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Abstract

Instead of exploring the uncertainty about the existence of a unit root in the
long-span U.S. real GDP series as in previous studies, e.g., Rudebusch (1993), in
this study we investigate the uncertainty about the state (permanence vs. transi-
toriness) of the output shock period by period by using the “innovation regime-
switching” (IRS) model. In this model the effect of a shock may be permanent or
transitory in different time periods. By applying the IRS model to the 1870-2006
annual U.S. real GDP data, we find that the output shocks in the periods of the
1893 depression, the 1907 financial panic, the two World Wars and the Great De-
pression are likely to have had a large but transitory effect, whereas the output
shocks in the remaining periods are likely to have had a permanent effect. This
result suggests that the long-span real GDP is neither a unit-root series nor a trend-
stationary series. Our simulations also show that the conventional unit-root tests,
while producing evidence unfavorable to the existence of a unit root, are not able
to discriminate between trend-stationary/trend-break models and the empirical IRS
model. In addition, the sample estimates of the unit-root test statistics often have
values close to the center section of the finite-sample distribution of the statistics
generated from the empirical IRS model. This, together with the estimation results,
indicates that the importance of the issue regarding output fluctuations may not
lie on the presence of an exact unit root, but in the uncertainty about the state of
output shocks and the identification of the nature of the state. Finally, our simula-
tions indicate that the Lumsdaine Papell (1997) unit-root tests tend to spuriously
identify transitory shocks as permanent trend breaks. This casts doubt on Papell
and Prodan’s (2004) contention that the U.S. real GDP follows a trend-stationary

process with permanent breaks occurring during the period 1929-1946.
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1 Introduction

Since the seminal work of Nelson and Plosser (1982), much effort has been de-
voted to exploring whether the U.S. real GDP series can be characterized as a
difference-stationary (hereafter DS) or a trend-stationary (hereafter TS) process. In
spite of numerous studies, the debate about the difference-stationarity versus trend-
stationarity of the U.S. GDP remains open. For example, when exploring long-span
U.S. real GDP data, Diebold and Senhadji (1996) found that conventional Dickey
Fuller unit-root tests produce results favoring trend-stationarity, which casts doubt
on the consensus opinion of the existence of unit root in post-war real GDP. Murray
and Nelson (2000, 2002), on the other hand, have argued that the evidence against
the unit root in the long-span real GDP series is mainly caused by the period of tur-
moil experienced from 1929 to 1946 due to the Great Depression and World War I1I.
Once the heterogeneity in the data is taken into account, the long-span real GDP
data may still contain a unit root. In contrast with Murray and Nelson (2002),
Papell and Prodan (2004) provided evidence against unit roots in long-span real
GDP by conducting Lamsdaine and Papell (1997) tests. Their result suggests that
the real GDP can be viewed as a TS process with trend breaks occurring during
1929-1946.

The studies mentioned above bring relevant research full circle on the issue of
the uncertainty about the existence of a unit root in U.S. real GDP. In the models
of the pro difference-stationarity camp, e.g., Murray and Nelson (2002) and Kilian
and Ohanian (2002), permanent shock is presented in each period while transitory
shocks, usually with large short-term effects, occur only occasionally. In contrast,
in the models of the pro trend-stationarity camp, e.g., Diebold and Senhadji (1996)
and Papell and Prodan (2004), almost all shocks to output are transitory while

permanent breaks (shocks) occur infrequently.

In this study, we argue that what is important about output fluctuations is the
nature of shock (permanence vs. transitoriness) in each period rather than the
presence of an exact unit root. We avoid the usual dichotomy between difference-
stationarity and trend-stationarity and consider the uncertainty of the state (per-
manence vs. transitoriness) of output shock period by period. There are a few

reasons for doing so. First, from an econometric point of view, although a DS or



TS view of output process simplifies the model structure, such views might greatly
limit the dynamic patterns that can fully characterize the real output series. Es-
sentially, there is no a priori reason that one type of output shock (permanent or
transitory) should always prevail or dominate in a very long time span.! In addi-
tion, output shocks in periods of tranquility are highly likely to be fundamentally
different in nature from those in turmoil periods. Second, on the theoretical side, as
Sims (1988), Durlauf (1989), Christiano and Eichenbaum (1990) and many others
have demonstrated, the existence of an exact unit root in the real output per se may
not help in identifying the true economic structure. Instead, as has been convinc-
ingly argued by Christiano and Eichenbaum (1990), it is the relative importance of
permanent and transitory shocks and economic agents’ perception of these shocks
that determine the dynamic properties of economic models. Accordingly, a model
which specially accounts for the uncertainty of permanent and transitory shocks
should have potential to shed light on the relative importance of these shocks and,
as a result, the underlying structure of economic models. Third, from the point of
view of output forecasting, the knowledge of the nature of recent output shocks is
much more important than the knowledge of whether the output process contains
a unit root. For example, in an event where real output has declined mainly due to
transitory factors, e.g., monetary shocks, the output is expected to bounce back to
its long-term mean or time trend. In contrast, in an event where output has declined
mainly due to permanent factors, no such rebound of output is expected. That is,
the different states of recent output shocks should have very different implications
as to how the future output may change. Accordingly, the knowledge of the state of

recent output shocks provides important information about the future output path.

