

Estimation of μ , γ_k , ρ_k and P_k

Ching-Kang Ing

Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan

Outline

- 1 Estimation of μ
- 2 Estimation of γ_k
- 3 Estimation of ρ_k
- 4 Estimation of P_k
- 5 CLT for \bar{Z}

Estimation of μ

Question 1

Having observed Z_1, \dots, Z_n , how does one estimate $\mu = E(Z_t)$?

Ans: Using $\bar{Z} = \frac{1}{n} \sum_{t=1}^n Z_t$.

Question 2

Does \bar{Z} possess desirable properties?

- (i) Unbiasedness: $E(\bar{Z}) = \mu$ (easy to verify)
- (ii) Consistency (i.e. for any $\epsilon > 0$, $P(|\bar{Z} - \mu| > \epsilon) \rightarrow 0$, as $n \rightarrow \infty$)

- By Chebyshev's inequality, we only need to show that

$$\begin{aligned}
 \text{Var}(\bar{Z}) &= E((\bar{Z} - \mu)^2) && \text{(by the unbiasedness of } \bar{Z} \text{)} \\
 &= E(\bar{Z}^2) && \text{(WLOG, we may assume } \mu = 0 \text{)} \\
 &\stackrel{\text{why?}}{=} \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \gamma_{i-j} \\
 &\stackrel{\rho_j = \frac{\gamma_j}{\gamma_0}}{=} \frac{\gamma_0}{n} \sum_{t=-n+1}^{n-1} \left(1 - \frac{|t|}{n}\right) \rho_t \rightarrow 0, \text{ as } n \rightarrow \infty, \tag{1}
 \end{aligned}$$

which is guaranteed by

$$\rho_n \rightarrow 0 \text{ as } n \rightarrow \infty. \text{ (why?)} \tag{2}$$

- In the following, we also call "consistency" as "convergence in probability", which is denoted by $\bar{Z} \xrightarrow{pr.} \mu$.

Question 3

Can you give a more precise expression for $\text{Var}(\bar{Z})$?

- By (1), we have

$$n\text{Var}(\bar{Z}) = \gamma_0 \sum_{t=-n+1}^{n-1} \rho_t - \frac{\gamma_0}{n} \sum_{t=-n+1}^{n-1} |t| \rho_t = \gamma_0 \sum_{t=-n+1}^{n-1} \rho_t - \frac{2\gamma_0}{n} \sum_{t=1}^{n-1} t \rho_t.$$

- If we assume

$$\sum_{t=-\infty}^{\infty} |\rho_t| < \infty, \quad (3)$$

then

$$\sum_{t=-n+1}^{n-1} \rho_t \xrightarrow{n \rightarrow \infty} \sum_{t=-\infty}^{\infty} \rho_t \text{ (why?)} \quad \text{and} \quad \frac{1}{n} \sum_{t=1}^{n-1} t \rho_t \xrightarrow{n \rightarrow \infty} 0 \text{ (why?).}$$

As a result,

$$\lim_{n \rightarrow \infty} n\text{Var}(\bar{Z}) = \gamma_0 \sum_{t=-\infty}^{\infty} \rho_t. \quad (4)$$

Estimation of γ_k

Question 4

How do we estimate γ_k ?

Ans: Using $\hat{\gamma}_k = \frac{1}{n} \sum_{t=1}^{n-k} (Z_t - \bar{Z})(Z_{t+k} - \bar{Z})$.

Question 5

Does $\hat{\gamma}_k \xrightarrow{pr.} \gamma_k$ hold? (A big question!!)

We will analyze this question through several steps.

Step 1

- Define $\tilde{\gamma}_k = \frac{1}{n} \sum_{t=1}^{n-k} (Z_t - \mu)(Z_{t+k} - \mu)$. We will first show that

$$\hat{\gamma}_k - \tilde{\gamma}_k \xrightarrow{pr.} 0.$$

- To see this, we express $\hat{\gamma}_k$ as

$$\begin{aligned} & \frac{1}{n} \sum_{t=1}^{n-k} (Z_t - \mu + \mu - \bar{Z})(Z_{t+k} - \mu + \mu - \bar{Z}) \\ &= \frac{\mu - \bar{Z}}{n} \sum_{t=1}^{n-k} (Z_{t+k} - \mu) + \frac{\mu - \bar{Z}}{n} \sum_{t=1}^{n-k} (Z_t - \mu) + \frac{(n-k)(\mu - \bar{Z})^2}{n} + \tilde{\gamma}_k. \end{aligned} \quad (5)$$

- By an argument similar to that used to prove $\bar{Z} \xrightarrow{pr.} \mu$, we have

$$\frac{1}{n} \sum_{t=1}^{n-k} (Z_{t+k} - \mu) \xrightarrow{pr.} 0 \quad \text{and} \quad \frac{1}{n} \sum_{t=1}^{n-k} (Z_t - \mu) \xrightarrow{pr.} 0.$$

Consequently, $\hat{\gamma}_k - \tilde{\gamma}_k \xrightarrow{pr.} 0$ follows.

