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Estimation of µ

Estimation of µ

Question 1

Having observed Z1, . . . , Zn, how does one estimate µ = E(Zt)?

Ans: Using Z̄ = 1
n

∑n
t=1 Zt.

Question 2

Does Z̄ possess desirable properties?

(i) Unbiasedness: E(Z̄) = µ (easy to verify)

(ii) Consistency (i.e. for any ε > 0, P (|Z̄ − µ| > ε)→ 0, as n→∞)
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Estimation of µ

By Chebyshev’s inequality, we only need to show that

Var(Z̄) = E((Z̄ − µ)2) (by the unbiasedness of Z̄)

= E(Z̄2) (WLOG, we may assume µ = 0)

why?
=

1

n2

n∑
i=1

n∑
j=1

γi−j

ρj=
γj
γ0=

γ0
n

n−1∑
t=−n+1

(
1− |t|

n

)
ρt → 0, as n→∞, (1)

which is guaranteed by

ρn → 0 as n→∞. (why?) (2)

In the following, we also call ”consistency” as ”convergence in probability”,

which is denoted by Z̄
pr.−−→ µ.
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Estimation of µ

Question 3

Can you give a more precise expression for Var(Z̄)?

By (1), we have

nVar(Z̄) = γ0

n−1∑
t=−n+1

ρt −
γ0
n

n−1∑
t=−n+1

|t|ρt = γ0

n−1∑
t=−n+1

ρt −
2γ0
n

n−1∑
t=1

tρt.

If we assume
∞∑

t=−∞
|ρt| <∞, (3)

then
n−1∑

t=−n+1

ρt
n→∞−−−−→

∞∑
t=−∞

ρt (why?) and
1

n

n−1∑
t=1

tρt
n→∞−−−−→ 0 (why?).

As a result,

lim
n→∞

nVar(Z̄) = γ0

∞∑
t=−∞

ρt. (4)
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Estimation of γk

Estimation of γk

Question 4

How do we estimate γk?

Ans: Using γ̂k = 1
n

∑n−k
t=1 (Zt − Z̄)(Zt+k − Z̄).

Question 5

Does γ̂k
pr.−−→ γk hold? (A big question!!)

We will analyze this question through several steps.
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Estimation of γk

Step 1

Define γ̃k = 1
n

∑n−k
t=1 (Zt − µ)(Zt+k − µ). We will first show that

γ̂k − γ̃k
pr.−−→ 0.

To see this, we express γ̂k as

1

n

n−k∑
t=1

(Zt − µ+ µ− Z̄)(Zt+k − µ+ µ− Z̄)

=
µ− Z̄
n

n−k∑
t=1

(Zt+k − µ) +
µ− Z̄
n

n−k∑
t=1

(Zt − µ) +
(n− k)(µ− Z̄)2

n
+ γ̃k. (5)

By an argument similar to that used to prove Z̄
pr.−−→ µ, we have

1

n

n−k∑
t=1

(Zt+k − µ)
pr.−−→ 0 and

1

n

n−k∑
t=1

(Zt − µ)
pr.−−→ 0.

Consequently, γ̂k − γ̃k
pr.−−→ 0 follows.
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Estimation of γk

Step 2

We will show that γ̃k
pr.−−→ γk. The proof of this result is more involved.

We can again assume µ = 0. Then,

γ̃k − γk =
1

n

n−k∑
t=1

(ZtZt+k − γk)− kγk
n
.

Since kγk
n → 0, we only need to show that

1

n− k

n−k∑
t=1

(ZtZt+k − γk)
pr.−−→ 0. (6)

8 / 35



Estimation of µ, γk, ρk and Pk
Estimation of γk

Define

yt,k = ZtZt+k − γk and Vi,k = E(yt,kyt+i,k),

noting that yt,k is second-order weakly stationary (covariance stationary) if
we assume {Zt} is ”fourth-order weakly stationary”.

Recall

{Zt} is called qth-order, q ≥ 2, weakly stationary if E(Zt) = µ for all t, and for
any t1, . . . , tq and k,

E[(Zt1 − µ) · · · (Ztq − µ)] = E[(Zt1+k − µ) · · · (Ztq+k − µ)].

