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Definition

e Structure

— In general, a colloid is a system
consisting of one substance (the
dispersed phase: a solid, liquid, or
gas) finely divided and distributed
evenly (relatively speaking)
throughout a second substance (the
dispersion medium or continuous
phase: a solid, liquid, or gas)




Examples of Commonly Encountered Colloidal Systems

Continuous
Svstem Tywpe Dispersed Phase Phase
Fog, mist Liquid aerosol Liquid (as
Smoke Solid aerosol Solid Gas
Shave cream Foam Gas Liquid
Styrofoam Solid foam Gas Solid
Milk Emulsion Liqud (fat) Liquid (water)
Butter Emulsion Liqud (water) Solid (fat)
Paint Dispersion Solid Liquid
Opal _ _ _ _ _ ] Dispersion _ _ _ Solid _ _ _ _ _ _ _ Solid_
Jello Gel Macromolecules Liquid
Liquid soaps Micellar solution Micelles of detergent Liquid

and detergents

molecules

e Size

Definition

— EXperience over many years has
shown that special “colloidal”
properties are usually exhibited by
systems in which the size of the
dispersed phase falls in the range of
1 to 1000 nm

e If It looks like a colloid and acts

like a colloid, it is a colloid




(b)

/ Colloidal dimensions

(a) (c)

FIGURE 10.1. A colloid is basically defined by its dimensions. While one may set a
size limit of, for example, 0.01 mm as an arbitrarv upper limit to what may be called
a colloid, the reality is that many svstems with larger dimensions are considered
“classic”” colloids (e.g., clays) because at least one dimension falls into the limiting
size range. To be considered a colloid, then, a system may have one dimension in the
range as in a flat plate (a), two dimensions as in a cylinder (b), or three dimensions
as in a drop or particle (c).
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Figure 2.2. Typical particle size ranges in the colloidal domain.




Roots of Colloidal Behavior

e Atoms or molecules at a surface have
properties distinct from those located in a bulk
phase or in solution

e As the bulk phase is subdivided into finer and
finer particles, the relative ratio of surface to
bulk molecules will increase until the effect of
specific surface properties will begin to
become significant, or even dominate the
characteristics of the system

e Particle size and shape
e Surface properties, both chemical and physical

e Continuous phase chemical and physical
properties

e Particle-particle interactions
e Particle-continuous phase interactions

Definition

e Coagulum

— An aggregate of colloidal particles
having a relatively tight and dense
structure formed as a result of the
inability of the colloidal system to
maintain its dispersed state

— Such aggregates are normally formed
irreversibly; that is, they cannot be
returned to the colloidal state without
significant input of work

e Coagulation
— The process of forming coagulum




Definition

e Floc

— An aggregate of individual colloidal
particles related to a coagulum but
generally having a rather loose, open
structure

— Flocs may sometimes be formed
reversibly and returned to the dispersed
state with minimal energy input

e Flocculation
— The process of forming flocs

Formation Mechanisms

e Since colloids represent a range of unit
sizes intermediate between molecules and
macroscopic bulk phases, it seems
reasonable to expect that the problem can
be attacked from one of two directions

— By breaking down large pieces to the size
required, known generally as comminution

— By starting with a molecular dispersion
and build up the size by aggregation, that
IS, by condensation
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FIGURE 10.2. In the preparation of colloids by comminution, it is usuallv necessary

to include a surfactant or polymeric stabilizer to inhibit the rapid flocculation of the
newly formed particles.

