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Abstract

Instead of exploring the uncertainty about the existence of a unit root in the

long-span U.S. real GDP series as in previous studies, e.g., Rudebusch (1993), in

this study we investigate the uncertainty about the state (permanence vs. transi-

toriness) of the output shock period by period by using the “innovation regime-

switching” (IRS) model. In this model the effect of a shock may be permanent or

transitory in different time periods. By applying the IRS model to the 1870–2006

annual U.S. real GDP data, we find that the output shocks in the periods of the

1893 depression, the 1907 financial panic, the two World Wars and the Great De-

pression are likely to have had a large but transitory effect, whereas the output

shocks in the remaining periods are likely to have had a permanent effect. This

result suggests that the long-span real GDP is neither a unit-root series nor a trend-

stationary series. Our simulations also show that the conventional unit-root tests,

while producing evidence unfavorable to the existence of a unit root, are not able

to discriminate between trend-stationary/trend-break models and the empirical IRS

model. In addition, the sample estimates of the unit-root test statistics often have

values close to the center section of the finite-sample distribution of the statistics

generated from the empirical IRS model. This, together with the estimation results,

indicates that the importance of the issue regarding output fluctuations may not

lie on the presence of an exact unit root, but in the uncertainty about the state of

output shocks and the identification of the nature of the state. Finally, our simula-

tions indicate that the Lumsdaine Papell (1997) unit-root tests tend to spuriously

identify transitory shocks as permanent trend breaks. This casts doubt on Papell

and Prodan’s (2004) contention that the U.S. real GDP follows a trend-stationary

process with permanent breaks occurring during the period 1929–1946.

Keywords: Innovation regime-switching, permanent innovation, transitory innova-

tion, trend stationarity, uncertain unit root, unit-root nonstationarity.

JEL Classification: C22. C51



1 Introduction

Since the seminal work of Nelson and Plosser (1982), much effort has been de-

voted to exploring whether the U.S. real GDP series can be characterized as a

difference-stationary (hereafter DS) or a trend-stationary (hereafter TS) process. In

spite of numerous studies, the debate about the difference-stationarity versus trend-

stationarity of the U.S. GDP remains open. For example, when exploring long-span

U.S. real GDP data, Diebold and Senhadji (1996) found that conventional Dickey

Fuller unit-root tests produce results favoring trend-stationarity, which casts doubt

on the consensus opinion of the existence of unit root in post-war real GDP. Murray

and Nelson (2000, 2002), on the other hand, have argued that the evidence against

the unit root in the long-span real GDP series is mainly caused by the period of tur-

moil experienced from 1929 to 1946 due to the Great Depression and World War II.

Once the heterogeneity in the data is taken into account, the long-span real GDP

data may still contain a unit root. In contrast with Murray and Nelson (2002),

Papell and Prodan (2004) provided evidence against unit roots in long-span real

GDP by conducting Lamsdaine and Papell (1997) tests. Their result suggests that

the real GDP can be viewed as a TS process with trend breaks occurring during

1929–1946.

The studies mentioned above bring relevant research full circle on the issue of

the uncertainty about the existence of a unit root in U.S. real GDP. In the models

of the pro difference-stationarity camp, e.g., Murray and Nelson (2002) and Kilian

and Ohanian (2002), permanent shock is presented in each period while transitory

shocks, usually with large short-term effects, occur only occasionally. In contrast,

in the models of the pro trend-stationarity camp, e.g., Diebold and Senhadji (1996)

and Papell and Prodan (2004), almost all shocks to output are transitory while

permanent breaks (shocks) occur infrequently.

In this study, we argue that what is important about output fluctuations is the

nature of shock (permanence vs. transitoriness) in each period rather than the

presence of an exact unit root. We avoid the usual dichotomy between difference-

stationarity and trend-stationarity and consider the uncertainty of the state (per-

manence vs. transitoriness) of output shock period by period. There are a few

reasons for doing so. First, from an econometric point of view, although a DS or
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TS view of output process simplifies the model structure, such views might greatly

limit the dynamic patterns that can fully characterize the real output series. Es-

sentially, there is no a priori reason that one type of output shock (permanent or

transitory) should always prevail or dominate in a very long time span.1 In addi-

tion, output shocks in periods of tranquility are highly likely to be fundamentally

different in nature from those in turmoil periods. Second, on the theoretical side, as

Sims (1988), Durlauf (1989), Christiano and Eichenbaum (1990) and many others

have demonstrated, the existence of an exact unit root in the real output per se may

not help in identifying the true economic structure. Instead, as has been convinc-

ingly argued by Christiano and Eichenbaum (1990), it is the relative importance of

permanent and transitory shocks and economic agents’ perception of these shocks

that determine the dynamic properties of economic models. Accordingly, a model

which specially accounts for the uncertainty of permanent and transitory shocks

should have potential to shed light on the relative importance of these shocks and,

as a result, the underlying structure of economic models. Third, from the point of

view of output forecasting, the knowledge of the nature of recent output shocks is

much more important than the knowledge of whether the output process contains

a unit root. For example, in an event where real output has declined mainly due to

transitory factors, e.g., monetary shocks, the output is expected to bounce back to

its long-term mean or time trend. In contrast, in an event where output has declined

mainly due to permanent factors, no such rebound of output is expected. That is,

the different states of recent output shocks should have very different implications

as to how the future output may change. Accordingly, the knowledge of the state of

recent output shocks provides important information about the future output path.

