Delay Spread and Coherence Bandwidth

- Delay spread (T_d)
 - Difference of the propagation delays of the longest and shortest paths (with significant energy) $T_d = \max_{i,i} |\tau_i(t) - \tau_j(t)|$
 - Delay coherence → frequency coherence: how quickly the channel changes in frequency
 - At time t, frequency response is

$$H(f,t) = \sum_{i} a_i(t) e^{-j2\pi f \tau_i(t)}$$

• For multiple paths, differential phase= $2\pi f(\tau_i(t) - \tau_k(t))$

• The phase changes significantly as f changes by $\frac{1}{2T_d}$

Delay Spread and Coherence Bandwidth

• Coherence Bandwidth (W_c)

$$W_c = \frac{1}{2T_d}$$

- \circ Multipath spread 1, coherence bandwidth \downarrow
- Flat fading v.s. Frequency selective fading
- Flat fading: $W_c \gg W$
 - Delay spread << symbol time $\frac{1}{W} \rightarrow$ one filter tap is sufficient to represent the channel
- Flat fading: $W_c \ll W$
 - Channel is represented by multiple taps

Delay Spread and Coherence Bandwidth

• In most literature, T_d is defined by the r.m.s. delay spread

$$\sigma_{\tau} = \sqrt{\overline{\tau^2} - \tau^2}$$
$$\overline{\tau^2} = \frac{\sum_i a_i^2(t)\tau_i^2(t)}{\sum_i a_i^2(t)}$$
$$\tau = \frac{\sum_i a_i^2(t)\tau_i(t)}{\sum_i a_i^2(t)}$$

- In some literature,
 - If W_c is defined as BW over which frequency correlation is above 0.9, $W_c \approx \frac{1}{50\sigma_{\tau}}$
 - If W_c is defined as BW over which frequency correlation is above 0.5, $W_c \approx \frac{1}{5\sigma_\tau}$

Doppler Spread and Coherence Time

- $h_l[m] = \sum_i a_i^b \left(\frac{m}{W}\right) sinc(l W\tau_i(m/W))$ = $\sum_i a_i \left(\frac{m}{W}\right) e^{-j2\pi f_c \tau_i(m/W)} sinc(l - W\tau_i(m/W))$
 - Phase of the *i*-th path change greatly at intervals of $1/(4D_i)$
 - $D_i = f_c \tau'_i(t)$: Doppler shift of the i-th path
- Doppler Spread (D_s) :

$$D_s = \max_{i,j} f_c |\tau'_i(t) - \tau'_j(t)|$$

Largest difference between Doppler shifts When the Doppler shifts are different, the fastest changes in the filter taps are significant over delay changes of $\frac{1}{4D_c}$.

Doppler Spread and Coherence Time

• Coherence time T_c

The interval over which $h_l[m]$ changes significantly. $T_c = \frac{1}{4D_s}$

- $^\circ\,$ Doppler spread 1, the coherence time $\downarrow\,$
- Fast fading v.s. slow fading
 - Fast fading: $T_c \ll$ delay requirement of the application
 - Slow fading: $T_c \gg$ delay requirement of the application
 - For voice transmission, the delay requirement is less than 100 ms.
 For data, the delay requirement is laxer.
 - If signal BW $\gg D_s$, effects of Doppler spread is negligible.

Doppler Spread and Coherence Time

- In some literature, coherence time has a different definition:
- T_c is a statistical measure of the time duration over which the channel is enssentially invariant.
- Usually, $T_c \approx 1/D_s$
- If T_c is defined by the time duration over which the time correlation is above 0.5,

$$T_c \approx \frac{9}{16\pi D_s}$$

Another popular definition is geometric mean of above two values:

$$T_c \approx 0.423/D_s$$

Outline

- 2.1 Wireless channels
- 2.2 Outage probability and error probability over fading channels
 - 2.2.1 Average error probabilities over Rayleigh fading channels
 - 2.2.2 Outage probability for Rayleigh fading channels
- 2.3 Diversity Techniques