Comminution

e |t is reasonable to assume that the
work required to reduce a given
material to colloidal size varies directly
with the surface energy of the material,

higher surface-energy materials require
more work input

e The natural tendency of subdivided
particles is to reduce the total surface
area by some aggregation process,

especially if produced in a vacuum or
Inert atmosphere




Comminution

e The attractive interaction between
particles can be reduced by the
Introduction of an intervening medium,
usually a liquid

e The liquid medium will have two positive
effects on the process:

— It will reduce the surface energy of the
system by adsorption on the new surface

— It will usually reduce the van der Waals
attraction between the particles by
averaging its Hamaker constant with that
of the particulate material

Comminution

e The dispersed particles may begin to
flocculate or coagulate rapidly once the
comminution process is halted

e The solution is stabilized by the addition of
new components (surfactant, polymer, small
particles, etc.) that adsorb at the solid-liquid
interface and provide an electrostatic or steric
barrier that retards or prevents sticky
collisions between particles, thereby making
the dispersion more stable

Condensation methods

Decrease in solubility Chemical methods

Change of solvent Decrease in temperature

Figure 2.10. Types of condensation methods used for preparation of colloidal systems (sols).




Condensation

Emulsified monomer droplets
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FIGURE 10.3. In the process of gmulsion polvmerization, the incipient latex particle
begins as a free-radical-initiated dimer or oligomer in solution (a). As polvmerization

proceeds, the growing chain precipitates and continues to grow, fed by new monomer
taken from the reservoir of emulsified material (b). Polvmerization continues until all
available monomer is consumed (c).

Final latex particles

Droplet Control for Microfluidics

~SHEEOECX
.OL . w

SCIENCE VOL 309 5AUGUST 2005

Monodisperse Double Emulsions Generated
from a Microcapillary Device

[A] outer Fiyig, = Middle Fluid

SCIENCE WOL 308 22 APRIL 2005




Miniaturizing Chemistry and Biology in Microdroplets

NATURE|Vol 437|15 September 2005

DLVO Theory

e The study of colloidal stability is based on the
DLVO theory, in honor of Derjaguin, Landau,
Verwey, and Overbeek

e The theory describes the force between
charged surfaces interacting through a liquid
medium: it combines the effects of the van der
Waals attraction and the electrostatic
repulsion due to electrical double layers

e We use the DLVO theory to examine the
dependence of colloid stability on the various
parameters that determine the shapes and the
magnitudes of interaction energies between
particles




Colloidal Stability

e Electrostatic repulsion between EDLs
ﬁ{?‘mlnl == ‘ﬁ{;ml + "ﬁ("rcp
A general expression for the repulsive interaction between the electrical dou-
ble lavers around two spherical particles is quite complex and does not warrant
discussion here. A simple and relatively good approximate equation derived
by Reerink and Overbeek is 2
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The interactions between two colloidal particles with electrical double layers can
be visualized as two blocks connected by a spring. At large distances of
separation the spring is stretched and applies a net force pulling the blocks
together (attractive van der Waals interactions). At close approach, the spring is
compressed producing a net repulsive force pushing the blocks apart (electro-
static repulsion). At some intermediate distance, the forces will be in equilibrium.




Repulsion between EDLSs

The key element in determining the height of
the energy barrier imposed by the electrical
double layer is the concentration and valence
of electrolyte in the system

An increase in the electrolyte concentration
reduces the repulsive electrostatic interaction,
reducing the energy barrier and facilitating
effective particle collisions - the system is less
stable

A good approximation to the point at which the
system will begin to undergo rapid coagulation
(indicating a loss of stability) is that at which

AG = 0and d AGp/dH = 0

Steric Stabilization

If two colloidal particles have an adsorbed
layer of a lyophilic polymer, as they
approach each other, those layers must
begin to interpenetrate

Such interpenetration can have two effects

— An osmotic effect due to an increase in
the local concentration of the adsorbed
species between the two particles

— An entropic or volume restriction effect
because the interacting species begin to
lose certain degrees of freedom due to
crowding
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FIGURE 10.8. As two surfaces having adsorbed polymer approach, two phenomena
occur that produce a net repulsive force between the surfaces. (a) At relatively close
approach, but before actual interpenetration of the layers, the local concentration of
polymer chains (between particles) increases above the “normal™ equilibrium value
giving rise to an osmotic pressure effect: solvent molecules move into the area between
the surfaces and pushes them apart. () At distances where layer interpenetration
occurs, the polymer chains begin to lose degrees of freedom (an entropv decrease)
and thermodvnamic factors introduce a second repulsive term.

