
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 4, AUGUST 2009 945

Wireless Heterogeneous Transmitter Placement
Using Multiobjective Variable-Length

Genetic Algorithm
Chuan-Kang Ting, Member, IEEE, Chung-Nan Lee, Hui-Chun Chang, and Jain-Shing Wu

Abstract—The problem of placing wireless transmitters to meet
particular objectives, such as coverage and cost, has proven to
be NP-hard. Furthermore, the heterogeneity of wireless networks
makes the problem more intractable to deal with. This paper
presents a novel multiobjective variable-length genetic algorithm
to solve this problem. One does not need to determine the number
of transmitters beforehand; the proposed algorithm simultane-
ously searches for the optimal number, types, and positions of
heterogeneous transmitters by considering coverage, cost, capac-
ity, and overlap. The proposed algorithm can achieve the optimal
number of transmitters with coverage exceeding 98% on aver-
age for six benchmarks. These preferable experimental results
demonstrate the high capability of the proposed algorithm for the
wireless heterogeneous transmitter placement problem.

Index Terms—Multiobjective (MO) optimization, variable-
length genetic algorithm, wireless heterogeneous transmitter
placement.

I. INTRODUCTION

W ITH THE advent of heterogeneous networks, such as
the integration of Wi-Fi and WiMAX [1]–[3], the in-

frastructure layout becomes very flexible but thorny. Hetero-
geneity suggests that many factors must be considered; for
example, Wi-Fi and WiMAX networks have different spec-
trums, coverage ranges, and base station costs. The wireless
transmitter (or base station) placement problem is to construct
an optimal infrastructure, that is, to identify the optimal place-
ment of transmitters when considering particular factors such
as coverage, cost, capacity, interference, and handover. These
factors are commonly formulated as objectives, constraints, or
both in the problem model, and are subject to the type of
wireless networks, e.g., datacom or telecom. The problem is
known to be NP-hard.

This paper focuses on datacom networks, specifically, Wi-Fi
and WiMAX networks. The wireless transmitter placement
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problem addressed in this paper is to find the optimal place-
ment of transmitters for four objectives: 1) maximum cover-
age, 2) minimum cost, 3) maximum capacity satisfaction, and
4) minimum overlap. To solve this wireless transmitter place-
ment problem, three issues are of paramount importance but
remain open: the number of transmitters, the heterogeneity of
networks, and the multiplicity of objectives.

The first issue is to determine the appropriate number of
transmitters. An intuitive method is to manually assign this
number prior to optimizing transmitter placement. Neverthe-
less, the optimal number of transmitters, i.e., the number of
transmitters that can achieve full coverage at the lowest cost,
is unknown and ordinarily difficult to assess. An inappropriate
number of transmitters may cause bad or no results. To prevent
such a situation, the problem of how many transmitters to use
must be solved before dealing with the placement. Several
methods have used an upper bound for the number of transmit-
ters [4]–[7]. However, if additional transmitters are required,
then a poor upper bound will restrict the search space and result
in a local optimum. Some methods have been developed to
overcome drawbacks associated with predefining the number
of transmitters or an upper bound. The most successful way is
to regard the adopted number of transmitters as an objective
to be minimized [8]–[10]. Consequently, the number can op-
timally be determined along with other objectives. This paper
employs this method to determine the optimum number of
transmitters.

The second issue is the heterogeneity of wireless networks.
Hardware technology has improved, and most laptops and mo-
bile computers now start to support different wireless protocols,
such as the 802.11 family (Wi-Fi) and 802.16d (WiMAX)
[11]. Restated, a receiver can be covered by transmitters that
differ in, for example, power radius, cost, and frequency
spectrum. Such heterogeneity in transmitter types makes the
placement problem, which is an NP-hard problem, even more
intractable.

Fig. 1 illustrates a wireless heterogeneous transmitter place-
ment problem. Two transmitter types exist: the large circle
denotes the first transmitter type, which has a large power
radius, such as WiMAX base stations, and the small circle
signifies the second type, which has a small power radius
resembling Wi-Fi access points. The triangle is the area to be
covered. Notably, the required number of transmitters of each
type is unknown, and here, the heterogeneous transmitters in
protocol can correspond to homogeneous transmitters with dif-
fering powers. To intuitively solve this problem, one can divide
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Fig. 1. (a) Two-stage placement. (b) Counterexample of two-stage placement.

the planning into multiple stages. The first stage plans the
placement of transmitters with large power, and the second
stage plans that for small transmitters [Fig. 1(a)]. The primary
drawback of this method is that the resultant placement may
not be optimal. For instance, given that the big transmitters cost
$120 and the small ones cost $10, using only small transmitters
[Fig. 1(b)] is better than mixed transmitters [Fig. 1(a)] in terms
of cost. A method that simultaneously considers the number
and positions of transmitters can overcome this drawback and
is relatively more likely to obtain optimal solutions.

