BCH Codes

Outline

- Binary Primitive BCH Codes
- Decoding of the BCH Codes
- Implementation of Galois Field Arithmetic
- Implementation of Error Correction
- Nonbinary BCH Codes and Reed-Solomon Codes

- The <u>Bose</u>, <u>Chaudhuri</u>, <u>and Hocquenghem</u> (<u>BCH</u>) codes form a large class of powerful random error-correcting cyclic codes.
- This class of codes is a remarkable generalization of the Hamming codes for multiple-error correction.
- Binary BCH codes were discovered by Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960.
- Generalization of the binary BCH codes to codes in p^m symbols (where p is a prime) was obtained by Gorenstein and Zierler.
- Among the <u>nonbinary BCH codes</u>, the most important subclass is the class of Reed-Solomon (RS) codes.
- Among all the decoding algorithms for BCH codes, <u>Berlekamp's</u> <u>iterative algorithm</u>, and <u>Chien's search algorithm</u> are the most efficient ones.

Description of the BCH Codes

• \forall integer $m \ge 3$, $t < 2^{m-1}$, \exists a binary BCH codes with $n = 2^m - 1 \rightarrow$ Block length $n - k \le mt \rightarrow$ Number of parity-check digits $d_{\min} \ge 2t + 1 \rightarrow$ Minimum distance

- Clearly, this code is capable of correcting any combination of t or fewer errors in a block of $n = 2^m 1$ digits. We call this code a \underline{t} error-correcting BCH code. The generator polynomial of this code is specified in terms of its roots from the Galois field $GF(2^m)$
- Let $\underline{\alpha}$ be a primitive element of $GF(2^m)$. The generator poly. g(x) of the *t*-error-correcting BCH code of length $2^m 1$ is the lowest-degree poly. over GF(2) which has

 $\alpha.\alpha^2.\alpha^3....\alpha^{2t}$ as its roots.

• It follows from Theorem 2.11 that g(x) has $\alpha, \alpha^2, ..., \alpha^{2t}$ and their conjugates as all its roots. Let $\phi_i(x)$ be the minimal poly. of α^i . Then g(x) must be the least common multiple (LCM) of $\phi_1(x), \phi_2(x), ..., \phi_{2t}(x)$, that is,

$$g(x) = LCM \{ \phi_1(x), \phi_2(x), ..., \phi_{2t}(x) \}$$

• If *i* is an even integer, it can be expressed as a product of the following form:

 $i=i'2^l$,

where *i*' is an odd number and $l \ge 1$. Then $\alpha^i = (\alpha^i)^{2^l}$ is a conjugate of α^i and therefore α^i and α^i have the same minimal poly., that is,

$$\phi_i(x) = \phi_{i'}(x).$$

• Hence, even power of α has the same minimal poly. as some preceding odd power of α .

$$g(x) = LCM \{\phi_1(x), \phi_3(x), ..., \phi_{2t-1}(x)\}$$

• deg $[\phi_i(x)] \le m$ (Theorem 2.18 & 2.19)

$$\therefore \deg [g(x)] \le mt \quad \therefore n-k \le mt$$

• The BCH codes defined above are usually called primitive (or narrow-sense) BCH codes.

- The single-error-correcting BCH codes of length $2^m 1$ is generated by $g(x) = \phi_1(x)$ since t = 1.
 - α is a primitive element of $GF(2^m)$
 - $\therefore \phi_1(x)$ is a primitive poly. of degree m $(\alpha^{2^0}, \alpha^{2^1}, \alpha^{2^2}, \dots, \alpha^{2^m} = 1)$
 - :. the single-error-correcting BCH codes of length $2^m 1$ is a Hamming code
- Ex 6.1 α is a primitive element of $GF(2^4)$ given by Table 2.8 such that $1 + \alpha + \alpha^4 = 0$. The minimal polynomials of $\alpha, \alpha^3, \alpha^5$ are

TABLE 2.8: Three representations for the elements of $GF(2^4)$ generated by $p(X) = 1 + X + X^4$.

Power representation	Polynomial representation	4-Tuple representation	
0	0	(0000)	
1	1	$(1\ 0\ 0\ 0)$	
α	α	$(0\ 1\ 0\ 0)$	
α^2	α^2	$(0\ 0\ 1\ 0)$	
α^3	α^3	$(0\ 0\ 0\ 1)$	
$lpha^4$	$1 + \alpha$	$(1 \ 1 \ 0 \ 0)$	
α^5	$\alpha + \alpha^2$	$(0\ 1\ 1\ 0)$	
$lpha^6$	$\alpha^2 + \alpha^3$	$(0\ 0\ 1\ 1)$	
α^7	$1 + \alpha + \alpha^3$	$(1 \ 1 \ 0 \ 1)$	
α^8	$1 + \alpha^2$	(1010)	
α^9	$\alpha + \alpha^3$	(0101)	
$lpha^{10}$	$1 + \alpha + \alpha^2$	(1110)	
α^{11}	$\alpha + \alpha^2 + \alpha^3$	(0 1 1 1)	
$lpha^{12}$	$1 + \alpha + \alpha^2 + \alpha^3$	(1111)	
α^{13}	$1 + \alpha^2 + \alpha^3$	$(1\ 0\ 1\ 1)$	
α^{14}	$1 + \alpha^3$	$(1\ 0\ 0\ 1)$	