To account for the uncertain effect of each shock, this study considers a more

flexible model: the “Innovation Regime-Switching” (henceforth IRS) model recently

proposed by Kuan et al. (2005), and demonstrates how such a modeling strategy can

be applied to analyzing the persistence of output fluctuation period by period. The

IRS model is an unobserved-component model which treats a time series process as

consisting of a unit root with a drift component and a TS component; whether a

particular component is activated depends on an unobservable state variable whose

law of motion is governed by certain probability laws. Thus, the effects of shocks

1See, for example, Newbold et al. (2001) for the argument.
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in an IRS process are not fixed at all times but may be permanent or transitory

in different time periods. If the components are state independent, the model is

reduced to a conventional DS or TS model.

The IRS modeling approach has several merits worth mentioning. First, the

IRS model accommodates both trend-reverting and trend-disturbing behaviors, and

hence bridges the gap between TS and unit-root nonstationary models. As a result,

the model provides us with a more flexible framework to explore the persistent nature

of U.S. GDP. Second, to accommodate the heterogeneity in the data, the IRS model

allows for potential asymmetry in volatility across different regimes by permitting

switching variances in the random shocks. Third and more importantly, in the

IRS model whether or not the permanent or transitory state of shock is activated is

governed by the probability law, and the probabilities of the respective states in each

period are estimated from the data. Due to this particular feature of the model, no a

priori assumption regarding the importance of permanent vis-à-vis transitory shocks

in the GDP process is required. In other words, the model just lets the data speak

for themselves. As a result, the estimation results of the IRS model can provide

evidence on the relative importance of permanent and transitory shocks during the

sample period. Consequently, the model can serve as a benchmark to evaluate the

plausibility of various GDP models with differing assumptions regarding the state

of the shocks, and this can help to shed light on the debate regarding the nature of

real GDP fluctuations.

Our empirical study uses U.S. real GDP from 1870 to 2006. The study suggests

that the proposed IRS modeling approach is able to reveal important features of

output data. In particular, the estimation results show strong evidence that perma-

nent and transitory output innovations prevail in different sub-sample periods. This

suggests that over the very long time period analyzed, U.S. real GDP is neither a

DS series nor a TS series (including pure TS or trend-break model a la Papell and

Prodan, 2004) as indicated in previous studies. Our results reveal that the output

shocks in the periods of the 1893 depression, the 1907 financial panic, the World

War I, the Great Depression and the World War II are more likely to have had a

transitory effect. The results indicating that the output shocks in the Great De-

pression and the two World Wars had large transitory effects are compatible with

the theorizing of Friedman and Schwartz (1963), Lucas and Rapping (1969) and
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Barro (1981). Our results also show that output shocks for the post World War II

period are more likely to have had a permanent effect, which is consistent with the

consensus opinion of the existence of a unit root in the post-war GDP.

To evaluate the performance of models with differing assumptions regarding

the state of output innovations, we follow Rudebusch (1993) and conduct a Monte

Carlo study of the rejection rates of several unit-root tests – namely, the efficient

augmented Dickey-Fuller test of Elliott et al. (1996) and the sequential breakpoint

selection tests of Lamsdaine and Papell (1997). In our simulation, we generate data

from the best-fitting IRS model and other best-fitting benchmark models, including

a pure unit-root ARIMA model, the regime-switching model of Murray and Nel-

son (2002), a TS ARMA model, and the trend-break model proposed by Papell

and Prodan (2004). Our simulations show that the unit-root tests, while producing

evidence unfavorable to the existence of a unit root, are not able to discriminate be-

tween TS/trend-break models and the empirical IRS model. In addition, the sample

estimates of the unit-root test statistics often have values close to the center section

of the finite-sample distribution of the statistics generated from the empirical IRS

model. This, together with our estimation results, indicates that the proposed IRS

model may serve as a better model of U.S. real GDP among many alternatives.

Finally, in our Monte Carlo experiment of the sequential breakpoint selection tests

of Lamsdaine and Papell (1997), we find that the tests tend to spuriously identify

permanent trend breaks in periods where the data have actually been generated

by transitory innovations according to the empirical IRS model, especially during

the period from 1929–1946. This raises strong doubt about Papell and Prodan’s

(2004) contention that permanent trend breaks exist in the U.S. real GDP during

the period of 1929–1946.

The outline of this paper is as follows. In section 2, we describe and explore

the long-span U.S. real GDP data employed in study. In particular, we conduct two

unit-root tests for the data: the efficient augmented Dickey-Fuller test from Elliott et

al. (1996) and the sequential breakpoint selection tests proposed by Lamsdaine and

Papell (1997). In section 3, we apply the IRS model to the long-span real GDP data

and discuss the estimation results. In section 4, we employ the Rudebusch’s (1993)

bootstrap procedure to explore the finite distribution properties of the unit-root

test statistics of the IRS model as well as some benchmark DS and TS models.
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This procedure is also used to evaluate the plausibility of the real GDP data being

generated from the processes. The concluding remarks are given in section 5.

2 Unit-Root Testing Results

We now examine the state of shocks on annual U.S. real GDP from 1870 to 2006

which is extracted from Angus Maddison’s homepage: www.ggdc.net/maddison/.

This is the long-span real GDP data widely discussed and employed in recent studies,

e.g., Murray and Nelson (2000, 2002) and Papell and Prodan (2004). We first

conduct unit-root tests on the log of the GDP series, yt. Instead of using the

standard augmented Dickey-Fuller (ADF) test, we apply the efficient ADF-GLSτ

test of Elliott et al. (1996) which is based on the following auxiliary regression:

(1 − B)yτ
t = α0 + α1t+ ψ0y

τ
t−1 +

m∑
i=1

ψi(1 − B)yτ
t−i + εt, (1)

where B is the lag operator and yτ
t is given by yτ

t = yt − β̃
′
zt with zt = (1, t)′ and

with β̃ the OLS estimate of β obtained from regressing(
ỹ1, ỹ2, . . . , ỹT

)
=

(
y1, (1 − aB)y2, . . . , (1 − aB)yT

)
on (

z̃1, z̃2, . . . , z̃T

)
=

(
z1, (1 − aB)z2, . . . , (1 − aB)zT

)
at a = 1 − 13.5/T . We reject the null hypothesis of a unit root if ψ0 in (1) is

significantly large.