To account for the uncertain effect of each shock, this study considers a more
flexible model: the “Innovation Regime-Switching” (henceforth TRS) model recently
proposed by Kuan et al. (2005), and demonstrates how such a modeling strategy can
be applied to analyzing the persistence of output fluctuation period by period. The
IRS model is an unobserved-component model which treats a time series process as
consisting of a unit root with a drift component and a TS component; whether a
particular component is activated depends on an unobservable state variable whose

law of motion is governed by certain probability laws. Thus, the effects of shocks

1See, for example, Newbold et al. (2001) for the argument.



in an IRS process are not fixed at all times but may be permanent or transitory
in different time periods. If the components are state independent, the model is

reduced to a conventional DS or TS model.

The TRS modeling approach has several merits worth mentioning. First, the
IRS model accommodates both trend-reverting and trend-disturbing behaviors, and
hence bridges the gap between TS and unit-root nonstationary models. As a result,
the model provides us with a more flexible framework to explore the persistent nature
of U.S. GDP. Second, to accommodate the heterogeneity in the data, the IRS model
allows for potential asymmetry in volatility across different regimes by permitting
switching variances in the random shocks. Third and more importantly, in the
IRS model whether or not the permanent or transitory state of shock is activated is
governed by the probability law, and the probabilities of the respective states in each
period are estimated from the data. Due to this particular feature of the model, no a
priori assumption regarding the importance of permanent vis-a-vis transitory shocks
in the GDP process is required. In other words, the model just lets the data speak
for themselves. As a result, the estimation results of the IRS model can provide
evidence on the relative importance of permanent and transitory shocks during the
sample period. Consequently, the model can serve as a benchmark to evaluate the
plausibility of various GDP models with differing assumptions regarding the state
of the shocks, and this can help to shed light on the debate regarding the nature of
real GDP fluctuations.

Our empirical study uses U.S. real GDP from 1870 to 2006. The study suggests
that the proposed IRS modeling approach is able to reveal important features of
output data. In particular, the estimation results show strong evidence that perma-
nent and transitory output innovations prevail in different sub-sample periods. This
suggests that over the very long time period analyzed, U.S. real GDP is neither a
DS series nor a TS series (including pure TS or trend-break model a la Papell and
Prodan, 2004) as indicated in previous studies. Our results reveal that the output
shocks in the periods of the 1893 depression, the 1907 financial panic, the World
War I, the Great Depression and the World War II are more likely to have had a
transitory effect. The results indicating that the output shocks in the Great De-
pression and the two World Wars had large transitory effects are compatible with
the theorizing of Friedman and Schwartz (1963), Lucas and Rapping (1969) and



Barro (1981). Our results also show that output shocks for the post World War II
period are more likely to have had a permanent effect, which is consistent with the

consensus opinion of the existence of a unit root in the post-war GDP.

To evaluate the performance of models with differing assumptions regarding
the state of output innovations, we follow Rudebusch (1993) and conduct a Monte
Carlo study of the rejection rates of several unit-root tests — namely, the efficient
augmented Dickey-Fuller test of Elliott et al. (1996) and the sequential breakpoint
selection tests of Lamsdaine and Papell (1997). In our simulation, we generate data
from the best-fitting IRS model and other best-fitting benchmark models, including
a pure unit-root ARIMA model, the regime-switching model of Murray and Nel-
son (2002), a TS ARMA model, and the trend-break model proposed by Papell
and Prodan (2004). Our simulations show that the unit-root tests, while producing
evidence unfavorable to the existence of a unit root, are not able to discriminate be-
tween T'S/trend-break models and the empirical IRS model. In addition, the sample
estimates of the unit-root test statistics often have values close to the center section
of the finite-sample distribution of the statistics generated from the empirical IRS
model. This, together with our estimation results, indicates that the proposed IRS
model may serve as a better model of U.S. real GDP among many alternatives.
Finally, in our Monte Carlo experiment of the sequential breakpoint selection tests
of Lamsdaine and Papell (1997), we find that the tests tend to spuriously identify
permanent trend breaks in periods where the data have actually been generated
by transitory innovations according to the empirical IRS model, especially during
the period from 1929-1946. This raises strong doubt about Papell and Prodan’s
(2004) contention that permanent trend breaks exist in the U.S. real GDP during
the period of 1929-1946.

The outline of this paper is as follows. In section 2, we describe and explore
the long-span U.S. real GDP data employed in study. In particular, we conduct two
unit-root tests for the data: the efficient augmented Dickey-Fuller test from Elliott et
al. (1996) and the sequential breakpoint selection tests proposed by Lamsdaine and
Papell (1997). In section 3, we apply the IRS model to the long-span real GDP data
and discuss the estimation results. In section 4, we employ the Rudebusch’s (1993)
bootstrap procedure to explore the finite distribution properties of the unit-root

test statistics of the IRS model as well as some benchmark DS and TS models.