The third issue in wireless transmitter placement is the
multiplicity of objectives that must be considered for place-
ment optimization. Many existing methods for the placement
problem use single-objective (SO) optimization. Wireless trans-
mitter placement, however, frequently considers more than one
objective. For instance, one may seek maximal coverage with
the minimal number of transmitters. SO schemes solve this
problem by combining all the objectives into a weighted objec-
tive. Although a possibility exists that SO methods can solve the
multiobjective (MO) optimization problem, the performance
of SO methods is typically sensitive to the weights, and,
even worse, determining appropriate weights is itself another
optimization problem. MO methods, on the other hand, do
not weight each objective. Instead, they provide a bunch of
solutions for each objective on demand. For example, an MO
method gives two solutions: one for 98% coverage with four
transmitters and another for 88% coverage with three transmit-
ters. A company may choose the second solution based on its
budget, rather than the solution with the higher coverage rate.

In consideration of these three issues, this paper presents
a novel multiobjective variable-length genetic algorithm to
solve the wireless heterogeneous transmitter placement prob-
lem. This algorithm integrates a variable-length scheme, an MO
genetic algorithm, and a new crossover approach to solve the
wireless heterogeneous transmitter placement problem without
predetermining the number of transmitters or its upper bound.

The rest of this paper is organized as follows. Section II
recapitulates related work. Section III gives the definition
of the wireless heterogeneous transmitter placement problem.
Section IV sheds light on the proposed MO variable-length
genetic algorithm. Simulation and results are presented in
Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

The infrastructure setup for placement can be categorized
into the base station placement problem and the antenna place-
ment problem. The former is concerned with the placement of
base stations, whereas the latter is concerned with the allocation
of antennas to certain candidate base stations. The wireless
transmitter placement problem addressed in this paper is a base
station problem. Both the base station placement problem and
the antenna placement problem are known to be NP-hard; that
is, under the assumption P �= NP , no exact algorithm exists
that can solve this problem in polynomial time.

Some heuristic methods have been developed for solving the
base station placement problem. Unbehaun and Kamenetsky
[12] selected a set of candidate wireless local area network
(WLAN) access points using the pruning method and refined
these access points via neighborhood search and simulated an-
nealing. Lee and Kang [13] utilized tabu search to increase the
capacity of code-division multiple access (CDMA). In focusing
on the universal mobile telecommunications system (UMTS)
uplink, Amaldi et al. [14] developed a randomized greedy
method with tabu search to avoid local optima for WLAN
coverage planning. In addition, several approaches based on
evolutionary computation have shown their power in effectively
tackling the transmitter placement problem. Weicker et al.
[15] proposed the steady-state evolutionary algorithm with
Pareto tournaments (stEAPT), which considers frequency as-
signment and channel interference for base station placement.
Zhang et al. [7] designed an MO particle swarm optimization
on coverage and cost objectives. Park et al. [5], [6] applied a
genetic algorithm to optimize the total number of transmitters
and their positions. Experimental results show the utility of the
genetic algorithm on the base station placement problem.

The antenna placement problem is to assign antennas to cer-
tain sites selected from a set of predefined candidate sites and
determine the parameters of antennas for particular objectives
and constraints. Reininger and Caminada [16] formulated the
antenna placement problem for cellular networks. Their model
has three objectives—minimum cost, maximum traffic capacity,
and minimal overlapping criteria—and three constraints—link
budget, handover, and connectivity. To address this problem,
Vasquez and Hao [17] proposed a three-stage heuristic ap-
proach. The preprocess filters out poor solutions, the tabu
search optimizes the configuration, and the postprocess im-
proves the results through tabu search. The simulation results
for urban and highway networks demonstrated the capability of
the heuristic approach. Hurley [18] considered traffic, handover,
and transmitter, and proposed an algorithm based on simulated
annealing. Zimmermann et al. [19] integrated multiple objec-
tives using scalarization; that is, they combined three objectives
into one weighted objective. The (1 + 1) evolution strategy
(ES) has been adopted to solve the constrained SO optimization
problem. Beyond scalarization, Raisanen and Whitaker [20]
addressed the problem using several prominent MO optimiza-
tion algorithms, including simple evolutionary algorithm for
multiobjective optimization (SEAMO), strength Pareto evolu-
tionary algorithm 2 (SPEA2), non-dominated sorting genetic
algorithm II (NSGA II), and Pareto envelope-based selection



TING et al.: WIRELESS TRANSMITTER PLACEMENT USING MO VARIABLE-LENGTH GENETIC ALGORITHM 947

algorithm (PESA). They concluded that NSGA II [21] can
achieve the best performance. Raisanen [10] further employed
a permutation-coded representation for the problem concerning
the objectives of service coverage, cost, traffic capacity, han-
dover, and interference. The experimental results for three real-
istic simulated environments showed that NSGA II, using the
permutation-coded strategy, outperforms that using common
binary-coded representation or integer-based representation.

As for the problems that have a changeable number of
variables for a solution, a common way to address it is to
limit the number with a known upper bound, and then the
classic fixed-length representation is applicable. For example,
Ripon et al. [22] observed the transposon phenomenon [23]
and proposed the jumping-gene genetic algorithm (JGGA).
Chan et al. [24] used additional control genes in JGGA to
determine the employment of certain transmitters and received
preferable results for optimizing factory WLAN network. How-
ever, this manner requires a predefined and assumed upper
bound for the length of chromosome. To eliminate this re-
quirement, some variable-length genetic algorithms [25]–[27]
have been proposed. Recently, Ripon et al. [28] have devised
MO evolutionary clustering using a variable-length real-coded
JGGA to solve a clustering problem without knowing the num-
ber of clusters. In this paper, we propose a new variable-length
MO genetic algorithm based on variable-length representation
with uniform and one-point crossover.