$$\therefore \phi_1(x) = 1 + x + x^4$$

$$\phi_3(x) = 1 + x + x^2 + x^3 + x^4$$

$$\phi_5(x) = 1 + x + x^2$$

• The double-error-correcting BCH code of length $n = 2^4 - 1 = 15$ is generated by $g(x) = \text{LCM} \{\phi_1(x), \phi_3(x)\}$ Since $\phi_1(x)$ and $\phi_3(x)$ are two distinct irreducible polynomials,

$$g(x) = (1 + x + x^{4})(1 + x + x^{2} + x^{3} + x^{4})$$

$$= 1 + x^{4} + x^{6} + x^{7} + x^{8}$$

$$\therefore (15,7) \text{ cyclic code with } d_{\min} \ge 5$$

$$\therefore W(g(x)) = 5 \qquad \therefore d_{\min} = 5$$

• The triple-error-correcting BCH code of length 15 is generated by

$$g(x) = LCM \left\{ \phi_1(x), \phi_3(x), \phi_5(x) \right\}$$

$$= (1+x+x^4)(1+x+x^2+x^3+x^4)(1+x+x^2)$$

$$= 1+x+x^2+x^4+x^5+x^8+x^{10}$$

It's a (15,5) cyclic code with $d_{\min} \ge 7$. Since W(g(x)) = 7, $d_{\min} = 7$.

- Let $v(x) = v_0 + v_1 x + ... + v_{n-1} x^{n-1}$ be a poly. with $v_i \in GF(2)$ If v(x) has roots $\alpha, \alpha^2, ..., \alpha^{2t}$, then v(x) is divisible by $\phi_1(x), \phi_2(x), ..., \phi_{2t}(x)$. (Theorem 2.14)
- $\mathbf{v}(x)$ is a code poly., g(x)|v(x), $g(x) = LCM\{\phi_1(x), \phi_2(x), ..., \phi_{2t}(x)\}$

We have a new definition for *t*-error-correcting BCH code: A binary *n*-tuple $\mathbf{v} = (v_0, v_1, v_2, ..., v_{n-1})$ is a code word if and only if the poly. $v(x) = v_0 + v_1 x + ... + v_{n-1} x^{n-1}$ has $\alpha, \alpha^2, ..., \alpha^{2t}$ as roots, i.e.

$$v(\alpha^{i}) = v_0 + v_1 \alpha^{i} + v_2 \alpha^{2i} + ... + v_{n-1} \alpha^{(n-1)i}$$

$$\mathbf{v}(\alpha^{i}) = v_{0} + v_{1}\alpha^{i} + v_{2}\alpha^{-1} + \dots + v_{n-1}\alpha^{(n-1)i}$$

$$\begin{bmatrix} 1 \\ \alpha^{i} \\ \vdots \\ \alpha^{(n-1)i} \end{bmatrix} = 0 \text{ for } 1 \le i \le 2t.$$

• Let $H = \begin{bmatrix} 1 & \alpha & \dots & \alpha^{n-1} \\ 1 & (\alpha^2) & \dots & (\alpha^2)^{n-1} \\ \vdots & & & \ddots \\ \vdots & & & \ddots \\ 1 & (\alpha^{2t}) & \dots & (\alpha^{2t})^{n-1} \end{bmatrix}$

If **v** is a code word in the *t*-error-correcting BCH code, then $\mathbf{v} \cdot \mathbf{H}^T = 0$

The code is the null space of the matrix **H** and **H** is the parity-check matrix of the code.

• α^j is a conjugate of α^i , then $v(\alpha^j) = 0$ iff $v(\alpha^i) = 0$ (Thm. 2.11) *j*-th row of **H** can be omitted. As a result **H** can be reduced to the following form:

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^3 & (\alpha^3)^2 & \cdots & (\alpha^3)^{n-1} \\ 1 & \alpha^{(2t-1)} & (\alpha^{2t-1})^2 & \cdots & (\alpha^{2t-1})^{n-1} \end{bmatrix}$$
 只剩下奇數的Row

• EX 6.2 double-error-correcting BCH code of length $n = 2^4 - 1 = 15$, (15,7) code. Let α be a primitive element in $GF(2^4)$

The parity-check matrix is

(Note that the parity check matrix is not binary anymore.)

