;v; and (1 — s;)v;
are both present in the stationarity compoent (the second and third terms on the right-
hand side), each v; must have a transitory effect regardless of the value of corresponding
s; (though the magnitude of such effect depend on s;), but v; may also have a permanent
effect when s; = 1. As such, transitory deviations from PPP in the IRS model are
“standard,” while permanent deviations from PPP are “exceptional” and take place only

when s; = 1.



The IRS model is in contrast with the model that includes both permanent and
transitory shocks at each time, e.g., Engel and Kim (1999). As these shocks together
must have a permanent effect, such a model already implies the failure of long-run PPP.
The IRS model also differs from the model considered by Kanas (2006): r, = 8,71 +uy,
where 3, =1 when s, = 1 and f3,, = #* with |3*| < 1 when s, = 0. Under this random

AR coefficient framework, it can be seen that

t—1 [i—1
Ty = E H/Bst_]- Up—i-
i=1 \j=0

Then provided that s; = 0 infinitely often, Hé;}) 5St_j would be small, and all random
shocks eventually have a transitory effect. Such a model appears to be in favor of long-
run PPP because there will be no permanent deviation from PPP. For more comparisions
between the IRS model and other switching models see Kuan et al. (2005).

3.2 Model Estimation and Hypothesis Testing

In what follows, we postulate that the switching variable s, follows a first-order Markov

chain with the transition matrix

IP(s; =0]s; 1 =1) P(s;=1]s,=1)

IP(s, =0 5,4 = 0) P(st—ust_l—m]:
Pio P11

Poo  Po1 ]

as in Hamilton (1989). The parameters of the resulting IRS(n, 1;m) model are:

9 = (717 e 7’Yn7¢17 e 7¢m7 0-870-%7]9007])11)/7
which may be estimated by the approximate quasi-maximum likelihood method or the
Markov chain Monte Carlo method. In this study, we adopt the former approach; the
estimation algorithm is described in Appendix. This algorithm is initialized by a broad
range of random initial values. The covariance matrix of the quasi-maximum likelihood
estimator 9T is —H (9T)*1, the Hessian matrix of the log-likelihood function evaluated
at éT

Based on the estimation result, we can compute the estimated smoothing probabilities
P(s, = 0 | Q7;0,), where Q' = {Ar,,...,Ar,} is the collection of all the observed
variables up to time t. The estimated smoothing probabilities will be used to determine
whether a shock is more likely to be permanent or transitory. We may also compute the

ergodic probability of s, = 1 according to:

P(s; = 1) = lim E lTZ_l1 —_1-Pw
= =0T E= 72 pog — 1y
t=1



where 1,y is the indicator function of s, = 1. The ergodic probability is understood

as the likelihood of s; = 1 in the long run.

As the postulated model admits both stationarity and unit-root nonstationarity, it is
important to test whether the log of real exchange rate is in fact a stationary series. This
amounts to testing pyy = 1. Under this null hypothesis, the permanent component does
not enter the model so that the parameters in I'(B) and p,; are not identified. In this case,
standard likelihood-based tests are not applicable, as discussed in Davies (1977, 1987)
and Hansen (1996).2 We thus follow Kuan et al. (2005) and adopt a simulation-based
test. We first estimate an array of ARMA(p, ¢) models for r, and choose an appropriate
specification based on an information criterion (AIC or SIC). Denote the selected model
as ARMA(p, §). We also estimate an array of IRS(n,1;m) models for r, and choose the
best model based on AIC or SIC; the selected model is denoted as IRS(n*, 1;m*) with the
estimated transition probability pj,. The selected ARMA(p,¢) model is then taken as
the data generating process to generate simulated samples. For each simulated sample,
we re-estimate the IRS(n*,1;m*) model and obtain an estimate of pg,, denoted as py.
Replicating this procedure many times yields an empirical distribution of py;. We then
compare pj, with the quantiles of this empirical distribution. The null hypothesis that
r; is a stationary process would be rejected if the empirical p-value of pj, is less than,

say, 5%.

Similarly, one may also be interested in knowing whether r, is a pure unit-root pro-
cess and would like to test p;; = 1. Following the idea of the simulation-based test
described above, we now select an appropriate ARIMA(p, 1,G) model to generate the
simulated samples. We then obtain pj; from the IRS(n*, 1;m*) model and compute a
finite-sample reference distribution of p;;. The null hypothesis that the series follows
the ARIMA(p, 1, ) model is rejected if the empirical p-value of pj; is small. When the
simulation-based tests reject their respective null hypothesis, we have evidence that r,

can be characterized by an IRS(n,1;m) model.