Steric Stabilization

e In both cases, the local system will
experience a decrease In entropy, which will,
of course, be unfavorable, while the osmotic
effect may be accompanied by an unfavorable
enthalpic effect due to desolvation of the
more closely packed units

e In order to regain the lost entropy, the
particles must move apart allowing them
more freedom of movement, while solvent
moves in to resolvate the units

e The result is an energy barrier retarding the
approach of particles and providing an
effective mechanism for stabilization (another
spring so to speak)

a‘l(.;[._;,m[ = -l'i'ffsmri-c _ﬁ{j'ﬂtl




Solvent Effects

= The solvent plays a critical roles in determining
the effectiveness of a given stabilizer-colloid-
solvent system

e In a good solvent, the polymer chains will be
extended in relatively open, random-coil
configurations, giving optimum protective layer
thickness

e As the temperature is changed, the quality of
the solvent may decrease, at some point
becoming poor, and the polymer chains will
collapse into a more compact configuration

= The point at which the transition from good to
poor solvent properties occurs is termed the ¢
point

TABLE 13.2 Electrostatic and Steric Stabilization: A Comparison

Electrostatic stabilization Steric stabilization

Addition of electrolytes causes coagulation. Insensitive to electrolytes in the case of non-
ionic polymers.

Usually effective in aqueous systems. Equally effective for both aqueous and non-
agueous dispersions.

More effective at low concentrations of the Effective at both low and high concentrations.

dispersion.
Coagulation is not always possible. Reversible coagulation is more common.

Source: Hunter, 1987.




Coagulation Kinetics

e Due to random Brownian motion

Whether there exists some barrier to
coagulation between two approaching
particles

e Fast Coagulation
Slow Coagulation

Fast Coagulation

Let us now consider coagulation of particles in the absence of any repulsive
barrier. In addition, we assume that, although there are no inter-particle forces
that contribute to the transport of particles toward each other, there is sufficient
attraction between the particles on contact for them to form a permanent bond.
As early as 1917, Smoluchowski formulated the equations for the collision rate
for particles transported by diffusion alone, and we develop the same idea here.

We begin by considering an array of spherical particles with motion that is totally gov-
erned by Brownian movement. Let us assume that there are particles of two different radii,
R, and R,.. We assume the spheres interact on contact, in which case they adhere, forming a
doublet. Although this is a highly oversimplified picture, it provides a model from which more

realistic models can be developed in subsequent stages of the presentation.
Radius, R, ,

Radius, R,




Figure 13.9 shows a schematic illustration of the formation of a doublet. We have fixed
the origin of the coordinate system (i.e., r = 0, with r the center-to-center distance between
two particles) at the center of a particle of type 2, that is, a particle with radius R, ,. Since the
particles adhere on contact, the rate at which these particles disappear equals the rate at which
they diffuse across the dashed surface in the figure. This surface corresponds to a spherical
surface of radius (R,, + R,,) inscribed around one of the spheres, which, for the present, is
assumed to be stationary. After coagulation the number of independent kinetic units is locally
decreased in the neighborhood of this coagulation site. Therefore we may imagine a concentra-
tion gradient around the fixed particle as responsible for the diffusion toward it.

According to Fick’s first law, J, the number of particles crossing a unit area toward
the reference particle per unit of time is given by

where D, is the diffusion coefficient of the spheres of radius R, and A, is their total number
of particles of type 1 per unit volume. This flux can be combined with a number or mass

balance equation on a thin spherical shell to obtain the unsteady-state diffusion for the
particles:

Continuity equation: _3}_\7_1 = Dllz 9 (,--’-g_hi'_)
ar r-ar\ or

The diffusion coefficient Dy, is given by the Stokes-Einstein relation
D, = kg T/6mR,;,

where T is the temperature of the dispersion (in K), 7 is the viscosity of the fluid (mass/(length
- time) ), and k; is the Boltzmann constant. The diffusion equation for N, given above

assumes that the spatial variation N, is spherically symmetric and depends on the radial
distance only.