AWGN Channel

Recall the AWGN channel

y[m] = x[m] + w[m]

• $SNR = \frac{E[|x[m]|^2]}{E[|w[m]|^2]} = \frac{E_s}{N_0}$ depends only the transmit energy

- For BPSK signaling, $x[m] \in \{\pm \sqrt{E_s}\}$
 - x[m] is detected by

$$\hat{x}[m] = \begin{cases} \sqrt{E_s}, & \Re\{y[m]\} \ge 0\\ -\sqrt{E_s}, & \Re\{y[m]\} < 0 \end{cases}$$

• The error probability is

$$P_e = Q\left(\frac{\sqrt{E_s}}{\sqrt{N_0/2}}\right) = Q\left(\sqrt{2SNR}\right) < e^{-SNR}$$

$$Q(x) < e^{-x^2/2}$$

- P_e decays exponentially in SNR
- It demands SNR= 7 dB to have $P_e = 10^{-3}$

Coherent detection in fading channel

• In flat fading channel

y = hx + w

- Rayleigh fading $h \sim CN(0,1)$
- AWGN $w \sim CN(0, N_0)$
- Assume *h* is known at $\mathbf{rx} \Rightarrow$ coherent detection $r = \frac{h^*}{|h|}y = |h|x + \frac{h^*}{|h|}w$

• The nose $h^*w/|h| \sim CN(0,N_0)$

• With BPSK signaling, the coherent detection is

$$\hat{x} = \begin{cases} \sqrt{E_s}, & \Re\{r\} \ge 0\\ -\sqrt{E_s}, & \Re\{r\} < 0 \end{cases}$$

Average error probabilities over Rayleigh fading channels (1)

• For a given channel *h*, the error probability is

$$P_{e|h} = Q\left(\frac{\sqrt{E_s}|h|}{\sqrt{N_0/2}}\right) = Q\left(\sqrt{2|h|^2 SNR}\right)$$

- In Rayleigh fading, $|h|^2$ is exponential with $\mathbf{E}[|h|^2]=1$
- The average error probability is

$$P_{e} = \int_{0}^{\infty} Q(\sqrt{2uSNR})e^{-u}du$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \int_{\sqrt{2uSNR}}^{\infty} e^{-\frac{t^{2}}{2}}e^{-u}dtdu$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \int_{0}^{\frac{t^{2}}{2SNR}} e^{-u}e^{-\frac{t^{2}}{2}}dudt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \left(1 - e^{-\frac{t^{2}}{2SNR}}\right)e^{-\frac{t^{2}}{2}}dt$$

$$= \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{t^{2}(1+SNR)}{2SNR}}dt$$

$$= \frac{1}{2} \left(1 - \sqrt{\frac{SNR}{1+SNR}}\right)$$

35

Average error probabilities over Rayleigh fading channels (2)

• For Rayleigh fading channel, the error probability is

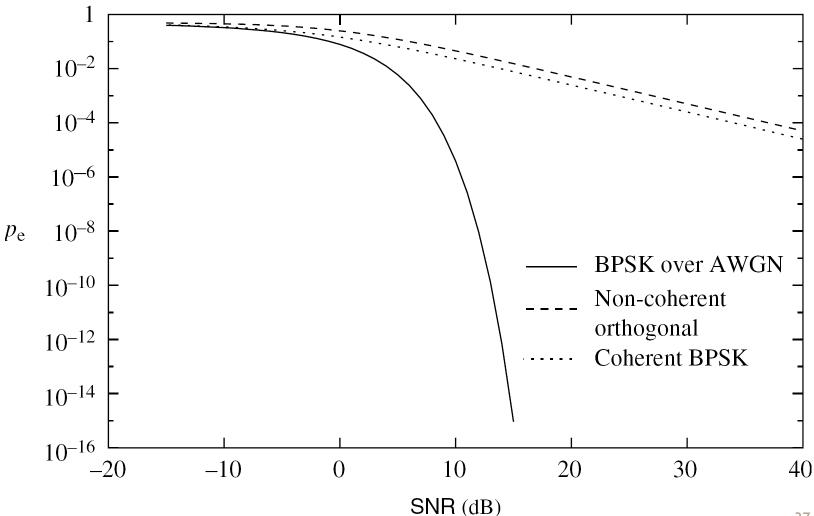
$$P_e = \frac{1}{2} \left(1 - \sqrt{\frac{SNR}{1 + SNR}} \right)$$

