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Introduction to Nonlinear Least Square Estimates

o Let
vi=gi(0o) +e, i=12,...,n,

where 6y is the true parameter belonging to a parameter space ©,
gi(69) is specified up to the parameter 6y (i.e., gi(-) is known but 6y is
unknown) and is independent of ¢;, and ¢; are i.i.d random noises with
E(e;) = 0 and Var(e;) = o2.

@ The nonlinear LSE 6, of 6y is given by

6, = argminS,(0),
0c©
where S,(8) = Y7, (vi — gi(0))2. Moveover, o2 can be estimated by
A leia
o ~Sn(00).

@ In the following , we shall focus on the asymptotic behaviors of 0,.
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Assume

(C1) Foranye >0 and d > 0, there exists ) > 0 s.t.

Pr ((;2& % z”:(gi(e) — 8i(60))* < 77) <9,

i=1

holds for all large n, where ®, = ©® — {0 : |0 — || < €}.
(C2) For any €,01 >0,

min
0cO.

Then, én B 0.

n

1 19 1
”,Z:;g — &i(60))ei

>(51> — 0, asn— oco.

e Remark. (C1) and (C2) are easily satisfied in the AR(1) case in which
gi(f) = byi—
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Proof. Some key facts (please check by yourself)

(1) Sn(0) = Xo1q 6i” =231 1 (8i(0) — &i(60))ei + 271 (8i(0) — £i(00))?.
(2) By the definition of 6,

Pr (ergge $n(8) > sn(eo)) < Pr(||0, — 80| < €).

Therefore, 8, 2 g is guaranteed by for any € > 0,
i <
Pr (9@'@'95 5n(0) < 5n(90)) -0,

as n — Q.
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(3) Using key fact (1),
Pr ((;’286 Sq(6) < sn(eo))

1
> min " (&(0) - &i(60))’).

2
< Pr (— max
neeO.

1=

> (&i(6) — &i(60))e;
1

Therefore, GA,, LA 6o is, in turn, implied by for any € > 0,

1y
> min 3" (6i(0) ~ &(00)7) — 0.

- (1)

Pr (max
0cO,

23 (66) ~ &(00)e:

as n — oo. In the appendix given at the end of this note, we will

show that this is ensured by (C1) and (C2), which is the required
result. O
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Theorem

Assume

(A1) n7t i Vegi(60)Ve;' (6o) 2, C, where C is a positive definite
non—ir:alndom matrix.

(A2) nt 37, V2gi(8o)e; > 0.

(A3) {Vgi(600)zi} is a martingale difference sequence obeying the
conditional Lindeberg condition.

Then,

(6, — 00) & N(0,C102).
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Proof. We now give a “heuristic” argument. Again, some key facts,

(1) 0 =VS,(0,), provided S,(8) is sufficiently smooth and @q is not on
the boundary of ©, where V5,(0) = (8‘3"9(10), ce 8‘3”6&0))T, and k is
the number of parameters.

(2) By Taylor's theorem and the consistency of 0,
0 ~ VSn(8o) + V2S,(60) (8, — ),

2
where V25,(6g) = (%%(Z))lgi,jgk'
(3) By fact (2),

V(B — 60) ~ (v25,(60)) " (~ V5, (60))
( ZVg,(eo)Vg, (60) ——Zv £i(60)c ) ng, 60)e

Then the required result follows from the assumptions. O
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ARMA Models with Zero Mean

o Application to the MA(1) model. Consider an MA(1) model,
Yt = € — Oo€e—1.
@ To estimate 6, we use the conditional least squares estimate(CLS),

6o = argmin S,(0),
0€[—1+6,1-4]

where § is an arbitrarily small positive number and S,(6) = >_7_; €2(6)
with
1

ee(0) = 1_gBlt  t~ (—Oyt-1—Pyro—--) = ye — &(0).
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o (Consistency) , — 0, since (C1) and (C2) are satisfied.
@ (CLT) According to (1),
(B, — 06) % N(0, C1o2),

where

= plim— Z gi( 90 = plim— Z

n—oo N n—oo N

Notice that when X, % ¢, we denote it by plim,_, . X, = c. To compute
C, note that

