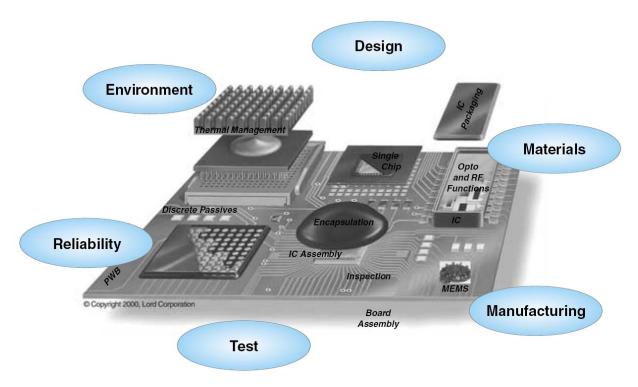
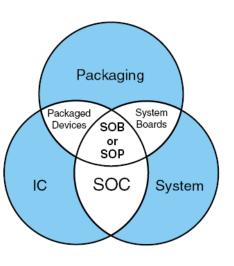

MEMS Packaging

ESS4810 Lecture Fall 2010

Contents


- Microsystems Packaging
- Electronics Packaging
- Bonding
- MEMS Packaging

Microsystems Packaging


- A \$125 billion worldwide market, employing more than a million people
- Miniaturized and integrated systems
 - Microelectronics, Photonics, MEMS and RF Devices
 - Systems Engineering
 - Systems Packaging
- Packaging is defined as the bridge that interconnects the ICs and other components into a system to form electronic products

Microsystems Packaging

Integration

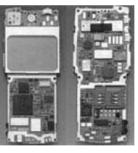
- System-on-Board (SOB): a number of packaged ICs and other components assembled onto a system-level board
- System-on-Chip (SOC)
- System-on-Package (SOP), or System-in-Package (SIP) is analogous to SOC, in that it is a single component, multifunction, multi-chip package providing all the needed system-level functions
- Both SOC and SOP are expected to be the wave of the future.

IC and MEMS Packaging

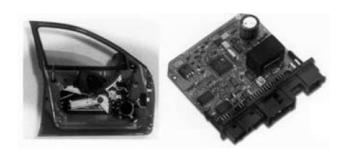
- IC Packaging
 - The approximate IC fabrication cost, excluding design cost, is about \$4/cm² at mature production levels
 - Well-developed (dicing, wire bonding, ...)
 - 30% to 95% of the whole manufacturing cost
- MEMS Packaging
 - Specially designed packaging processes
 - Difficult due to moving structures, chemicals ...
 - The most expensive process in microfabrication

Electronics Packaging

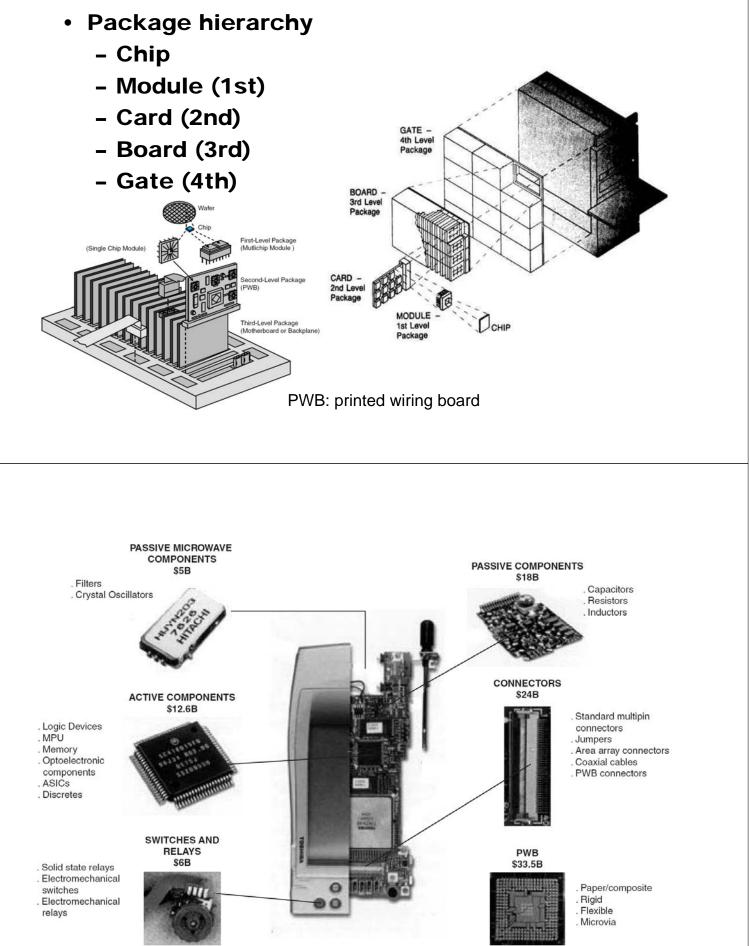
- Electronics have to be packaged
- Functions:
 - Protecting, powering, and cooling
 - Electrical and mechanical connection/ interface
- Challenge:
 - Providing all crucial functions required without limiting the performance