• At high SNR,

$$\sqrt{\frac{SNR}{1+SNR}} = 1 - \frac{1}{2SNR} + \mathcal{O}\left(\frac{1}{SNR^2}\right) \approx 1 - \frac{1}{2SNR}$$
$$\Rightarrow P_e \approx \frac{1}{4SNR}$$

- P_e decays inversely with SNR
- $^\circ~$ It demands SNR= 24 dB to have $P_e = 10^{-3}$
 - \Rightarrow 17 dB loss compared with AWGN

Average error probabilities over Rayleigh fading channels (3)



Outage probability for Rayleigh fading channels

• In flat fading channel

y = hx + w

- Given the channel h, the receive SNR is random, $\rho = \frac{E_s |h|^2}{N_0}$
 - ρ is exponentially distributed with $\bar{\rho} = \frac{E_s}{N_0} = SNR$
- Outage probability(P_{out})
 - *P*_{out}=Pr{Channel is in deep fade}
 - P_{out} =Pr{SNR is dropped below a threshold ρ_{th} }

$$P_{out} = \Pr\{\rho < \rho_{th}\} = \int_0^{\rho_{th}} \frac{1}{\bar{\rho}} e^{-\rho/\bar{\rho}} d\rho = 1 - e^{-\rho_{th}/\bar{\rho}}$$

• At high SNR, the outage probability is approximated by

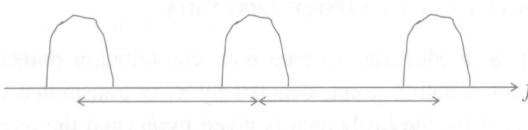
$$P_{out} \approx \frac{\rho_{th}}{\bar{\rho}} = \frac{\rho_{th}}{SNR} \implies \text{inversely proportional to SNR}$$

Outline

- 2.1 Wireless channels
- 2.2 Outage probability and error probability over fading channels
- 2.3 Diversity Techniques
 - 2.3.1 Diversity in time, frequency, and space domains
 - 2.3.2 Maximal Ratio Combining
 - 2.3.3 Selection Combining

• Time Diversity

- Transmit the same signal several times in different time-slots
- In slow fading, it takes a long time to transmit another replica
 In slow fading, it takes a long time separation larger than the coherence time
- Frequency Diversity
 - Transmit a few replicas over different frequency band
 - With delay spread = $200 \mu s$, minimum frequency separation is 5KHz

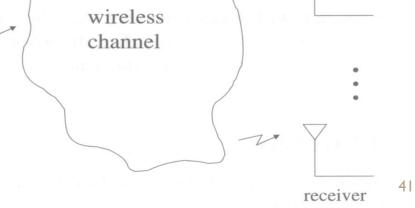


Spatial Diversity

- "Space" can be used as a resource to provide diversity
- Assume that the rx has multiple antennas

transmitter

- Different replica of the signal are picked up at each signal
- The separation between antennas is assumed at least $\lambda/2$
- The received signals undergo <u>different channel fades</u>
 - \Rightarrow provide spatial diversity