In fact, it can shown that

Vi,k = V−i,k for i = 0, 1, 2, . . . , (why?) (7)

if {Zt} is fourth-order stationary, which will be assumed in the rest of the
proof of (6).
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Estimation of γk

Define N = n− k. Then,

E

(
1

n− k

n−k∑
t=1

(ZtZt+k − γk)

)2

=
1

N2

N∑
i=1

N∑
j=1

Vi−j,k (Since yt,k is covariance stationary)

=
1

N

N−1∑
t=−N+1

(
1− |t|

N

)
Vt,k → 0, as n→∞, (8)

provided
Vn,k → 0, as n→∞. (why?) (9)

By (9) and Chebyshev’s inequality, we obtain (6).
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Estimation of γk

Step 3

Since γ̂k − γ̃k
pr.−−→ 0 and γ̃k − γk

pr.−−→ 0, it follows that

γ̂k − γk
pr.−−→ 0. (or, equivalently, γ̂k

pr.−−→ γk)

Remark

When {Zt} is a Gaussian process, we obtain by Isserlis’s Theorem that

Vn,k = E(ZtZt+kZt+nZt+n+k)− γ2k
= E(ZtZt+k)E(Zt+nZt+n+k) + E(ZtZt+n)E(Zt+kZt+n+k)

+E(ZtZt+n+k)E(Zt+kZt+n)− γ2k
= γ2n + γn+kγn−k,

and hence a sufficient condition for (9) to hold (under Gaussianity) is

γn → 0 as n→∞. (why?) (This condition is equivalent to (2).) (10)
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Estimation of γk

Question 6

Can you give a more precise expression for the mean squared error E(γ̂k − γk)2?

Note that since E(γ̂k) 6= γk, E(γ̂k − γk)2 6= Var(γ̂k). However, we should
also note that the difference between E(γ̂k − γk)2 and Var(γ̂k) is ”small”.

In the following, I will show that

Bartlett’s formula : E{n(γ̂k − γk)2} n→∞−−−−→
∞∑

t=−∞
(γ2t + γt+kγt−k), (11)

provided {Zt} is Gaussian.

Note first that

nE(γ̂k − γk)2 = nE(γ̂k − γ̃k + γ̃k − γk)2

= n{E(γ̂k − γ̃k)2 + E(γ̃k − γk)2 + 2E[(γ̂k − γ̃k)(γ̃k − γk)]}.
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Estimation of γk

By (3) and (5), it is not difficult to show that

nE(γ̂k − γ̃k)2 → 0 as n→∞. (12)

If we can prove (Here, we have implicitly assumed that
∑∞
i=∞ γ2i <∞.)

lim
n→∞

nE(γ̃k − γk)2 =

∞∑
t=−∞

(γ2t + γt+kγt−k), (13)

then (11) follows from (12), (13) and the Cauchy-Schwarz inequality. (why?)

To show (13), note first that

E[n(γ̃k − γk)2] =
1

n
E

(
N∑
t=1

yt,k

)2

− 2kγkE

(
1

n

n−k∑
t=1

yt,k

)
+
k2γ2k
n

=
N

n
E

 1

N

(
N∑
t=1

yt,k

)2
+

k2γ2k
n

. (14)
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Estimation of γk

By (7) and (8), it follows that

1

N
E

(
N∑
t=1

yt,k

)2

=

N−1∑
t=−N+1

Vt,k −
2

N

N−1∑
t=1

tVt,k
n→∞−−−−→

∞∑
t=−∞

Vt,k, (15)

provided
∞∑

t=−∞
|Vt,k| <∞. (16)

By Isserlis’s Theorem,

∞∑
t=−∞

Vt,k
why?
=

∞∑
t=−∞

(γ2t + γt+kγt−k). (17)
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Estimation of γk

Moreover, (16) is ensured by

∞∑
t=−∞

γ2t <∞. (why?) (18)

Consequently, (13) follows from (14), (15), (17), provided (18) holds true.