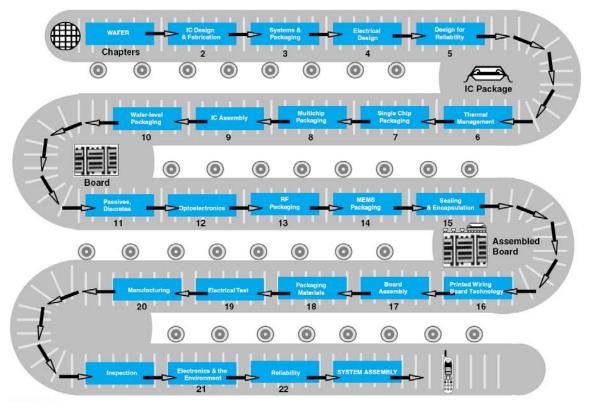
Human


Electronic System

(a) Inside a Computer



(b) Inside a Celluar Phone



(c) Inside an Automobile

Electronics Packaging

Critical Microsystem Packaging Technologies from Wafer to System-Level Board

IC Packaging

		Through Hole Packages			Surface Mount Packages	
Wafer & IC	a	and and and	DIP (Dual In-line Package)	g		SO or SOP (Small Out- Package)
	b	000000	SH-Dip (Shrink DIP)	h		CFP (Quad Flat Package)
WB FC TAB	с	0000000	SK-DIP, SL-DIP (Skinny DIP, Slim DIP)	i		LCC (Leadless Chip Carrier)
Discrete L,C,R Packaged IC	d	O O	SIP (Single In- Package)	j		PLCC, SOJ (Plastic Leader Chip Carrier with Butt Leads)
BOARD ASSEMBLY		TPYTTI		k	0000000	BGA (Ball Grid Array)
Battery	e	TPTTTTTT	ZIP (Zig-zag In-line Package)	I		TAB (Tape Automated Bonding)
SYSTEM ASSEMBLY	f		PGA (Pin Grid Array) or Column Package	m		CSP (Chip Scale Package)