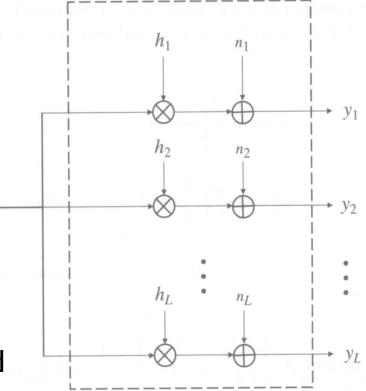
System model of Lth order diversity

• Consider a BPSK symbol $x \in \{\pm \sqrt{E_s}\}$ is transmitted over L diversity branches

 $y_1 = h_1 x + w_1$ $y_2 = h_2 x + w_2$ \vdots $y_L = h_L x + w_L$ • AWGN $w_l \sim CN(0, N_0)$

• Rayleigh fading,
$$h_l \sim CN(0,1)$$

- SNR of the l^{th} branch $\rho_{\ell} = E_s |h_{\ell}|^2 / N_0$
- Signals obtained thru different diversity branches are combined to detect the symbol x



Diversity Combining Methods

- Optimum combining:
 - Maximal Ratio Combining (MRC)
- Suboptimal combining:
 - Equal Gain Combining (EGC)
 - Selection Combining (SC)
 - Switch-and-Stay Combining (SSC)
- Diversity order

$$d = -\lim_{SNR \to \infty} \frac{\log(P_e)}{\log(SNR)} \quad or \quad d = -\lim_{SNR \to \infty} \frac{\log(P_{out})}{\log(SNR)}$$

Maximal Ratio Combining (1)

- Assume that $\{h_1, h_2, \dots, h_L\}$ are known at rx
- The maximal likelihood (ML) decision is

$$\begin{aligned} \hat{x} &= \arg \max_{x \in \{\pm \sqrt{E_s}\}} p(y_1, y_2, \cdots, y_L | x) \\ &= \arg \max_{x \in \{\pm \sqrt{E_s}\}} p(y_1 | x) \times p(y_2 | x) \times \cdots \times p(y_L | x) \\ &= \arg \max_{x \in \{\pm \sqrt{E_s}\}} \prod_{\ell=1}^{L} \frac{1}{\pi N_0} \exp\left(-\frac{|y_\ell - h_\ell x|^2}{N_0}\right) \\ &= \arg \min_{x \in \{\pm \sqrt{E_s}\}} \sum_{\ell=1}^{L} |y_\ell - h_\ell x|^2 \\ &= \arg \max_{x \in \{\pm \sqrt{E_s}\}} \sum_{\ell=1}^{L} 2\Re\{y_\ell h_\ell^* x^*\} - \sum_{\ell=1}^{L} |h_\ell|^2 |x|^2 \\ &= \arg \max_{x \in \{\pm \sqrt{E_s}\}} \Re\left\{\left(\sum_{\ell=1}^{L} y_\ell h_\ell^*\right) x^*\right\} \right. \end{aligned}$$

Maximal Ratio Combining (2)

• Optimal decision rule:

$$\hat{x} = \arg \max_{x \in \{\pm \sqrt{E_s}\}} \Re \left\{ \left(\sum_{\ell=1}^{L} h_{\ell}^* y_{\ell} \right) x^* \right\}$$

- Linearly combines the received signals after co-phasing and weighting them with the respective channel gains
- The branches with better channel gains are emphasized more than others since they are more reliable
- The resulting combining is maximal ratio combining (MRC)
- Effective channel model of MRC:

$$y = \sum_{\ell=1}^{L} h_{\ell}^* y_{\ell} = \left(\sum_{\ell=1}^{L} |h_{\ell}|^2\right) x + w'$$

• Noise $w' = \sum_{\ell} h_{\ell}^* w_{\ell} \sim CN(0, N_0 \sum_{\ell} |h_{\ell}|^2)$

Maximal Ratio Combining (3)