This procedure is also used to evaluate the plausibility of the real GDP data being

generated from the processes. The concluding remarks are given in section 5.

2 Unit-Root Testing Results

We now examine the state of shocks on annual U.S. real GDP from 1870 to 2006
which is extracted from Angus Maddison’s homepage: www.ggdc.net/maddison/.
This is the long-span real GDP data widely discussed and employed in recent studies,
e.g., Murray and Nelson (2000, 2002) and Papell and Prodan (2004). We first
conduct unit-root tests on the log of the GDP series, y,. Instead of using the
standard augmented Dickey-Fuller (ADF) test, we apply the efficient ADF-GLS™
test of Elliott et al. (1996) which is based on the following auxiliary regression:

(1= B)y{ = o+ ayt + oy, +sz’(1 — B)yi_i + &, (1)
i=1

where B is the lag operator and y] is given by yJ = vy, — ,C:]/zt with z, = (1,¢) and
with 3 the OLS estimate of 3 obtained from regressing

(@1;@27 . 7@T) = (?Jh (1—aB)yy,...,(1 - aB)?JT)

on
(21, Zoy. s ET) = (zl, (1—aB)zy,...,(1— aB)zT)

at @ = 1 — 13.5/T. We reject the null hypothesis of a unit root if ¢, in (1) is
significantly large.

Because conventional unit-root tests tend to misinterpret a trend-break series as
a DS series, we also employ tests that take into account the possibility of structural
breaks in the trend. Here, we follow Papell and Prodan (2004) and adopt the
procedure set up by Lumsdaine and Papell (1997) to test the unit-root null against

a TS alternative with two breaks:

(1= B)y, = ag+ayt + 0, DUy, +6,DUy ; + Yoy _y + Z%(l — By + &, (2)

i=1
where DU, , = Liem, ) for : = 1,2, 1, is the indicator function and 7, is the time

at which the change in the trend function occurs. We reject the null hypothesis of a
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Table 1: Unit-Root Tests for U.S. Real GDP from 1870 to 2006.

Test 1o Test Statistic Lag (m) Break 1 Break 2
ADF-GLS™ —0.1498 —3.8265** 1 — —
Lumsdaine-Papell —0.3813 —7.2032** 2 1929 1939

Note: Critical values for ADF-GLS™ are —3.544 (1%), —3.000 (5%) and
—2.710 (10%); those for Lumsdaine-Papell are —6.69 (1%), —6.13 (5%) and
—5.89 (10%). Test statistics with two asterisks are significant at 1% level.

unit root in favor of TS with breaks if ¢, in (2) is significantly different from zero.
The model (2) is estimated sequentially for each break date T, = m +1,...,T —i
where i = 1,2, T, #T,,,and T, # T,,+1. We select breaks for which the maximum

evidence against the unit-root null.

To choose the number of augmented lags m, the Schwarz information crite-
rion (SIC) and the modified information criterion of Ng and Perron (2001) are used
for the DF-GLS™ test. In addition, the “general-to-specific” recursive t-statistic
procedure of Ng and Perron (1995) is conducted to select the lag length for the
Lumsdaine-Papell test. For all tests considered, the maximum value of m is set to
12. The asymptotic critical values for the ADF-GLS™ test statistic are provided by
Elliott et al. (1996). The finite-sample critical values for the Lumsdaine-Papell test
statistic are calculated based on the Monte Carlo method with 10,000 replications.
Details of these bootstrap critical values are omitted to save space but can be found
in Lumsdaine and Papell (1997).

The testing results are summarized in Table 1. From the table it can be seen
that, for all the tests considered, the null hypothesis of the existence of a unit root
in the real GDP process is rejected. For example, the ADF-GLS™ test rejects the
unit-root null at the 1% level, while the Lumsdaine-Papell test also rejects the unit-
root null in favor of broken trend-stationarity at the 1% level. These results are
consistent with the findings of Diebold and Senhadji (1996) in that, with longer
span data, one tends to obtain evidence in favor of trend stationarity in the real
GDP. The latter results are also compatible with the conclusions of Ben-David and
Papell (1995) and Papell and Prodan (2004) in that the real GDP series may exhibit



significant trend breaks during the early part of the last century.? The overall test
results here appear to suggest that almost all shocks to real GDP are transitory

while permanent breaks (shocks) occur very infrequently.

3 The IRS Model

Although the testing results in the previous section suggest the rejection of the
null hypothesis of a unit root, it should be noted that the rejection of a unit root
does not necessarily imply that the GDP series must be stationary. The dynamic
properties of real GDP may be more complex than those of a unit root model or a TS
model. Moreover, Sims (1988), Durlauf (1989), Christiano and Eichenbaum (1990)
and many others point out that what is important for the dynamics of output is not
the presence of an exact unit root per se. Rather, it is the persistence of each shock
and the relative importance of temporary and permanent shocks. It is thus rather
premature to draw any conclusion about the state of shocks based only on these
tests. These notions underpin the models that allow for the fractional difference
parameter, e.g., Diebold and Rudebusch (1989), and stochastic unit roots, e.g.,
Granger and Swanson (1997). Such notions also motivate the “current depth of
recession” model proposed by Beaudry and Koop (1993), which differentiates the

persistent nature of the real GDP shocks in expansions and recessions.