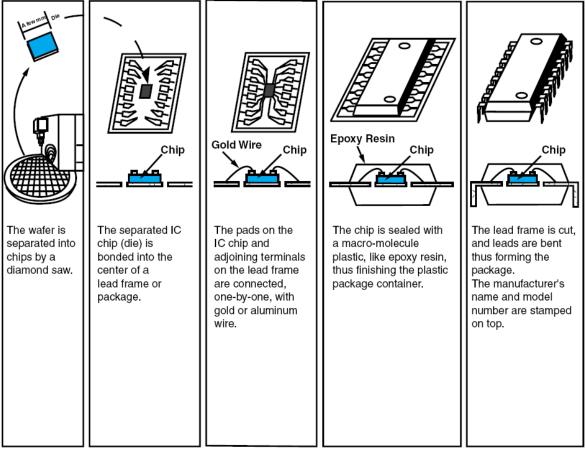
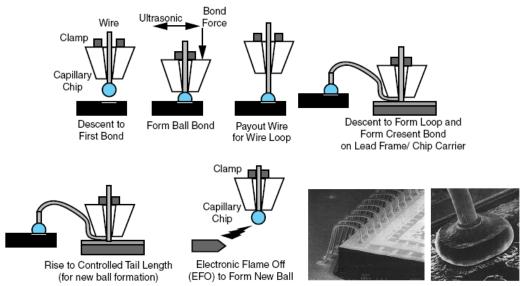
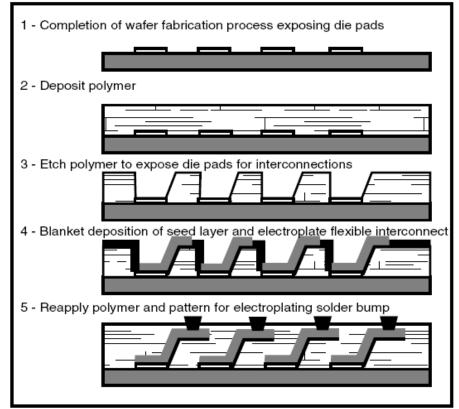
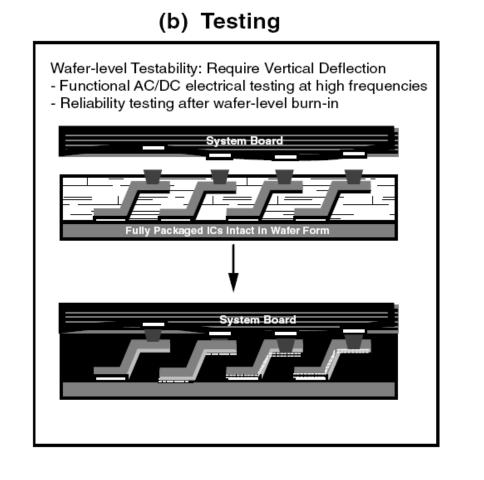



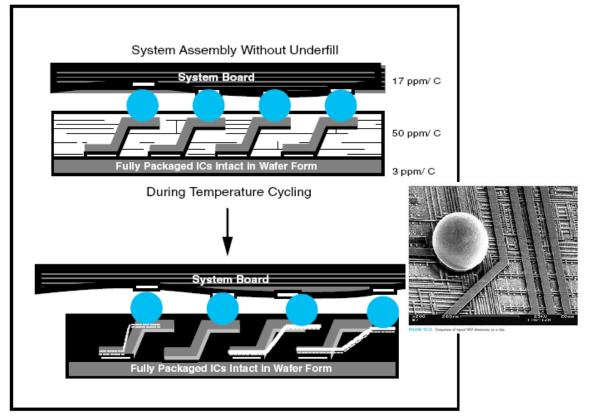
FIGURE 2.22 An example of dual in-line IC packaging with wirebonding.

WireBonding

 A chip-to-package interconnection technique where a fine metal wire is attached between each of the I/O pads on the chip and its associated package pin, one at a time

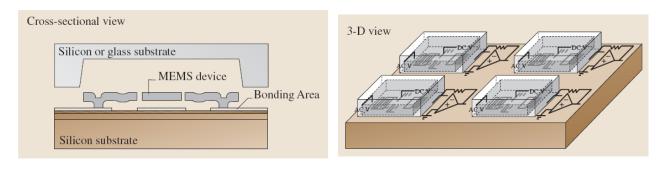



Wafer Level Packaging


FIGURE 10.8 An example of a complete wafer-level packaging process. (Courtesy of IFC, Georgia Tech)

(c) System Assembly

Bonding

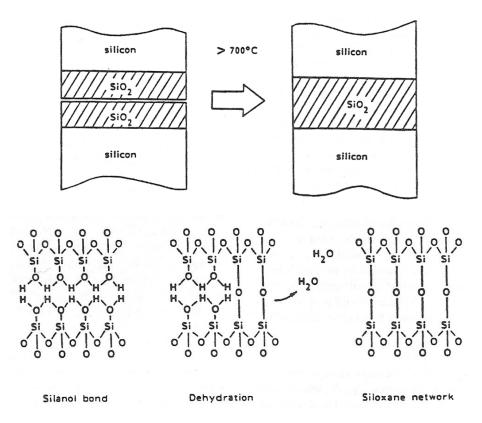

- Permanently seal solid-state materials with smooth and flat surfaces, most often by chemical reactions
 - Allow the fabrication of multi-layer, sandwiched, micromechanical structures, in which each layer can contain threedimensional structures
 - Allow the multi-chip production of microsystems with many micromechanical structures and/or microelectronic structures bonded to the single silicon or glass substrate platform
 - Very good techniques for packaging of microsystems