We restrict our attention to steady-state diffusion, for which the left-hand side of Equa-
tion (13) is zero. The resulting equation can be integrated easily, and one gets

Ny = -BLtc
r

The flux at any distance r is obtained simply from the above solution using the Fick’s law
for flux:

dn,
dr
Number of particles arriving at r per unit area per unit time

J(r) = Flux = - D,

J(ry = —BD, -

2
r




Now, let us evaluate the constants B and C; for this we use the usual boundary conditions

(i) Asr — oo, N,(r}y = N, the bulk concentration of particles (of type 1) (18)
(i) Atr = R, + R,,, Ni(r) =0 (19)

where we have assumed that particles of radius R, , are diffusing relative to particles of radius
R.,. The reference point r = 0 is fixed at the center of a particle of radius R, (see Fig. 13.9).
The second boundary condition states that the “concentration” of particles of radius R, at the
contact point r = R, + R,, is zero.

From the above conditions one sees that C = N,  and B = N,, (R,, + R.,). Therefore,
the flux at the contact point r = (R,, + R,,) becomes

J@tr=R,, + R, = =D \Nu(R,, + R,;)" (20)

The negative sign indicates that the particles of radius R,, are transported toward the particle
of radius R,, (which has been assumed to be fixed in its position at r = 0). The magnitude of
the collision rate Z,, that is, the number of collisions of type 1 particles with a stationary
particle of type 2 per unit time, is then

Z = |J|41r(R,., + R.‘.z)z = 4r(R,, + Rs.z)Dle (21)

In general, particles of radius R, ; will also be executing random Brownian motion (i.e.,
diffusion). In such a case, D, should be replaced by D, = (D, + D,). The collision rate Z,,
(where the second subscript now reminds us that particle 2 is also executing diffusive motion)
is then

Z, = 4m(R., + R ,)D,N,, (22)
The above result implies that the collision rate is of the form

Z, = a.N, (23)
where

a, = 47(R;, + R, ;)D; (24)

with the subscript r indicating that the result is for rapid coagulation. One can now use this
result to determine the reduction in N,, as a result of the formation of 1-2 pairs (doublets). In
particular, the rate of reduction of the bulk concentration N,, with time 7 can be written as

dN, /dt = —a,N,Ny, (25)

where we have multiplied Equation (23) by (a) N,, since there are N,, number of type 2
particles (used as reference particles in solving the diffusive collisions by particles of type 1)
per unit volume of the dispersion and (b) — ! to indicate the reduction in the particles of type
1 due to coagulation. Note that the same equation with subscript 1 in place of 2 and vice versa
describes the reduction in concentration N,,.




For particles of identical radius R,, one has

Z = 167DR N, = a.N, (26)
with

a, = 167DR, 27N

Note that we no longer need the subscripts 1 and 2 on Z and N,.
The coagulation rate for identical particles is then given by
dN,

r z 2
A% _ _ % A = —k,N
Ff 2 b b (28)

with («,/2) written as k,, the rate constant for rapid coagulation. Notice that the factor (1/2)
appears in this case to avoid counting the same particle twice in the total collision rate; that is,
collision of particle / with particle j accounts also for collision of f with i. Equations (25) and
(28) correspond to the rate expressions for bimolecular “reactions” and, in this sense, the
above description of coagulation is analogous to two reactant particles forming a doublet as
the product of the reaction.

Equation (28) can be solved easily to obtain the concentration N, as a function of time. If
N, is the overall (bulk) concentration at t = 0, one gets from the above equation

NV Ny = (1 + t/:m}" (29)
where
2 1
1 = =
1/2 (I,Nw ker (30)

is the so-called half-life for coagulation, that is, the time it takes for the overall concentration
to reduce to half the initial concentration N,,. Equation (29) can also be written as

—— = — =k, 31

One should keep in mind the restrictions or limitations implicit in this development. It has
been assumed, in effect, that only binary collisions occur, The result obtained is therefore
strictly applicable to dilute dispersions, for which the probability of the formation of triplets,
quadrupiets, and so on, is negligible.