3.1 The Proposed Model

Instead of adopting a simplified dichotomy between DS and TS specifications, we
consider a more flexible model, a variant of the IRS model of Kuan et al. (2005), to
examine the output dynamics. We assume that the log of U.S. real GDP consists of

two components — namely, y, = y; ; + Yo .-

(1- B)yl,t =+ SV,
(3)
‘I’(B)?Jo,t = O(B)(1 — s,)vy,

where ¥(B) = 1 —-¢,B —--- —¢,,B™ and ®(B) =1 — p,B — --- — ¢, B" are

finite-order polynomials of the lag operator such that they have no common factors

2Note that, as shown in the table, the estimated break dates of the real GDP coincide with the
outset of the Great Depression as well as that of the World War II.
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and their roots are all outside the unit circle; s, = {0,1} denotes an unobserved
first-order Markov chain with the transition matrix
P(s, =05, =0) IP(stzlwsH:o)]:

P:
P(s;=0]s,,=1) IP(s;=1[s,,=1)

Poo  Po1
bl
Pio Pu

and v, = o + ¢, is a non-zero mean innovation. The term {¢,} is a white noise

2
St

with mean zero and variance depending on s,, i.e., o This model is referred
to hereafter as an IRS(1;m,n) model, signifying that one component (y,,) has a
random walk structure and the other (y,,) has a stationary ARMA (m, n) structure.
Compared with the IRS model originally considered by Kuan et al. (2005), the
model (3) accommodates potential asymmetry in volatility across different regimes
by permitting switching variances in the random shocks. Such a specification is

capable of describing the heterogeneity in long-span U.S. real GDP.

A novel feature in model (3) is that only one component is activated in a given
time period, depending on the realization of s,. When s, = 1, the first component
Y1+ is excited by the random shock, while y,, keeps evolving according to ARMA
dynamics without the new shock. As long as s, = 1, the corresponding random
shock has a permanent effect on future y,,; (j > 0) and generates unit-root type
dynamics. When s, = 0, the random shock activates y,, while leaving y, , intact.
The random shock thus has a transitory effect on future y, ; and induces stationary
ARMA dynamics. This model specification allows the effect of a random shock to
alternate from time to time and thus is able to capture both nonstationary and
stationary behaviors. It is worth noting that in a special case where s, =1 (s, = 0)
with probability one for all ¢, the model (3) is simply reduced to a conventional DS
random walk model (a TS ARMA model).

The proposed model is also able to capture potential trend-breaks in the data.
To see this, note that the model (3) can be expressed as

t

v =gt + Y s+ W(B) T R(B)(L — 5,)uy, (4)

i=1
with yo, = 0 and v; = 0 for ¢ < 0, where the last component of (4) is a weakly
stationary process generated by transitory innovations and gives rise to short-run

fluctuations. If s, =1 at t =7, + 1 and s, = 0 otherwise, then (4) becomes

Yy = ot + UtDUl,t + Wy,



where w, is a weakly stationary process. As such, y, is a TS process with one
endogenous break, in the sense that the break is due to the presence of permanent
shocks v,. In this case, the expected magnitude of the trend break is E(v,) = aj.
Similarly, the proposed model is able to approximate a TS process with two breaks
ifs;,=1latt=1T, +1and att="1T, +1, and 5, = 0 otherwise.

Model (3) can be written as a special case of a general dynamic model with
state-dependent coefficients; see Kuan et al. (2005) for more details. Once the model
is written in the state-space form with switching coefficients, the estimation algo-
rithm (also the algorithms for calculating the filtering and smoothing probabilities)
developed in Kim (1994) can be applied. In this study, we follow Kuan et al. (2005)
by writing (3) in a Markov-switching state-space form, as proposed by Kim (1994),

and compute the approximate quasi-maximum likelihood estimates (QMLE):

2 2
0= (%, cee 7wm73017 ‘. '7SOnO‘mO‘laaOaalapOOapll)/'

By applying Kim’s (1994) estimation algorithm, we obtain the filtering probabilities
]P(st =0|Y" 0), the smoothing probabilities ]P(st =0|Y7%; 0) and quasi-log-
likelihood function as byproducts, where Y* = {y;,...,,} is the collection of all
the observed variables up to time . We shall use these probabilities to examine the

effect of output shock in each period.