III. PROBLEM STATEMENT

This section defines the wireless heterogeneous transmit-
ter placement problem. Note that this paper focuses on the
placement of transmitters for Wi-Fi and WiMAX networks.
First, Section III-A formulates the planning model for the map,
transmitters, and receivers based on the model of Park et al.
[5], [6]. Section III-B introduces the propagation model. The
objectives are given in Section III-C, and a formal definition of
the problem is presented in Section III-D.

A. Planning Model

The planning model describes the environment of the wire-
less transmitter placement problem.

1) Map: The map for transmitter placement has two re-
gions: covered regions and placement regions. The former,
which is denoted by CG, represents regions that must be
covered (e.g., roads and buildings). The latter, i.e., placement
regions PG, are regions where transmitters can be placed when
constructing the wireless network. Notably, both covered and
placement regions are predefined and can differ. A common
method of dealing with these regions is to divide them into
several grids with a resolution δ; consequently, for a 2-D map,
CG ⊆ Z

2, and PG ⊆ Z
2.

2) Receiver: A receiver gains wireless signals from trans-
mitters. Wireless connectivity is assessed by a signal threshold
θ and a data rate demand σ to maintain quality of service. This
paper uses a large set R of receivers as test points for coverage:
a receiver r ∈ R has a position (xr, yr) ∈ CG with threshold
θr ∈ R∗ and demand σr ∈ R∗.

3) Transmitter: The transmitters are characterized by var-
ious parameters. The proposed model takes power, cost, and
capacity into account; the transmitter type can, therefore, be
represented by a three-tuple τ = (p, c, s), where p ∈ R+ de-
notes the power, c ∈ R+ denotes the cost of transmitters, and
s ∈ R+ denotes the capacity (bandwidth) provided by the trans-
mitter. Let TP be the set of candidate transmitter types to be
placed, and let |TP | be the cardinality of TP . For |TP | = 1,
only one transmitter type exists, and the planning network
is homogeneous. For |TP | > 1, it turns out to be a wireless
heterogeneous transmitter network.

The transmitter placement problem is to create a set of
transmitters T = {t = (φt, τt)|φt ∈ PG, τt ∈ TP} and place
its elements, namely, transmitters, based on objectives such as
coverage and cost. A formal definition of the problem is given
in Section III-D.

B. Propagation Model

The signal strength Sr,t from a transmitter t ∈ T to a receiver
r ∈ R can be evaluated using propagation models. This paper
adopts the free space propagation model, which is widely used
in the studies of placement problem [11]. The signal strength in
the free space propagation model is computed by

Sr,t =
ptGrGtλ

2

(4π)2d2
r,t

(1)

where pt is the power of t, Gr and Gt are the antenna gains
of receiver r and transmitter t, respectively, λ is the carrier
wavelength, and dr,t is the Euclidean distance from r to t.

Moreover, the path loss due to obstructions is computed
using the following formula [24], [29]:

Lr,t = 20 log
(

4πdr,t

λ

)
+

M∑
i=1

NiLi (2)

where M denotes the number of obstruction types, Ni is the
number of obstructions of type i, and Li is the penetration loss
for an obstruction of type i.

C. Objectives

Many factors affect wireless network planning. This paper
focuses on coverage, cost, capacity, and overlap, where cover-
age and overlap are concerned with the placement of transmit-
ters, cost is associated with the type and number of transmitters,
and capacity is subject to the transmitter type.

1) Coverage: A receiver r is said to be covered by a trans-
mitter t when the signal strength is greater than the threshold;
formally

covered(r) =
{

1, ∃t ∈ T, Sr,t > θr

0, otherwise
(3)

where the value 1 indicates that the receiver r is covered by
at least one transmitter. Accordingly, the coverage of a set of
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transmitters can be calculated by

coverage(T ) =
1
|R|

∑
r∈R

covered(r). (4)

Note that the objective is to maximize coverage.
2) Cost: Another objective is to minimize cost in placing

the set of transmitters T . Here, cost is evaluated by summing
the individual costs of all transmitters, i.e.,

cost(T ) =
∑
t∈T

ct (5)

where ct denotes the cost of transmitter t with type τt =
(pt, ct, st) ∈ TP .

3) Capacity: This paper adopts the notion of data rate to as-
sess the network capacity [30]. An ideal network design should
provide sufficient bandwidth (data rate) for users; both over-
supply and shortage of bandwidth are not satisfactory. Thus,
the objective regarding capacity is formulated to minimize the
absolute difference between the transmitter bandwidth and the
sum of the data rate demands of its covered receivers, i.e.,

Δcapacity(T ) =
∑
t∈T

∣∣∣∣∣∣st −
∑

r∈R:Sr,t>θr

σr

∣∣∣∣∣∣ (6)

where st is the data rate provided by transmitter t of type τt =
(pt, ct, st) ∈ TP , and σr is the data rate demand of receiver r.