Because conventional unit-root tests tend to misinterpret a trend-break series as

a DS series, we also employ tests that take into account the possibility of structural

breaks in the trend. Here, we follow Papell and Prodan (2004) and adopt the

procedure set up by Lumsdaine and Papell (1997) to test the unit-root null against

a TS alternative with two breaks:

(1−B)yt = α0 +α1t+ δ1DU1,t + δ2DU2,t +ψ0yt−1 +
m∑

i=1

ψi(1−B)yt−i + εt, (2)

where DUi,t = 1{t>Tbi
} for i = 1, 2, 1{·} is the indicator function and Tbi

is the time

at which the change in the trend function occurs. We reject the null hypothesis of a
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Table 1: Unit-Root Tests for U.S. Real GDP from 1870 to 2006.

Test ψ0 Test Statistic Lag (m) Break 1 Break 2

ADF-GLSτ −0.1498 −3.8265∗∗ 1 — —
Lumsdaine-Papell −0.3813 −7.2032∗∗ 2 1929 1939

Note: Critical values for ADF-GLSτ are −3.544 (1%), −3.000 (5%) and
−2.710 (10%); those for Lumsdaine-Papell are −6.69 (1%), −6.13 (5%) and
−5.89 (10%). Test statistics with two asterisks are significant at 1% level.

unit root in favor of TS with breaks if ψ0 in (2) is significantly different from zero.

The model (2) is estimated sequentially for each break date Tbi
= m + i, . . . , T − i

where i = 1, 2, Tb1 �= Tb2 , and Tb1 �= Tb2 +1. We select breaks for which the maximum

evidence against the unit-root null.

To choose the number of augmented lags m, the Schwarz information crite-

rion (SIC) and the modified information criterion of Ng and Perron (2001) are used

for the DF-GLSτ test. In addition, the “general-to-specific” recursive t-statistic

procedure of Ng and Perron (1995) is conducted to select the lag length for the

Lumsdaine-Papell test. For all tests considered, the maximum value of m is set to

12. The asymptotic critical values for the ADF-GLSτ test statistic are provided by

Elliott et al. (1996). The finite-sample critical values for the Lumsdaine-Papell test

statistic are calculated based on the Monte Carlo method with 10, 000 replications.

Details of these bootstrap critical values are omitted to save space but can be found

in Lumsdaine and Papell (1997).

The testing results are summarized in Table 1. From the table it can be seen

that, for all the tests considered, the null hypothesis of the existence of a unit root

in the real GDP process is rejected. For example, the ADF-GLSτ test rejects the

unit-root null at the 1% level, while the Lumsdaine-Papell test also rejects the unit-

root null in favor of broken trend-stationarity at the 1% level. These results are

consistent with the findings of Diebold and Senhadji (1996) in that, with longer

span data, one tends to obtain evidence in favor of trend stationarity in the real

GDP. The latter results are also compatible with the conclusions of Ben-David and

Papell (1995) and Papell and Prodan (2004) in that the real GDP series may exhibit
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significant trend breaks during the early part of the last century.2 The overall test

results here appear to suggest that almost all shocks to real GDP are transitory

while permanent breaks (shocks) occur very infrequently.

3 The IRS Model

Although the testing results in the previous section suggest the rejection of the

null hypothesis of a unit root, it should be noted that the rejection of a unit root

does not necessarily imply that the GDP series must be stationary. The dynamic

properties of real GDP may be more complex than those of a unit root model or a TS

model. Moreover, Sims (1988), Durlauf (1989), Christiano and Eichenbaum (1990)

and many others point out that what is important for the dynamics of output is not

the presence of an exact unit root per se. Rather, it is the persistence of each shock

and the relative importance of temporary and permanent shocks. It is thus rather

premature to draw any conclusion about the state of shocks based only on these

tests. These notions underpin the models that allow for the fractional difference

parameter, e.g., Diebold and Rudebusch (1989), and stochastic unit roots, e.g.,

Granger and Swanson (1997). Such notions also motivate the “current depth of

recession” model proposed by Beaudry and Koop (1993), which differentiates the

persistent nature of the real GDP shocks in expansions and recessions.

3.1 The Proposed Model

Instead of adopting a simplified dichotomy between DS and TS specifications, we

consider a more flexible model, a variant of the IRS model of Kuan et al. (2005), to

examine the output dynamics. We assume that the log of U.S. real GDP consists of

two components – namely, yt = y1,t + y0,t:

(1 −B)y1,t = α0 + stυt,

Ψ(B)y0,t = Φ(B)(1 − st)υt,
(3)

where Ψ(B) = 1 − ψ1B − · · · − ψmB
m and Φ(B) = 1 − ϕ1B − · · · − ϕnB

n are

finite-order polynomials of the lag operator such that they have no common factors

2Note that, as shown in the table, the estimated break dates of the real GDP coincide with the
outset of the Great Depression as well as that of the World War II.
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and their roots are all outside the unit circle; st = {0, 1} denotes an unobserved

first-order Markov chain with the transition matrix

P =

[
IP(st = 0 | st−1 = 0) IP(st = 1 | st−1 = 0)

IP(st = 0 | st−1 = 1) IP(st = 1 | st−1 = 1)

]
=

[
p00 p01

p10 p11

]
,

and υt = α1 + εt is a non-zero mean innovation. The term {εt} is a white noise

with mean zero and variance depending on st, i.e., σ2
st

. This model is referred

to hereafter as an IRS(1;m,n) model, signifying that one component (y1,t) has a

random walk structure and the other (y0,t) has a stationary ARMA(m,n) structure.