Basic Requirements

- Surface cleanliness
 - Particles trapped between wafers can lead to the formation of voids and failure of the bond
- Minimal process-induced stress
 - Thermal mismatch
- Stable and strong
- Strain relief

Bonding

- Carried out in the range of high (>700°C), medium (200~500°C) or low temperatures (20~200°C)
- Fusion bonding
- Anodic (electrostatic) bonding
- Eutectic bonding
- Adhesive bonding

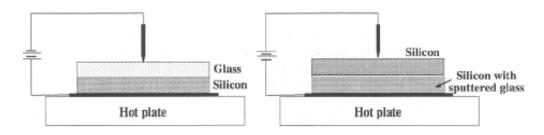

Fusion Bonding

- Joining silicon to silicon
 - Placing the surfaces in close contact, inserting them in an oxidizing ambient at temperatures > 800°C (not IC compatible), and then annealing
- Quality
 - Depending critically on temperature (> 1000°C) and roughness (< 4 nm)
 - Strength up to 20 MPa

Fusion Bonding

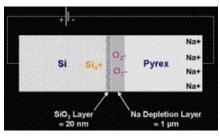
- Chemical reaction between OH-groups (native or grown oxide)
- Wafers must undergo hydration to create hydrophilic top layer consisting O-H bonds
- Bonding systems
 - Si + Oxidized Si wafer
 - two Oxidized Si wafer
 - two bare Si wafers
 - Si + Si with a thin layer (< 200 nm) nitride

Bonding Mechanism

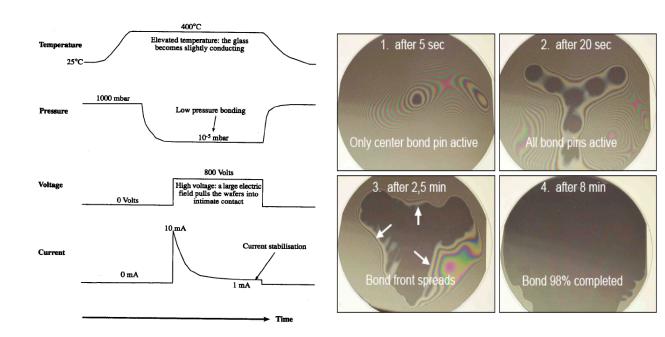


Fusion Bonding

- Bond strength after various annealing temperatures
- < 300°C:
 - bond strength remains the same as spontaneous bond
- 300°C 800°C:
 - voids can be formed (possibly due to water molecules)
- 800°C:
 - bond strength increases to about the fracture strength of single crystal silicon of 10 to 20 MPa (at 1000°C)
- Low temperature bonding processes have been reported
- < 150°C for 10 to 400 hrs
- Energetic particle bombardment (argon at 1.5 keV)

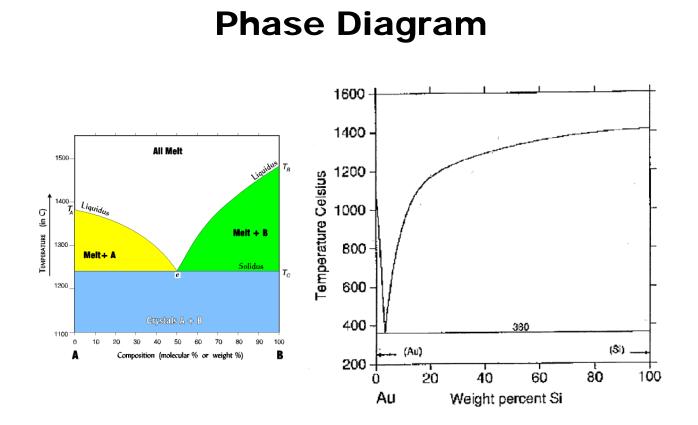

Anodic Bonding

- Joining glass to silicon
- Field-assisted thermal bonding
 - 180°C < process temperature < 500°C
 - 200 V < operating voltage < 1000 V
 - Depending on thickness and temperature
 - 5 min < process time < 10 min