Step 2

- We will show that $\tilde{\gamma}_k \xrightarrow{pr.} \gamma_k$. The proof of this result is more involved.
- We can again assume $\mu = 0$. Then,

$$\tilde{\gamma}_k - \gamma_k = \frac{1}{n} \sum_{t=1}^{n-k} (Z_t Z_{t+k} - \gamma_k) - \frac{k\gamma_k}{n}.$$

- Since $\frac{k\gamma_k}{n} \rightarrow 0$, we only need to show that

$$\frac{1}{n-k} \sum_{t=1}^{n-k} (Z_t Z_{t+k} - \gamma_k) \xrightarrow{pr.} 0. \quad (6)$$

- Define

$$y_{t,k} = Z_t Z_{t+k} - \gamma_k \quad \text{and} \quad V_{i,k} = E(y_{t,k} y_{t+i,k}),$$

noting that $y_{t,k}$ is second-order weakly stationary (covariance stationary) if we assume $\{Z_t\}$ is "fourth-order weakly stationary".

Recall

$\{Z_t\}$ is called q th-order, $q \geq 2$, weakly stationary if $E(Z_t) = \mu$ for all t , and for any t_1, \dots, t_q and k ,

$$E[(Z_{t_1} - \mu) \cdots (Z_{t_q} - \mu)] = E[(Z_{t_1+k} - \mu) \cdots (Z_{t_q+k} - \mu)].$$

- In fact, it can be shown that

$$V_{i,k} = V_{-i,k} \text{ for } i = 0, 1, 2, \dots, \quad (\text{why?}) \quad (7)$$

if $\{Z_t\}$ is fourth-order stationary, which will be assumed in the rest of the proof of (6).

- Define $N = n - k$. Then,

$$\begin{aligned}
 & E \left(\frac{1}{n-k} \sum_{t=1}^{n-k} (Z_t Z_{t+k} - \gamma_k) \right)^2 \\
 &= \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N V_{i-j,k} \quad (\text{Since } y_{t,k} \text{ is covariance stationary}) \\
 &= \frac{1}{N} \sum_{t=-N+1}^{N-1} \left(1 - \frac{|t|}{N} \right) V_{t,k} \rightarrow 0, \text{ as } n \rightarrow \infty,
 \end{aligned} \tag{8}$$

provided

$$V_{n,k} \rightarrow 0, \text{ as } n \rightarrow \infty. \text{ (why?)} \tag{9}$$

- By (9) and Chebyshev's inequality, we obtain (6).

Step 3

Since $\hat{\gamma}_k - \tilde{\gamma}_k \xrightarrow{pr.} 0$ and $\tilde{\gamma}_k - \gamma_k \xrightarrow{pr.} 0$, it follows that

$$\hat{\gamma}_k - \gamma_k \xrightarrow{pr.} 0. \quad (\text{or, equivalently, } \hat{\gamma}_k \xrightarrow{pr.} \gamma_k)$$

Remark

When $\{Z_t\}$ is a Gaussian process, we obtain by Isserlis's Theorem that

$$\begin{aligned} V_{n,k} &= E(Z_t Z_{t+k} Z_{t+n} Z_{t+n+k}) - \gamma_k^2 \\ &= E(Z_t Z_{t+k}) E(Z_{t+n} Z_{t+n+k}) + E(Z_t Z_{t+n}) E(Z_{t+k} Z_{t+n+k}) \\ &\quad + E(Z_t Z_{t+n+k}) E(Z_{t+k} Z_{t+n}) - \gamma_k^2 \\ &= \gamma_n^2 + \gamma_{n+k} \gamma_{n-k}, \end{aligned}$$

and hence a sufficient condition for (9) to hold (under Gaussianity) is

$$\gamma_n \rightarrow 0 \text{ as } n \rightarrow \infty. \quad (\text{why?}) \quad (\text{This condition is equivalent to (2).}) \quad (10)$$

Question 6

Can you give a more precise expression for the mean squared error $E(\hat{\gamma}_k - \gamma_k)^2$?

- Note that since $E(\hat{\gamma}_k) \neq \gamma_k$, $E(\hat{\gamma}_k - \gamma_k)^2 \neq \text{Var}(\hat{\gamma}_k)$. However, we should also note that the difference between $E(\hat{\gamma}_k - \gamma_k)^2$ and $\text{Var}(\hat{\gamma}_k)$ is "small".
- In the following, I will show that

Bartlett's formula : $E\{n(\hat{\gamma}_k - \gamma_k)^2\} \xrightarrow{n \rightarrow \infty} \sum_{t=-\infty}^{\infty} (\gamma_t^2 + \gamma_{t+k}\gamma_{t-k}), \quad (11)$

provided $\{Z_t\}$ is Gaussian.