Remark

In fact, it can be shown that

lim
n→∞

nVar(γ̂k) =

∞∑
t=−∞

(γ2t + γt+kγt−k),

under the same assumptions.
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Estimation of ρk

Estimation of ρk

Question 7

How to estimate ρk?

Ans: Using ρ̂k = γ̂k
γ̂0

.

Question 8

Does ρ̂k
pr.−−→ ρk?

Ans: Yes. (since γ̂k
pr.−−→ γk and γ̂0

pr.−−→ γ0)
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Estimation of ρk

Question 9

How to derive Bartlett’s formula for limn→∞ nVar(ρ̂k)?

Note first that

lim
n→∞

nCov(γ̂k, γ̂k+j) =

∞∑
t=−∞

(γtγt+j + γt+j+kγk−t),

whose proof is sketched as follows.

Straightforward calculations yield

nCov(γ̂k, γ̂k+j)

= nE[(γ̂k − γk)(γ̂k+j − γk+j)]− nE(γ̂k − γk)E(γ̂k+j − γk+j)
= nE[(γ̂k − γk)(γ̂k+j − γk+j)] + o(1).
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Estimation of ρk

Moreover,

nE[(γ̂k − γk)(γ̂k+j − γk+j)] = nE[(γ̂k − γ̃k)(γ̂k+j − γ̃k+j)] 1©

+ nE[(γ̂k − γ̃k)(γ̃k+j − γk+j)] 2©

+ nE[(γ̃k − γk)(γ̂k+j − γ̃k+j)] 3©

+ nE[(γ̃k − γk)(γ̃k+j − γk+j)] 4©

1©: nE[(γ̂k − γ̃k)(γ̂k+j − γ̃k+j)]
why?−−−→ 0

2©: by the Cauchy-Schwarz Inequality,

nE[(γ̂k − γ̃k)(γ̃k+j − γk+j)] ≤ n
√
E(γ̂k − γ̃k)2E(γ̃k+j − γk+j)2 → 0

3©: → 0 (similar to 2©)
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Estimation of ρk

4©:

nE[(γ̃k − γk)(γ̃k+j − γk+j)] =
1

n
E

[
n−k∑
t=1

n−k−j∑
i=1

(ZtZt+k − γk)(ZiZi+k+j − γk+j)

]

' 1

n
E

[
n∑
t=1

n∑
i=1

(ZtZt+k − γk)(ZiZi+k+j − γk+j)

]

=
1

n

n−1∑
t=−n+1

(n− |t|)ηt,

where

ηt = E[(ZiZi+k − γk)(Zi+tZi+t+k+j − γk+j)]
= E(ZiZi+kZi+tZi+t+k+j)− γkγk+j
= γtγt+j + γt+j+kγk−t, (assuming Gaussianity)

implying that

lim
n→∞

nE[(γ̃k − γk)(γ̃k+j − γk+j)] = lim
n→∞

n−1∑
t=−n+1

ηt −
1

n

n−1∑
t=−n+1

|t|ηt

=

∞∑
t=−∞

γtγt+j + γt+j+kγk−t.
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Estimation of ρk

Thus, we have

lim
n→∞

nCov(γ̂k, γ̂k+j) =

∞∑
t=−∞

(γtγt+j + γt+j+kγk−t)
def≡ uk,k+j ,

which is Bartlett’s formula for the covariance of γ̂k and γ̂k+j .

Now, write ρ̂k = γ̂k
γ̂0

= f(γ̂0, γ̂k). By Taylor’s expansion, one has

γ̂k
γ̂0
∼ γk
γ0

+

(
∂f(γ0, γk)

∂γ0
,
∂f(γ0, γk)

∂γk

)(
γ̂0 − γ0
γ̂k − γk

)
.

Therefore,

√
n(ρ̂k − ρk) ∼ 1

γ0
(−ρk, 1)

√
n

(
γ̂0 − γ0
γ̂k − γk

)
yielding

nVar(ρ̂k) ∼ 1

γ20
(−ρk, 1)

(
u00 u0k
uk0 ukk

)(
−ρk

1

)
.
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Estimation of ρk

Straightforward algebraic manipulations yield

lim
n→∞

nVar(ρ̂k) =

∞∑
t=−∞

(ρ2t + ρt+kρt−k − 4ρkρtρt+k + 2ρ2kρ
2
t ).