Bonding Mechanism

- Electrostatic attraction to facilitate bonding
 - Extremely mobile positive ions, mainly sodium, in the glass drift towards the negative electrode leaving a negative charge on the glass side of the silicon-glass interface
 - A high electric field is generated between this fixed negative charge and positive charge in the silicon, thus pulling the glass and silicon together and facilitating the chemical bond
 - Covalent bonds are formed

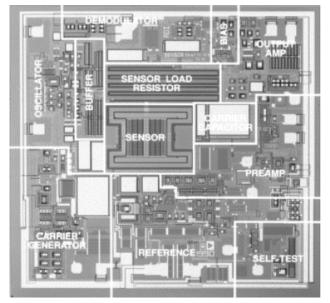


Bonding Process

Eutectic Bonding

- Utilizing the eutectic properties of two materials combined, the combination having a lower melting point than each of the individual ones
- A typical composition is 97.1% Au and 2.85% Si by weight, which can be bonded at 386°C
- Placing the gold in contact with the silicon and heating, causing the gold atoms to diffuse into the silicon
- When the eutectic composition is reached, a liquid layer is formed at the interface and the eutectic alloy grows until the gold is exhausted
- The alloy can then be cooled slowly, causing it to solidify and hence forming the bond

Eutectic Bonding


- The gold can be deposited on one of the silicon surfaces by evaporation or sputtering and functions as the intermediate layer for bonding
- The joints formed are hermetic with strength up to 148 MPa
- A drawback with this process is that the mismatch in thermal expansion coefficients results in high residual stresses within the alloy
- In addition, these stresses change with time due to creep

Adhesive Bonding

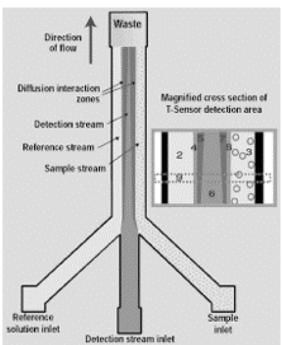
- Commercially available adhesives
- Photo-patternable polymers
- Generally can be achieved at temperatures under 150°C and are relatively soft, providing some degree of stress relief for the wafers
- They are, unsuitable for hermetic seals, can degrade over long periods of time, and can possess poor thermal stability

MEMS Packaging Issues

- Accelerometer
 - Surfacemicromachined accelerometers by Analog Devices, Inc.
 - Free standing microstructures
 - Hermetic sealing
 - Temperature sensitive microelectronics

ADXL50 by Analog Devices, Inc.

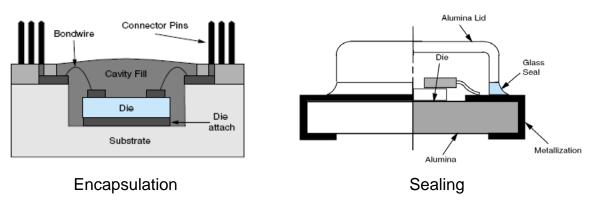
MEMS Packaging Issues


- Pressure sensor
 - Bulk micromachined pressure sensor by Motorola Inc.
 - Exposure to external pressure source
 - Housing for harsh environment
 - Interface coating