Compared with the IRS model originally considered by Kuan et al. (2005), the

model (3) accommodates potential asymmetry in volatility across different regimes

by permitting switching variances in the random shocks. Such a specification is

capable of describing the heterogeneity in long-span U.S. real GDP.

A novel feature in model (3) is that only one component is activated in a given

time period, depending on the realization of st. When st = 1, the first component

y1,t is excited by the random shock, while y0,t keeps evolving according to ARMA

dynamics without the new shock. As long as st = 1, the corresponding random

shock has a permanent effect on future yt+j (j > 0) and generates unit-root type

dynamics. When st = 0, the random shock activates y0,t while leaving y1,t intact.

The random shock thus has a transitory effect on future yt+j and induces stationary

ARMA dynamics. This model specification allows the effect of a random shock to

alternate from time to time and thus is able to capture both nonstationary and

stationary behaviors. It is worth noting that in a special case where st = 1 (st = 0)

with probability one for all t, the model (3) is simply reduced to a conventional DS

random walk model (a TS ARMA model).

The proposed model is also able to capture potential trend-breaks in the data.

To see this, note that the model (3) can be expressed as

yt = α0t+

t∑
i=1

siυt + Ψ(B)−1Φ(B)(1 − st)υt, (4)

with y0 = 0 and υi = 0 for i ≤ 0, where the last component of (4) is a weakly

stationary process generated by transitory innovations and gives rise to short-run

fluctuations. If st = 1 at t = Tb1 + 1 and st = 0 otherwise, then (4) becomes

yt = α0t+ υtDU1,t + ωt,
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where ωt is a weakly stationary process. As such, yt is a TS process with one

endogenous break, in the sense that the break is due to the presence of permanent

shocks υt. In this case, the expected magnitude of the trend break is IE(υt) = α1.

Similarly, the proposed model is able to approximate a TS process with two breaks

if st = 1 at t = Tb1 + 1 and at t = Tb2 + 1, and st = 0 otherwise.

Model (3) can be written as a special case of a general dynamic model with

state-dependent coefficients; see Kuan et al. (2005) for more details. Once the model

is written in the state-space form with switching coefficients, the estimation algo-

rithm (also the algorithms for calculating the filtering and smoothing probabilities)

developed in Kim (1994) can be applied. In this study, we follow Kuan et al. (2005)

by writing (3) in a Markov-switching state-space form, as proposed by Kim (1994),

and compute the approximate quasi-maximum likelihood estimates (QMLE):

θ = (ψ1, . . . , ψm, ϕ1, . . . , ϕnα0, α1, σ
2
0, σ

2
1, p00, p11)

′.

By applying Kim’s (1994) estimation algorithm, we obtain the filtering probabilities

IP
(
st = 0 | Y t; θ

)
, the smoothing probabilities IP

(
st = 0 | Y T ; θ

)
and quasi-log-

likelihood function as byproducts, where Y t = {y1, . . . , yt} is the collection of all

the observed variables up to time t. We shall use these probabilities to examine the

effect of output shock in each period.

3.2 Estimation Results

To assess the empirical relevance of the proposed IRS model, we estimate (3) based

on the annual data of U.S. real GDP from 1870 through 2006, with a total of

137 observations. We estimate an array of IRS(1;m,n) models for the U.S. real

GDP with m and n no greater than 4. The parameter vector θ is estimated using

the algorithm described in Kim (1994) and Kuan et al. (2005). This algorithm is

initialized by a broad range of random initial values. The covariance matrix of θ is

−H(θ̂)−1, the Hessian matrix of the log-likelihood function evaluated at the QMLE

θ̂. Among all the models considered, the IRS(1; 2, 0) model is selected based on

the SIC. The estimation results are summarized in Table 2. As the table shows, all

parameter estimates (except α0) are statistically significant at the 5% level.

To confirm the adequacy of the model, we conduct some diagnostic checks on

the estimated model, including the Ljung-Box (1978) Q test and the LM test of
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Table 2: Quasi-Maximum Likelihood Estimates of the Proposed Model.

Parameter Estimate Standard Error t-statistic

α0 −0.0013 0.0204 −0.063
α1 0.0276 0.0133 2.075∗

ψ1 0.8222 0.0924 8.984∗

ψ2 −0.3348 0.0593 −5.645∗

σ0 0.1516 0.0523 2.898∗

σ1 0.0319 0.0091 3.505∗

p00 0.6300 0.1642
p11 0.9473 0.0231

Log-Likelihood=−218.910 SIC=−398.519
Q(12) = 15.123 Q(24) = 31.782
ARCH(2)= 1.788 ARCH(4)= 4.290

Note: t-statistics with an asterisk are significant at 5% level.
The term Q(·) is the Q statistic in Ljung-Box (1978) and
ARCH(·) denotes the LM statistic in Engel (1982).

Engle (1982) on the ARCH effect. As shown in Table 2, the resulting statistics for

the residuals are Q(12) = 15.123, Q(24) = 31.782, ARCH(2)= 1.788 and ARCH(4)

= 4.290. These statistics are all insignificant even at a 10 percent level under the

χ2(12), χ2(24), χ2(2) and χ2(4) distributions, respectively. Hence, it appears that

there is no serial correlation and conditional heteroskedasticity in the residuals.

Following Engel and Hamilton (1990), we also test whether the state variables are

independent over time, i.e., p00 + p11 = 1. The resulting Wald statistic is 13.270,

rejecting the null at a 1 percent level under the χ2(1) distribution. This result is

consistent with the Markovian specification.