4 Empirical Analysis

4.1 Model Estimation Results

Given the sample data from 1885:01 through 1995:11, we estimate the IRS(n, 1; m) model
with 7 and m no greater than 4. The best model selected by SIC is the IRS(1, 1; 3) model;

?Hansen (1992), Garcia (1998) and Carrasco et al. (2004) proposed solutions to test parameter con-
stancy in the Markov-switching model. Their tests cannot be directly applied to our problem because

the primary concern here is to check poo = 1, not parameter constancy.



Table 2: Quasi-maximum likelihood estimates of the proposed IRS model.

Estimator Estimate Standard error t-statistic
Y1 0.9621 0.0054 177.0523*
151 0.0990 0.0279 3.5382*
1/32 —0.0931 0.0166 —5.6066*
1/33 —0.1338 0.0346 —3.8610*
G0 0.0095 0.0022 4.3181*
01 0.0330 0.0035 9.4285*
Doo 0.9432 0.0104
P11 0.9211 0.0136

Log-Likelihood=—-3482.6558 SIC=-6907.8005

Note: t-statistics with an asterisk are significant at the 5% level.

the estimation results are summarized in Table 2. In particular, the estimated transition
probabilities are pj, ~ 0.9432 and pj; ~ 0.9211. The diagnostic tests of the model
residuals, including the @ test of Ljung-Box (1978) on serial correlations and the LM test
of Engle (1982) on the ARCH effect, have statistics: Q(12) = 20.247, Q(24) = 29.115
and ARCH(4) = 2.170, which are all insignificant at 5% level, under the x?(12), x?(24)
and x2(4) distributions, respectively. Hence, there appears no serial correlation and
conditional heteroskedasticity in these residuals. Following Engel and Hamilton (1990),
we also test whether the state variables are independent over time, i.e., pog + py; = 1.
The resulting Wald statistic is 2584.5868 and rejects the null at 1% level under the x?(1)

distribution. This provides a support of the Markovian specification.

We then apply the simulation-based test discussed in the preceding section to check
whether the log of U.S./U.K. real exchange rate is actually a pure ARMA or ARIMA
process. We estimate an array of ARMA (p, ¢) model for r, with p and ¢ no greater than
4; the best model based on SIC is the following ARMA(2,0) model:

r, = 1.0498 + 1.2579r, | — 0.2713r, o + ¢, (5)

with o, = 0.0207. Simulated data are then generated using the estimated parameters
in (5). By estimating an IRS(1,1;3) model based on the simulated data, we obtain a
new estimate py,. With 3000 replications, we get an empirical distribution of p,,. The
empirical p-value of pj, = 0.9432 is 0.0279, rejecting the hypothesis that the data are
generated from (5) at 5% level. This test result is consistent with the KPSS testing result

in Table 1. To examine whether 7, is actually an ARIMA process, we estimate an array



of ARIMA(p, 1, q) model with p and g no greater than 4; the best model based on SIC is
the ARIMA(1,1,0) model:

Ar, = 0.0002 + 0.263Ar, | +&,, (6)

with o, = 0.0208. For each simulated sample generated according to equation (6), we
re-estimate the IRS(1,1;3) to get an estimate of p;;. With 3000 replications we obtain a
simulated distribution of p;;. The p-value of pj; = 0.9211 is 0.0233, resulting a rejection
of the hypothesis that the data are generated from (6) at 5% level. This is consistent with
the ADF and ADF-GLS testing results in Table 1. These testing results suggest that

this exchange rate series is neither a pure ARMA process nor a pure ARIMA process.

4.2 The Effects of Random Shocks

In Figure 1, we plot IP(s, = 0| 27;8;), the smoothing probabilities of s, = 0 evaluated
at 9T, and the log of real exchange rate. The shaded areas denote the first and the second
Wartime Controls periods classified by Grilli and Kaminsky (1991). It turns out that
there are 831 periods (about 63% of the sample) with P(s, = 0 | Q7;6;) > 0.5. This
shows that stationarity is more likely to prevail in about 63 percent of the sample periods,
yet unit-root non-stationarity appears in the remaining periods. This is compatible with
the result of Kanas (2006). Since there are both stationary and non-stationary behaviors
in the sample, it is now not surprising to see the conflicting unit-root testing results for

different subsamples in Table 1.