In fact, it can be shown that

√
n

γ̂0 − γ0...
γ̂k − γk

 d−→ N


0

...
0

 ,

u00 · · · u0k
...

. . .
...

uk0 · · · ukk


 .

This and Taylor’s expansion give

√
n(ρ̂k − ρk)

d−→ N

(
0,

∞∑
t=−∞

(ρ2t + ρt+kρt−k − 4ρkρtρt+k + 2ρ2kρ
2
t )

)
.
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Estimation of ρk

Question 10

How to construct a test of the null hypothesis:

H0 : ρ1 = ρ2 = · · · = 0 vs H1 : ∼ H0

at the asymptotic 0.05 significance level?

By Bartlett’s formula for ρ̂k, k ≥1,

√
nρ̂k

d−→ N(0, 1),

provided H0 holds true. Therefore, the testing rule:

Reject H0 if |ρ̂k| >
1.96√
n

has an asymptotic 0.05 significance level, i.e.:

PH0

(
|ρ̂k| >

1.96√
n

)
→ 0.05 as n→∞.
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Estimation of ρk

Question 11

How to construct a test of the null hypothesis:

H0 : ρk = ρk+1 = · · · = 0 vs H1 : ∼ H0

at the asymptotic 0.05 significance level?

By Bartlett’s formula for ρ̂k, k ≥1,

√
nρ̂k

d−→ N

(
0,

k−1∑
i=−k+1

ρ2i

)
,

provided H0 holds true.

Moreover, since ρ̂i
pr.−−→ ρi for all i, the testing rule:

Reject H0 if |ρ̂k| > 1.96

√∑k−1
i=−k+1 ρ̂

2
i

n

has an asymptotic 0.05 significant level.
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Estimation of Pk

Estimation of Pk

Question 12

How to estimate Pk?

Consider the following alignment of data:

y =

Zk+1 − Z̄
...

Zn − Z̄

 ,X =

 Zk − Z̄ · · · Z2 − Z̄
...

...
Zn−1 − Z̄ · · · Zn−k+1 − Z̄

 , and w =

 Z1 − Z̄
...

Zn−k − Z̄

 .

Define β̂ = (X ′X)−1X ′w, η̂ = (X ′X)−1X ′y, ŵ = Xβ̂, and ŷ = Xη̂.

We have two estimators,

P̂
(1)
k =

(w − ŵ)
′
(y − ŷ)

‖w − ŵ‖‖y − ŷ‖
and P̂

(2)
k =

(w − ŵ)′(y − ŷ)

‖w − ŵ‖2
,

where ‖ · ‖ denotes the Euclidean norm.
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Estimation of Pk

Question 13

Does P̂
(i)
k

pr.−−→ Pk? (i = 1, 2)

Yes! This is sketched as follows.

(i) 1
n (w − ŵ)′(y − ŷ)

pr.−−→ Cov[(Zt − Z̃t), (Zt+k − Z̃t+k)]

(ii) 1
n‖w − ŵ‖

2 pr.−−→ Var(Zt − Z̃t)

(iii) 1
n‖y − ŷ‖

2 pr.−−→ Var(Zt+k − Z̃t+k)

WLOG, assume Z̄ = 0. Then,

y −Xη̂ = y −X(X ′X)−1X ′y = (I −M)y,

and

w −Xβ̂ = w −X(X ′X)−1X ′w = (I −M)w.

It is easy to see that M2 = M and M ′ = M .
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Estimation of Pk

Hence,

1

n
(w − ŵ)′(y − ŷ) =

1

n
[w′y −w′My]

' γ̂k − n−1w′X(n−1X ′X)−1n−1X ′y

' γ̂k − (γ̂k−1, . . . , γ̂1)R̂−1k−1

 γ̂1
...

γ̂k−1


pr.−−→ γk − (γk−1, . . . , γ1)R−1k−1

 γ1
...