4) Overlap: The coverage overlap between transmitters
raises the issue of interference [15], [31]. To reduce the inter-
ference, we use an additional objective to minimize the overlap.
The objective function counts the number of receivers covered
by more than one transmitter as

overlap(T ) =
∑
r∈R

overlapped(r) (7)

with

overlapped(r) =
{

1, |AS(r)| > 1
0, otherwise

(8)

where the active set AS(r) represents the set of transmitters by
which receiver r is covered.

D. Problem

The wireless transmitter placement problem in this paper is
formally defined as an MO minimization problem

min(f1, f2, f3, f4) (9a)
f1 =1 − coverage(T ) (9b)
f2 = cost(T ) (9c)
f3 =Δcapacity(T ) (9d)
f4 = overlap(T ). (9e)

To minimize the four objectives, (9b) transforms the objective
for maximum coverage into that for the minimum percentage
of areas that are not covered, namely, 1 − coverage(T ).

Fig. 2. Representation of chromosome and substring.

IV. PROPOSED ALGORITHM

Three issues should be taken into account when solving
the wireless heterogeneous transmitter placement problem: the
number of transmitters must be flexible, the transmitter in-
frastructure can be heterogeneous, and the problem solver must
consider multiple objectives.

To address these issues, this paper presents a novel variable-
length representation and variation operators and integrates
them into an MO genetic algorithm based on NSGA II. The
algorithm NSGA II [21] is known for its effectiveness in dealing
with MO problems; in particular, Raisanen and Whitaker [20]
validated that NSGA II performs best in comparison with
SEAMO, SPEA2, and PESA on the antenna placement prob-
lem. This paper accordingly adopts NSGA II as the scheme
for MO optimization. Additionally, the proposed representation
and crossover facilitate varying chromosome length and infor-
mation, i.e., the number, positions, and types of transmitters.
Consequently, the proposed algorithm can automatically search
for the appropriate number of transmitters and optimize the
positions and types of transmitters for maximum coverage,
minimum cost, maximum capacity satisfaction, and minimum
overlap.

A. Representation

The candidate solution, viz., a set of transmitters T , is
encoded into a chromosome. Each transmitter t ∈ T is repre-
sented as a substring that consists of the position φt = (xt, yt)
and its type τt. Fig. 2 presents a chromosome with n substrings,
each of which is composed of 22 bits indicating the position
(2 × 10 bits) and type (2 bits). Although the substring length
is fixed, the chromosome length is variable since the number of
substrings is variable.

B. Initialization

The proposed initialization procedure introduces a tempo-
rary upper bound UB ∈ N, which is randomly generated, to
initialize the number of substrings for a particular transmitter
type. For instance, suppose two transmitter types exist TP =
{τ1, τ2}, and their respective UBs are 2 and 3. When initializ-
ing a chromosome, the number of substrings (transmitters) for a
certain type is randomly picked from {0, 1, . . . , UB}, e.g., {0,
1, 2} for the first type τ1. The corresponding position (xt, yt)
of the transmitter is randomly generated afterward. Notably,
the temporary upper bound UB is used only at population
initialization. Section V-A shows that the performance of the
proposed algorithm is insensitive to UB.
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Fig. 3. Hybrid crossover.

C. Fitness Evaluation

The wireless transmitter placement problem is formulated as
an MO problem that considers coverage, cost, capacity, and
overlap of transmitter placement in this paper. For multiple
objectives, this paper adopts the notion of dominance for fitness
evaluation. An individual a is said to dominate individual b if
a is better than b in one objective and not worse than b in all
the other objectives. In this case, a is assigned a superior rank.
If neither a nor b is dominant, the two individuals are said to
nondominate each other and are given the same rank.

The proposed MO method is based on NSGA II [21].
Specifically, the proposed algorithm determines whether a chro-
mosome survives or dies according to its rank and crowding
distance. In the wireless transmitter placement problem, rank
and crowding distance depend on a comparison of the four
objectives.

D. Selection

Several methods have been developed for selecting parents in
genetic algorithm (GA) [32]. Uniform selection picks chromo-
somes from the population with equal probability. In roulette
wheel selection, the probability that a chromosome will be
selected is proportional to its fitness. The tournament selection
with tournament size k randomly picks k chromosomes to
compete. The winner, i.e., the fittest picked chromosome, is
reserved for crossover. This paper uses binary (k = 2) tour-
nament selection in the experiments for its accepted good
performance [33].

E. Crossover

This paper devises a hybrid crossover method for the
crossover of chromosomes and substrings. Let Pc be the
crossover rate. The hybrid crossover has three ways of produc-
ing offspring (Fig. 3).

1) Perform only uniform crossover for substrings with a
probability Pc × Pc.

2) Perform only one-point crossover for chromosomes with
a probability 1 − Pc.

Fig. 4. Example of uniform crossover for substrings.

Fig. 5. Scheme of mapping substrings for applying the uniform crossover for
substrings.

Fig. 6. Example of one-point crossover for chromosomes.

3) Perform both uniform crossover for substrings and one-
point crossover for chromosomes with a probability Pc ×
(1 − Pc).