3.2 Estimation Results

To assess the empirical relevance of the proposed IRS model, we estimate (3) based
on the annual data of U.S. real GDP from 1870 through 2006, with a total of
137 observations. We estimate an array of IRS(1;m,n) models for the U.S. real
GDP with m and n no greater than 4. The parameter vector 0 is estimated using
the algorithm described in Kim (1994) and Kuan et al. (2005). This algorithm is
initialized by a broad range of random initial values. The covariance matrix of 0 is
—-H (9)_1, the Hessian matrix of the log-likelihood function evaluated at the QMLE
0. Among all the models considered, the IRS(1;2,0) model is selected based on
the SIC. The estimation results are summarized in Table 2. As the table shows, all

parameter estimates (except o) are statistically significant at the 5% level.

To confirm the adequacy of the model, we conduct some diagnostic checks on
the estimated model, including the Ljung-Box (1978) @ test and the LM test of

9



Table 2: Quasi-Maximum Likelihood Estimates of the Proposed Model.

Parameter Estimate Standard Error t¢-statistic
Qo —0.0013 0.0204 —0.063
a1 0.0276 0.0133 2.075*
U 0.8222 0.0924 8.984*
o —0.3348 0.0593 —b5.645*
00 0.1516 0.0523 2.898*
o1 0.0319 0.0091 3.505*
Poo 0.6300 0.1642
P11 0.9473 0.0231

Log-Likelihood=—-218.910 SIC=-398.519

Q(12) = 15.123 Q(24) = 31.782

ARCH(2)=1.788 ARCH(4)= 4.290

Note: t-statistics with an asterisk are significant at 5% level.
The term Q(-) is the @ statistic in Ljung-Box (1978) and
ARCH(+) denotes the LM statistic in Engel (1982).

Engle (1982) on the ARCH effect. As shown in Table 2, the resulting statistics for
the residuals are Q(12) = 15.123,Q(24) = 31.782, ARCH(2)= 1.788 and ARCH(4)
= 4.290. These statistics are all insignificant even at a 10 percent level under the
x2(12), x%(24), x*(2) and x?(4) distributions, respectively. Hence, it appears that
there is no serial correlation and conditional heteroskedasticity in the residuals.
Following Engel and Hamilton (1990), we also test whether the state variables are
independent over time, i.e., pyy + p;; = 1. The resulting Wald statistic is 13.270,
rejecting the null at a 1 percent level under the x?(1) distribution. This result is

consistent with the Markovian specification.

We now turn to some interesting results from our IRS model estimation. In
Figure 1 we plot the estimated filtering and smoothing probabilities of s, = 0 (i.e.,
transitory shock), where the shaded areas denote the periods of World War I (1914
1918), the Great Depression (1929-1933) and World War II (1941-1946), respec-
tively. We find that during the sample period there are 19 years (about 14 percent
of the sample) where the estimated smoothing probability ]P(st =0 | YT;O) is

greater than 0.5. This result reveals that permanent innovations are more likely
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Figure 1: Estimated Filtering (Left) and Smoothing (Right) Probabilities of s, = 0
for U.S. Annual Real GDP from 1870 to 2006.

to prevail in about 86 percent of the sample period while transitory innovations
dominate in the remaining period. The finding that both permanent and transitory
shocks occur frequently is quite different from the assertions of the traditional TS
model, the trend-break model and the unit-root model as discussed in Diebold and
Senhadju (1996), Papell and Prodan (2004) and Murray and Nelson (2000, 2002).
In contrast, our findings accord well with Newbold et al. (2001), in that neither
simple TS nor DS specifications are found to adequately characterize U.S. long-span
real GDP data. In addition, our estimation results show that, with 6, about 4 times
of 6, (as Table 2 shows), the U.S. real GDP tends to be much more volatile in the

periods where transitory shocks are present.

Figure 1 also reveals distinctly different dynamic patterns of real GDP for the
pre- and post-1947 periods. For the post-1947 period (with 60 years), the smooth-
ing probabilities of transitory shocks are all less than 0.5, indicating that perma-
nent shocks are the dominant driving force behind the GDP fluctuations and that
unit-root nonstationarity is the prevailing dynamic pattern. The results are con-
sistent with the consensus findings of Campbell and Mankiw (1987), Murray and
Nelson (2000) and Newbold et al. (2001), among many others. In contrast, Figure 1
also shows that transitory shocks occur frequently during the pre-1947 period. For
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example, the estimated filtering and smoothing probabilities of s, = 0 are greater
than 0.5 for the periods of the 1893 financial panic, the 1907 banking crisis, the
Great Depression and the two World Wars. This, together with the estimation re-
sults of o, and oy, suggests that the aforementioned events had large but transitory
effects on output. This result is similar to the finding of Murray and Nelson (2000,
2002) which suggests that the Great Depression and World War II are two major
episodes in which output shocks had large effects. A major difference is that, in the
empirical IRS(1;2,0) model, output innovations in the periods of the 1893 depres-
sion, the 1907 financial panic, the Great Depression and the two World Wars are
more likely to have had a transitory effect. The model of Murray and Nelson (2002),
on the other hand, postulates a priori that the permanent shocks are presented in
each of the sample periods, even in the period of the pre-1947 turmoil. As shown in
the following simulation experiments, such a difference may influence the rejection

frequencies of unit-root tests dramatically.