Byt Yi-1 €t-1 N
! = = = = J .
€t(90) (1 — 908)2 (1 — 905)2 1— 6,B ;90 Et—1—j,

which is an AR(1) process with AR coefficient 6y. Therefore,
C = 02/(1 - 62), and consequently, \/n(f, — 6o) % N(0,1 — 62).
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o Remark 1. Since yp,y_1--- are unobservable in practice, their values
are set to 0. This is why the name “conditional” is given. In our
asymptotic analysis, we still “pretend” yg,y_1,... are observed because
this can substantially simplify the mathematical derivation. The
difference between these two will vanish asymptotically.

e Reamrk 2. For the AR(1) model, y; = ¢oy:—1 + €+, we have already
shown that the LSE ¢, of ¢g satisfies

V(dn — d0) % N(0,0%/~0) = N(0,1 — 43).
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e Application to ARMA(1,1) model. Consider a ARMA(1,1) model,

— ¢oyt—1 = €r — Op€r—1.

@ We have the following facts

(1) ee(0,0) = (i Sg)yt

(2) Sn(,0) = 3271 €%(9,0).
(3) The CLS estimate of (¢0,90) is given by

(ng én) = argmin(¢79)€@5n(¢, 0),

where ©® =[-1+40,1—6] x [-1+4,1—4].
(4) The limiting distribution of (¢, 8,) is

(zn ¢0
A (5)-(@)] # moen
where C = pllmn%oo% Z?:l Vet(gbO? GO)VEI(¢07 90)
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@ To find C, we note that

86t(¢0790) e 4 S | — W
- t—1,
9o 1—6,B 1—¢oB
Oct(po,00) (L —oB)yr—1 €1 _
90 (1-60B)2 16,8 T

and hence

C = E[Ver(60) Ve, (60)]

< o?/(1—o®) —a?/(1- ¢o9o))
—02/(1—¢obo)  o2/(1—60°) )~

Notice that

- (S (]

o2

— J
Z‘M"” T oy’
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e Application to ARMA(p, g) model. Consider a ARMA(p, g) model,

Zi — 010Z2t-1 — - — OpoLt—p =€t — b106t-1 — -+ — Og.06t—q>
o Define 1 6,8 6, B
—p1B—— ¢y
= Z
() 1—0.B— - — 0,89 t

where = (¢1, , ¢p, 01, - ,04) . The CLS estimate of 7 is

fn = argminS,(n),
nee

with S,(n) = >_7_, €2(n) and © is the stataionary region of the
ARMA(p, g) model.

@ The limiting distribution of 7, is
V(i —m0) % N(0,0°CY),

where C = E[Ve(10) Ve (n0)]-
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o To predict Z,;1, we use

A

Zn—i—l(ﬁn) = Zn—&—l - En—l—l(ﬁn)'
o To predict Z, 2, we use
2n+2(7¢;n) = Zn+1 - 5:+2(ﬁn)’

where €7 5(71n) is €ny2()n) with Z, 1 therein replaced by 2,,+1(7“],,),
called plug-in method.
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@ For the mean squared error, we focus on one-step prediction. Note that
E[Zn11 = Zos1(An)” = Elent1(m0) + (ent1(An) — nt1(m0))]
=0’ + Elent1(nn) — 5n+1(770)]2a
and
N 2 . . 2
nE (€n41(An) — £nt1(10))” ~ E(Vepi1(m0)v/n(fin — o))
= E(v/n(fin = m0) " Veni1(m0) Ve 1 (10)v/n(A1n — m0)).- (2)

@ Discussions:

(1) Vept1(no) and v/n(f, — no) are asymptotically independent. This
is similar to AR(p) models which we've discussed before.
(2) Therefore, the (2) is asymptotically equivalent to

