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CLT for φ̂p

Remember we have showed that, for AR(1) models,

√
n(φ̂1 − φ)

d→ N(0, γ−10 σ2).

We are now in a position to generalize this result to AR(p) models.

Recall that
(φ̂p − φp) = (X>p Xp)−1X>p y − φp,

where

Xp =

 Zp · · · Z1
...

. . .
...

Zn−1 · · · Zn−p

 and Y =

Zp+1
...
Zn

 .
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Since φp = (X>p Xp)−1X
′
pXpφp, it can be shown that

φ̂p − φp = (n−1X>p Xp)−1
1

n

n−1∑
j=p

Zj(p)εj+1,

where Zj(p) = (Zj , · · · ,Zj−p+1)>.

We have argued that n−1X>p Xp
p→ Rp and hence (n−1X>p Xp)−1

p→ R−1p ,
implying

√
n(φ̂p − φp)

·∼ R−1p

1√
n

n−1∑
j=p

Zj(p)εj+1.

Therefore, if we can show that

1√
n

n−1∑
j=p

Zj(p)εj+1
d→ N(0,Rpσ

2), (1)

then √
n(φ̂p − φp)

d→ N(0,R−1p σ2).
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To show (1), we need some background knowledge.

Definition

A sequence of random vectors, {wn}, is said to converge to a random
vector, w, in distribution if

Pr(wn ≤ c)→ Pr(w ≤ c) ≡ F (c) as n→∞

for all continuous points of F (·). The convergence of wn to w in
distribution is denoted by

wn
d→ w.

Cramér-Wold device

wn
d→ w⇔ a>wn

d→ a>w for all ‖a‖ = 1.
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By making use of the Cramér-wold device, it suffices for (1) to show that

1√
n

n−1∑
j=p

[a>Zj(p)]εj+1
d→ N(0, a>Rpaσ

2) (2)

for any a ∈ Rp with ‖a‖ = 1. Now, (2) can be easily proved in the same
manner as the used in AR(1) models.
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Estimate σ2

We can use

σ̂2 =
1

n

n−1∑
j=p

(
Zj+1 − φ̂>p Zj(p)

)2
to estimate σ2.

Note that

σ̂2 =
1

n

n−1∑
j=p

(
εj+1 − (φ̂p − φp)>Zj(p)

)2
=

1

n

n−1∑
j=p

ε2j+1 −
(1

n

n−1∑
j=p

Zj(p)εj+1

)>
R̃
−1
p

(1

n

n−1∑
j=p

Zj(p)εj+1

)
,

where R̃p = 1
nX
>
p Xp = 1

n

∑n−1
j=p Zj(p)Z>j (p) .
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Since we’ve argued that R̃
−1
p

p→ R−1p (which is positive definite) and

n−1/2
∑n−1

j=p Zj(p)εj+1
d→ N(0,Rpσ

2), it follows that

(n−1/2
∑n−1

j=p Zj(p)εj+1)>R̃
−1
p (n−1/2

∑n−1
j=p Zj(p)εj+1)

σ2
d→ χ2(p),

and hence(1

n

n−1∑
j=p

Zj(p)εj+1

)>
R̃
−1
p

(1

n

n−1∑
j=p

Zj(p)εj+1

)
= Op(n−1) = op(1).

Moreover, by the law of large number for the sums of i.i.d random
variables, we have

1

n

n−1∑
j=p

ε2j+1
pr−→ E (εi ) = σ2.
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Combining these facts yields

σ̂2
p→ σ2.

Moreover, by the CLT for the sum of i.i.d r.v.s, one gets

√
n(σ̂2 − σ2)

.∼ 1√
n

n−1∑
j=p

(ε2j+1 − σ2)
d−→ N

(
0,E (ε2i − σ2)2

)
.

Remark. We don’t need “normality” in proving the consistency and the
CLT for σ̂2.
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