4 Simulation Results

4.1 Benchmark Models and Bootstrap Experiments

We now proceed to evaluate the likelihood of various benchmark models in gener-
ating the U.S. output data by employing Rudebusch’s (1993) bootstrap procedure.
We first consider the empirical IRS(1;2,0) model as well as models representing
the two opposing approaches of aggregate output modeling: TS vs. DS models. In
the TS camp, we explore the pure TS ARMA(m,n) model and the TS model with
two breaks, as in Papell and Prodan (2004). In the DS camp, we study the pure
ARIMA(m, 1,n) model and the model of Murray and Nelson (2002):

Y = gl,t + gt@o,tv
gl,t = Qg + @1,7&71 + vy, (5)
Yot = V1¥o1—1 t Valo o + Uy,

where 5, = {0,1} denotes an unobserved state variable whose law of motion is
governed by a first-order Markov chain with the transition matrix P, and the error

terms v, and u, are Gaussian white noises with cov(v,, u,) = 0 for all £. We estimate
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Table 3: Parameter Estimates of Benchmark Models for U.S. Real GDP.

Parameter ~ Murray-Nelson ARIMA(2,1,1) TS ARMA(2,0) Trend-Break

Estimate Std. Estimate Std.  Estimate Std.  Estimate Std.

ao 0.0335* 0.001  0.0322* 0.001  2.1798* 0.497  4.4586* 0.614
a; - - - —~ 0.0060* 0.001  0.0129* 0.001
5 - - . - - ~  —0.1205* 0.022
5o - - - - - ~0.0839* 0.019
%o - - - - - ~  —0.3813* 0.062
Un 1.2227* 0.019  1.1557* 0.082  1.1532* 0.082  0.3167* 0.076
o —0.3963* 0.020 —0.3365* 0.082 —0.3391* 0.083  0.1608  0.081
b1 - ~  —0.9974* 0.013 - - - -
O - ~ 0.0496* 0.010  0.0494* 0.031  0.0441* 0.023
Ou 0.0199*  0.001 - - - - - -
Ou 0.0624*  0.001 - - - - - -
Poo 0.9887 1.217 - - - - - -
P11 0.9740  0.772 - - - - - -

Note: The term Std. denotes the standard error. Estimates with an asterisk are significant at 5% level.

an array of TS ARMA(m,n) and ARIMA(m, 1,n) models with m and n no greater

than 8 and choose an appropriate specification based on the SIC.

The estimation results of these benchmark models are summarized in Table 3.
As the table shows, the best fitting benchmark models are: the TS ARMA(2,0)
model, the trend-break model in (2) with 7, = 1929, T, = 1939 and m = 2,
the ARIMA(2,1,1) model and the model (5) with transition probabilities p,, =
0.9887 and p;; = 0.9740. Note that the parameter estimates of model (5) are
similar to those reached in Papell and Prodan (2004). It is also of interest to
know that, based on the estimated temporary component f,, in model (5), the
output shocks during the 1929-1945 period have much greater volatility than those
during the rest of the sample period, confirming Murray and Nelson’s (2000, 2002)
argument for the heterogeneity in the output data.® In the subsequent simulations
a la Rudebusch (1993), the data are generated from these best-fitting benchmark
models and the empirical TRS(1;2,0) model.

3The estimated temporary component of model (5) is available from the authors upon request.
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Figure 2: Finite-Sample Distributions of the ADF-GLS” Statistic for the TS ARMA,

the Murray-Nelson and the ARIMA Models.

In our bootstrap experiments, we simulate data according to the estimation
results reported in Tables 2 and 3. Moreover, we generate the state variables of
the IRS model by setting s, = 0 for the periods where the smoothing probability
for the state of transitory shock to occur is greater than 0.5 and s, = 1 for the
rest of the sample period. For the Murray and Nelson’s model of equation (5), we
set s, = 1 for the 1929-1945 period and s, = 0 for the rest. Based on 10,000
replications of bootstrap simulations with a sample size of 137, we obtain the finite-
sample distributions of the ADF-GLS” and the Lumsdaine-Papell test statistics
for the various best-fitting models. To make exposition easier, we label the finite-
sample distributions of the IRS(1;2,0) model, the TS ARMA(2,0) model, the TS
model with two breaks, the ARIMA(2,1,1) model, and the model of Murray and
Nelson (2002) as fins(7), fos(T), fos(T), fos(T) and fi,\(7), respectively, where 7 =
{71, 75} is the ADF-GLS test statistic in (1) or the Lumsdaine-Papell test statistic
in (2).