The estimated ergodic probability is

P(s, = 1)~ ——P0 4185 (7)

2 —Ppo — P11
suggesting that approximately 42% (58%) of the shocks may have a permanent (tran-
sitory) effect in the long-run. This result supports that not all shocks in 7, have a
permanent effect, contrary to the findings of Engel and Kim (1999) and Cuddington and
Lian (2000). Also, not all shocks are transitory, cf. Grilli and Kaminsky (1991), Lothian
and Taylor (1996) and Taylor (2002). In view of the estimated ergodic probability and
the estimated o, we can see that permanent shocks play a relatively small but significant
role in the long run. We therefore conclude that PPP is invalid in the long run for the

U.S./U.K. real exchange rate considered.

For comparison, we also plot the estimated smoothing probabilities of s, = 0 for
some subperiods in Figure 2. The smoothing probabilities under the fixed-rate regime

are in the left panels, and those under the floating regime are in the right panels. For

10
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Figure 1: The logarithm of U.S./U.K. real exchange rate and the estimated smoothing
probabilities of s, = 0.

each panel, the numbers in parentheses are the ratios of the number of observation
with P(s, = 0 | 27;6,) > 0.5 to all observations in each subperiod. It can be seen
that in Gold Exchange Standard and Bretton Woods periods, most of the shocks are
more likely to be transitory shocks; in the Classical Gold standard period, there are
still more than 75% of the shocks appear to be transitory. That is, transitory shocks
dominate in the fixed-rate regime. Observe also that most of the shocks in the Post-
Bretton Woods periods are more likely to be permanent shocks. Yet, slightly more than
half of the shocks are permanent in two inter-war floating periods, and the permanent
shocks concentrate mainly in the beginning of these two periods. Thus, the presence of
permanent shocks does not always agree with the floating regime; they dominate only in
the Post-Bretton Woods floating period. The latter is consistent with the consensus view
of parity-deviating behavior of r, during the recent floating period. It also explains why
unit-root tests tend to reject the null when more pre-float data (those with transitory

shocks) are included in the sample.

It can also be seen that &, is about 3.5 times of 6, in Table 2. This indicates that the
series tends to be more volatile when permanent shocks are present, and it is consistent
with the finding that the floating regime is usually more volatile than fixed-rate regime;
see, e.g., Baxter and Stockman (1989) and Lothian and Taylor (1996). Moreover, as the
estimated coefficients of the stationary AR component r, are 1/31 = 0.099, 1&2 = —0.0931

11
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Figure 2: Estimated smoothing probabilities IP(s, = 0 | 27;60;); the values in parenthe-
ses are the ratios of IP(s, = 0| 27;6,) > 0.5 for each subperiod.

and 1/33 = —0.1338, we obtain the estimated half-life of a given transitory shock is less
than one month. This estimate is considerably shorter than those usually reported in the
literature, e.g., 3 years in Rogoff (1996) and 55 months in Engel and Kim (1999). This
result suggests that the long half-life estimates obtained in other empirical studies may

be due to the fact that permanent shocks in the sample were not properly accounted for.

5 Concluding Remarks

In this paper we re-examine long-run PPP hypothesis based on an IRS model that permits

both stationarity and unit-root nonstationarity. It is found that approximately 37 percent
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of the shocks in the sample (42 percent in the long run) are more likely to have permanent
effects. As such, long-run PPP is rejected in this data set. Despite the rejection of long-
run PPP, our results show that mean reversion still occurs in the fixed-rate periods, due
to the fact that transitory shocks prevail in these periods. Yet, there seems no tendency
of mean reversion during the Post-Bretton Woods period, in which permanent shocks
dominate. We thus conclude that the centuried real exchange rate exhibits different
characteristics over different periods. Traditional modeling approach that only allows
for one dynamic pattern is unable to characterize such behavior and hence may yield

misleading conclusion on long-run PPP.

It is worth emphasizing that our examination is built upon the usual definition of
long-run PPP which, under the IRS framework, amounts to requiring all random shocks
to be transitory, i.e., IP(s, = 0) = 1 (or IP(s, = 1) = 0) for all t. This seems to be
too strong a requirement for long-run PPP. Note that when > ;°, IP(s, = 1) converges,
the well known Borel-Cantelli lemma ensures that IP(s, = 1 infinitely often) = 0. That
is, permanent shocks can only be present for finitely many ¢. In this case, there will
be transitory shocks for all but finitely many ¢, so that PPP would hold eventually.
Similarly, when IP(s, = 0 infinitely often) = 0, there will be at most finitely many
transitory shocks, so that PPP would fail eventually. These two conditions appear to be
more appropriate for determining the validity of long-run PPP. How to construct tests

for these two conditions is an interesting research topic and currently being investigated.
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Appendix

It is easy to show that the IRS(n, 1;m) model (3) has an ARIMA representation with
random MA coefficients:

k+1

F( Art Zgz St— th [ + Uy, (8)

where Kk = max{m,n},

=1, if s, 1 =1, —1;, if s,_;, =1,
él,st_l = { §i7st77; = ¢ ?