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \dots & \alpha^{14} \\ 1 & \alpha^3 & \alpha^6 & \dots & \alpha^{42} \end{bmatrix}$$

Using $\alpha^{15} = 1$, and representing each entry of **H** by its 4-

tuple,

• FACT:

The *t*-error-correcting BCH code indeed has $d_{\min} \ge 2t + 1$ (pf): Suppose $\exists v \ne 0$ such that $W(v) = \delta \le 2t$

Let $v_{j_1}, v_{j_2}, ... v_{j_{\delta}}$ be the nonzero components of \underline{v} (i.e. all ones)

$$\Rightarrow \underline{0} = \underline{v}H^{T} = (v_{j_{1}}v_{j_{2}}..v_{j_{\delta}})\begin{bmatrix} \alpha^{j_{1}} (\alpha^{2})^{j_{1}} \cdots (\alpha^{2t})^{j_{1}} \\ \alpha^{j_{2}} (\alpha^{2})^{j_{2}} \cdots (\alpha^{2t})^{j_{2}} \\ \vdots & \vdots \\ \alpha^{j_{\delta}} (\alpha^{2})^{j_{\delta}} \cdots (\alpha^{2t})^{j_{\delta}} \end{bmatrix}$$

$$\Rightarrow (1,1...,1) \begin{bmatrix} \alpha^{j_1} (\alpha^{j_1})^2 \cdots (\alpha^{j_1})^{2t} \\ \alpha^{j_2} (\alpha^{j_2})^2 \cdots (\alpha^{j_2})^{2t} \\ \vdots & \vdots & \vdots \\ \alpha^{j_\delta} (\alpha^{j_\delta})^2 \cdots (\alpha^{j_\delta})^{2t} \end{bmatrix} = \underline{0}...... \otimes$$

$$(1,1...,1)\begin{bmatrix} \alpha^{j_1} (\alpha^{j_1})^2 \cdots (\alpha^{j_1})^{\delta} \\ \alpha^{j_2} (\alpha^{j_2})^2 \cdots (\alpha^{j_2})^{\delta} \\ \vdots & \vdots & \vdots \\ \alpha^{j_{\delta}} (\alpha^{j_{\delta}})^2 \cdots (\alpha^{j_{\delta}})^{\delta} \end{bmatrix} = 0$$

A, a $\delta \times \delta$ square matrix $(\delta \le 2t)$

$$\Rightarrow |A| = 0$$

Taking out the common

Taking out the common factor from each row of the determinant.
$$\Rightarrow \alpha^{(j_1+j_2+...+j_{\delta})} \begin{vmatrix} 1\alpha^{j_1} \cdots \alpha^{(\delta-1)j_1} \\ 1\alpha^{j_2} \cdots \alpha^{(\delta-1)j_2} \\ \vdots & \vdots \\ 1\alpha^{j_{\delta}} \cdots \alpha^{(\delta-1)j_{\delta}} \end{vmatrix} = 0...... \otimes \otimes$$

- The determinant in the equality above is a Vandermonde determinant which is nonzero. The product on the left-hand side of
 - $\otimes \otimes$ can not be zero. This is a contradiction and hence our assumption that there exists a nonzero code vector v of $W(v) = \delta \le 2t$ is invalid.

$$\therefore d_{\min} \ge 2t + 1$$

- 2*t*+1 is the designed distance of the *t*-error-correcting BCH code. The true minimum distance of a BCH code may or may not be equal to its designed distance.
- Binary BCH code with length $n \neq 2^m 1$ can be constructed in the same manner as for the case $n = 2^m - 1$. (Theorem 2.9) Let β be an element of order n in $GF(2^m)$, $n \mid 2^m - 1$ and $\mathbf{g}(x)$ be the binary polynomial of minimum degree that has $\beta, \beta^2, ..., \beta^{2t}$ as roots.

- Let $\psi_1(x), \psi_2(x), ..., \psi_{2t}(x)$ be the minimal poly. of $\beta, \beta^2, ..., \beta^{2t}$ respectively then $g(x) = LCM\{\psi_1(x), \psi_2(x), ..., \psi_{2t}(x)\}$
- $\therefore \beta^n = 1, \dots \beta, \beta^2, \dots, \beta^{2t}$ are roots of $x^n + 1$ $\Rightarrow g(x) | (x^n + 1)$
- We see that g(x) is a factor of $X^n + 1$.
 - The cyclic code generated by $\mathbf{g}(\mathbf{x})$ is a *t*-error-correcting BCH code of length *n*.
 - The number of parity-check digits $\leq mt$
 - o $d_{\min} \ge 2t + 1$.
- If β is not a primitive element of $GF(2^m)$, the code is called a nonprimitive BCH code.

General Definition of Binary BCH Codes

General definition of binary BCH codes.

 $\beta \in GF(2^m)$, ℓ_0 be any nonnegative integer and consider β^{l_0} , β^{l_0+1} ,..., $\beta^{l_0+d_0-2}$. For $0 \le i < d_0-1$, let $\psi_i(x)$, n_i be the minimal poly. and order of β^{ℓ_0+i} , respectively.

$$g(x) = LCM\{\psi_0(x), \psi_1(x), ..., \psi_{d_0-2}(x)\}$$

and the length of the code is

$$n = LCM \{n_0, n_1, ... n_{d_0-2}\}$$

Note that: $d_{\min} \ge d_0$ (Proof is omitted and left as an exercise.)

parity-check digits $\leq m(d_0 - 1)$

is capable of correcting $\lfloor (d_0 - 1)/2 \rfloor$ or fewer errors

General Definition of Binary BCH Codes

- If we let $l_0 = 1$, $d_0 = 2t+1$ and β be a primitive element of GF(2 m), the code becomes a t-error-correcting primitive BCH code of length $2^m 1$.
- If we let $l_0 = 1$, $d_0 = 2t+1$ and β be not a primitive element of $GF(2^m)$, the code is a nonprimitive *t*-error-correcting BCH code of length n, which is the order of β .
- For a BCH code with designed distance d_0 , we require g(x) has d_0 -1 consecutive powers of a field element β as roots. This guarantees that the code has $d_{\min} \ge d_0$. This lower bound on the minimum distance is called the BCH bound.
- In the rest of this chapter, we consider only the primitive BCH codes.