E(ﬁ(ﬁn —10) " E(Vent1(m0)Ve,i1(m0))v/n(Ain — 770)>-
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e Discussions (continue):
(3) E(Vent1(mo) Ve, 1(mo)) = C because by our hypothesis ensures

plim — ZVEt(no)VEt (m0) = plim Zng(no)Vgt (m0) = C,

n—oo N

and Ve(np) is stationary.
(4) By (3) and CLT for 7j,, we have

V(i — WO)TE(V5n+1(77U(>2)V5n+1(770))\f( —"0) 4 S (p+ q),

and hence
E(V/n(i1n —10) " Vens1(m0) Vey1(m0)v/n(in — m0) ) < (p+ q)o>.
Consequently,

(p+q)o®

E[Zn+1 - 2n—&—l(ﬁn)]z ~o?+ n
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Model Selection

@ Consider the following two information criteria,

2
AIC = log #3(p.q) + P9

C
BIC = log 62(p, q) + Glp+a)

)

where C, — 0o, C,/n— 0, and 62(p,q) = n=1 37, €2(n).

@ It can be shown that BIC is model selection consistent in ARMA(p, q)
model; see E. J. Hannan (1980, Annals of Statistics).
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ARMA Models with Non-Zero Mean

e Application to AR(1) model. Consider a AR(1) model,

Zy — o = ¢o(Zr—1 — po) + €.

@ Define

er(w, @) = (1= ¢B)(Zt —p) = (1 = ¢B)Ze — (1 = §)p.

@ We have two estimation methods:

(1) Minimize Sy, 0) = Y e2(u0).
(2) Estimate u by Z and then treat Z; — Z as a zero-mean process
whose estimation problems have been discussed previously.
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e For method (1), we have
(1) ec(u0s do) = —(1 — do).

(2) %Et(MOa ¢0) = _(Zt—l - Mo)-
(3) Notice that

C

() ()
_ ((1 —0¢>o) 02/(10_ ¢%)) )

Hence, the limiting distribution of (,EL,,,QZA),,) is

AE)-) (075 129)

Ching-Kang Ing (NTHU)




e For method (2), we have

and
1 n
E(% 2(21 — Mo ) JZOO’YJ ’70 1 +2p1 —|—2p2 + . )
2 2
=0(=5 ) = T
as n — 0o.

@ This means Z is as good as (asymptotically equivalent to) fi, obtained
in method (1). Moreover, it can be shown that the LSE of ¢o based on
Zy — Z is as good as ¢p,.
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e Application to MA(1) model. Consider a MA(1) model,

Zy = po + € — toer—1.
@ Define
Zy —p
0) = .
Ef(iu’? ) 1 . GB
@ Again, we have two estimation methods:

(1) Minimize S,(p,0) = > e2(u, 0). B
(2) Estimate p by Z and then treat Z; — Z as a zero-mean process.
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@ For method (1), we have
(1) 2t(p0,00) = —1/(1 — o).

(2) Spee(po,00) = et-1/(1 — boB).
(3) Since

= (" im)

the limiting distribution of (7in, 0,) is

o () =6 (" %))
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e For method (2), we have
> 2 2 2
E(\/E(Z — ,U,o)) — 0 (1 — 90) s

as n — OQ.

@ This means that method (1) and method (2) are asymptotically
equivalent.

o Exercise. The application to ARMA(1,1) model is left as an exercise.
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@ In the following, we focus on the AR(1) model with non-zero mean, i.e.,
Zt — pio = ¢o(Ze—1 — o) + €.
@ To predict Z,;1, we use

2n+1 = Zn—i—l - 6n—i—l(ﬁn, an)
= £n+1 — (1 - $nB)Zn+l + (]- - ﬁgn)ﬂn
= (Zgn(Zn - ﬂn) + /Aln~
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@ The one-step mean squared error is
E(Znt1 = Znt1)” = E(ens1(fim, 0))
= E[€n+1 + (€n+1(,an7 én) - €n+1(M0a ¢0))]2