Motorola's MEMS-based pressure sensor

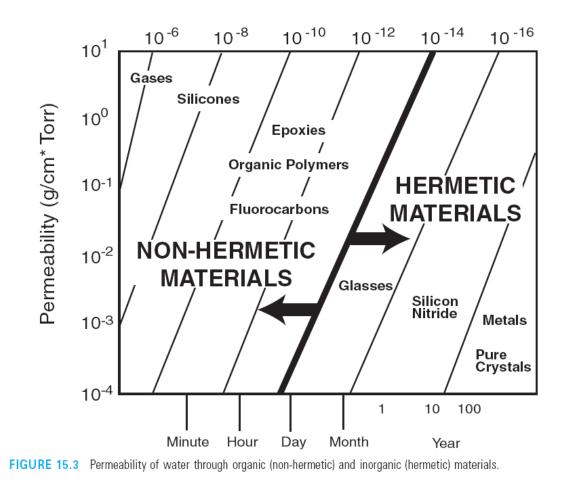
MEMS Packaging Issues

- Microfluidics
 Diffusion-based
 - sensor by Micronics
 - Micro-to-macro interconnector
 - Good sealing
 - Temperature sensitive materials



Encapsulation and Sealing

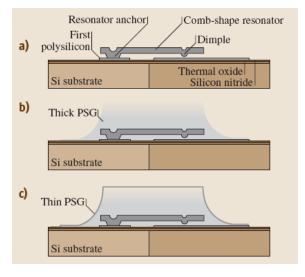
- Encapsulation provides an economical way to protect device packages by isolating the active devices from environmental pollutants, and at the same time offering mechanical protection by structural coupling of the device to the constituent packaging materials into a robust package
- This type of organic coating is a very inexpensive way of protecting devices, but their protection is not permanent, typically controlled by permeation properties of the polymeric resins used
- The inorganic sealing, however, is permanent, by being hermetic, but the cost of this process is high


Encapsulation and Sealing

 Performance is determined by its dimensional stability, its resistance to thermal excursions, its permeation providing isolation of environmental pollutants and its thermal dissipation providing dissipation of the heat generated by the packaged device

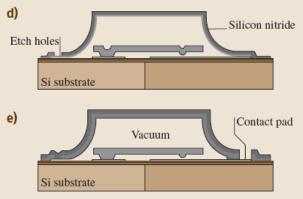
Hermetic Seal

- MIL-STD-883
- A seal that will indefinitely prevent the entry of moisture and other contaminants into the cavity
- In practice such seals are non existent
- Smaller gas molecules will enter the cavity over time by diffusion or permeation and reach equilibrium

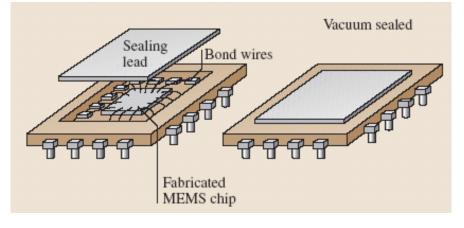


Hermetic Packaging

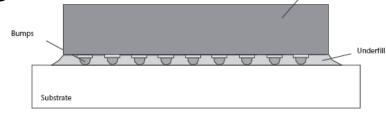
- The permeability to moisture of glasses, ceramics and metals is orders of magnitude lower than plastic materials
- Metal package
 - harshest conditions, 80% of all metal packages are welded, with the remaining being soldered
- Ceramic package
 - Solder glass seal by high-lead-content vitreous or de-vitrifying glasses at 400°C
 - Hard glass seal by high-melting borosilicate glass at 1100°C


Encapsulation Processes

- LPCVD process
- (a) standard surface micromachining process
- (b) additional thick PSG deposition to define encapsulation regions
- (c) additional thin PSG deposition to define etch channels

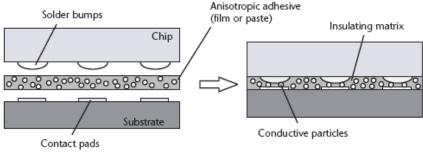

Encapsulation Processes

- LPCVD process
- (d) nitride shell deposition; etch hole definition
- (e) removal of all sacrificial PSG inside the shell; supercritical CO₂ drying; global LPCVD sealing


Packaging Process

- Electrical interconnects
- Die attachment
- Sealing

Electrical Interconnects


- Wire bonding
- Tape automated bonding
- Flip chip
 - Placing the die face-down (flipped) onto the package or circuit board
 - The electrical connection is made by conductive bumps formed on the die bond pads