• Suppose that a code word $\mathbf{v}(\mathbf{x}) = v_0 + v_1 x + v_2 x^2 + ... + v_{n-1} x^{n-1}$ is transmitted and the transmission errors result :

$$\mathbf{r}(\mathbf{x}) = r_0 + r_1 x + r_2 x^2 + ... + r_{n-1} x^{n-1}$$

Let $\mathbf{e}(\mathbf{x})$ be the error pattern. Then

$$r(x) = v(x) + e(x)$$

• For decoding, remember

$$\mathbf{H} = \begin{bmatrix} 1 & \alpha & \dots & \alpha^{n-1} \\ 1 & (\alpha^2) & \dots & (\alpha^2)^{n-1} \\ \vdots & & & \vdots \\ 1 & (\alpha^{2t}) & \dots & (\alpha^{2t})^{n-1} \end{bmatrix}$$

• The syndrome is 2*t*-tuple,

$$S = (S_1, S_2, ... S_{2t}) = r \cdot H^T$$

Let
$$s_i = r(\alpha^i) = r_0 + r_1 \alpha^i + ... + r_{n-1} (\alpha^i)^{n-1}$$
 for $1 \le i \le 2t$

 s_i can be evaluated by $b_i(x) = R_{\phi_i(x)}[r(x)]$

 $\phi_i(x)$ is the minimal poly. of α^i

$$\therefore r(x) = a_i(x)\phi_i(x) + b_i(x)$$

$$\therefore s_i = r(\alpha^i) = b_i(\alpha^i)$$

• EX6.4 Consider the double-error-correcting (15, 7) BCH code given in (from Ex6.1).

If
$$\underline{r} = (100000001000000) \Rightarrow r(x) = 1 + x^8$$

$$\therefore \underline{s} = (\alpha^2, \alpha^4, \alpha^7, \alpha^8)$$

(Note that syndrome is not binary anymore.)

• $:: v(\alpha^i) = 0 \text{ for } 1 \le i \le 2t \longrightarrow s_i = r(\alpha^i) = e(\alpha^i)$

Suppose
$$e(x) = x^{j_1} + x^{j_2} + ... + x^{j_v}$$
 $0 \le j_1 < j_2 < ... j_v < n$

$$\Rightarrow s_1 = \alpha^{j_1} + \alpha^{j_2} + ... + \alpha^{j_v}$$

$$s_2 = (\alpha^{j_1})^2 + (\alpha^{j_2})^2 + ... + (\alpha^{j_v})^2$$

$$\vdots$$

$$s_{2t} = (\alpha^{j_1})^{2t} + ... + (\alpha^{j_v})^{2t}$$

where $\alpha^{j_1}, \alpha^{j_2}, ... \alpha^{j_\nu}$ are unknown.

Any method for solving these equations is a decoding algorithm for the BCH codes.

- Once $\alpha^{j_1}, \alpha^{j_2}, ... \alpha^{j_v}$ have been found, the powers $j_1, j_2, ... j_v$ tell us the error locations in e(x)
- If the number of errors in **e**(x) is *t* or less, the solution that yields an error pattern with the <u>smallest number of errors</u> is the right solution.
- For convenience, let $\beta_{\ell} = \alpha^{j_{\ell}}$, $1 \le \ell \le v$ be the <u>error</u> location numbers.

$$s_{1} = \beta_{1} + \beta_{2} + \dots + \beta_{v}$$

$$s_{2} = \beta_{1}^{2} + \beta_{2}^{2} + \dots + \beta_{v}^{2}$$

$$\vdots$$

$$s_{2t} = \beta_{1}^{2t} + \beta_{2}^{2t} + \dots + \beta_{v}^{2t}$$

$$Symmetric function$$

- Define $\sigma(x) = (1 + \beta_1 x)(1 + \beta_2 x)....(1 + \beta_v x)$ $\downarrow = \sigma_0 + \sigma_1 x + \sigma_2 x^2 + ... + \sigma_v x^v$: error-location poly.
- The roots of $\sigma(x)$ are $\beta_1^{-1}, \beta_2^{-1}, ..., \beta_v^{-1}$, which are the inverses of the error location numbers.