- Note first that

$$\begin{aligned} nE(\hat{\gamma}_k - \gamma_k)^2 &= nE(\hat{\gamma}_k - \tilde{\gamma}_k + \tilde{\gamma}_k - \gamma_k)^2 \\ &= n\{E(\hat{\gamma}_k - \tilde{\gamma}_k)^2 + E(\tilde{\gamma}_k - \gamma_k)^2 + 2E[(\hat{\gamma}_k - \tilde{\gamma}_k)(\tilde{\gamma}_k - \gamma_k)]\}. \end{aligned}$$

- By (3) and (5), it is not difficult to show that

$$nE(\hat{\gamma}_k - \tilde{\gamma}_k)^2 \rightarrow 0 \text{ as } n \rightarrow \infty. \quad (12)$$

- If we can prove (Here, we have implicitly assumed that $\sum_{i=\infty}^{\infty} \gamma_i^2 < \infty$.)

$$\lim_{n \rightarrow \infty} nE(\tilde{\gamma}_k - \gamma_k)^2 = \sum_{t=-\infty}^{\infty} (\gamma_t^2 + \gamma_{t+k} \gamma_{t-k}), \quad (13)$$

then (11) follows from (12), (13) and the Cauchy-Schwarz inequality. (why?)

- To show (13), note first that

$$\begin{aligned} E[n(\tilde{\gamma}_k - \gamma_k)^2] &= \frac{1}{n} E \left(\sum_{t=1}^N y_{t,k} \right)^2 - 2k\gamma_k E \left(\frac{1}{n} \sum_{t=1}^{n-k} y_{t,k} \right) + \frac{k^2 \gamma_k^2}{n} \\ &= \frac{N}{n} E \left(\frac{1}{N} \left(\sum_{t=1}^N y_{t,k} \right)^2 \right) + \frac{k^2 \gamma_k^2}{n}. \end{aligned} \quad (14)$$

- By (7) and (8), it follows that

$$\frac{1}{N} E \left(\sum_{t=1}^N y_{t,k} \right)^2 = \sum_{t=-N+1}^{N-1} V_{t,k} - \frac{2}{N} \sum_{t=1}^{N-1} t V_{t,k} \xrightarrow{n \rightarrow \infty} \sum_{t=-\infty}^{\infty} V_{t,k}, \quad (15)$$

provided

$$\sum_{t=-\infty}^{\infty} |V_{t,k}| < \infty. \quad (16)$$

- By Isserlis's Theorem,

$$\sum_{t=-\infty}^{\infty} V_{t,k} \stackrel{\text{why?}}{=} \sum_{t=-\infty}^{\infty} (\gamma_t^2 + \gamma_{t+k} \gamma_{t-k}). \quad (17)$$

- Moreover, (16) is ensured by

$$\sum_{t=-\infty}^{\infty} \gamma_t^2 < \infty. \text{ (why?)} \quad (18)$$

- Consequently, (13) follows from (14), (15), (17), provided (18) holds true.

Remark

In fact, it can be shown that

$$\lim_{n \rightarrow \infty} n \text{Var}(\hat{\gamma}_k) = \sum_{t=-\infty}^{\infty} (\gamma_t^2 + \gamma_{t+k} \gamma_{t-k}),$$

under the same assumptions.

Estimation of ρ_k

Question 7

How to estimate ρ_k ?

Ans: Using $\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$.

Question 8

Does $\hat{\rho}_k \xrightarrow{pr.} \rho_k$?

Ans: Yes. (since $\hat{\gamma}_k \xrightarrow{pr.} \gamma_k$ and $\hat{\gamma}_0 \xrightarrow{pr.} \gamma_0$)

Question 9

How to derive Bartlett's formula for $\lim_{n \rightarrow \infty} n \text{Var}(\hat{\rho}_k)$?

- Note first that

$$\lim_{n \rightarrow \infty} n \text{Cov}(\hat{\gamma}_k, \hat{\gamma}_{k+j}) = \sum_{t=-\infty}^{\infty} (\gamma_t \gamma_{t+j} + \gamma_{t+j+k} \gamma_{k-t}),$$

whose proof is sketched as follows.

- Straightforward calculations yield

$$\begin{aligned} & n \text{Cov}(\hat{\gamma}_k, \hat{\gamma}_{k+j}) \\ &= nE[(\hat{\gamma}_k - \gamma_k)(\hat{\gamma}_{k+j} - \gamma_{k+j})] - nE(\hat{\gamma}_k - \gamma_k)E(\hat{\gamma}_{k+j} - \gamma_{k+j}) \\ &= nE[(\hat{\gamma}_k - \gamma_k)(\hat{\gamma}_{k+j} - \gamma_{k+j})] + o(1). \end{aligned}$$

Moreover,

$$\begin{aligned}
 nE[(\hat{\gamma}_k - \gamma_k)(\hat{\gamma}_{k+j} - \gamma_{k+j})] &= nE[(\hat{\gamma}_k - \tilde{\gamma}_k)(\hat{\gamma}_{k+j} - \tilde{\gamma}_{k+j})] \text{①} \\
 &\quad + nE[(\hat{\gamma}_k - \tilde{\gamma}_k)(\tilde{\gamma}_{k+j} - \gamma_{k+j})] \text{②} \\
 &\quad + nE[(\tilde{\gamma}_k - \gamma_k)(\hat{\gamma}_{k+j} - \tilde{\gamma}_{k+j})] \text{③} \\
 &\quad + nE[(\tilde{\gamma}_k - \gamma_k)(\tilde{\gamma}_{k+j} - \gamma_{k+j})] \text{④}
 \end{aligned}$$