More precisely, a pair of parents has a probability Pc to only
exchange the bits inside one substring, a probability 1 − Pc to
exchange several substrings without modifying the bits in each
substring, and a probability Pc × (1 − Pc) to exchange both
bits and substrings. More details about the operation of these
crossovers are given below.

1) Uniform Crossover for Substrings: The uniform cross-
over for substrings follows the operation of uniform crossover
but limits the scope of the crossover to a substring rather than
the whole chromosome. Fig. 4 presents an example of the
crossover, where the bits of offspring are equiprobably inherited
from parent 1 or parent 2. Notably, the crossover changes
transmitter position and type.

A special scheme is developed to perform uniform crossover
on chromosomes of different lengths. Fig. 5 illustrates this pro-
cedure. First, the lengths of both chromosomes are compared.
In the example, parent 1 has four substrings, whereas parent 2
has five substrings. To deal with the unequal chromosome
lengths, the shorter chromosome (parent 1) randomly maps its
substrings to the longer chromosome (parent 2). The uniform
crossover for substrings can then be performed on the four pairs
of mapped substrings for parents 1 and 2.

2) One-Point Crossover for Chromosomes: Another
crossover to apply is the one-point crossover for chromosomes.
First, a chromosome is divided into two parts at a random
point between substrings. Second, the two parts are exchanged
with each other. Fig. 6 shows parent 1 exchanging its part
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TABLE I
PARAMETERS OF THE PROPOSED GA IN THE EXPERIMENTS

with parent 2. This strategy allows chromosomes to alter their
lengths.

F. Mutation

All mutation operators for binary-coded GAs are applica-
ble to the proposed algorithm. This paper adopts the bit-flip
mutation with a mutation rate Pm = (1/substring_length);
therefore, each bit has a probability of Pm to be flipped.

V. SIMULATIONS AND RESULTS

A series of simulations is conducted to evaluate the perfor-
mance of the proposed algorithm. As mentioned, three issues
must be resolved: 1) predetermining the number of transmit-
ters or an upper bound is not needed, 2) the transmitters
for placement can be homogeneous or heterogeneous, and
3) optimization simultaneously considers coverage, cost, capac-
ity, and overlap.

Six benchmarks are designed for the simulations. Bench-
marks 1–5 consider the objectives of coverage and cost, and
benchmark 6 additionally takes capacity and overlap into ac-
count. The maps in benchmarks 1–4 are defined to have no
obstacles; thus, the free space propagation model is used to
measure the signal strength. Benchmarks 5 and 6 include ob-
structions, and the path loss due to obstructions is additionally
considered. The grid resolution δ of the map is 0.1 m for bench-
marks 1–4, 3 m for benchmark 5, and 1.76 m for benchmark 6.
All the transmitters are assumed to be omnidirectional. The
gains of transmitters Gt and receivers Gr are set to 1, and
wavelength λ is 0.125 m. The threshold θr for all receivers is 0.
Table I lists the parameters for the proposed algorithm.

A. Benchmark 1

Fig. 7 presents benchmark 1. In a 102.3 × 102.3 m2 square,
only one transmitter type exists and has a power radius of 37 m.
In this benchmark, the optimal number of homogeneous trans-
mitters is 4; Fig. 7 shows their optimal positions.

The proposed algorithm yields a series of nondominated re-
sults called nondominated front (or Pareto front). The nondom-
inated fronts vary among the 30 trials. Hence, the frequency

Fig. 7. Map of benchmark 1.

TABLE II
RESULTS OF A NONDOMINATED FRONT FROM 30 TRIALS OF THE

PROPOSED ALGORITHM ON BENCHMARK 1 (FREQ: FREQUENCY,
AVG: AVERAGE, STD: STANDARD DEVIATION,

MIN: MINIMUM, MAX: MAXIMUM)

Fig. 8. Results of a nondominated front on benchmark 1. The circles depict
the obtained nondominated solutions from a certain trial, and the green line
depicts the average coverage for the respective cost.

with which a certain cost occurs in the nondominated front
and the statistics (average, standard deviation, minimum, and
maximum) for the coverage associated with cost are considered.

Table II summarizes the results of nondominated fronts on
benchmark 1, where cost is determined by the number of
transmitters (#BS). Fig. 8 depicts the nondominated solutions
obtained from 30 trials using the proposed algorithm and their
averages with respect to each cost. Computational results indi-
cate that the proposed algorithm always finds the optimal num-
ber of transmitters in the 30 trials. For the optimum #BS = 4,
the average coverage is 99.40%, and the best coverage is 100%,
which is very satisfactory.

Another contribution of the proposed method is that no need
exists to preassign the number of transmitters or its upper
bound. Although population initialization introduces parameter
UB, the computational results in Table III demonstrate that
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TABLE III
AVERAGE COVERAGE (%) OVER 30 TRIALS FOR

UB = 3, 10, 50, 100, AND 1000

Fig. 9. Map of benchmark 2.

TABLE IV
RESULTS OF A NONDOMINATED FRONT FROM 30 TRIALS OF THE

PROPOSED ALGORITHM ON BENCHMARK 2

the performance of the proposed algorithm is not sensitive to
a UB: The difference in performance between different UB
values (3–1000) is insignificant—the proposed algorithm can
always achieve coverage exceeding 99% with four transmitters,
regardless of the UB adopted.