We now turn to some interesting results from our IRS model estimation. In

Figure 1 we plot the estimated filtering and smoothing probabilities of st = 0 (i.e.,

transitory shock), where the shaded areas denote the periods of World War I (1914–

1918), the Great Depression (1929–1933) and World War II (1941–1946), respec-

tively. We find that during the sample period there are 19 years (about 14 percent

of the sample) where the estimated smoothing probability IP
(
st = 0 | Y T ; θ

)
is

greater than 0.5. This result reveals that permanent innovations are more likely
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Figure 1: Estimated Filtering (Left) and Smoothing (Right) Probabilities of st = 0

for U.S. Annual Real GDP from 1870 to 2006.

to prevail in about 86 percent of the sample period while transitory innovations

dominate in the remaining period. The finding that both permanent and transitory

shocks occur frequently is quite different from the assertions of the traditional TS

model, the trend-break model and the unit-root model as discussed in Diebold and

Senhadju (1996), Papell and Prodan (2004) and Murray and Nelson (2000, 2002).

In contrast, our findings accord well with Newbold et al. (2001), in that neither

simple TS nor DS specifications are found to adequately characterize U.S. long-span

real GDP data. In addition, our estimation results show that, with σ̂0 about 4 times

of σ̂1 (as Table 2 shows), the U.S. real GDP tends to be much more volatile in the

periods where transitory shocks are present.

Figure 1 also reveals distinctly different dynamic patterns of real GDP for the

pre- and post-1947 periods. For the post-1947 period (with 60 years), the smooth-

ing probabilities of transitory shocks are all less than 0.5, indicating that perma-

nent shocks are the dominant driving force behind the GDP fluctuations and that

unit-root nonstationarity is the prevailing dynamic pattern. The results are con-

sistent with the consensus findings of Campbell and Mankiw (1987), Murray and

Nelson (2000) and Newbold et al. (2001), among many others. In contrast, Figure 1

also shows that transitory shocks occur frequently during the pre-1947 period. For
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example, the estimated filtering and smoothing probabilities of st = 0 are greater

than 0.5 for the periods of the 1893 financial panic, the 1907 banking crisis, the

Great Depression and the two World Wars. This, together with the estimation re-

sults of σ0 and σ1, suggests that the aforementioned events had large but transitory

effects on output. This result is similar to the finding of Murray and Nelson (2000,

2002) which suggests that the Great Depression and World War II are two major

episodes in which output shocks had large effects. A major difference is that, in the

empirical IRS(1; 2, 0) model, output innovations in the periods of the 1893 depres-

sion, the 1907 financial panic, the Great Depression and the two World Wars are

more likely to have had a transitory effect. The model of Murray and Nelson (2002),

on the other hand, postulates a priori that the permanent shocks are presented in

each of the sample periods, even in the period of the pre-1947 turmoil. As shown in

the following simulation experiments, such a difference may influence the rejection

frequencies of unit-root tests dramatically.

4 Simulation Results

4.1 Benchmark Models and Bootstrap Experiments

We now proceed to evaluate the likelihood of various benchmark models in gener-

ating the U.S. output data by employing Rudebusch’s (1993) bootstrap procedure.

We first consider the empirical IRS(1; 2, 0) model as well as models representing

the two opposing approaches of aggregate output modeling: TS vs. DS models. In

the TS camp, we explore the pure TS ARMA(m,n) model and the TS model with

two breaks, as in Papell and Prodan (2004). In the DS camp, we study the pure

ARIMA(m, 1, n) model and the model of Murray and Nelson (2002):

yt = ỹ1,t + s̃tỹ0,t,

ỹ1,t = α0 + ỹ1,t−1 + vt,

ỹ0,t = ψ1ỹ0,t−1 + ψ2ỹ0,t−2 + ut,

(5)

where s̃t = {0, 1} denotes an unobserved state variable whose law of motion is

governed by a first-order Markov chain with the transition matrix P, and the error

terms vt and ut are Gaussian white noises with cov(vt, ut) = 0 for all t. We estimate
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Table 3: Parameter Estimates of Benchmark Models for U.S. Real GDP.

Parameter Murray-Nelson ARIMA(2, 1, 1) TS ARMA(2, 0) Trend-Break

Estimate Std. Estimate Std. Estimate Std. Estimate Std.

α0 0.0335∗ 0.001 0.0322∗ 0.001 2.1798∗ 0.497 4.4586∗ 0.614
α1 – – – – 0.0060∗ 0.001 0.0129∗ 0.001
δ1 – – – – – – −0.1205∗ 0.022
δ2 – – – – – – 0.0839∗ 0.019
ψ0 – – – – – – −0.3813∗ 0.062
ψ1 1.2227∗ 0.019 1.1557∗ 0.082 1.1532∗ 0.082 0.3167∗ 0.076
ψ2 −0.3963∗ 0.020 −0.3365∗ 0.082 −0.3391∗ 0.083 0.1608 0.081
φ1 – – −0.9974∗ 0.013 – – – –
σε – – 0.0496∗ 0.010 0.0494∗ 0.031 0.0441∗ 0.023
συ 0.0199∗ 0.001 – – – – – –
σu 0.0624∗ 0.001 – – – – – –
p00 0.9887 1.217 – – – – – –
p11 0.9740 0.772 – – – – – –

Note: The term Std. denotes the standard error. Estimates with an asterisk are significant at 5% level.

an array of TS ARMA(m,n) and ARIMA(m, 1, n) models with m and n no greater

than 8 and choose an appropriate specification based on the SIC.

The estimation results of these benchmark models are summarized in Table 3.

As the table shows, the best fitting benchmark models are: the TS ARMA(2, 0)

model, the trend-break model in (2) with Tb1 = 1929, Tb2 = 1939 and m = 2,

the ARIMA(2, 1, 1) model and the model (5) with transition probabilities p00 =

0.9887 and p11 = 0.9740. Note that the parameter estimates of model (5) are

similar to those reached in Papell and Prodan (2004). It is also of interest to

know that, based on the estimated temporary component ỹ0,t in model (5), the

output shocks during the 1929–1945 period have much greater volatility than those

during the rest of the sample period, confirming Murray and Nelson’s (2000, 2002)

argument for the heterogeneity in the output data.3 In the subsequent simulations

a la Rudebusch (1993), the data are generated from these best-fitting benchmark

models and the empirical IRS(1; 2, 0) model.