$$\sigma_{0} = 1$$

$$\sigma_{1} = \beta_{1} + \beta_{2} + ... \beta_{v}$$

$$\sigma_{2} = \beta_{1} \beta_{2} + \beta_{2} \beta_{3} + ... + \beta_{v-1} \beta_{v}$$

$$\vdots$$

$$\sigma_{v} = \beta_{1} \beta_{2} ... \beta_{v}$$

These coefficients are known as <u>elementary symmetric</u> functions. σ_i 's are related to s_j 's by <u>Newton's identities</u>

$$s_{1} + \sigma_{1} = 0$$

$$s_{2} + \sigma_{1}s_{1} + 2\sigma_{2} = 0$$

$$s_{3} + \sigma_{1}s_{2} + \sigma_{2}s_{1} + 3\sigma_{3} = 0$$

$$\vdots$$

$$s_{v} + \sigma_{1}s_{v-1} + \dots + \sigma_{v-1}s_{1} + v\sigma_{v} = 0$$

$$s_{v+1} + \sigma_{1}s_{v} + \dots + \sigma_{v-1}s_{2} + \sigma_{v}s_{1} = 0$$

Note that, for binary case, $\therefore 1+1=2=0$, we have

$$i\sigma_i = \begin{cases} \sigma_i & \text{for odd } i \\ 0 & \text{for even } i \end{cases}$$

Consequently, if $\beta_1, \beta_2, ..., \beta_v \in GF(2^m)$, then

$$(\beta_{1} + \beta_{2} + \dots + \beta_{v})^{2^{r}} = \beta_{1}^{2^{r}} + \begin{pmatrix} 2^{r} \\ 1 \end{pmatrix} \beta_{1}^{2^{r}-1} \beta_{2} + \dots + \beta_{v}^{2^{r}}$$

$$= \beta_{1}^{2^{r}} + \beta_{2}^{2^{r}} + \dots + \beta_{v}^{2^{r}}$$

$$\text{Since } \begin{pmatrix} 2^{r} \\ 1 \end{pmatrix} = \begin{pmatrix} 2^{r} \\ 2 \end{pmatrix} = \dots \begin{pmatrix} 2^{r} \\ 2^{r} - 1 \end{pmatrix} \equiv 0 \mod 2,$$

$$s_{2j} = \sum_{i=1}^{v} \beta_{i}^{2j} = \left(\sum_{i=1}^{v} \beta_{i}^{j}\right)^{2} = s_{j}^{2}$$

Consequently, the Newton's Identities can be simplified into *t* equations:

$$s_{1} + \sigma_{1} = 0$$

$$s_{3} + \sigma_{1}s_{2} + \sigma_{2}s_{1} + \sigma_{3} = 0$$

$$s_{5} + \sigma_{1}s_{4} + \sigma_{2}s_{3} + \sigma_{3}s_{2} + \sigma_{4}s_{1} + \sigma_{5} = 0$$

$$\vdots$$

$$s_{2t-1} + \sigma_{1}s_{2t-2} + \sigma_{2}s_{2t-3} + \dots + \sigma_{t}s_{t-1} = 0$$

- The equations may have many solutions.
- We want to find the solution that yields a $\sigma(X)$ of minimal degree. This $\sigma(X)$ would produce an error pattern with minimum number of errors.
- Decoding Procedure

```
step 1. Compute \underline{s} = (s_1, s_2, ... s_{2t}) from r(x)
```

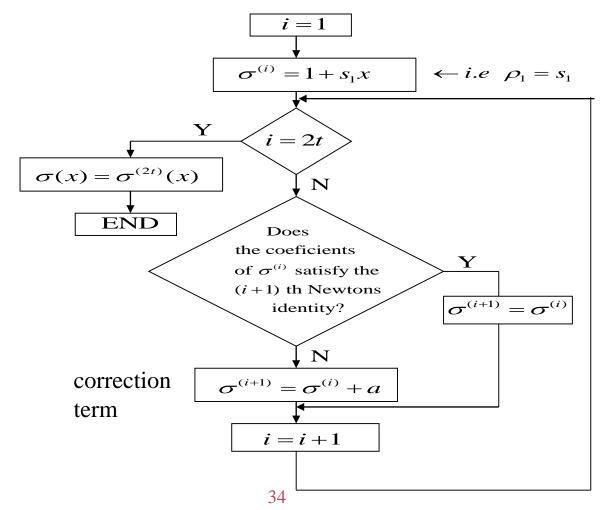
- step 2. Determine $\sigma(x)$ from \underline{s}
- step 3. Determine the error-location number $\beta_1, \beta_2, ..., \beta_\nu$ by finding the roots of $\sigma(x)$ and correct the errors in r(x)

- The first method for determing $\sigma(x)$ from \underline{s}
- → Peterson's Algorithm

$$\mathbf{A}\boldsymbol{\sigma} \triangleq \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ s_2 & s_1 & 1 & 0 & \cdots & 0 & 0 \\ s_4 & s_3 & s_2 & s_1 & \cdots & 0 & 0 \\ \vdots & \vdots \\ s_{2t-4} & s_{2t-5} & s_{2t-6} & s_{2t-7} & \cdots & s_{t-2} & s_{t-3} \\ s_{2t-2} & s_{2t-3} & s_{2t-4} & s_{2t-5} & \cdots & s_t & s_{t-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{t-1} \\ \sigma_t \end{bmatrix} = \begin{bmatrix} s_1 \\ s_3 \\ s_5 \\ \vdots \\ s_{2t-3} \\ s_{2t-1} \end{bmatrix}$$

$$\Rightarrow \sigma_1 = s_1, \sigma_2 = \frac{s_3 + s_1^3}{s_1}, \cdots$$

- The second method: Berlekamps iterative algorithm
 - \Rightarrow Iterative Algorithm for finding $\sigma(x)$



• How to add a correction term to $\sigma^{(i)}$?