B. Benchmark 2

Benchmark 2 uses the map of benchmark 1 but decreases
the transmitter power for more transmitters, which renders
benchmark 2 more difficult for placement optimization than
benchmark 1. Fig. 9 shows that the power radius is reduced to
19 m; the other problem settings are the same as benchmark 1.
The optimum is 100% coverage with 16 transmitters.

Table IV and Fig. 10 present the simulation results of a
nondominated front in terms of coverage and cost. Generally,
coverage increases as cost increases, i.e., the number of trans-
mitters adopted increases. With the optimal number of transmit-
ters at 16, the proposed algorithm achieves 98.57% coverage on
average and 99.07% at best. Moreover, the proposed algorithm

Fig. 10. Results of a nondominated front on benchmark 2. The circles depict
the obtained nondominated solutions from a certain trial, and the green line
depicts the average coverage for the respective cost.

Fig. 11. Map of benchmark 3.

yields the optimal number of transmitters in 29 out of 30 trials,
demonstrating its capability in finding the optimal number of
transmitters. These simulation results further demonstrate the
scalability of the proposed algorithm.

C. Benchmark 3

Benchmark 3 has a more complex geography than bench-
marks 1 and 2 and is similar to the benchmark adopted by
Park et al. [5], [6]. The placement regions PG are spread
over the entire square (102.3 × 102.3 m2), whereas the covered
regions CG are seven identical hexagons with side lengths of
19 m inside the square (Fig. 11). The power radius of each
transmitter is 19 m. Transmitters are of only one type with a
cost of 1; that is, they are homogeneous. The optimal solution
is 100% coverage with seven transmitters located at the centers
of seven hexagons.

Table V and Fig. 12 show the simulation results of a nondom-
inated front after 5000 generations. The proposed algorithm
achieves 99.05% coverage on average and 99.91% at best
with seven transmitters, which is a near-optimal solution. Of
the 30 trials, the optimal number of transmitters is covered
in the nondominated front 29 times, whereas the others are
covered only five or nine times. This shows that the proposed
algorithm finds the optimal number of transmitters effectively
and robustly.

Compared with the approach of Park et al. [5], [6], the pro-
posed algorithm overcomes the difficulty of tuning the weight
wt in the fitness function and the maximal number of transmit-
ters K. Moreover, it produces a set of nondominated solutions
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TABLE V
RESULTS OF A NONDOMINATED FRONT FROM 30 TRIALS OF THE

PROPOSED ALGORITHM ON BENCHMARK 3

Fig. 12. Results of a nondominated front on benchmark 3. The circles depict
the obtained nondominated solutions from a certain trial, and the green line
depicts the average coverage for the respective cost.

Fig. 13. Map of benchmark 4.

for combinations of coverage and cost rather than merging the
two objectives into one via weighting. Hence, the proposed
algorithm provides designers with increased flexibility when
choosing placement. In terms of solution quality, this approach
and that by Park et al. [5], [6] achieve coverage exceeding 99%.
In summary, the proposed algorithm is flexible and capable of
near-optimal solutions.

D. Benchmark 4

Benchmark 4 is a wireless heterogeneous transmitter place-
ment problem. The benchmark has two transmitter types for
placement. The first transmitter type has a power radius of
26.5 m and cost of 4. The second type has a power radius of
13.3 m and cost of 1. The map consists of a 102.3 × 102.3 m2

TABLE VI
RESULTS OF A NONDOMINATED FRONT FROM 30 TRIALS OF THE

PROPOSED ALGORITHM ON BENCHMARK 4

Fig. 14. Best result of transmitter placement for the proposed algorithm
(99.90% coverage with cost 12) on benchmark 4, where green marks covered
regions and red marks uncovered ones.

Fig. 15. Results of a nondominated front on benchmark 4. The circles depict
the obtained nondominated solutions from a certain trial, and the green line
depicts the average coverage for the respective cost.

square for placement regions and six hexagons for coverage re-
gions, where the two large hexagons have side lengths of 26.5 m
and the four small ones have side lengths of 13.3 m. Fig. 13
presents the optimal solution: 100% coverage with cost of 12
(two transmitters of the first type and four transmitters of the
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Fig. 16. Factory layout for benchmark 5 [24].

second type). The optimal positions for all the transmitters are
at the hexagon centers.

In terms of chromosome representation, a substring has
21 bits owing to an additional bit for the transmitter type. The
simulation results for cost and coverage (Table VI) demon-
strate that the proposed algorithm achieves 98.21% coverage
on average and 99.90% at best, corresponding to the optimal
combination of transmitters (four of the first type and two of
the second type). Fig. 14 shows the placement of transmitters
for 99.90% coverage. These favorable outcomes verify that the
proposed algorithm can effectively tackle the heterogeneous
transmitter placement problem.