①: $nE[(\hat{\gamma}_k - \tilde{\gamma}_k)(\hat{\gamma}_{k+j} - \tilde{\gamma}_{k+j})] \xrightarrow{\text{why?}} 0$

②: by the Cauchy-Schwarz Inequality,

$$nE[(\hat{\gamma}_k - \tilde{\gamma}_k)(\tilde{\gamma}_{k+j} - \gamma_{k+j})] \leq n\sqrt{E(\hat{\gamma}_k - \tilde{\gamma}_k)^2 E(\tilde{\gamma}_{k+j} - \gamma_{k+j})^2} \rightarrow 0$$

③: $\rightarrow 0$ (similar to ②)

④:

$$\begin{aligned}
 nE[(\tilde{\gamma}_k - \gamma_k)(\tilde{\gamma}_{k+j} - \gamma_{k+j})] &= \frac{1}{n}E\left[\sum_{t=1}^{n-k} \sum_{i=1}^{n-k-j} (Z_t Z_{t+k} - \gamma_k)(Z_i Z_{i+k+j} - \gamma_{k+j})\right] \\
 &\simeq \frac{1}{n}E\left[\sum_{t=1}^n \sum_{i=1}^n (Z_t Z_{t+k} - \gamma_k)(Z_i Z_{i+k+j} - \gamma_{k+j})\right] \\
 &= \frac{1}{n} \sum_{t=-n+1}^{n-1} (n - |t|)\eta_t,
 \end{aligned}$$

where

$$\begin{aligned}
 \eta_t &= E[(Z_i Z_{i+k} - \gamma_k)(Z_{i+t} Z_{i+t+k+j} - \gamma_{k+j})] \\
 &= E(Z_i Z_{i+k} Z_{i+t} Z_{i+t+k+j}) - \gamma_k \gamma_{k+j} \\
 &= \gamma_t \gamma_{t+j} + \gamma_{t+j+k} \gamma_{k-t}, \quad \text{(assuming Gaussianity)}
 \end{aligned}$$

implying that

$$\begin{aligned}
 \lim_{n \rightarrow \infty} nE[(\tilde{\gamma}_k - \gamma_k)(\tilde{\gamma}_{k+j} - \gamma_{k+j})] &= \lim_{n \rightarrow \infty} \sum_{t=-n+1}^{n-1} \eta_t - \frac{1}{n} \sum_{t=-n+1}^{n-1} |t| \eta_t \\
 &= \sum_{t=-\infty}^{\infty} \gamma_t \gamma_{t+j} + \gamma_{t+j+k} \gamma_{k-t}.
 \end{aligned}$$

- Thus, we have

$$\lim_{n \rightarrow \infty} n \text{Cov}(\hat{\gamma}_k, \hat{\gamma}_{k+j}) = \sum_{t=-\infty}^{\infty} (\gamma_t \gamma_{t+j} + \gamma_{t+j+k} \gamma_{k-t}) \stackrel{\text{def}}{\equiv} u_{k,k+j},$$

which is Bartlett's formula for the covariance of $\hat{\gamma}_k$ and $\hat{\gamma}_{k+j}$.

- Now, write $\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0} = f(\hat{\gamma}_0, \hat{\gamma}_k)$. By Taylor's expansion, one has

$$\frac{\hat{\gamma}_k}{\hat{\gamma}_0} \sim \frac{\gamma_k}{\gamma_0} + \left(\frac{\partial f(\gamma_0, \gamma_k)}{\partial \gamma_0}, \frac{\partial f(\gamma_0, \gamma_k)}{\partial \gamma_k} \right) \begin{pmatrix} \hat{\gamma}_0 - \gamma_0 \\ \hat{\gamma}_k - \gamma_k \end{pmatrix}.$$

- Therefore,

$$\sqrt{n}(\hat{\rho}_k - \rho_k) \sim \frac{1}{\gamma_0}(-\rho_k, 1) \sqrt{n} \begin{pmatrix} \hat{\gamma}_0 - \gamma_0 \\ \hat{\gamma}_k - \gamma_k \end{pmatrix}$$

yielding

$$n \text{Var}(\hat{\rho}_k) \sim \frac{1}{\gamma_0^2}(-\rho_k, 1) \begin{pmatrix} u_{00} & u_{0k} \\ u_{k0} & u_{kk} \end{pmatrix} \begin{pmatrix} -\rho_k \\ 1 \end{pmatrix}.$$

- Straightforward algebraic manipulations yield

$$\lim_{n \rightarrow \infty} n \text{Var}(\hat{\rho}_k) = \sum_{t=-\infty}^{\infty} (\rho_t^2 + \rho_{t+k}\rho_{t-k} - 4\rho_k\rho_t\rho_{t+k} + 2\rho_k^2\rho_t^2).$$