• SNR of L branches of diversity with MRC is

$$\rho_{eff} = \frac{\left(\sum_{\ell=1}^{L} |h_{\ell}|^2\right)^2 E_s}{\left(\sum_{\ell=1}^{L} |h_{\ell}|^2\right) N_0} = \sum_{\ell=1}^{L} \frac{E_s |h_{\ell}|^2}{N_0} = \sum_{\ell=1}^{L} \rho_{\ell}$$

• ρ_{eff} is Chi-Square distributed with 2L degrees of freedom $p_{\rho_{eff}}(u) = \frac{u^{L-1} \exp(-\frac{u}{E_s/N_0})}{(E_s/N_0)^L (L-1)!}, \quad u > 0$

Chi-Square Random Variable

Let $X_1, X_2, ..., X_n$ be i.i.d. Gaussian random variables, $X_i \sim CN(0, \sigma^2)$. $X = X_1^2 + X_2^2 + ... + X_n^2$ is a Chi-Square r.v. with n degrees of freedom. If n = 2m, the PDF and CDF of X are PDF: $p(x) = \frac{x^{m-1} \exp(-\frac{x}{2\sigma^2})}{(m-1)!(2\sigma^2)^m}, \quad x > 0$ CDF: $F(x) = 1 - \exp\left(-\frac{x}{2\sigma^2}\right) \sum_{k=0}^{m-1} \frac{1}{k!} \left(\frac{x}{2\sigma^2}\right)^k, \quad x > 0$

Maximal Ratio Combining (4)

Outage Probability with MRC

$$P_{out} = \Pr\{\rho_{eff} < \rho_{th}\}$$
$$= 1 - \exp\left(-\frac{\rho_{th}}{E_s/N_0}\right) \sum_{k=0}^{L-1} \frac{1}{k!} \left(\frac{\rho_{th}}{E_s/N_0}\right)^k$$

(ex) Let $x = \rho_{th} N_0 / E_s$. At high SNR, $x \rightarrow 0$. Assume that L=3, and P_{out} is approximated by

$$P_{out} = 1 - e^{-x} \left(1 + x + \frac{x^2}{2} \right)$$

= $1 - \left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \mathcal{O}(x^4) \right) \left(1 + x + \frac{x^2}{2!} \right)$
= $x^3/3! + \mathcal{O}(x^4)$
 $\approx \left(\frac{\rho_{th}}{E_s/N_0} \right)^3/3! \propto (E_s/N_0)^{-3}$

• Outage probability decays with $1/(SNR)^{L}$

Maximal Ratio Combining (5)

 Average error probability with MRC $P_{e,MRC} = \int_0^\infty Q\left(\sqrt{2u}\right) p_{\rho_{eff}}(u) du$ $= \frac{1}{\sqrt{2\pi}} \int_0^\infty \int_{\sqrt{2u}}^\infty e^{-\frac{t^2}{2}} p_{\rho_{eff}}(u) dt du$ $=\frac{1}{\sqrt{2\pi}}\int_0^\infty e^{-\frac{t^2}{2}}\int_0^{t^2/2} p_{\rho_{eff}}(u)dudt$ $= \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{t^2}{2}} \left(1 - \exp\left(-\frac{t^2/2}{E_s/N_0}\right) \sum_{k=0}^{L-1} \frac{1}{k!} \left(\frac{t^2/2}{E_s/N_0}\right)^k \right) dt$ $= \frac{1}{2} - \sum_{k=1}^{L-1} \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{t^2}{2} \frac{E_s + N_0}{E_s}} \frac{1}{k!} \left(\frac{t^2/2}{E_s/N_0}\right)^k dt$ For $X \sim N(0,1)$ $=\frac{1}{2} - \frac{1}{2} \sum_{k=1}^{L-1} \frac{1}{k!} \left(\frac{N_0}{2E_s}\right)^k \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2} \frac{E_s + N_0}{E_s}} t^{2k} dt$ $= \frac{1}{2} - \frac{1}{2} \left(\frac{E_s}{E_s + N_0} \right) \sum_{k=1}^{L-1} \left(\frac{N_0}{E_s + N_0} \right)^k \frac{(2k)!}{4^k k! k!}$