γk−1


= γk − (γk−1, . . . , γ1)

 α1

...
αk−1


why?
= Cov[(Zt − Z̃t), (Zt+k − Z̃t+k)],

where α = (α1, . . . , αk−1)′ is the minimizer of E(Zt+k − Z̃t+k)2.
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Estimation of Pk

Similarly,

1

n
‖w − ŵ‖2 =

1

n
w′(I −M)w

= n−1w′w − n−1w′X(n−1X ′X)−1n−1X ′w
pr.−−→ γ0 − γ′k−1R−1k−1γk−1
= Var(Zt − Z̃t) = C,

and

1

n
‖y − ŷ‖2 = Var(Zt+k − Z̃t+k) = C.

Combining these facts yields that

P̂
(1)
k =

(w − ŵ)′(y − ŷ)

‖w − ŵ‖‖y − ŷ‖
pr.−−→ Cov(Zt+k − Z̃t+k, Zt − Z̃t)√

Var(Zt+k − Z̃t+k)
√

Var(Zt − Z̃t)
= Pk.
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Estimation of Pk

Recall that φk minimizes E(Zt+k − c′Zt+k−1(k))2 over c ∈ Rk, where
Zt+k−1(k) = (Zt+k−1, . . . , Zt)

′. Therefore, a natural estimate of φk is

φ̂k =

φ̂k1...

φ̂kk

 = R̂−1k

γ̂1...
γ̂k

 .

It can be shown that

φ̂kk =
y′(I −M)w

w′(I −M)w
= P̂

(2)
k .

Moreover, since n−1‖w − ŵ‖2 pr.−−→ C and n−1‖y − ŷ‖2 pr.−−→ C,

P̂
(2)
k − P̂ (1)

k

pr.−−→ 0.

Therefore, P̂
(2)
k is also a consistent estimate of Pk.
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Estimation of Pk

Question 14

How to construct a test of the null hypothesis

H0 : P1 = P2 = · · · = 0 vs H1 : ∼ H0

at the asymptotic 0.05 significance level?

We will show later in this semester that

√
n(φ̂k − φk)

d−→ N(0, I),

provided H0 holds, yielding

√
nP̂

(2)
k

d−→ N(0, 1), k ≥ 1.

Therefore, the testing rule:

Reject H0 if |P̂ (2)
k | >

1.96√
n

has an asymptotic 0.05 significant level.
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CLT for Z̄

Theorem

If {Zt} is a stationary process satisfying

Zt = µ+

∞∑
j=0

bjεt−j ,

where εi
indep.∼ (0, σ2). Moreover, assume that {εt} obeys Lindeberg’s condition and

∞∑
j=1

j1/2|bj | <∞.

Then,
√
n(Z̄ − µ)

d−→ N (0,
∑∞
j=−∞ γj).
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CLT for Z̄

Proof of Theorem

Without loss of generality, we assume that µ = 0. Then

Zt =
∞∑
j=0

bjεt−j =
t∑

`=−∞
bt−`ε`,

and

1
√
n

n∑
i=1

Zi =
1
√
n

n∑
i=1

i∑
`=−∞

bi−`ε`

=
1
√
n

n∑
`=−∞

n∑
i=`∨1

bi−`ε`

=
1
√
n

0∑
`=−∞

(
n∑
i=1

bi−`

)
ε` +

1
√
n

n∑
`=1

(
n∑
i=`

bi−`

)
ε` := (I) + (II).

Note that
∑∞
j=1 j

1/2|bj | <∞ implies n1/2
∑∞
i=n |bi| → 0 as n→∞.
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CLT for Z̄

Proof of Theorem

Since for any ε > 0,

Var((I)) =
σ2

n

0∑
`=−∞

(
n∑
i=1

bi−`

)2

≤
σ2

n

n∑
i=1

n∑
j=1

0∑
`=−∞

|bi−`||bj−`|

≤
σ2

n

n∑
i=1

n∑
j=1

 0∑
`=−∞

b2i−`

1/2 0∑
`=−∞

b2j−`

1/2

≤
σ2

n

 n∑
i=1

0∑
`=−∞

|bi−`|

2

= σ2

(
1
√
n

n∑
i=1

∞∑
k=i

|bk|
)2

≤ σ2

 1
√
n

εn∑
i=1

i|bi|+
1
√
n

n∑
i=εn+1

i|bi|+
√
n
∞∑

i=n+1

|bi|

2

≤ σ2

√ε εn∑
i=1

i1/2|bi|+
n∑

i=εn+1

i1/2|bi|+ o(1)