. 1 n

% 0%+ ~E[Ver 1 (m0)v/a(n — mo)]?
2

~ 0'2 (1 + ;) .

where 0o = (10, $o0) and iy = (fin, Pn)-
e What if we use Z to predict Zpn+1? Let S¢ = Z; — po, then the one-step
mean squared error becomes

E(Zn41 — 2)? = E(Spi1 — (Z — 10))?
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Regression Models with Time Series Error

@ Consider the following model
Ye = Bo,0 + B1,0oXe1 + -+ BroXe + € = fr + €,
where ¢; ~ ARMA(p, q), i.e.,
(I—¢10B—--—¢poBPler = (1 —010B —--- —0q0B7)0:,

with d;'s are i.i.d. random variables with mean 0 and variance o?.

o The CLS of 119 = (80,05 -« Br,0, #1,05 - - - » Dp,05 01,05 - - - 0g0) | is

Nn = argminSy(n) = argmin Z 5?(’7)7

nee neo
where o,(B)
_®p
5t(77) ep(B) 5t(ﬁ)a
with £:(8) = (vt — Bo — - - — Brxe,r) for t > 1 and €4(3) = 0 for t <O0.
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@ In the following, we will focus on the following three scenarios:
(a) er ~ AR(1),
(b) e+ ~ MA(1),
(c) e+ ~ ARMA(1,1).

e Case 1: fi = oy, i€,
¥t = Bo,o + €t
In this case, it reduces to the case that ARMA models with non-zero

mean, which we have already shown their properties in the previous
section.
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o Case 2: f; = ,80,0 + ﬁLot, ie.,
vt = Boo + Prot + &t

We first consider the scenario (a), e ~ AR(1). It is easy to see that
(1) 0t(n) = (1 — ¢1B)(yt — Bo — Put).

(2) Voe(mo) = (= (1 = ¢1.0). ~(1 ~ 610B)t. ~ee-1) "

(3) fin =10 ~ —( 1y Voe(no) Vo] (m0)) " 31y Voe(mo)de.

e Remark 1. Since in this case n71 Y 7_, Vé,(10) V4, (10) does not
converge to a constant matrix, the previous theory on the CLS estimate,

which require N7 3°7_, V§,(10)Vd{ (n0) have a constant limit, is no
longer applicable here. So, the analysis has to “redo from scratch”.

Nonlinear Least Square Estimates and Estima
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Remark 2. Fact (3) follows from the fact that
0 = VSn(7n) ~ VSn(mo) + (stn(n))_l(ﬁn — 7o),
with VSp(no) =23 11 Vde(n0)d: and
V2Sa(m0) =2 Vée(no) V4, (mo) +2 (V?6(10))6:.
t=1 t=1

Notice that 2Y"7_;(V?23(mo))d: is asymptotically negligible compared to
> i=1 Vor(n0) V{ (m0)-
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o Let D = diag(1,1/n,1), it follows that

n 1—¢1p0 1—¢10 i n 1— 10
=m0 | D | (1= 10B)t | | (1= 10B)t (1 - ¢10B)t | ¢
t=1 €t—1 €t—1 t=1 €t—1

I 1—¢10 1—¢1p0 T ! n 1—¢10
AD DY [ (1—¢10B)t| [(1—¢10B)t| D DZ (1 - hr0B)t | ¢
t=1

€t—1 €t—1 €t—1
[ 1—¢1p0 1—¢0 T n 1—¢10
~D (1—10B)t/n| | (1 — ¢10B)t/n > | (1= ¢10B)t/n | 6
t=1 €t—1 €t—1 t=1 €t—1
and hence
1 1—¢1p0 1—¢1p0 1
VnD™! = (1= ¢10B)t/n| [ (1= 10B)t/n
n t=1 €r—1 €t—1
1- ¢1 0 1 2
1- B Ot N(0,C™ .
N Z PraB)t/n % N(0,C7%)
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@ To compute C, notice that