3The estimated temporary component of model (5) is available from the authors upon request.
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Figure 2: Finite-Sample Distributions of the ADF-GLSτ Statistic for the TS ARMA,

the Murray-Nelson and the ARIMA Models.

In our bootstrap experiments, we simulate data according to the estimation

results reported in Tables 2 and 3. Moreover, we generate the state variables of

the IRS model by setting st = 0 for the periods where the smoothing probability

for the state of transitory shock to occur is greater than 0.5 and st = 1 for the

rest of the sample period. For the Murray and Nelson’s model of equation (5), we

set st = 1 for the 1929–1945 period and st = 0 for the rest. Based on 10, 000

replications of bootstrap simulations with a sample size of 137, we obtain the finite-

sample distributions of the ADF-GLSτ and the Lumsdaine-Papell test statistics

for the various best-fitting models. To make exposition easier, we label the finite-

sample distributions of the IRS(1; 2, 0) model, the TS ARMA(2, 0) model, the TS

model with two breaks, the ARIMA(2, 1, 1) model, and the model of Murray and

Nelson (2002) as fIRS(τ̂), fTS(τ̂), fTB(τ̂ ), fDS(τ̂) and fMN(τ̂), respectively, where τ̂ =

{τ̂1, τ̂2} is the ADF-GLSτ test statistic in (1) or the Lumsdaine-Papell test statistic

in (2).

4.2 Finite-Sample Distributions of the ADF-GLSτ Statistic

In Figure 2, the finite-sample distributions fTS(τ̂1), fDS(τ̂1) and fMN(τ̂1) of the ADF-

GLSτ statistic are plotted, where τ̂1,sample = −3.8265 denotes the actual sample
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value of ADF-GLSτ test statistic obtained in Section 2. In this figure the shaded

area under fDS(τ̂1) and to the left of τ̂1,sample represents the probability of obtaining

a value of the ADF-GLSτ test equal to or smaller than −3.8265, conditional on the

best fitting ARIMA(2, 1, 1) model. This p-value, denoted as

IP
(
τ̂1 ≤ τ̂1,sample | fDS(τ̂1)

)
,

is equal to 4.29%. Therefore, given the sample test statistic, the ARIMA model is

rejected at the five percent level. The other hatched area in the figure is the one

under fTS(τ̂t) and to the right of τ̂1,sample . The area represents the probability of

obtaining a value of the t test equal to or greater than −3.8265, conditional on the

best-fitting TS ARMA(2, 0) model. This p-value, denoted as

IP
(
τ̂1 ≥ τ̂1,sample | fTS(τ̂1)

)
,

is equal to 36.95%. Thus, it is highly unlikely to obtain τ̂1,sample when the true data

generating process is ARIMA(2, 1, 1) but it is very likely when the data generating

process is TS ARMA(2, 0). The result here confirms previous findings that when

U.S. real output data of longer span are employed, the test results often point toward

the rejection of a unit-root while in favor of a deterministic trend, e.g., Ben-David

and Papell (1995), and Diebold and Senhadji (1996). Nevertheless, the p-value

corresponding to the area under fMN(τ̂1) and to the left of τ̂1,sample , i.e.,

IP
(
τ̂1 ≤ τ̂1,sample | fMN(τ̂1)

)
,

is 18.08%, indicating that the unit-root hypothesis cannot be rejected at the five

percent level. This result confirms the finding of Murray and Nelson (2002) which

suggests that the unit-root hypothesis is incorrectly rejected too often when the

underlying model is a unit root process augmented with a transitory component to

account for the heterogeneity in the historical GDP series.

In order to evaluate the empirical IRS(1; 2, 0) model, its finite-sample distribution

of the ADF-GLSτ statistic, fIRS(τ̂1), is plotted in Figure 3 along with those of the

ARIMA(2, 1, 1), ARMA(2, 0) and Murray and Nelson’s (2002) model. In this figure,

the dashed lines denote the corresponding distributions fTS(τ̂1), fDS(τ̂1) and fMN(τ̂1)

while the solid line represents the distribution for the proposed IRS model. As the
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Figure 3: Finite-Sample Distributions of the ADF-GLSτ Statistic for the IRS

Model (Solid Line) and other Models (Dashed Lines).

figure shows, the τ̂1,sample is located close to the center part of fIRS(τ̂1). More precisely,

the p-value,

IP
(
τ̂1 ≤ τ̂1,sample | fIRS(τ̂1)

)
,

is 61.96%. This result indicates that, among the models considered in Figure 3, it

is most likely to obtain a sample estimate of τ̂1,sample of −3.8265 when the true data

generating process of U.S. GDP is the assumed IRS(1; 2, 0) model. Moreover, it is

of interest to compare the simulation results of Murray and Nelson’s model and the

IRS model. Murray and Nelson’s (2002) model is essentially a DS model, and hence

the permanent shocks prevail in each period of the sample. In contrast, the empirical

IRS is neither a DS nor a TS process but a mixture of the two, which hence allows

its random innovations to have permanent and transitory effects in different periods.

Although both of the models can capture the heterogeneity in the data, the p-value

of Murray and Nelson’s model is much lower than that of the IRS model (18.08%

vs. 61.96%). Such a difference between fMN(τ̂1) and fIRS(τ̂1) could be attributed to

the uncertainty of the state of output shock in the IRS model. Consequently, our

result suggests that the rejection rates of the unit-root tests are quite sensitive to

treatment of the big events (such as financial crisis, depressions and World Wars)

as permanent or transitory innovations.
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Figure 4: Finite-Sample Distributions of the Lumsdaine-Papell Statistic for the

Trend-Break, the Murray-Nelson and the IRS Models.