 $\mathbf{E}[X^{2k}] = \frac{(2k)!}{2^{k}k!}$

Hard to obtain diversity order

Maximal Ratio Combining (6)

• To study the behavior of average error probability, use the upper bound on Q-function $Q(x) \leq \frac{1}{2}e^{-x^2/2}$

•
$$P_{e,MRC} = \int_0^\infty Q\left(\sqrt{2u}\right) p_{\rho_{eff}}(u) du$$

 $\leq \frac{1}{2} \int_0^\infty e^{-u} \frac{u^{L-1} \exp\left(-\frac{u}{E_s/N_0}\right)}{(E_s/N_0)^L (L-1)!} du$
 $= \frac{1}{2(E_s/N_0)^L (L-1)!} \int_0^\infty u^{L-1} \exp\left(-\frac{u(E_s+N_0)}{E_s}\right) du$
 $= \frac{1}{2(E_s/N_0)^L (L-1)!} \frac{(L-1)!}{\left(\frac{E_s+N_0}{E_s}\right)^L}$
 $= \frac{1}{2} \left(1 + (E_s/N_0)\right)^{-L} \leq \frac{1}{2} (E_s/N_0)^{-L}$

Average error probability decays with SNR^{-L}

Selection Combining (I)

 At any time interval, one branch with largest SNR is used in demodulation

$$k = \arg \max_{\ell=1,\cdots,L} \frac{E_s |h_\ell|^2}{N_0} = \arg \max_{\ell=1,\cdots,L} |h_\ell|$$

 \Rightarrow Selection combining (SC)

• The selected signal is

 $y = h_k x + n_k$

• The effective SNR of selection combining is

$$\rho_{eff} = \max_{\ell=1,\dots,L} \frac{E_s |h_\ell|^2}{N_0} = \frac{E_s}{N_0} \left(\max_{\ell=1,\dots,L} |h_\ell|^2 \right)$$

Selection Combining (2)

• CDF of
$$\rho_{eff}$$

 $F_{\rho_{eff}}(u) = Pr\{\frac{E_s}{N_0} \max_{\ell} |h_{\ell}|^2 \le u\}$
 $= Pr\{\max(|h_1|^2, |h_2|^2, \cdots, |h_L|^2) \le \frac{uN_0}{E_s}\}$
 $= Pr\{|h_1|^2 \le \frac{uN_0}{E_s}, |h_2|^2 \le \frac{uN_0}{E_s}, \cdots, |h_L|^2 \le \frac{uN_0}{E_s}\}$
 $= \prod_{i=1}^L Pr\{|h_i|^2 \le \frac{uN_0}{E_s}\}$
 $= \left(1 - \exp(-\frac{uN_0}{E_s})\right)^L$

• PDF of ρ_{eff} $p_{\rho_{eff}}(u) = \frac{\partial}{\partial u} F_{\rho_{eff}}(u) = \frac{\partial}{\partial u} \left(1 - \exp(-\frac{uN_0}{E_s})\right)^L$ $= \frac{L}{E_s/N_0} \exp(-\frac{u}{E_s/N_0}) \left(1 - \exp(-\frac{u}{E_s/N_0})\right)^{L-1}$

Selection Combining (3)

Outage probability of selection combining

$$P_{out,SC} = Pr\{\rho_{eff} < \rho_{th}\} = F_{\rho_{eff}}(\rho_{th})$$
$$= \left(1 - \exp(-\frac{\rho_{th}}{E_s/N_0})\right)^L$$

• At high SNR,

$$P_{out,SC} \approx \left(\frac{\rho_{th}}{E_s/N_0}\right)^I$$

• Outage probability decays with $(E_s/N_0)^{-L}$

Selection Combining (4)