1—¢1p0 1— 10 '
C =plim= Z (1—¢10B)t/n | | (1 — ¢r0B)t/n
nrooll €t—1 €r—1

1 (1—¢10)* (1= ¢1,0)(1 — ¢1,0B)t/n (1 —¢1,0)e1
=plim > - ((1 = ¢r0B)t/n)? (1= ¢roB)tec1/n

n—o0o —1 _ _ e

1 (1—¢10)> (1 —10)’t/n (1 —¢10)er1

Aplim = - (1= pro)t/n)? (1- dro)tec-a/n

n
n—oo N _ _ e,

The last step holds because t ~ t — 1.

Ching-Kang Ing (NTHU) Nonlinear Least Square Estimates and Estima 32/ 47



@ Now, we list some key facts to simply this matrix
(1) Yt~ [ tdt ~n?/2.
(2) Yp 2~ [[ t2dt ~ n?/3.
(3) Var(n™2 > 7_; tes—1) = O(1/n) = 0

@ To show fact (3), remember that Amax(BTAB) < Amax(A)Amax(B T B),
provided A is symmetric and positive definite. Then the required result
follows from the assumption that Amax(R) is bounded and

() |

> max Z t2

t=1
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@ Therefore, we have

(1—¢10)®> (L—¢10)?/2 0
C=[(1-¢10)3?/2 (1-6¢1,0)%/3 0 :
0 0 a?/(1—¢i,)
and hence
ns 0 0 0 AN —4) 0
0 5 0 | (a—mo) SN[ [0],[-6)r 122 0 :
0 0 n® 0 0 0 1-¢2,

where A = lim,_o Var(n™%5 Y7 €;) = 02/(1 — ¢10)*.
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o We next show that the LSE (o, 51) (method (2) for the regression part)
is asymptotically equivalent to (5p, 31). Note first that

w9 ()]
et (30 0)) SOF-0) ()

SO EATERIEES oA

- (1}2 1?2) h <:_:§§??_:11;) '
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@ For the first element,
1\ 02
E (ﬁ ;€t> = nVar(e J_E_:OO v = (i- ¢10)
@ For the second element,
1l 2 1Ll ) - n n )
— i=1 j= i=1 j=

Using the fact that p; = ¢|1j7‘0, we have

E<ni5§tq>2= ,1<Z¢ +ZJ¢>’10>

j=1 Jj=i+1
S—_— ——
(51) (52)
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o We first simply (51),
Z¢1‘d: o 2000 e+ ik

:i¢(1)0+(i_1)¢%0+"'+(/‘—(I‘—1))¢i})1
1_¢10 i1 (Z)J i—1 (p]
T o jZ::J 10~ 72 P10 JZ:;J 10°

)

o Similarly, (S2) can be simplified as

n

(S2)= Y jthy =(i+1)dio+(i+2)¢To+ -+ (i+(n—1i)eTy
j:i+1
-1 . igro
_;J(ﬂlo—i—@lo ¢1,0 1—¢10

Ching-Kang Ing (NTHU) Nonlinear Least Square Estimates and Estima 37 / 47



o |t follows that

n
214+ 10 1 o2
2 9
te ] — = .
( 152 t) 3: - 1— 10 3(1_¢1,0)2

o Similarly, we have

2

= ZZJ“J - 1_07%0)

i=1 j=1

@ As a result,

(5 ) () ()] 2 m((©) e (s 22) )

meaning that (Bg, 31)T is asymptotically equivalent to (Bo,ﬁAl)T

@ In fact, we can further the LSE qbl of ¢1,0 based on the detrended series
— Bo — Pt is asymptotically equivalent to gbl
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@ We now turn to the scenario (b), e ~ MA(1).

@ Main result.

5 0 0 0 4p  —4p 0
0 5 0 |(fa-m) SN| (0] |-6v 126 0 ,
0 0 n® 0 0 0 1-62,

where ¢ = lim, 00 Var(n™05 37 ;) = (1 — 610)%0>.