Process

Three stages

- (1) Bumping the die or wafer
- (2) Attaching the bumped die to the board or substrate
- (3) Underfilling the remaining space under the die with an electrically insulating material

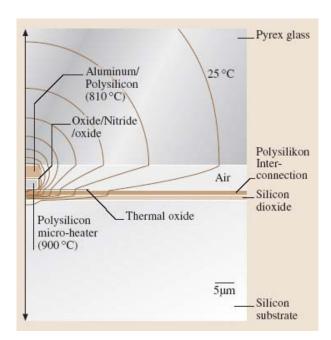
Advantages

- Reduced package size
- High-speed electrical performance due to the shortened path length
- Greater flexibility of contact pad location
- Mechanically rugged
- Lowest cost interconnection method for high-volume production

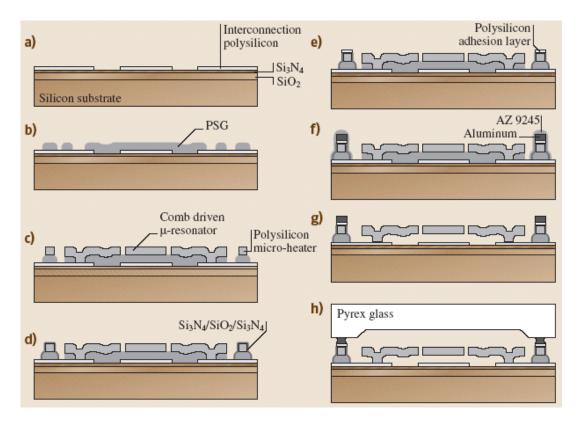
Die attachment

- Adhesive die attach
- Soldering die attach
- Eutectic bonding
- Glass die attach

Relative Ments of Die Attachment Methous	
Advantages	Disadvantages
Low cost	Outgases
Easily automated	Contamination/bleed
Low curing temperatures	Susceptible to voids
Reduced die stress	Inferior thermal/electrical conductivity
Special plated surfaces not required Rework possible	Can require careful storage (e.g., –40°C) and mixing before use
	Not suited to harsh environments
Good electrical/thermal conductivity	Requires wettable metallized surfaces
Good absorption of stresses arising from	on the die and substrate
of thermal expansion coefficients mismatches	Usually requires processing temperatures greater than 200°C
"Clean"	Needs flux or an inert gas atmosphere
Rework possible	Porosous
	Poor thermal fatigue resistance of some alloys
Good thermal conductivity	Poor absorption of stresses arising from
Electrically conducting	of thermal expansion coefficients
Good fatigue/creep resistance	mismatches
Low contamination	High processing temperatures
"High" process/operating temperature	Die back metallization may be required
capability	If bare die are used, a scrubbing action is required to break down surface oxide
	Rework difficult
Low void content	High processing temperature
Good thermal/electrical conductivity	Glass requires an oxygen atmosphere,
Limited stress relaxation	which can lead to oxidation of other
Low contamination	plated systems
High process/operating temperature resistance	Not commonly used
	AdvantagesLow costEasily automatedLow curing temperaturesReduced die stressSpecial plated surfaces not requiredRework possibleGood electrical/thermal conductivityGood absorption of stresses arising fromof thermal expansion coefficientsmismatches"Clean"Rework possibleGood thermal conductivityElectrically conductingGood fatigue/creep resistanceLow contamination"High" process/operating temperaturecapabilityLow void contentGood thermal/electrical conductivityLimited stress relaxationLow contaminationHigh process/operating temperature