4.2 Finite-Sample Distributions of the ADF-GLS™ Statistic

In Figure 2, the finite-sample distributions fi4(7;), fs(71) and f,x(7;) of the ADF-
GLS™ statistic are plotted, where 7,

1,sample

= —3.8265 denotes the actual sample

14



value of ADF-GLS” test statistic obtained in Section 2. In this figure the shaded
area under fo(7;) and to the left of 7,

a value of the ADF-GLS™ test equal to or smaller than —3.8265, conditional on the
best fitting ARIMA(2,1,1) model. This p-value, denoted as

represents the probability of obtaining

P(7 <4

fDS (%1)) )

is equal to 4.29%. Therefore, given the sample test statistic, the ARIMA model is
rejected at the five percent level. The other hatched area in the figure is the one
under f.(7;) and to the right of 7,

,sample

ample - L'he area represents the probability of

obtaining a value of the t test equal to or greater than —3.8265, conditional on the
best-fitting TS ARMA(2,0) model. This p-value, denoted as

P(7 > 4

fTS (%1)) 9

is equal to 36.95%. Thus, it is highly unlikely to obtain 7,
generating process is ARIMA(2,1,1) but it is very likely when the data generating

,sample

wmple When the true data
process is TS ARMA(2,0). The result here confirms previous findings that when
U.S. real output data of longer span are employed, the test results often point toward
the rejection of a unit-root while in favor of a deterministic trend, e.g., Ben-David
and Papell (1995), and Diebold and Senhadji (1996). Nevertheless, the p-value

corresponding to the area under f, (7;) and to the left of 7

1,sample ?

ie.,

IP(AI < 7A—1,samp1e ’ fl.\/IN(%l)>7

is 18.08%, indicating that the unit-root hypothesis cannot be rejected at the five
percent level. This result confirms the finding of Murray and Nelson (2002) which
suggests that the unit-root hypothesis is incorrectly rejected too often when the
underlying model is a unit root process augmented with a transitory component to

account for the heterogeneity in the historical GDP series.

In order to evaluate the empirical IRS(1; 2, 0) model, its finite-sample distribution
of the ADF-GLST statistic, f,.4(7;), is plotted in Figure 3 along with those of the
ARIMA(2,1,1), ARMA(2,0) and Murray and Nelson’s (2002) model. In this figure,
the dashed lines denote the corresponding distributions f.o(7,), fos(71) and fi,(7)
while the solid line represents the distribution for the proposed IRS model. As the

15



e //
-10 -8 -6 -4 -2 0 2
’f-l,sample 5_38265
Figure 3: Finite-Sample Distributions of the ADF-GLS™ Statistic for the IRS
Model (Solid Line) and other Models (Dashed Lines).

figure shows, the 7, .. is located close to the center part of f,s(7). More precisely,

the p-value,

P (7 <7

1,sample

fI‘Rs (7:1)) )

is 61.96%. This result indicates that, among the models considered in Figure 3, it
sampte Of —3.8265 when the true data
generating process of U.S. GDP is the assumed TRS(1;2,0) model. Moreover, it is
of interest to compare the simulation results of Murray and Nelson’s model and the

IRS model. Murray and Nelson’s (2002) model is essentially a DS model, and hence

is most likely to obtain a sample estimate of 7,

the permanent shocks prevail in each period of the sample. In contrast, the empirical
IRS is neither a DS nor a T'S process but a mixture of the two, which hence allows
its random innovations to have permanent and transitory effects in different periods.
Although both of the models can capture the heterogeneity in the data, the p-value
of Murray and Nelson’s model is much lower than that of the IRS model (18.08%
vs. 61.96%). Such a difference between f(7;) and fs(7;) could be attributed to
the uncertainty of the state of output shock in the IRS model. Consequently, our
result suggests that the rejection rates of the unit-root tests are quite sensitive to
treatment of the big events (such as financial crisis, depressions and World Wars)

as permanent or transitory innovations.
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Figure 4: Finite-Sample Distributions of the Lumsdaine-Papell Statistic for the
Trend-Break, the Murray-Nelson and the IRS Models.

4.3 Finite-Sample Distributions of the Lumsdaine-Papell Statis-
tic

In Figure 4 we plot the finite-sample distributions of the Lumsdaine-Papell test

statistic: fins(72), frs(T2) and fi(7y), where 7, = —7.2032 denotes the actual

sample value obtained in Section 2. As the figure shows, the shaded area under

fun(T2) and to the left of 7

2,sample

is quite small, corresponding to a p-value of

P(7, <7

fun(72)) = 4.53%.

,sample

In contrast, the hatched area under f.,(7,) and to the right of 7 is rather

,sample

sizable, corresponding to a p-value of
]]?(,f—2 Z t,sample | fTB(%2)> — 3297%

These findings suggest that it is unlikely to reach 7, when the true data gener-

,sample

ating process is assumed to be Murray and Nelson’s model while it is very likely to

reach 7,

2,sample

when the data generating process is assumed to be the T'S model with

4Since the finite-sample distributions of the Lumsdaine-Papell test statistic for the
ARIMA(2,1,1) and ARMA(2,0) are more extreme than Murray and Nelson’s (2002) model and

the TS model with two breaks, respectively, to keep the figure simple we choose not to plot them.
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two trend breaks. The finding here confirms the result of Papell and Prodan (2004,
2007), i.e., the Lumsdaine-Papell test often points toward the rejection of a unit
root while in favor of a trend break process when the long-span U.S. real output
data are employed. However, it is worth noticing that in Figure 4, the area under
fins(T2) and to the left of 7