Fig. 15 depicts the nondominated solutions of the 30 trials
using the proposed algorithm and their averages with respect
to each cost. The irregular profile1 reveals that high costs
(e.g., costs of 13 and 14) do not necessarily achieve high
coverage. This irregularity, arising from the heterogeneity of
transmitters, complicates the combination of transmitters and
makes the placement optimization very difficult. Experimental
results show that the proposed algorithm effectively overcomes
this difficulty and obtains near-optimal solutions.

E. Benchmark 5

Benchmark 5 is an indoor wireless transmitter placement
problem based on the factory WLAN optimization problem
[24]. The map contains obstructions with different penetra-
tion loss: thin partition, cement, and thickened cement wall
(Fig. 16). The parameters and the path loss of these obstructions
in our simulation follow those used in [24]. The transmitters
are homogeneous, and all have a power radius of 20 m in the
2.4-GHz band.

Table VII summarizes the simulation results of a nondomi-
nated front after 5000 generations. The results show the general

1Some actual “dominated” solutions appear in Fig. 15 since the placement
with cost 13, for example, may result in higher coverage than that with cost 12
and then become nondominated in some trials.

TABLE VII
RESULTS OF A NONDOMINATED FRONT FROM 30 TRIALS OF THE

PROPOSED ALGORITHM ON BENCHMARK 5

tendency that coverage increases as the adopted transmitter
number increases. With six transmitters, the proposed algo-
rithm always achieves 100% coverage out of the 30 trials.
Fig. 17 shows that the resultant placement of the six trans-
mitters is very adequate. These outcomes confirm the effec-
tiveness of the proposed algorithm on this realistic placement
problem.

F. Benchmark 6

Benchmark 6 is an outdoor wireless heterogeneous trans-
mitter placement problem. The map of benchmark 6 is a real
map (Fig. 18) sampled from Google Earth for a 1.8 × 1.5 km2

division of the Kaohsiung city in Taiwan. The map includes
a natural barrier (the Shou Mountain) and an artificial barrier
(the Kaohsiung harbor). Transmitters cannot be placed in the
regions of the mountain and harbor. In addition, the mountain
has an altitude of 58 m, and no signal can penetrate the
mountain; on the other hand, the harbor allows signals to pass
through the region. There are three classes of data rate demands
among a total of 3057 receivers: 2478 receivers of 16 kb/s,
420 receivers of 128 kb/s, and 159 receivers of 1024 kb/s.
Simulating Wi-Fi and WiMAX networks, the benchmark has
two transmitter types for placement. The first transmitter type
has a power radius of 1500 m, a cost of 40 000, and a capability
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Fig. 17. Resultant placement of six wireless transmitters from the proposed algorithm for benchmark 5. The color symbols denote the coverage range of the
respective transmitters.

Fig. 18. Map of benchmark 6. The color points mark the receivers in different
data rate demands (blue: 16 kb/s, green: 128 kb/s, red: 1024 kb/s).

of 75 Mb/s. The second transmitter type has a power radius of
100 m, a cost of 2200, and a capability of 54 Mb/s.

Due to computation complexity, this paper conducts only one
trial of the proposed algorithm using a population size of 500
with 2000 generations on benchmark 6. The simulation results
in Figs. 19 and 20 demonstrate that the proposed algorithm
can generate diverse solutions regarding the four objectives.
Moreover, the results reveal the tradeoffs between coverage
and the other three objectives (cost, capacity difference, and
overlap increase with coverage). The other relationships, e.g.,
capacity versus overlap, are inconclusive. Fig. 21 plots the
distribution and coverage of the solution that achieves 98.69%
coverage using 12 first-type and two second-type transmitters.
The figure verifies that the proposed algorithm considers the
obstruction of signal transmission and the restriction for place-
ment. It also validates that the resultant placement for the
transmitters is very satisfactory for coverage, cost, capacity, and
overlap.

Fig. 19. Results on benchmark 6 in terms of coverage, cost, and capacity
objectives. The blue circles denote the nondominated solutions, and the red
points represent their projection onto 2-D plane.

Fig. 20. Results on benchmark 6 in terms of coverage, capacity, and overlap
objectives. The blue circles denote the nondominated solutions, and the red
points represent their projection onto 2-D plane.

G. Comparison With SO GA

This paper performed experiments to compare the perfor-
mance of the SO and MO methods using both the proposed
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Fig. 21. Resultant placement of wireless transmitters from the proposed
algorithm for benchmark 6. The color symbols denote the coverage range of
the respective transmitters.

representation and the hybrid crossover. The elements of
NSGA II—dominance ranking and crowding distance—are
replaced with a weighted sum fitness function. The fitness
functions for SO are the following:

• for benchmarks 1–4

f ′(T ) = f1 + α · f2

= 1 − coverage(T ) + α · cost(T ) (10a)

• for benchmark 6

f ′(T ) =
4∑

i=1

αifi (10b)

where α and αi are the objective weights.
Table VIII(a)–(d) compares the nondominated front for the