4.3 Finite-Sample Distributions of the Lumsdaine-Papell Statis-

tic

In Figure 4 we plot the finite-sample distributions of the Lumsdaine-Papell test

statistic: fIRS(τ̂2), fTB(τ̂2) and fMN(τ̂2), where τ̂2,sample = −7.2032 denotes the actual

sample value obtained in Section 2.4 As the figure shows, the shaded area under

fMN(τ̂2) and to the left of τ̂2,sample is quite small, corresponding to a p-value of

IP
(
τ̂2 ≤ τ̂2,sample | fMN(τ̂2)

)
= 4.53%.

In contrast, the hatched area under fTB(τ̂2) and to the right of τ̂2,sample is rather

sizable, corresponding to a p-value of

IP
(
τ̂2 ≥ τ̂2,sample | fTB(τ̂2)

)
= 32.97%.

These findings suggest that it is unlikely to reach τ̂2,sample when the true data gener-

ating process is assumed to be Murray and Nelson’s model while it is very likely to

reach τ̂2,sample when the data generating process is assumed to be the TS model with

4Since the finite-sample distributions of the Lumsdaine-Papell test statistic for the
ARIMA(2, 1, 1) and ARMA(2, 0) are more extreme than Murray and Nelson’s (2002) model and
the TS model with two breaks, respectively, to keep the figure simple we choose not to plot them.
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two trend breaks. The finding here confirms the result of Papell and Prodan (2004,

2007), i.e., the Lumsdaine-Papell test often points toward the rejection of a unit

root while in favor of a trend break process when the long-span U.S. real output

data are employed. However, it is worth noticing that in Figure 4, the area under

fIRS(τ̂2) and to the left of τ̂2,sample is also sizable, which corresponds to a p-value of

IP
(
τ̂2 ≥ τ̂2,sample | fIRS(τ̂2)

)
= 27.32%.

This indicates that the Lumsdaine-Papell test is not able to discriminate between

the trend-break models and the IRS model, even though it provides evidence against

Murray and Nelson’s DS model. It is of interest to know that in our simulations the

assumed trend-break model and the IRS model are two distant alternatives. The

former is basically a TS model with occasional trend breaks while the latter is a

mixture of DS and TS processes with permanent shocks prevailing in a greater part

of the sample period. Since the Lumsdaine-Papell test is not able to distinguish

between the above two, the test results against a unit root in the real GDP obtained

in previous studies should not be interpreted as evidence supporting the TS model

with trend breaks. A process very much different from the TS model with breaks,

such as the proposed IRS model, might just as well be the true underlying output

process.

We also find in our simulations that the Lumsdaine-Papell test tends to identify

break points incorrectly when the data are actually generated from the assumed IRS

model. In our IRS simulations, the output shocks during the periods of the Great

Depression and the two World Wars are assumed to be transitory. However, when

the Lumsdaine-Papell test is conducted, permanent trend breaks are spuriously

identified during these periods. Figure 5 shows the results of permanent break

points identified by the Lumsdaine-Papell test when the data are generated from

the assumed IRS model with the shaded areas denoting the periods of transitory

shocks. In this figure, it can be seen that more than 60% of breakpoints (64.45% for

Tb1 and 61.36% for Tb2) are located in the shaded areas, indicating that the problem

of spurious identification of the trend breaks points is rather serious.

To check for the robustness of our results, we have redone our simulations us-

ing the unit-root test of Zivot and Andrews (1992) in the case of a single break.

We also conduct Rudebusch’s (1993) bootstrap procedure using the unit-root test
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Figure 5: Frequencies of the Estimated Break Points Identified by the Lumsdaine-

Papell Test: Tb1 (Left) and Tb2 (Right).

of Papell and Prodan (2004) with restricted structural change (i.e., two offsetting

structural changes). We find no qualitative differences between these results and

those discussed above. In other words, these two tests are still unable to distinguish

between the trend-break models and the empirical IRS model. These tests also tend

to identify break points incorrectly when the data are generated from the IRS model.

In sum, the testing result in Secion 2 and our simulation results of unit-root

test statistics raise doubt about the appropriateness of modeling U.S. real GDP

as a pure DS process or a modified DS process, as in Murray and Nelson (2002).

However, the evidence against the DS modeling of the U.S. GDP cannot be auto-

matically taken as supporting the TS modeling of the series. This is because, based

on the unit-root tests examined, little can be said about the relative likelihood of

the specific TS/trend-breaks and IRS models of the U.S. GDP considered above.

Moreover, our simulations indicate that the Lumsdaine-Papell tests tend to spuri-

ously identify transitory shocks as permanent trend breaks. This casts doubt on

Papell and Prodan’s (2004) contention that the U.S. real GDP follows a TS process

with permanent breaks occurring during the 1929–1946 period.
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5 Conclusion

Instead of exploring the uncertainty about the existence of a unit root in the long-

span U.S. real GDP series as has been done in previous studies, in this study, we

investigate the uncertainty about the state of output shock period by period by

using the IRS model in which the effect of a shock may be permanent or transitory

in different time periods. By applying the IRS model to 1876-2006 U.S. real GDP

data, we find that the output shocks in the periods of the 1893 depression, the 1907

financial panic, the two World Wars and the Great Depression are likely to have had

a large but transitory effect, whereas the output shocks in the remaining periods

are likely to have had a permanent effect. More specifically, for the whole sample

period there are nineteen years (around fourteen percent of the sample) where the

real GDP shocks are identified as transitory. Our results reveal the importance of

both permanent and transitory shocks as the source of U.S. GDP fluctuations and

suggest that the long-span real GDP is neither a unit-root series nor a TS series.