• Average error probability of selection combining

$$P_{e,SC} = \int_{0}^{\infty} Q\left(\sqrt{2u}\right) p_{\rho_{eff}}(u) du$$

$$\leq \int_{0}^{\infty} \frac{1}{2} e^{-u} p_{\rho_{eff}}(u) du$$

$$= \int_{0}^{\infty} \frac{1}{2} e^{-u} \frac{L}{E_{s}/N_{0}} \exp\left(-\frac{u}{E_{s}/N_{0}}\right) \left(1 - \exp\left(-\frac{u}{E_{s}/N_{0}}\right)\right)^{L-1} du$$

• At high SNR, $\left(1 - e^{-x} \approx x\right)$

$$\approx \int_{0}^{\infty} \frac{1}{2} e^{-u} \frac{L}{E_{s}/N_{0}} \exp\left(-\frac{u}{E_{s}/N_{0}}\right) \left(\frac{u}{E_{s}/N_{0}}\right)^{L-1} du$$

$$= \frac{L}{2(E_{s}/N_{0})^{L}} \int_{0}^{\infty} \exp\left(-\frac{u(E_{s}+N_{0})}{E_{s}}\right) u^{L-1} du$$

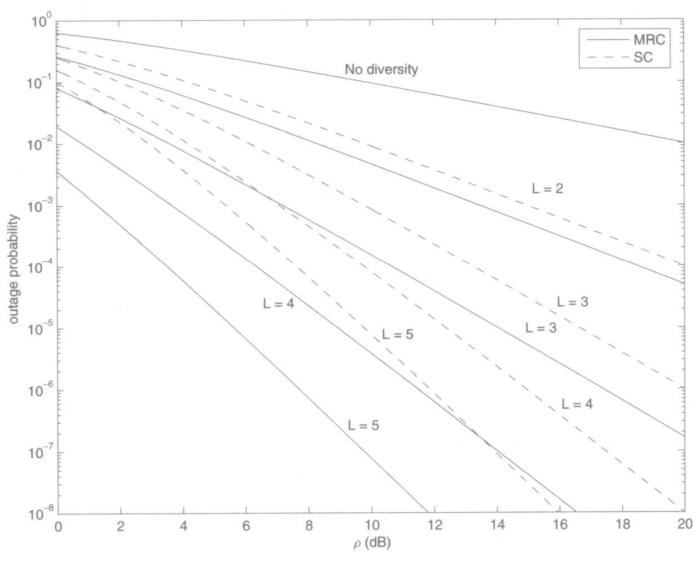
$$= \frac{L}{2(E_{s}/N_{0})^{L}} \left(L - 1\right)! \left(\frac{E_{s}/N_{0}}{1 + E_{s}/N_{0}}\right)^{L}$$

$$= \frac{L!}{2} \left(1 + E_{s}/N_{0}\right)^{-L} \approx \frac{L!}{2} \left(E_{s}/N_{0}\right)^{-L}$$