The most reliable way to evaluate a rate constant for coagulation, therefore, is to measure
N, as a function of time. Although this is an easy statement to make, it is not an easy thing to
do experimentally. One technique for doing this is literally to count the particles microscopi-
cally. In addition to particle size limitations, this is an extraordinarily tedious procedure.
Light scattering (Chapter 5) is particularly well suited to kinetic studies since, in principle,
experimental turbidities can be interpreted in terms of the number and size of the scattering
centers, A variety of additional techniques for following the rate of particle disappearance has
been developed for specific systems. We do not pursue these, but merely note that experimen-
tal rate constants for coagulation can be determined.

Now, substituting the Stokes-Einstein equation (Equation (14) ) for the diffusion coeffi-
cient in the expression for k, leads to

k, = 4k,T/3y (32)

Note that the size of the particles drops out of the final expression for k,; therefore the
expression is equally valid for small molecules or colloidal particles so long as the various
assumptions of the model apply. This constant describes the rate of diffusion-controlled
reactions between molecules of the same size. In Example 13.2 we examine the numerical
magnitude of the rate for the process we have been discussing.

EXAMPLE 13.2 Variation of Particle Concentration Due to Rapid Coagulation. An aqueous
dispersion initially contains 10° particles cm ~°. Assuming rapid coagulation, calculate the time
required for the concentration of the dispersed units to drop to 90% of the initial value. The
viscosity of water is 0.010 P at 20°C, which may be used for the temperature of the experiment.

Soiution: First we evaluate k., using Equation (32). It is convenient to use cgs units for this
calculation; therefore we write k, = 4 - (1.38 - 10 ') - (293)/(3 )(0.010) = 0.54 - 10 "' cm®
s _'. Recall that the coefficient of viscosity has units (mass length ~' time '), so the cgs unit,
the poise, is the same as (g cm ~' s '). As a second-order rate constant, k, has units (concentra-
tion ' time ~'), so we recognize that the value calculated for k, gives this quantity per particle,
or k, = 0.54 - 10" cm? particle ' s ', Note that multiplication by Avogadro’s number of
particles per mole and dividing by 10° cm?® per liter gives k, = 3.25 - 10° liter mole =" s ™' for
the more familiar diffusion-controlled rate constant.

The 90% time is analogous to the half-life of the reaction. By considering a smaller extent
of reaction, the assumptions of the model are more apt to remain valid. Substituting N, = 0.90
N, into Equation (31), we obtain (0.90 Ny) ~' — (Npo) ™' = ke OF £ = (1.00 — 0.90)/0.90
kN, = 0.10/(0.90)(109)(0.54 - 10 ") = 20.6 s. Note the cancellation of concentration units
in this last step. 1 [ |

k’ = 4-&31.#"3?} k,f

N Ne
1-0.9 0.1

0.9N 0K,  0.9x10°x0.54x107 Tos=185s




Slow Coagulation

We saw above, from Fick’s first law of diffusion, that the flux at a distance r from the
central particle is given by
dN,
J(ry = =D, — (33)
dr
at steady state (when only diffusion is the transport mechanism). We must now add the flux
due to the interparticle interaction energy ®,,(r) between particles of type 1 and type 2 to the
above expression. The interaction energy exerts a force given by (—d®,,/dr) on the diffusing
particle. This force imposes on the particle an effective drift velocity v,,,, given by

_Ldb, .

Vo =
where fis the friction factor (and 1/f is the mobility of the particle; see Atkins 1994). Note

that for a spherical particle of radius R,, in Stokes flow, /' = 6ayR,, as we introduced in
Chapter 2 and used in the last section. The velocity v, can therefore be written as

Voyr = _Dld(qblj;-kﬂ“) D.= kyT/6mR;, (35)
by using the Stokes-Einstein relation. Equation (33) for the diffusive flux can now be modified
to include the flux v,, N, caused by the drift velocity of the particles in the direction of the
force due to interparticle energy:

d;v + N, 4@u/kT)

dr (36)