Let
$$\sigma^{(\mu)} = 1 + \sigma_1^{(\mu)} x + \sigma_2^{(\mu)} x^2 + ... + \sigma_{\ell_{\mu}}^{(\mu)} x^{\ell_{\mu}}$$

be the minimum-degree poly. determined at the *µth* step.

To determine $\sigma^{(\mu+1)}(x) =>$ compute μth discrepancy

$$d_{\mu} = S_{\mu+1} + \sigma_1^{(\mu)} S_{\mu} + \sigma_2^{(\mu)} S_{\mu-1} + \dots + \sigma_{\ell_{\mu}}^{(\mu)} S_{\mu+1-\ell_{\mu}}$$

If
$$d_{\mu} = 0 \Rightarrow \sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x)$$

If $d_{\mu} \neq 0$, go back to the steps prior to the μth step and determine $\sigma^{(\rho)}(x)$ s.t. ρth discrepancy $d_{\rho} \neq 0$, and $\rho - \ell_{\rho}$ has the largest value. $(\ell_{\rho} = \deg [\sigma^{(\rho)}(x)])$. Then

$$\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + d_{\mu}d_{\rho}^{-1}x^{(\mu-\rho)}\sigma^{(\rho)}(x)$$

is the minimum-degree poly. whose coefficients satisfy the first Newton's identities

• To carry out the iteration of finding $\sigma(X)$, we begin with the following table:

$\sigma^{(\mu)}(x)$	d_{μ}	ℓ_{μ}	$\mu - \ell_{\mu}$
1	1	0	-1
1	S_{1}	0	0
	1	1 1	1 1 0

- l_{μ} is the degree of $\sigma^{(\mu)}(X)$.
- If $d_{\mu} = 0$, then $\sigma_{\mu}^{(\mu+1)}(X) = \sigma^{(\mu)}(X)$ and $l_{\mu+1} = l_{\mu}$.
- If $d_{\mu}\neq 0$, find another row ρ prior to the μ th row such that $d_{\rho}\neq 0$ and the number ρ - l_{ρ} in the last column of the table has the largest value. Then $\sigma^{(\mu+1)}(X)$ is given by

$$\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + d_{\mu}d_{\rho}^{-1}x^{(\mu-\rho)}\sigma^{(\rho)}(x)$$

and $l_{\mu+1} = \max(l_{\mu}, l_{\rho} + \mu - \rho)$.

- In either case, $d_{\mu+1} = s_{\mu+2} + \sigma_1^{(\mu+1)} s_{\mu+1} + ... + \sigma_{\ell_{\mu+1}}^{(\mu+1)} s_{\mu+2-\ell_{\mu+1}}$
- The polynomial $\sigma^{(2t)}(X)$ in the last row should be the required $\sigma(X)$.

 Ex 6.5
 Consider (15.5) triple-error-correcting BCH codes given in ex 6.1

$$(t=3)$$

$$p(x) = 1 + x + x^{4}$$

$$\frac{e}{y} = 0 \rightarrow \oplus \rightarrow r = x^{3} + x^{5} + x^{12}$$

$$\phi_{1}(x) = \phi_{2}(x) = \phi_{4}(x) = 1 + x + x^{4}$$

$$\phi_{3}(x) = \phi_{6}(x) = 1 + x + x^{2} + x^{3} + x^{4}$$

$$\phi_{5}(x) = 1 + x + x^{2}$$

$$b_{1}(x) = R_{\phi_{1}(x)}[r(x)] = 1$$

$$b_{3}(x) = R_{\phi_{3}(x)}[r(x)] = 1 + x^{2} + x^{3}$$

$$b_{5}(x) = R_{\phi_{5}(x)}[r(x)] = x^{2}$$

$$s_{1} = s_{2} = s_{4} = 1$$

$$s_{3} = 1 + \alpha^{6} + \alpha^{9} = \alpha^{10}$$

$$s_{6} = 1 + \alpha^{12} + \alpha^{18} = \alpha^{5}$$

$$s_{5} = \alpha^{10}$$

$$\therefore \underline{s} = (1, 1, \alpha^{10}, 1, \alpha^{10}, \alpha^{5})$$

$$\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + d_{\mu}d_{\rho}^{-1}x^{(\mu-\rho)}\sigma^{(\rho)}(x)$$

•
$$S_1 = 1$$

$$d_{\mu} = S_{\mu+1} + \sigma_1^{(\mu)} S_{\mu} + \sigma_2^{(\mu)} S_{\mu-1} + \dots + \sigma_{\ell_{\mu}}^{(\mu)} S_{\mu+1-\ell_{\mu}}$$

•
$$\mu=0; d_0=S_1=1\neq 0$$

$$\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x) + d_{\mu}d_{\rho}^{-1}x^{(\mu-\rho)}\sigma^{(\rho)}(x)$$