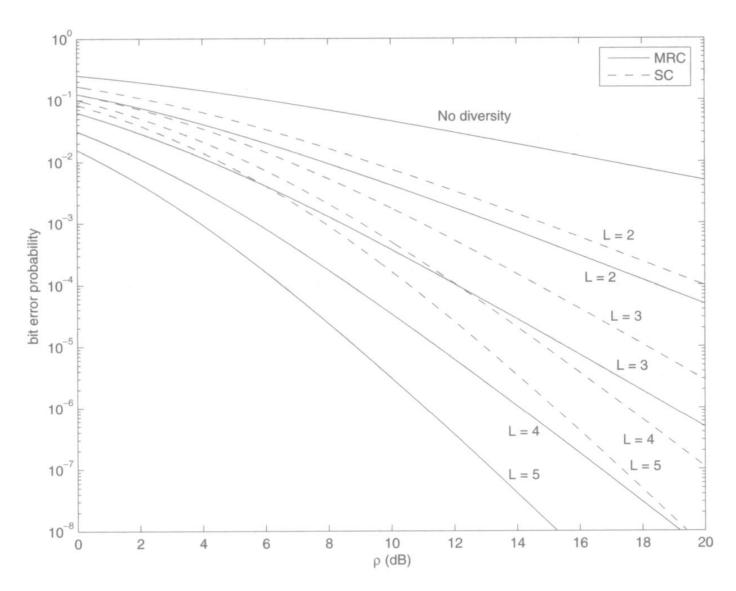
 $\sum_{k=1}^{\infty} u^k$

 $\,\circ\,$ Average error probability decays with $(E_{\rm s}/N_0)^{-L}$

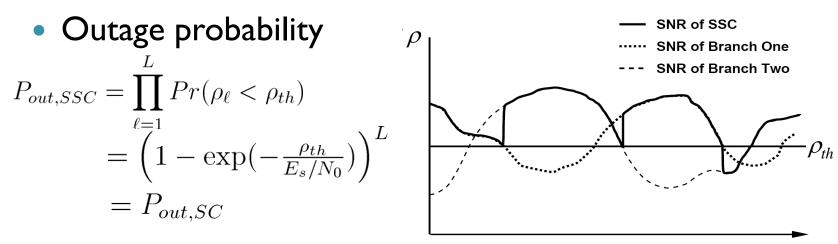
MRC v.s. SC (I)



MRC v.s. SC (2)



- Selection combining can achieve full diversity by switching to the branch with largest SNR
 - May require switch operations frequently
- Switch and Stay Combining (SSC)
 - I. Rx switches to the branch with largest SNR and stays
 - 2. When the SNR of the selected branch drops below ρ_{th} , switch to the other branch with highest SNR



Equal Gain Combining

• Equal Gain Combining (EGC): simply co-phase and combine all branches of signals with equal gain

$$y = \sum_{\ell=1}^{L} \frac{h_{\ell}^{*}}{|h_{\ell}|} y_{\ell} = \left(\sum_{\ell=1}^{L} |h_{\ell}|\right) x + w'$$

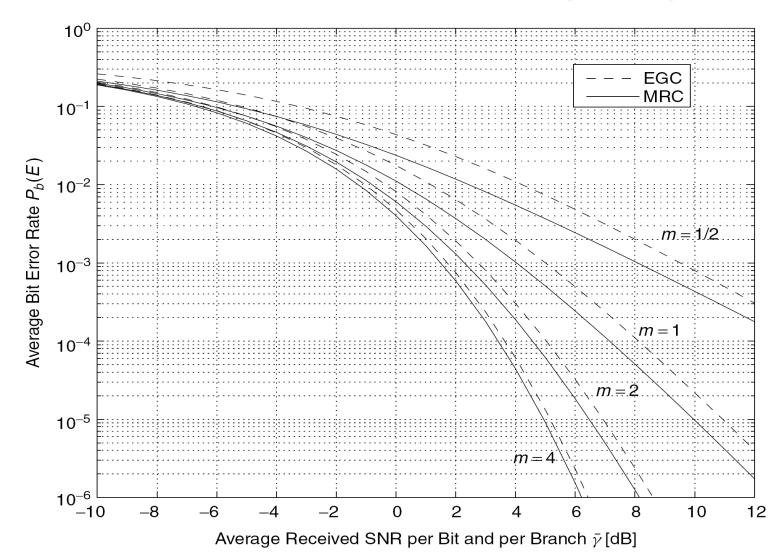
• AWGN $w' \sim CN(0, LN_0)$

• Effective SNR of EGC

$$\rho_{eff} = \frac{E_s}{LN_0} \left(\sum_{\ell=1}^L |h_\ell| \right)^2$$

• BER Performance is comparable to MRC within 1dB

Average BER over Nakagami-m fading channels with MRC and EGC (L = 4).



References