This finding is in sharp contrast with the assertions of traditional TS, broken TS

and DS models.

Our simulations also show that the unit-root tests, while producing evidence

unfavorable to the existence of a unit root, are not able to discriminate between

TS/trend-break models and the assumed IRS model. In addition, the sample es-

timates of the unit-root test statistics often have values close to the center section

of the finite-sample distribution of the statistics generated from the assumed IRS

model. This, together with our estimation results, indicates that the importance of

the issue regarding output fluctuations may not lie on the presence of an exact unit

root, but on the uncertainty about the state of output shocks and the identification

of the nature of the state. Finally, in our Monte Carlo experiment investigating the

sequential breakpoint selection tests of Lamsdaine and Papell (1997), we find that

the tests tend to spuriously identify permanent trend breaks in periods where the

data have actually been generated by transitory shocks according to the assumed

IRS model, especially in the period 1929–1946. This raises strong doubt about Pa-

pell and Prodan’s (2004) argument that the U.S. real GDP follows a TS process

with permanent breaks occurring during the 1929–1946 period.

20



Reference

Barro, R. J. (1981). Output Effects of Government Purchases. Journal of Political

Economy, 89, 1086–1121.

Beaudry, P. and G. Koop (1993). Do Recessions Permanently Change Output?

Journal of Monetary Economics, 31, 149–163.

Ben-David, D. and D. H. Papell (1995). The Great Wars, the Great Crash, and

Steady State Growth: Some New Evidence about an Old Stylized Fact. Jour-

nal of Monetary Economics, 36, 453–475.

Christiano, L. J. and M. Eichenbaum (1989). Unit Roots in Real GNP: Do We

Know, and Do We Care? Carnegie-Rochester Conference Series on Public

Policy, 32, 7–62.

Diebold, F. X. and G. D. Rudebusch (1989). Long Memory and Persistence in

Aggregate Output. Journal of Monetary Economics, 24, 189–209.

Diebold, F. X. and A. S. Senhadji (1996). The Uncertain Unit Root in Real GNP:

Comment. The American Economic Review, 86, 1291–1298.

Durlauf, S. N. (1989). Output Persistence, Economic-Structure, and the Choice of

Stabilization Policy. Brookings Papers on Economic Activity, 1, 69–135.

Elliott, G., T. J. Rothenberg and J. H. Stock (1996). Efficient Tests for an Autore-

gressive Unit Root. Econometrica, 64, 813–836.

Engel, C. and J. D. Hamilton (1990). Long Swings in the Dollar: Are They in the

Data and Do Markets Know It? American Economic Review, 80, 689–713.

Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates

of the Variance of United Kingdom Inflation. Econometrica, 50, 987–1007.

Friedman, M. and A. J. Schwartz (1963). A Monetary History of the United States,

1867-1960.. Princeton, NJ, Princeton University Press.

Granger, C. W. J. and N. R. Swanson (1997). An Introduction to Stochastic Unit-

Root Processes. Journal of Econometrics, 80, 35–62.

Kilian, L. and L. E. Ohanian (2002). Unit Roots, Trend Breaks, and Transitory

21



Dynamics: A Macroeconomic Perspective. Macroeconomic Dynamics, 6, 614–

632.

Kim, C.-J. (1994). Dynamic Linear Models with Markov-Switching. Journal of

Econometrics, 60, 1–22.

Kuan, C.-M., Y-L. Huang and S. R. Tsay (2005). An Unobserved-Component Model

with Switching Permanent and Transitory Innovations. Journal of Business &

Economic Statistics, 23, 443–454.

Ljung, G. M. and G. E. P. Box (1978). On a Measure of Lack of Fit in Time Series

Models. Biometrika, 65, 297–303.

Lucas, R. E. and L. A. Rapping (1969). Real Wages, Employment, and Inflation.

Journal of Political Economy, 77, 721–754.

Lumsdaine, R. L. and D. H. Papell (1997). Multiple Trend Breaks and the Unit-Root

Hypothesis. The Review of Economics and Statistics, 79, 212–218.

Murray, C. J. and C. R. Nelson (2000). The Uncertain Trend in U.S. GDP. Journal

of Monetary Economics, 46, 79–95.

Murray, C. J. and C. R. Nelson (2002). The Great Depression and Output Persis-

tence. Journal of Money Credit and Banking, 34, 1090–1098.

Nelson, C. R. and C. R. Plosser (1982). Trends and Random Walks in Macroe-

conmic Time Series : Some Evidence and Implications. Journal of Monetary

Economics, 10, 139–162.

Newbold, P., S. Leybourne and M. E. Wohar (2001). Trend-Stationarity, Difference-

Stationarity, or Neither: Further Diagnostic Tests with an Application to U.S.

Real GNP, 1875-1993. Journal of Economics and Business, 53, 85–102.

Ng, S. and P. Perron (1995). Unit Root Tests in ARMA Models with Data-

Dependent Methods for the Selection of the Truncation Lag. Journal of the

American Statistical Association, 90, 268–281.

Papell, D. H. and R. Prodan (2004). The Uncertain Unit Root in US Real GDP:

Evidence with Restricted and Unrestricted Structural Change. Journal of

Money Credit and Banking, 36, 423–427.

22



Papell, D. H. and R. Prodan (2007). Restricted Structural Change and the Unit

Root Hypothesis. Economic Inquiry, 45, 834–853.

Rudebusch, G. D. (1993). The Uncertain Unit Root in Real GNP. The American

Economic Review, 83, 264–272.

Sims, C. A. (1988). Bayesian Skepticism on Unit-Root Econometrics. Journal of

Economic Dynamics & Control, 12, 463–474.

23