•
$$\sigma^{(1)}(X) = \sigma^{(0)}(X) + d_0 d_{-1}^{-1} X^{(0+1)} \sigma^{(-1)}(X) = 1 + 1 \cdot 1 \cdot X \cdot 1 = 1 + X$$

•
$$l_1 = \max(l_0, l_{-1} + \mu - \rho) = \max(0, 0 + 0 + 1) = 1$$

•
$$\mu$$
- l_{u} =1- l_{1} =1-1=0

•
$$d_1 = S_2 + \sigma_1^{(1)} S_1 = 1 + 1 \cdot 1 = 0$$

$$l_{\mu+1} = \max(l_{\mu}, l_{\rho} + \mu - \rho).$$

•
$$\sigma^{(2)}(X) = \sigma^{(1)}(X) = 1 + X$$

•
$$l_2 = l_1 = 1$$

•
$$\mu$$
- l_{μ} =2- l_2 =2-1=1

•
$$d_2 = S_3 + \sigma_1^{(2)} S_2 = \alpha^{10} + 1 \cdot 1 = (1 + \alpha + \alpha^2) + 1 = \alpha^5$$

- $d_2 = \alpha^5 \neq 0$
- ρ=0
- $\sigma^{(3)}(X) = \sigma^{(2)}(X) + d_2 d_0^{-1} X^{(2-0)} \sigma^{(0)}(X) = 1 + X + \alpha^5 \cdot 1 \cdot X^2 \cdot 1 = 1 + X + \alpha^5 X^2$
- $l_3 = \max(l_2, l_0 + \mu \rho) = \max(1, 0 + 2 0) = 2$
- μ - l_{μ} =3- l_3 =3-2=1
- $d_3 = S_4 + \sigma_1^{(3)} S_3 + \sigma_2^{(3)} S_2 + \sigma_3^{(3)} S_1 = 1 + 1 \cdot \alpha^{10} + \alpha^5 \cdot 1 + 0 \cdot 1$ = $1 + (1 + \alpha + \alpha^2) + (\alpha + \alpha^2) = 0$

$\overline{\mu}$	$\sigma^{(\mu)}(x)$	d_{μ}	ℓ_{μ}	$\mu - \ell_{\mu}$
$\overline{-1}$	1	1	O	-1
O	1	1	O	O
1	1+x	O	1	O
2	1+x	$lpha^5$	1	1
3	$1 + x + \alpha^5 x^2$	O	2	1
4	$1 + x + \alpha^5 x^2$	$lpha^{10}$	2	2
5	$1 + x + \alpha^5 x^3$	O	3	2
6	$1 + x + \alpha^5 x^3$	_	-	_

$$\therefore \sigma(x) = \sigma^{(6)}(x) = 1 + x + \alpha^5 x^3$$
$$= (1 + \alpha^{-3} x)(1 + \alpha^{-10} x)(1 + \alpha^{-12} x)$$

$$\therefore x = \alpha^3, \alpha^{10}, \alpha^{12}$$

error location numbers

$$\beta_{1} = \alpha^{-3} = \alpha^{12}, \beta_{2} = \alpha^{-10} = \alpha^{5}, \beta_{3} = \alpha^{-12} = \alpha^{3}$$

$$\therefore e(x) = x^{3} + x^{5} + x^{12}$$

$$\therefore r(x) = r(x) + e(x) = 0$$

- If the number of errors in the received polynomial $\mathbf{r}(X)$ is less than the designed error-correcting capability t of the code, it is not necessary to carry out the 2t steps of iteration to find the error-location polynomial $\sigma(X)$.
- It has been shown that if d_{μ} and the discrepancies at the next t- l_{μ} -1 steps are all zeros (i.e. successive t- l_{μ} zeros), $\sigma^{(\mu)}(X)$ is the errorlocation polynomial.
- If $v(v \le t)$ errors occur, only v+t steps of iteration are needed.
- The iterative algorithm described above not only applies to binary BCH codes but also nonbinary BCH codes.

Simplified Algorithm for finding $\sigma(x)$

• For a binary BCH code, it is only required to fill out a table with *t* empty rows. Such a table is presented below.

$\sigma^{(\mu)}(x)$	d_{μ}	ℓ_{μ}	2μ $-\ell_{\mu}$	
1	1	0	-1	
1	S_1	0	0	
		-		
		1 1	1 1 0	

- 1. If $d_{\mu} = 0$, then $\sigma^{(\mu+1)}(x) = \sigma^{(\mu)}(x)$
- 2. If $d_{\mu} \neq 0$, find another row ρ proceding the μth row, s.t. $2\rho \ell_{\rho}$ is as large as possible and $d_{\rho} \neq 0$

Then
$$\sigma^{(\mu+1)}(X) = \sigma^{(\mu)}(X) + d_{\mu}d_{\rho}^{-1}X^{2(\mu-\rho)}\sigma^{(\rho)}(X)$$

note that
$$d_{\mu+1} = s_{2\mu+3} + \sigma_1^{(\mu+1)} s_{2\mu+2} + \sigma_2^{(\mu+1)} s_{2\mu+1} + \dots + \sigma_{\ell_{\mu+1}}^{(\mu+1)} s_{2\mu+3-\ell_{\mu+1}}$$

$$\ell_{\mu+1} = \deg \left[\sigma^{(\mu+1)}(x) \right]$$

- The polynomial $\sigma^{(t)}(X)$ in the last row should be the required $\sigma(X)$.
- If it has degree greater than t, there were more than t errors, and generally it is not possible to locate them.
- The computation required in this simplified algorithm is <u>one-half</u> of the computation required in the general algorithm.
- The simplified algorithm applies only to binary BCH codes.
- If the number of errors in the received polynomial $\mathbf{r}(X)$ is less than the designed error-correcting capability t of the code, it is not necessary to carry out the t steps of iteration to find the error-location polynomial $\sigma(X)$ for a t-error-correcting binary BCH code.