@ Some details:

(1) be(m) = 2pfoput,

(2) Vée(mo) = (=1/(1 = 010), —t/(1 — 010B),6:/(1 — 61,0B)) "
(3) —t/(1—010B)~—t/(1 —61p) as t is large.
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@ Some details (continue):
(4) Let D = diag(1,n1,1), then

1 n
= DV5i(m0)V{ (m0)D 5 C,
n t=1
where
1/(1—010)* 1/(2(1—610)?) 0
C=|1/(2(1—610)%) 1/(3(1—610)?) 0
0 0 o?/(1—63,)
(5) It follows that
4 —4p 0
Clo?=|-6y 129 0 ,
0 0 1-63,
where ¢ = (1 — 01 9)%02.
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@ It can be shown that the LSE (Bo,Bl)T of (Bo, B1)" is asymptotically
equivalent to (60,61) , and the CLS of 01 g based on detrended time
series y; — o — [1t, denoted by 1, is asymptotically equivalent to 0.

o Exercise. The scenario (c), ¢, ~ ARMA(1, 1), is left as an exercise.
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@ To predict y,y1,we use

In1(1n) = Ynt+1 — Gnt1(Mn)-
o To predict yp12, we use

In+2(Nn) = Ynt2 — 5:+2(77n)7

where 05 »(7n) is 0ny2(71n) with y, 11 therein replaced by §iny1(7n).
@ The predictor of y,1p, h > 3, can be obtained recursively using the same
manner.
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@ For the mean squared error, we focus on one-step prediction, with
fr = Bo,o + P10t and €; is an AR(1) model. Note that

E()/nJrl - yn+1(ﬁn))2 = E(5n+1(ﬁn) - 6n+1("70) + 6n+1(n0))2
= 0+ ~E[n(0ns1() — dni1(m0))°],

and

€ [(Sn41n) ~ 3013(10))°] < E (V57,1 (00) o — )

~(1 - ¢10) !
—E || —-(1—=10B)(n+1)/n| Di(fin—m0)
e
[ [~ 610)\ | :
~E || —(1—¢10)| Di(fn—m0)
e,

where D1 = diag(n®3, n'-5 n03).
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o Notice that

(1) D1(fn —mo) and (—(1 — ¢1,0), —(1 — ¢1,0), €n) are asymptotically
independent.

(2) Dy(fin — m0) > N(0,X), where

4N —6) 0
> =|—-6) 12\ 0
0 0 1-— qﬁo

with A = 02 /(1 — ¢10)>.
(3) If X ~ (i, ), then E(XTAX) = u"Ap + tr(AX).
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@ Therefore, we obtain

NE(8n41(An) — Sns1(10))?

[ /(1= ¢10)? (1—¢10)?
Atr || (1= 010)* (11— ¢10)?

'\ o 0

[ Ao\l 0
~tr [o? [ A N 0

L 0 0 (1—¢3,
= 502,

o As a result,

E(Yn-i—l - yn+1(ﬁn))2 =o? +

@ Since 5 # 3 (the number of estimated

0
0 )Y
a?/(1—¢3p)
4N —6) 0
—6X 12\ 0
)t 0 0 1—¢3,

502
o
parameters), this mean squared

prediction error in nonstationary time series is quite different from that in

the stationary case. We will go back t
root models.
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Appendix

Proof of (1). Define W, as

n = max
06@5

Then,

- I 1 0 1
n Z(g — &i(6o))ei e n =

2 min z > (&i(0) - gi(eo))z} :

+Pr <{ min %Z(gi(ﬂ gi(0))* < n}) :
=1
By (C1), we obtain
Pr(Wn) < Pr (W n {9"25‘ % (gi(0) — &i(60))* > }) + 9.
=1
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Moreover, by definition of W,,, we have

n

23" (6i(6) ~ gi(00))ei

i=

Pr(W,) <P
() = (m@

Zn) + 0.

Since the first term on the RHS goes to zero by (C2), we have the
required result.
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