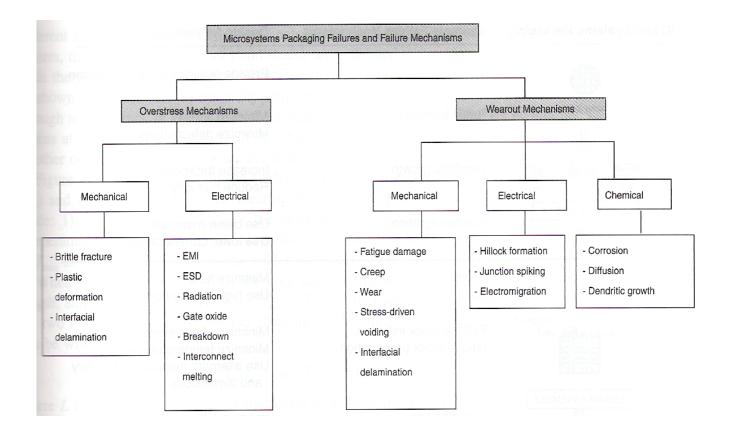

Table 4.2 Relative Merits of Die Attachment Methods

Packaging of Mechanical Sensors


- Protect the sensor from external influences and environmental effects
- Protect the environment from the presence of the sensor
- Provide a controlled electrical, thermal, mechanical, and/or optical interface between the sensor, its associated components, and its environment

Localized Bonding

- Achieve high temperature for bonding while maintaining low temperature globally at the wafer level
- The heating region can be confined locally as long as the bottom Si substrate is constrained to the ambient temperature



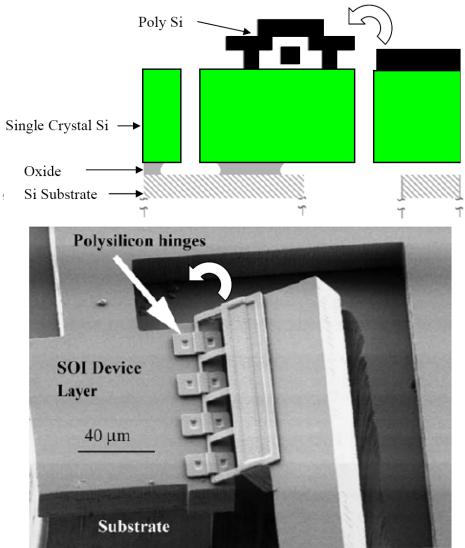
Bonding Process

Packaging Reliability

- Testing is required before a new device can be delivered to the market
- Provide the information for the following improvement of packaging design and fabrication
- Use mathematical tools to evaluate data to understand the patterns and identify the sources of failure

and Systems Packaging	Example Failure Mechanisms	Design for Reliability	
	Corrosion	Provide sealing and encapsulation	
Wafer & IC	Brittle fracture	Minimize stress Minimize defects/flaws	
WB FC TAB	Dendritic growth	Increase thickness Reduce humidity	
	Electromigration	Use better materials Use lower current density	
	Creep	Minimize load Use high temperature materials	
Discrete L.C.R Packaged IC	Fatigue crack initiation, fatigue crack propagation	Minimize stress/strain range Minimize temperature range Use alternate materials, geometry and dimensions	
BOARD ASSEMBLY	Delamination	Improve adhesion	
•	Interdiffusion, slow trapping	Lower temperature	
	Radiation damage	Reduce dosage	
Battery	Stress corrosion	Lower stresses Lower humidity Reduce size of defects Lower temperature	
SYSTEM ASSEMBLY	Contact wear	Minimize stress	

Accelerated Tests


- Puts a large amount of samples in harsh environments, such as elevated temperature, elevated pressure, and 100% humidity, to accelerate the corrosion process
- The statistical failure data are gathered and analyzed to predict the lifetime of packages under normal usage environment
- As a result, the long-term reliability of the package can be predicted without going through the true long-term tests

Future Trends

- Development of mechanical, thermal, and electrical models for packaging designs and fabrication processes
- Wafer-level, chip-scale packaging with low packaging cost and high yield
- Effective testing techniques at the wafer level to reduce the testing costs
- Device integrations by vertical throughinterconnects as an interposer to avoid thermal mismatch problems

Part II Process Integration (24%)

1. Please design a fabrication process for the following structure. (18%)

Process description	Top/bottom view	Cross-sectional view
1		
2		
3		SOI wafer
4		
5		

2. Please design a fabrication process for the following structure. (6%)

Process description	Cross-sectional view	
1		Al connect SiO ₂
2		
3		Silicon
4		
		Pyrex Glass