Remarks:

- If $v \le t$ errors occur, only $\lceil (t+v)/2 \rceil$ steps needed.
- If, for some μ , d_{μ} and the discrepancies at the next $(t-l_{\mu}-1)/2$ steps are zero, then $\sigma(X)$ is the error-location poly.
- EX6.6

The simplified table for finding $\sigma(x)$ for the code in ex6.5 is given below. Thus, $\sigma(x) = \sigma^{(3)}(x) = 1 + x + \alpha^5 x^3$.

μ	$\sigma^{(\mu)}(x)$	d_{μ}	l_{μ}	$2\mu - l_{\mu}$
-1/2	1	1	0	-1
0	1	$S_1=1$	0	0
1	$1+S_1x=1+x$	$S_3+S_2S_1==\alpha^5$	1	1(take P = -1/2)
2	$1+x+\alpha^5x^2$	$oldsymbol{lpha}^{10}$	2	$2(\text{take } \mathcal{P}=0)$
3	$1+x+\alpha^5x^3$		3	3(take P=1)

Finding the Error-Location Numbers and Error Correction.

- Consider ex6.6. The error-location poly. has been found to be $\sigma(x) = 1 + x + \alpha^5 x^3$ By substituting $1, \alpha, \alpha^2, ..., \alpha^{14}$ into it, we find that $\alpha^3, \alpha^{10}, \alpha^{12}$ are the roots of $\sigma(x)$. Therefore, the error location numbers are $\alpha^{12}, \alpha^5, \alpha^3 \Rightarrow e(x) = x^3 + x^5 + x^{12}$
- Chien's procedure: The received vector

$$\mathbf{r}(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}$$

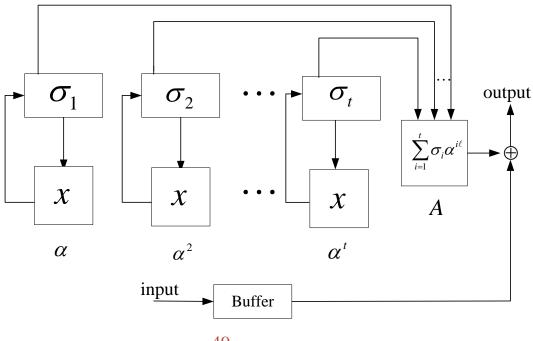
is decoded on a bit-by-bit basis. The high-order bits are decoded first. To decode r_{n-1} , the decoder test whether α^{n-1} is an error-location number; this is equivalent to test whether its inverse α is a root of $\sigma(x)$. If α is a root, then

$$1 + \sigma_1 \alpha + \sigma_2 \alpha^2 + \dots + \sigma_v \alpha^v = 0$$

• To decode r_{n-l} , the decoder forms $\sigma_1 \alpha^l, \sigma_2 \alpha^{2l}, ..., \sigma_v \alpha^{vl}$ and tests the sum $1 + \sigma_1 \alpha^l + \sigma_2 \alpha^{2l} + ... + \sigma_v \alpha^{vl}$

If the sum is zero, then α^{n-l} is an error-location number and r_{n-l} is an erroneous digit; otherwise, r_{n-l} is a correct digit.

Cyclic error location search unit



• The $t\sigma$ -registers are initial stored with $\sigma_1, \sigma_2, ..., \sigma_t$ calculated in step 2 of the decoding ($\sigma_{v+1} = \sigma_{v+2} = ... = \sigma_t = 0$ for v < t). Immediately before r_{v+1} is read out of the buffer, the t multiplier are pulsed once. The multiplications are performed and $\sigma_1\alpha, \sigma_2\alpha^2, ..., \sigma_v\alpha^v$ are stored in the σ -registers. The output of the logic circuit A is 1 if and only if the sum $1 + \sigma_1\alpha + \sigma_2\alpha^2 + ... + \sigma_v\alpha^v = 0$; otherwise, the output of A is 0. The digit r_{v+1} is read out of the buffer and corrected by the output of A. Having decoded r_{v+1} , the t multipliers are pulsed again. Now $\sigma_1\alpha^2, \sigma_2\alpha^4, ..., \sigma_v\alpha^{2v}$ are stored in the σ -registers. The sum $1 + \sigma_1\alpha^2 + \sigma_2\alpha^4 + ... + \sigma_v\alpha^{2v}$

is tested for 0. The digit r_{n-2} is read out of the buffer and corrected in the same manner as r_{n-1} is corrected.