SO and MO methods on benchmarks 1–4. Since the MO
method yields multiple results with different numbers of trans-
mitters and the SO method produces only one result, for
fairness, this paper compares the coverage of the MO method
corresponding to the number of transmitters that is nearest the
resultant number of the SO method. Experimental results indi-
cate that the SO method achieves the optimal number of trans-
mitters with coverage > 95%, which depends upon the setting
of α. This result reveals that a serious drawback exists when
using SO methods for MO problems: performance is sensitive
to the weight α, and identifying a suitable weight value requires
an exhaustive effort. The MO method, conversely, overcomes
this shortcoming by rendering a set of nondominated solutions
for different combinations of coverage and cost. Furthermore,
the MO method with comparable number of transmitters out-
performs the SO method in terms of coverage in most test cases.
In some cases, the coverage achieved by the MO method is
less than that attained by the SO method. Such inferiority is
partly due to the undervaluation of the compared number of
transmitters for the MO method. For example, the SO method
in benchmark 3 with α = 0.06 has an average coverage of
92.40%, which is higher than the coverage of 89.08% achieved

by the MO method using undervalued six transmitters, but
lower than the coverage of 99.05% obtained using overvalued
seven transmitters.

Moreover, we compare the performance for the SO and MO
methods on benchmark 6, which is a four-objective optimiza-
tion problem. For the SO fitness function, the values of the four
objective functions are normalized to [0, 1]; in addition, this
paper applies the Taguchi method [34] with four levels, i.e.,
0.25, 0.5, 0.75, and 1.0 for each objective weight. Consequently,
the experiment for the SO method includes 16 combinations of
weights that follow Taguchi L′

16 orthogonal array. Table VIII(e)
presents the results with respect to the 16 settings for four
objective weights. To compare the MO results with the SO
ones, we adopt the best fitness values of the nondominated
solutions obtained from the MO method. The experimental
results show that there is no clear winner between the SO and
MO methods on all the 16 combinations of weights. The MO
method achieves better fitness than the SO method does on six
out of eight combinations as α1 ≤ 0.50, but worse on all eight
combinations as α1 > 0.50. Fig. 22 depicts the nondominated
front obtained from the MO method and the 16 solutions
obtained from the SO method. The figure demonstrates that
the SO method can lead to closer proximity to the true Pareto-
optimal set than the MO method does. This outcome confirms
that, as the number of objectives increases, the effectiveness of
Pareto-ranking methods, like NSGA II, deteriorates due to the
augmented likelihood of nondominance [35]–[37]. Although
the SO method can keep the search ability for proximity, the
limited range of results and the difficulty in choosing weights
greatly detract from its utility.

In general, both SO and MO methods using the proposed hy-
brid crossover effectively deal with the wireless heterogeneous
transmitter placement problem. Additionally, the MO method
has the advantages of obtaining better results on two-objective
benchmarks and broader results on all benchmarks than the SO
method. Restated, the proposed MO method can achieve wide-
spread coverage with various numbers of transmitters without
suffering from sensitivity to the weights of objectives in the
wireless transmitter placement problem.

VI. CONCLUSION

This paper has presented an MO variable-length genetic
algorithm for solving the wireless heterogeneous transmitter
placement problem. Specifically, representation and crossover
were designed to fit the requirement of variable chromosome
length. The representation supports the placement of hetero-
geneous transmitters. Furthermore, the MO scheme enables
simultaneous optimization of coverage, cost, capacity, and
overlap.

The proposed algorithm has the following advantages.
1) It automatically determines an appropriate number of

transmitters for placement.
2) It deals with transmitter heterogeneity.
3) It simultaneously optimizes placement and considers

multiple objectives.
In evaluating the proposed algorithm, simulations were con-

ducted using six benchmarks, including homogeneous and
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TABLE VIII
COMPARISON OF A NONDOMINATED FRONT FOR THE SO AND MO METHODS. BOLDFACE MARKS THE SUPERIOR RESULTS. (THE NUMBER #BS

FOR THE MO METHOD CORRESPONDS TO THE NUMBER FOR THE SO METHOD). (a) BENCHMARK 1. (b) BENCHMARK 2.
(c) BENCHMARK 3. (d) BENCHMARK 4. (e) BENCHMARK 6
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Fig. 22. Comparison of nondominated solutions for the SO and MO methods
on benchmark 6 in terms of coverage and cost. The red circles denote the SO
results, and the blue crosses denote the MO results.

heterogeneous transmitters. For all the benchmarks, the pro-
posed algorithm yielded nondominated solutions that are very
close to the optima in terms of coverage, cost, capacity, and
overlap; precisely, it achieves higher than 98% coverage with
an optimal number of transmitters on all six benchmarks. These
experimental results validate the effectiveness of the proposed
algorithm in dealing with the wireless heterogeneous transmit-
ter placement problem.

Future work includes some directions. First, the proposed
uniform crossover for substrings operates on a single substring
at a time, which may not be efficient enough for large-scale
problems that have long chromosomes. A possible way to
address this issue is to extend the uniform crossover to operate
on multiple substrings. Second, more complicated constraints
and objectives should be taken into account in the problem
model. Additionally, application to mobile networks is an im-
portant direction for future work. Third, the performance evalu-
ation should include a comparison to other MO optimization
algorithms, e.g., variable-length real jumping genes genetic
algorithm (VRJGGA) [28]. Enhancement in the search ability
of MO evolutionary algorithms [38], [39] will also be promising
to improve the performance on the wireless heterogeneous
transmitter placement problem with more than three objectives.
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