J{r)y = =D,

The magnitude of the number of particles transported through the spherical cross section of
area 4xr° is then equal to the collision rate Z,, which at steady state becomes

7, = —ap | N.d(q’”/kﬂﬂ = Constant X ——— (37
This equation can be simplified by defining T '
6 | E: x 2 Repulsion g
Hr) = exp [®.(r)/ ks TIN(7) 41 |} | 68
to Bl
Z s 0 —
“—Dexp[ &, (r) 7k, 'r] = dy af \/ | (39
-4} _-'x © Attraction
On integration one has . '
o 8L -
, " r 03 04 05 06 07 0.
N(r) = —¢ (1, 1Nbl 4WDI j Pt *RT% R * (40)

where the conditions that N = N, and ¢,, = 0 as r — oo have been used.

The second boundary condition (i.e., Ny = 0atr = R,;, + R,,, which also implies that
{exp [®,,(r)/kTIN,(r)} is also equal to zero at r = R, + R, ,) can now be used to get the
collision rate Z, (with a stationary reference particle of radius R, .):

7, = 4xD\N,, + 5 et 4 @)

Ro+R 2 r




As discussed in the previous section, D, will have to be replaced with D, for two mutually
diffusing particles of radii R, and R,,:

=]

Z,, = 4xD,,N,, + E e"’w‘””‘srtﬁ (42)

2
Rt Ry r

The total rate of collision (and, hence, the coagulation rate) is now given by

dN,,

ar = —Z,Nyp = ‘_E“TDHNM - S 90"'”-’*9?% N (43)

R +R
in analogy with Equation (25).
Equation (43) can be written as
dN,/dt = —a,N, N, (44)

analogous to the case of rapid coagulation. The subscript s on the rate coefficient «, draws
attention to the fact that our focus here is slow coagulation:

o, = Eﬁl'u'D,2 + 5 e"lz""*ergf (45)

2
H:_I + Rs‘z r

For identical particles of radius R,, with D, = D, + D, = 2D, one gets from Equation
(42)

ds
(s + 2)°

where s is the dimensionless surface-to-surface distance defined by s = [(+/R,} — 2]. The
corresponding coefficients «, and &, become

Z = 8xDRN, + &u et (46)

o

o, = 8TDR, + g eﬂ:l/kﬂ?';‘s_z = 2k, (47)
0 (s + 2)
where the fact that &, = («,/2) has been used.
When there is no interaction force between the particles (i.e., ®(r) = 0), the above result
reduces to «,, corresponding to the rapid coagulation rate given by Equation (27) in the
previous section. When there is a strong repulsive barrier, the integral in Equation (47) leads

to a large value, thereby reducing the rate of coagulation.




Stability Ratio W

Equations (27) and (47) show that
k, = k/W (48)
where W is the stability ratio defined in Equation (11). Thus

5 i1k T ds _ Rate of diffusion-controlled interparticle collision
W=2 o € ° (s + 2)* Rateofinteraction-force-controlled interparticle collision (

49)

As we noted above, the evaluation of W for given values of dispersion properties such as
surface potential, Hamaker constant, pH, electrolyte concentration, and so on, forms the goal
of classical colloid stability analysis. Because of the complicated form of the expressions for
electrostatic and van der Waals (and other relevant) energies of interactions, the above task is
not a simple one and requires numerical evaluations of Equation (49). Under certain condi-
tions, however, one can obtain a somewhat easier to use expression for W. This expression
can be used to understand the qualitative (and, to some extent, quantitative) behavior of W
with respect to the barrier against coagulation and the properties of the dispersion. We exam-
ine this in some detail below.