2,sample

is also sizable, which corresponds to a p-value of
]P(,fé 2 7A-2,sample ’ fI.RS (722)) = 2732%

This indicates that the Lumsdaine-Papell test is not able to discriminate between
the trend-break models and the IRS model, even though it provides evidence against
Murray and Nelson’s DS model. It is of interest to know that in our simulations the
assumed trend-break model and the IRS model are two distant alternatives. The
former is basically a TS model with occasional trend breaks while the latter is a
mixture of DS and T'S processes with permanent shocks prevailing in a greater part
of the sample period. Since the Lumsdaine-Papell test is not able to distinguish
between the above two, the test results against a unit root in the real GDP obtained
in previous studies should not be interpreted as evidence supporting the T'S model
with trend breaks. A process very much different from the TS model with breaks,
such as the proposed IRS model, might just as well be the true underlying output

process.

We also find in our simulations that the Lumsdaine-Papell test tends to identify
break points incorrectly when the data are actually generated from the assumed IRS
model. In our IRS simulations, the output shocks during the periods of the Great
Depression and the two World Wars are assumed to be transitory. However, when
the Lumsdaine-Papell test is conducted, permanent trend breaks are spuriously
identified during these periods. Figure 5 shows the results of permanent break
points identified by the Lumsdaine-Papell test when the data are generated from
the assumed IRS model with the shaded areas denoting the periods of transitory
shocks. In this figure, it can be seen that more than 60% of breakpoints (64.45% for
T, and 61.36% for T,,) are located in the shaded areas, indicating that the problem

of spurious identification of the trend breaks points is rather serious.

1

To check for the robustness of our results, we have redone our simulations us-
ing the unit-root test of Zivot and Andrews (1992) in the case of a single break.

We also conduct Rudebusch’s (1993) bootstrap procedure using the unit-root test
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Figure 5: Frequencies of the Estimated Break Points Identified by the Lumsdaine-
Papell Test: T, (Left) and T}, (Right).

of Papell and Prodan (2004) with restricted structural change (i.e., two offsetting
structural changes). We find no qualitative differences between these results and
those discussed above. In other words, these two tests are still unable to distinguish
between the trend-break models and the empirical IRS model. These tests also tend

to identify break points incorrectly when the data are generated from the IRS model.

In sum, the testing result in Secion 2 and our simulation results of unit-root
test statistics raise doubt about the appropriateness of modeling U.S. real GDP
as a pure DS process or a modified DS process, as in Murray and Nelson (2002).
However, the evidence against the DS modeling of the U.S. GDP cannot be auto-
matically taken as supporting the TS modeling of the series. This is because, based
on the unit-root tests examined, little can be said about the relative likelihood of
the specific TS/trend-breaks and IRS models of the U.S. GDP considered above.
Moreover, our simulations indicate that the Lumsdaine-Papell tests tend to spuri-
ously identify transitory shocks as permanent trend breaks. This casts doubt on
Papell and Prodan’s (2004) contention that the U.S. real GDP follows a TS process
with permanent breaks occurring during the 1929-1946 period.

19



5 Conclusion

Instead of exploring the uncertainty about the existence of a unit root in the long-
span U.S. real GDP series as has been done in previous studies, in this study, we
investigate the uncertainty about the state of output shock period by period by
using the IRS model in which the effect of a shock may be permanent or transitory
in different time periods. By applying the IRS model to 1876-2006 U.S. real GDP
data, we find that the output shocks in the periods of the 1893 depression, the 1907
financial panic, the two World Wars and the Great Depression are likely to have had
a large but transitory effect, whereas the output shocks in the remaining periods
are likely to have had a permanent effect. More specifically, for the whole sample
period there are nineteen years (around fourteen percent of the sample) where the
real GDP shocks are identified as transitory. Our results reveal the importance of
both permanent and transitory shocks as the source of U.S. GDP fluctuations and
suggest that the long-span real GDP is neither a unit-root series nor a TS series.
This finding is in sharp contrast with the assertions of traditional TS, broken TS
and DS models.

Our simulations also show that the unit-root tests, while producing evidence
unfavorable to the existence of a unit root, are not able to discriminate between
TS/trend-break models and the assumed IRS model. In addition, the sample es-
timates of the unit-root test statistics often have values close to the center section
of the finite-sample distribution of the statistics generated from the assumed IRS
model. This, together with our estimation results, indicates that the importance of
the issue regarding output fluctuations may not lie on the presence of an exact unit
root, but on the uncertainty about the state of output shocks and the identification
of the nature of the state. Finally, in our Monte Carlo experiment investigating the
sequential breakpoint selection tests of Lamsdaine and Papell (1997), we find that
the tests tend to spuriously identify permanent trend breaks in periods where the
data have actually been generated by transitory shocks according to the assumed
IRS model, especially in the period 1929-1946. This raises strong doubt about Pa-
pell and Prodan’s (2004) argument that the U.S. real GDP follows a TS process
with permanent breaks occurring during the 1929-1946 period.
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