2

,

it holds that Var((I)) −→
n→∞

0, and hence (I) = op(1) follows from Chebyshev’s inequality.
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Proof of Theorem

Note that

(II) =
1
√
n

[εn(b0) + εn−1(b0 + b1) + · · ·+ ε1(b0 + · · ·+ bn−1)]

=
S
√
n

n∑
i=1

εi −
1
√
n

n∑
i=1

εiRin := (III) + (IV),

where S =
∑∞
i=0 bi and Rin =

∑∞
j=n−i+1 bj .

Since (III)
d−→ N (0, S2σ2) and

Var((IV)) ≤
σ2

n

n∑
i=1

 ∞∑
j=n−i+1

|bj |

2

=
σ2

n

n∑
i=1

 ∞∑
j=i

|bj |

2

=
σ2

n

n∑
i=1

i−1/2i1/2
∞∑
j=i

|bj |

2

≤
C

n

n∑
i=1

i−1 −→
n→∞

0

where C is a constant, the proof is completed by S2σ2 =
∑∞
j=−∞ γj and Slutsky’s

theorem.
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Remark

If
∑∞
j=1 j

1/2|bj | <∞ is replaced with
∑∞
j=1 |bj | <∞, then the above theorem still holds.

To see this, we recall that

1
√
n

n∑
i=1

Zi =
1
√
n

0∑
`=−∞

(
n∑
i=1

bi−`

)
ε` +

S
√
n

n∑
i=1

εi −
1
√
n

n∑
i=1

εiRin := (I) + (III) + (IV),

where S =
∑∞
i=0 bi, Rin =

∑∞
j=n−i+1 bj , and (III)

d−→ N (0,
∑∞
j=−∞ γj).

Now it suffices to show that Var((I)) = o(1) and Var((IV)) = o(1).

Since
∑∞
j=n |bj | → 0 as n→∞, we have

Var((I)) ≤
σ2

n

n∑
i=1

∞∑
`=0

b2i+` +
2σ2

n

n∑
i=1

∞∑
j=i+1

∞∑
`=0

|bi+`||bj+`| =
σ2

n

n∑
i=1

 ∞∑
j=i

|bj |

2

= o(1).

Similarly, Var((IV)) ≤ σ2n−1
∑n
i=1

(∑∞
j=i |bj |

)2
= o(1).
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Now I will show that
`n∑

j=−`n

γ̂j
pr.−−→

∞∑
j=−∞

γj ,

as `n →∞ and `n = o(n1/2). Note first that∣∣∣∣∣∣
`n∑

j=−`n

γ̂j −
∞∑

j=−∞
γj

∣∣∣∣∣∣ ≤
`n∑

j=−`n

|γ̂j − γj |+ 2
∞∑

j=`n+1

|γj | := (V) + (VI).

Moreover, since E[(
√
n(γ̂j − γj))2] ≤ C where C is some constant, we have

E((V)) =

`n∑
j=−`n

E|γ̂j − γj | ≤
`n∑

j=−`n

[E((γ̂j − γj)2)]1/2 ≤ Cn−1/2(2`n + 1) −→
n→∞

0,

and thus (V) = op(1) is obtained by Markov’s inequality. Furthermore,

(VI) ≤ 2σ2
∞∑

j=`n+1

∞∑
s=0

|bs||bs+j | = 2σ2
∞∑
s=0

|bs|
∞∑

j=`n+1

|bs+j | ≤ 2σ2
∞∑
s=0

|bs|
∞∑

j=`n+1

|bj | −→
n→∞

0,

provided
∑∞
j=0 j

1/2|bj | <∞. Hence

Z̄ ±
z1−α/2

√∑`n
j=−`n γ̂j√
n

is an asymptotic 100(1− α)% confidence interval for µ.
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