- In fact, it can be shown that

$$\sqrt{n} \begin{pmatrix} \hat{\gamma}_0 - \gamma_0 \\ \vdots \\ \hat{\gamma}_k - \gamma_k \end{pmatrix} \xrightarrow{d} N \left(\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} u_{00} & \cdots & u_{0k} \\ \vdots & \ddots & \vdots \\ u_{k0} & \cdots & u_{kk} \end{pmatrix} \right).$$

This and Taylor's expansion give

$$\sqrt{n}(\hat{\rho}_k - \rho_k) \xrightarrow{d} N \left(0, \sum_{t=-\infty}^{\infty} (\rho_t^2 + \rho_{t+k}\rho_{t-k} - 4\rho_k\rho_t\rho_{t+k} + 2\rho_k^2\rho_t^2) \right).$$

Question 10

How to construct a test of the null hypothesis:

$$H_0 : \rho_1 = \rho_2 = \cdots = 0 \quad \text{vs} \quad H_1 : \sim H_0$$

at the asymptotic 0.05 significance level?

By Bartlett's formula for $\hat{\rho}_k$, $k \geq 1$,

$$\sqrt{n} \hat{\rho}_k \xrightarrow{d} N(0, 1),$$

provided H_0 holds true. Therefore, the testing rule:

$$\text{Reject } H_0 \text{ if } |\hat{\rho}_k| > \frac{1.96}{\sqrt{n}}$$

has an **asymptotic** 0.05 significance level, i.e.:

$$P_{H_0} \left(\left| \hat{\rho}_k \right| > \frac{1.96}{\sqrt{n}} \right) \rightarrow 0.05 \quad \text{as } n \rightarrow \infty.$$

Question 11

How to construct a test of the null hypothesis:

$$H_0 : \rho_k = \rho_{k+1} = \cdots = 0 \quad \text{vs} \quad H_1 : \sim H_0$$

at the asymptotic 0.05 significance level?

- By Bartlett's formula for $\hat{\rho}_k$, $k \geq 1$,

$$\sqrt{n} \hat{\rho}_k \xrightarrow{d} N \left(0, \sum_{i=-k+1}^{k-1} \rho_i^2 \right),$$

provided H_0 holds true.

- Moreover, since $\hat{\rho}_i \xrightarrow{pr} \rho_i$ for all i , the testing rule:

Reject H_0 if $|\hat{\rho}_k| > 1.96 \sqrt{\frac{\sum_{i=-k+1}^{k-1} \hat{\rho}_i^2}{n}}$

has an asymptotic 0.05 significant level.

Estimation of P_k

Question 12

How to estimate P_k ?

- Consider the following alignment of data:

$$\mathbf{y} = \begin{pmatrix} Z_{k+1} - \bar{Z} \\ \vdots \\ Z_n - \bar{Z} \end{pmatrix}, \mathbf{X} = \begin{pmatrix} Z_k - \bar{Z} & \cdots & Z_2 - \bar{Z} \\ \vdots & & \vdots \\ Z_{n-1} - \bar{Z} & \cdots & Z_{n-k+1} - \bar{Z} \end{pmatrix}, \text{ and } \mathbf{w} = \begin{pmatrix} Z_1 - \bar{Z} \\ \vdots \\ Z_{n-k} - \bar{Z} \end{pmatrix}.$$

- Define $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{w}$, $\hat{\eta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$, $\hat{w} = \mathbf{X}\hat{\beta}$, and $\hat{y} = \mathbf{X}\hat{\eta}$.
- We have two estimators,

$$\hat{P}_k^{(1)} = \frac{(\mathbf{w} - \hat{w})'(\mathbf{y} - \hat{y})}{\|\mathbf{w} - \hat{w}\| \|\mathbf{y} - \hat{y}\|} \quad \text{and} \quad \hat{P}_k^{(2)} = \frac{(\mathbf{w} - \hat{w})'(\mathbf{y} - \hat{y})}{\|\mathbf{w} - \hat{w}\|^2},$$

where $\|\cdot\|$ denotes the Euclidean norm.

Question 13

Does $\hat{P}_k^{(i)} \xrightarrow{pr.} P_k$? ($i = 1, 2$)

Yes! This is sketched as follows.

- (i) $\frac{1}{n}(\mathbf{w} - \hat{\mathbf{w}})'(\mathbf{y} - \hat{\mathbf{y}}) \xrightarrow{pr.} \text{Cov}[(Z_t - \tilde{Z}_t), (Z_{t+k} - \tilde{Z}_{t+k})]$
- (ii) $\frac{1}{n}\|\mathbf{w} - \hat{\mathbf{w}}\|^2 \xrightarrow{pr.} \text{Var}(Z_t - \tilde{Z}_t)$
- (iii) $\frac{1}{n}\|\mathbf{y} - \hat{\mathbf{y}}\|^2 \xrightarrow{pr.} \text{Var}(Z_{t+k} - \tilde{Z}_{t+k})$

- WLOG, assume $\bar{Z} = 0$. Then,

$$\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\eta}} = \mathbf{y} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = (\mathbf{I} - \mathbf{M})\mathbf{y},$$

and

$$\mathbf{w} - \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{w} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{w} = (\mathbf{I} - \mathbf{M})\mathbf{w}.$$

- It is easy to see that $\mathbf{M}^2 = \mathbf{M}$ and $\mathbf{M}' = \mathbf{M}$.