—1—,, otherwise, Yi_1 — 7, Otherwise,

for i = 2,..., K, and the last coefficient is

5 . 0, lf Stflifl — 1,
+1,8t—p—1 = .
RSt v, otherwise;

¢; = 0 for i > m and ~; = 0 for ¢ > n. From equation (8) we see that the past x + 1
state variables affect Ar,. Following Hamilton (1994), we define the new state variable
s =1,2,... , 2511 such that each of these values represents a particular combination
of the realizations of (s;_j,...,s;_._1). It is easy to show that s} also forms a first-order

Markov chain with the transition matrix P*. This transition matrix can be expressed as

POO 0
0o P
P* — 10 ,
POI 0
0 Py

with P;; (j,i=0,1) being a 2r=1 % 2% block diagonal matrix given by

Pji Py 0 0
0 0 pi ps
71 g1
sz' - .. .o
Also let v,y = (U4_q1,...,0;_,,_1) and for s§_; =0, £ =1,2,...,2°"1 Tet
st—l,g = (51,8,571752,8,5727 R 75[@'—‘,—175,5,&,1)/7
where the realizations of s;,_,...,s,_,._; are such that s;_; = ¢. Then,
K+1
5271,2'0::—1 = ij,st_]-vt—j
j=1
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in equation (8).

To derive the estimation algorithm, we first discuss the optimal forecasts of the state
variable s, based on the information up to time ¢. Under the normality assumption, the

density of Ar, conditional on s ; = ¢ and Q"1 is

f(Ar, | s;, =090

2
1 { - [F(B)\I/(B)Art - Eéfl,f'vt—l] } 9)
\/2m0? Ti1
where £ = 1,2,--- 2% and 02 | = 02(1 — s,_;) + 0?s,_;. Although the innovations

v, depend on s;_; (t = m +1,...,T), we follow Gray (1996) and compute v, (t =
m+1,...,T) as

v, = Ar, — IE(Ary, | Qt_l)

or+1 (10)
=I(B)¥(B)Ar, — Z IP(SZKA ={| Qtﬂ;g) 52—1,4’%717
/=1
with the initial values v,,,...,v; being zero, where ]P(s;f_l =/ | Q- 0) is the proba-

bility of s;_; = ¢ based on the information up to time ¢ — 1.
Given IP(s;_; = ¢ | 271 0), the density of Ar, conditional on ©'~! alone can be
obtained via (9) as

k41
F(Ar [Q71h0) =) (s =L Q750) f(Ar, | sy = £,970). (11)
(=1

[\

To compute IP(s; = ¢ | QF;0), note that

(st =] Q71 0) f(Ar, | sj, =£,Q70)

]P(Szll =1L ‘ Qt; 9) - f(ATt | Qtfl.g)

(12)

As in Hamilton (1989), we also assume that the (j,47)th element of P* is such that
p;; =IP(si =1i|s;_; =], Q). These in turn yield
2n+1
P(s; =] Q50) =) P(si_y =j|92:60) P(sj = | sj_, = j,Q;6)
=1
J (13)

2n+1

= v P(s;, =71 9Q50).
j=1
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Thus, with the initial value IP(s}, | 2™;0) being its limiting unconditional counterpart,
we can iterate the equations (9)-(13) to obtain IP(s; = ¢ | Q%0) for t = m +1,...,T.
Then for each t, the filtering probability is

P(s, =1]Q50)=> IP(s; =¢ | Q40),

and IP(s, = 0| Q% 0) = 1-P(s, = 1 | QF;0), where the summation is taken over all £ that
associated with s, = 1. To calculate the desired smoothing probabilities P (s, | Q7;8),
we just follow the approach of Kim (1994).

From the recursions above we also obtain the quasi-log-likelihood function:
T
InL£(0) =) Inf(Ar, | Q71;0),
=1

from which the quasi-maximum likelihood estimator éT can be found via a numerical-
search algorithm. In this paper, the estimation program for our simulation and empir-
ical study is written in GAUSS which employs the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) algorithm.
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