When the repulsion barrier is large (i.e., ®,,., is about 10 k7 or larger), one can evaluate
the integral in the expression for W using what are known as asymptotic techniques and obtain
the following expression (Derjaguin 1989, p. 162):

/ 2 bis kT
W~ 2( 2wkgT ) € : (50)
—‘l’” (Sm] (Sm + 2)

where s,, is the value of s corresponding to the maximum in & [i.e., (5,,) = ®,,..] and $7(s,,)
= d*®/ds’ evaluated at s = s,. Note that because ®(s,,) is the maximum in the potential, the
second derivative of ¢ at 5 = s, is negative and [ —$“(5,,)] is positive. Typically, the location
of the maximum in $(s) occurs at distances of the order of a few nanometers. Therefore, for
particle radii of the order of 100 nm or larger, s,, < 1, and the above equation simplifies to
,-., 172
W ~ _l_ ( 2k T ) o ma®sT (51)
2 1 " {.Sm)

Equation (51) shows that W is a sensitive function of ®,,,,, the maximum in the interaction
potential, which in turn is a very sensitive function of properties such as iy, electrolyte
concentration, and so on. As a consequence, the stability ratio decreases rapidly with, for
example, added electrolyte, and the dispersion coagulates beyond a threshold value of electro-
lyte concentration known as the critical coagulation concentration, as we saw in Section
13.3b.1.




Stability Ratio and Critical Coagulation Concentration
log W = K, logc + K,

where K, and K, are constants and ¢ is the concentration of the ions in moles per liter. For
water at 25°C the value of K, has been calculated as [—2.15 - 10° T R,/z7] where T, is given
by Equation (11.65) with ¥, in place of ¥, z is the valence of the counterions, and R, (in m) is
the radius of the particles. Notice that because of the way Equation (53) has been written, the
value of K, depends on the units used for ¢, although taken together the right-hand side is
dimensionless since log W is dimensionless. We shall not go into this further since our primary
objective here is to use Equation (53) to examine the dependence of W on ¢ and its agreement
with experimental results.

I I | | | | | |
4 La(NO3)4 Ba(NO,), KNO,

W
1

log W

/7 4l
Y/

-1.6 -1.3 -1.0 0.0 03

log ¢ (¢ in mmoles liter™)

1. A plot of log W versus log c is linear as required by Equation (53).

2. The concentrations at which W_=_1 (where the breaks in the curves appear) measure
the CCC values for the electrolyte involved. The CCC values for mono-, di-, and trivalent ions
are about 0.199, 2.82 - 10 ', and 1.3 - 10 * mole liter "', respectively. These are in the ratio
1:1.42 - 1077:0.7 - 107", These figures compare very favorably with the other experimental
data for Agl and the theoretical values presented in Table 13.1.

3. Slow coagulation is observed for log W < 4 or W = 10" For a typical potential
energy curve, this corresponds to a value of &, of about 15 £, 7. From this we may conclude
that the height of an energy barrier must be at least 15 k7T if the colloid is to have any
appreciable stability. Likewise, we may assume that unless the secondary minimum is approxi-
mately this deep, particles will be able to “escape” from it. In view of the general shape of the
potential energy curves, the retardation effect, and this assessment of what constitutes a “high”
barrier or a “deep” well, it seems likely that rigid aggregates are not formed in the secondary
minimuimn.

4. [Equation (53) can be used to analyze the slopes of the curves in Figure 13.10 since the
mean size of the Agl particles is known. In this way, Reerink and Overbeek (1934) found y,
values in the range 12 to 53 mV and A values in the range 0.2 - 10 *"to 10 " J. Both of these
are of the proper order of magnitude—no minor accomplishment in itself in light of the
diverse assumptions required to get to this point.

5. The values of A and ¥, obtained from this analysis are slightly less satisfying in detail:
The values of 4 show a lot of scatter and ¥, appears to be too low. Recall that the variation of
the CCC with z° implies large values of y, (see Section 13.3b.2); for lower ¥, values a
different dependence on z is expected.

6. Least satisfactory of all is the correlation with particle size. The results shown in
Figure 13.10 were determined for Agl sols covering a 10-fold range of particle sizes.




Complete Interaction
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e Proteins, for example, are excellent protective
colloids. They are polymeric and tend to adsorb
on various surfaces, providing good steric
stabilization, and may also be charged
(depending on the pH), providing electrostatic
stabilization as well. Such a dual nature can
have certain practical advantages.