Hence,

$$\begin{aligned}
 \frac{1}{n}(\mathbf{w} - \hat{\mathbf{w}})'(\mathbf{y} - \hat{\mathbf{y}}) &= \frac{1}{n}[\mathbf{w}'\mathbf{y} - \mathbf{w}'\mathbf{M}\mathbf{y}] \\
 &\simeq \hat{\gamma}_k - n^{-1}\mathbf{w}'\mathbf{X}(n^{-1}\mathbf{X}'\mathbf{X})^{-1}n^{-1}\mathbf{X}'\mathbf{y} \\
 &\simeq \hat{\gamma}_k - (\hat{\gamma}_{k-1}, \dots, \hat{\gamma}_1)\hat{\mathbf{R}}_{k-1}^{-1} \begin{pmatrix} \hat{\gamma}_1 \\ \vdots \\ \hat{\gamma}_{k-1} \end{pmatrix} \\
 &\xrightarrow{pr.} \gamma_k - (\gamma_{k-1}, \dots, \gamma_1)\mathbf{R}_{k-1}^{-1} \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_{k-1} \end{pmatrix} \\
 &= \gamma_k - (\gamma_{k-1}, \dots, \gamma_1) \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_{k-1} \end{pmatrix} \\
 &\stackrel{\text{why?}}{=} \text{Cov}[(Z_t - \tilde{Z}_t), (Z_{t+k} - \tilde{Z}_{t+k})],
 \end{aligned}$$

where $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_{k-1})'$ is the minimizer of $E(Z_{t+k} - \tilde{Z}_{t+k})^2$.

- Similarly,

$$\begin{aligned}
 \frac{1}{n} \|\mathbf{w} - \hat{\mathbf{w}}\|^2 &= \frac{1}{n} \mathbf{w}' (\mathbf{I} - \mathbf{M}) \mathbf{w} \\
 &= n^{-1} \mathbf{w}' \mathbf{w} - n^{-1} \mathbf{w}' \mathbf{X} (n^{-1} \mathbf{X}' \mathbf{X})^{-1} n^{-1} \mathbf{X}' \mathbf{w} \\
 &\xrightarrow{pr.} \gamma_0 - \boldsymbol{\gamma}'_{k-1} \mathbf{R}_{k-1}^{-1} \boldsymbol{\gamma}_{k-1} \\
 &= \text{Var}(Z_t - \tilde{Z}_t) = C,
 \end{aligned}$$

and

$$\frac{1}{n} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 = \text{Var}(Z_{t+k} - \tilde{Z}_{t+k}) = C.$$

- Combining these facts yields that

$$\hat{P}_k^{(1)} = \frac{(\mathbf{w} - \hat{\mathbf{w}})'(\mathbf{y} - \hat{\mathbf{y}})}{\|\mathbf{w} - \hat{\mathbf{w}}\| \|\mathbf{y} - \hat{\mathbf{y}}\|} \xrightarrow{pr.} \frac{\text{Cov}(Z_{t+k} - \tilde{Z}_{t+k}, Z_t - \tilde{Z}_t)}{\sqrt{\text{Var}(Z_{t+k} - \tilde{Z}_{t+k})} \sqrt{\text{Var}(Z_t - \tilde{Z}_t)}} = P_k.$$

- Recall that ϕ_k minimizes $E(Z_{t+k} - \mathbf{c}' \mathbf{Z}_{t+k-1}(k))^2$ over $\mathbf{c} \in \mathbb{R}^k$, where $\mathbf{Z}_{t+k-1}(k) = (Z_{t+k-1}, \dots, Z_t)'$. Therefore, a natural estimate of ϕ_k is

$$\hat{\phi}_k = \begin{pmatrix} \hat{\phi}_{k1} \\ \vdots \\ \hat{\phi}_{kk} \end{pmatrix} = \hat{\mathbf{R}}_k^{-1} \begin{pmatrix} \hat{\gamma}_1 \\ \vdots \\ \hat{\gamma}_k \end{pmatrix}.$$

- It can be shown that

$$\hat{\phi}_{kk} = \frac{\mathbf{y}'(\mathbf{I} - \mathbf{M})\mathbf{w}}{\mathbf{w}'(\mathbf{I} - \mathbf{M})\mathbf{w}} = \hat{P}_k^{(2)}.$$

- Moreover, since $n^{-1}\|\mathbf{w} - \hat{\mathbf{w}}\|^2 \xrightarrow{pr.} C$ and $n^{-1}\|\mathbf{y} - \hat{\mathbf{y}}\|^2 \xrightarrow{pr.} C$,

$$\hat{P}_k^{(2)} - \hat{P}_k^{(1)} \xrightarrow{pr.} 0.$$

Therefore, $\hat{P}_k^{(2)}$ is also a consistent estimate of P_k .

Question 14

How to construct a test of the null hypothesis

$$H_0 : P_1 = P_2 = \dots = 0 \quad \text{vs} \quad H_1 : \sim H_0$$

at the asymptotic 0.05 significance level?

We will show later in this semester that

$$\sqrt{n}(\hat{\phi}_k - \phi_k) \xrightarrow{d} N(\mathbf{0}, \mathbf{I}),$$

provided H_0 holds, yielding

$$\sqrt{n}\hat{P}_k^{(2)} \xrightarrow{d} N(0, 1), \quad k \geq 1.$$

Therefore, the testing rule:

$$\text{Reject } H_0 \text{ if } |\hat{P}_k^{(2)}| > \frac{1.96}{\sqrt{n}}$$

has an asymptotic 0.05 significant level.

CLT for \bar{Z}

Theorem

If $\{Z_t\}$ is a stationary process satisfying

$$Z_t = \mu + \sum_{j=0}^{\infty} b_j \epsilon_{t-j},$$

where $\epsilon_i \stackrel{\text{indep.}}{\sim} (0, \sigma^2)$. Moreover, assume that $\{\epsilon_t\}$ obeys Lindeberg's condition and

$$\sum_{j=1}^{\infty} j^{1/2} |b_j| < \infty.$$

Then, $\sqrt{n}(\bar{Z} - \mu) \xrightarrow{d} \mathcal{N}(0, \sum_{j=-\infty}^{\infty} \gamma_j)$.

Proof of Theorem

- Without loss of generality, we assume that $\mu = 0$. Then

$$Z_t = \sum_{j=0}^{\infty} b_j \epsilon_{t-j} = \sum_{\ell=-\infty}^t b_{t-\ell} \epsilon_{\ell},$$

and

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i &= \frac{1}{\sqrt{n}} \sum_{i=1}^n \sum_{\ell=-\infty}^i b_{i-\ell} \epsilon_{\ell} \\ &= \frac{1}{\sqrt{n}} \sum_{\ell=-\infty}^n \sum_{i=\ell \vee 1}^n b_{i-\ell} \epsilon_{\ell} \\ &= \frac{1}{\sqrt{n}} \sum_{\ell=-\infty}^0 \left(\sum_{i=1}^n b_{i-\ell} \right) \epsilon_{\ell} + \frac{1}{\sqrt{n}} \sum_{\ell=1}^n \left(\sum_{i=\ell}^n b_{i-\ell} \right) \epsilon_{\ell} := (\text{I}) + (\text{II}). \end{aligned}$$

- Note that $\sum_{j=1}^{\infty} j^{1/2} |b_j| < \infty$ implies $n^{1/2} \sum_{i=n}^{\infty} |b_i| \rightarrow 0$ as $n \rightarrow \infty$.

Proof of Theorem

Since for any $\epsilon > 0$,

$$\begin{aligned}
 \text{Var}((\text{I})) &= \frac{\sigma^2}{n} \sum_{\ell=-\infty}^0 \left(\sum_{i=1}^n b_{i-\ell} \right)^2 \leq \frac{\sigma^2}{n} \sum_{i=1}^n \sum_{j=1}^n \sum_{\ell=-\infty}^0 |b_{i-\ell}| |b_{j-\ell}| \\
 &\leq \frac{\sigma^2}{n} \sum_{i=1}^n \sum_{j=1}^n \left(\sum_{\ell=-\infty}^0 b_{i-\ell}^2 \right)^{1/2} \left(\sum_{\ell=-\infty}^0 b_{j-\ell}^2 \right)^{1/2} \\
 &\leq \frac{\sigma^2}{n} \left(\sum_{i=1}^n \sum_{\ell=-\infty}^0 |b_{i-\ell}| \right)^2 = \sigma^2 \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \sum_{k=i}^{\infty} |b_k| \right)^2 \\
 &\leq \sigma^2 \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{\epsilon n} i |b_i| + \frac{1}{\sqrt{n}} \sum_{i=\epsilon n+1}^n i |b_i| + \sqrt{n} \sum_{i=n+1}^{\infty} |b_i| \right)^2 \\
 &\leq \sigma^2 \left(\sqrt{\epsilon} \sum_{i=1}^{\epsilon n} i^{1/2} |b_i| + \sum_{i=\epsilon n+1}^n i^{1/2} |b_i| + o(1) \right)^2,
 \end{aligned}$$

it holds that $\text{Var}((\text{I})) \xrightarrow{n \rightarrow \infty} 0$, and hence $(\text{I}) = o_p(1)$ follows from Chebyshev's inequality.

Proof of Theorem

- Note that

$$\begin{aligned}
 \text{(II)} &= \frac{1}{\sqrt{n}} [\epsilon_n(b_0) + \epsilon_{n-1}(b_0 + b_1) + \cdots + \epsilon_1(b_0 + \cdots + b_{n-1})] \\
 &= \frac{S}{\sqrt{n}} \sum_{i=1}^n \epsilon_i - \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i R_{in} := \text{(III)} + \text{(IV)},
 \end{aligned}$$

where $S = \sum_{i=0}^{\infty} b_i$ and $R_{in} = \sum_{j=n-i+1}^{\infty} b_j$.

- Since $\text{(III)} \xrightarrow{d} \mathcal{N}(0, S^2 \sigma^2)$ and

$$\begin{aligned}
 \text{Var}(\text{(IV)}) &\leq \frac{\sigma^2}{n} \sum_{i=1}^n \left(\sum_{j=n-i+1}^{\infty} |b_j| \right)^2 = \frac{\sigma^2}{n} \sum_{i=1}^n \left(\sum_{j=i}^{\infty} |b_j| \right)^2 \\
 &= \frac{\sigma^2}{n} \sum_{i=1}^n \left(i^{-1/2} i^{1/2} \sum_{j=i}^{\infty} |b_j| \right)^2 \\
 &\leq \frac{C}{n} \sum_{i=1}^n i^{-1} \xrightarrow{n \rightarrow \infty} 0
 \end{aligned}$$

where C is a constant, the proof is completed by $S^2 \sigma^2 = \sum_{j=-\infty}^{\infty} \gamma_j$ and Slutsky's theorem.

Remark

If $\sum_{j=1}^{\infty} j^{1/2} |b_j| < \infty$ is replaced with $\sum_{j=1}^{\infty} |b_j| < \infty$, then the above theorem still holds.

- To see this, we recall that

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i = \frac{1}{\sqrt{n}} \sum_{\ell=-\infty}^0 \left(\sum_{i=1}^n b_{i-\ell} \right) \epsilon_{\ell} + \frac{S}{\sqrt{n}} \sum_{i=1}^n \epsilon_i - \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i R_{in} := (\text{I}) + (\text{III}) + (\text{IV}),$$

where $S = \sum_{i=0}^{\infty} b_i$, $R_{in} = \sum_{j=n-i+1}^{\infty} b_j$, and $(\text{III}) \xrightarrow{d} \mathcal{N}(0, \sum_{j=-\infty}^{\infty} \gamma_j)$.

- Now it suffices to show that $\text{Var}((\text{I})) = o(1)$ and $\text{Var}((\text{IV})) = o(1)$.
- Since $\sum_{j=n}^{\infty} |b_j| \rightarrow 0$ as $n \rightarrow \infty$, we have

$$\text{Var}((\text{I})) \leq \frac{\sigma^2}{n} \sum_{i=1}^n \sum_{\ell=0}^{\infty} b_{i+\ell}^2 + \frac{2\sigma^2}{n} \sum_{i=1}^n \sum_{j=i+1}^{\infty} \sum_{\ell=0}^{\infty} |b_{i+\ell}| |b_{j+\ell}| = \frac{\sigma^2}{n} \sum_{i=1}^n \left(\sum_{j=i}^{\infty} |b_j| \right)^2 = o(1).$$

Similarly, $\text{Var}((\text{IV})) \leq \sigma^2 n^{-1} \sum_{i=1}^n \left(\sum_{j=i}^{\infty} |b_j| \right)^2 = o(1)$.

Now I will show that

$$\sum_{j=-\ell_n}^{\ell_n} \hat{\gamma}_j \xrightarrow{pr.} \sum_{j=-\infty}^{\infty} \gamma_j,$$

as $\ell_n \rightarrow \infty$ and $\ell_n = o(n^{1/2})$. Note first that

$$\left| \sum_{j=-\ell_n}^{\ell_n} \hat{\gamma}_j - \sum_{j=-\infty}^{\infty} \gamma_j \right| \leq \sum_{j=-\ell_n}^{\ell_n} |\hat{\gamma}_j - \gamma_j| + 2 \sum_{j=\ell_n+1}^{\infty} |\gamma_j| := (V) + (VI).$$

Moreover, since $E[(\sqrt{n}(\hat{\gamma}_j - \gamma_j))^2] \leq C$ where C is some constant, we have

$$E((V)) = \sum_{j=-\ell_n}^{\ell_n} E|\hat{\gamma}_j - \gamma_j| \leq \sum_{j=-\ell_n}^{\ell_n} [E((\hat{\gamma}_j - \gamma_j)^2)]^{1/2} \leq Cn^{-1/2}(2\ell_n + 1) \xrightarrow{n \rightarrow \infty} 0,$$

and thus $(V) = o_p(1)$ is obtained by Markov's inequality. Furthermore,

$$(VI) \leq 2\sigma^2 \sum_{j=\ell_n+1}^{\infty} \sum_{s=0}^{\infty} |b_s| |b_{s+j}| = 2\sigma^2 \sum_{s=0}^{\infty} |b_s| \sum_{j=\ell_n+1}^{\infty} |b_{s+j}| \leq 2\sigma^2 \sum_{s=0}^{\infty} |b_s| \sum_{j=\ell_n+1}^{\infty} |b_j| \xrightarrow{n \rightarrow \infty} 0,$$

provided $\sum_{j=0}^{\infty} j^{1/2} |b_j| < \infty$. Hence

$$\bar{Z} \pm \frac{z_{1-\alpha/2} \sqrt{\sum_{j=-\ell_n}^{\ell_n} \hat{\gamma}_j}}{\sqrt{n}}$$

is an asymptotic $100(1 - \alpha)\%$ confidence interval for μ .