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Introduction to Nonlinear Least Square Estimates

Let
yi = gi (θ0) + εi , i = 1, 2, . . . , n,

where θ0 is the true parameter belonging to a parameter space Θ,
gi (θ0) is specified up to the parameter θ0 (i.e., gi (·) is known but θ0 is
unknown) and is independent of εi , and εi are i.i.d random noises with
E(εi ) = 0 and Var(εi ) = σ2.

The nonlinear LSE θ̂n of θ0 is given by

θ̂n = argmin
θ∈Θ

Sn(θ),

where Sn(θ) =
∑n

i=1(yi − gi (θ))2. Moveover, σ2 can be estimated by

σ̂2n =
1

n
Sn(θ̂n).

In the following , we shall focus on the asymptotic behaviors of θ̂n.

Ching-Kang Ing (NTHU) Nonlinear Least Square Estimates and Estimations in ARMA Models 3 / 47



Theorem

Assume

(C1) For any ε > 0 and δ > 0, there exists η > 0 s.t.

Pr

(
min
θ∈Θε

1

n

n∑
i=1

(gi (θ)− gi (θ0))2 < η

)
< δ,

holds for all large n, where Θε = Θ− {θ : ‖θ − θ0‖ < ε}.
(C2) For any ε, δ1 > 0,

Pr

(
min
θ∈Θε

∣∣∣∣∣1n
n∑

i=1

(gi (θ)− gi (θ0))εi

∣∣∣∣∣ > δ1

)
→ 0, as n→∞.

Then, θ̂n
p→ θ0.

Remark. (C1) and (C2) are easily satisfied in the AR(1) case in which
gi (θ) = θyi−1.
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Proof. Some key facts (please check by yourself)

(1) Sn(θ) =
∑n

i=1 εi
2−2

∑n
i=1(gi (θ)−gi (θ0))εi +

∑n
i=1(gi (θ)−gi (θ0))2.

(2) By the definition of θ̂n,

Pr
(

min
θ∈Θε

Sn(θ) > Sn(θ0)
)
≤ Pr(‖θ̂n − θ0‖ < ε).

Therefore, θ̂n
p→ θ0 is guaranteed by for any ε > 0,

Pr
(

min
θ∈Θε

Sn(θ) ≤ Sn(θ0)
)
→ 0,

as n→∞.
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(3) Using key fact (1),

Pr
(

min
θ∈Θε

Sn(θ) ≤ Sn(θ0)
)

≤ Pr
(2

n
max
θ∈Θε

∣∣∣ n∑
i=1

(gi (θ)− gi (θ0))εi

∣∣∣ ≥ min
θ∈Θε

1

n

n∑
i=1

(gi (θ)− gi (θ0))2
)
.

Therefore, θ̂n
p→ θ0 is, in turn, implied by for any ε > 0,

Pr
(

max
θ∈Θε

∣∣∣2
n

n∑
i=1

(gi (θ)− gi (θ0))εi

∣∣∣ ≥ min
θ∈Θε

1

n

n∑
i=1

(gi (θ)− gi (θ0))2
)
→ 0,

(1)

as n→∞. In the appendix given at the end of this note, we will
show that this is ensured by (C1) and (C2), which is the required
result.
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Theorem

Assume

(A1) n−1
n∑

i=1
∇gi (θ0)∇g>i (θ0)

p→ C, where C is a positive definite

non-random matrix.

(A2) n−1
∑n

i=1∇2gi (θ0)εi
p→ 0.

(A3) {∇gi (θ0)εi} is a martingale difference sequence obeying the
conditional Lindeberg condition.

Then, √
n(θ̂n − θ0)

d→ N(0,C−1σ2).
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Proof. We now give a “heuristic” argument. Again, some key facts,

(1) 0 = ∇Sn(θ̂n), provided Sn(θ) is sufficiently smooth and θ0 is not on

the boundary of Θ, where ∇Sn(θ) = (∂Sn(θ)∂θ1
, . . . , ∂Sn(θ)∂θk

)>, and k is
the number of parameters.

(2) By Taylor’s theorem and the consistency of θ̂n,

0
.∼ ∇Sn(θ0) +∇2Sn(θ0)(θ̂n − θ0),

where ∇2Sn(θ0) =
(∂2Sn(θ)
∂θi∂θj

)
1≤i ,j≤k .

(3) By fact (2),

√
n(θ̂n − θ0)

.∼
(1

n
∇2Sn(θ0)

)−1(
− 1

n
∇Sn(θ0)

)
=

(
1

n

n∑
i=1

∇gi (θ0)∇g>i (θ0)− 1

n

n∑
i=1

∇2gi (θ0)εi

)−1 1√
n

n∑
i=1

∇gi (θ0)εi .

Then the required result follows from the assumptions.
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ARMA Models with Zero Mean

Application to the MA(1) model. Consider an MA(1) model,

yt = εt − θ0εt−1.

To estimate θ0, we use the conditional least squares estimate(CLS),

θ̂0 = argmin
θ∈[−1+δ,1−δ]

Sn(θ),

where δ is an arbitrarily small positive number and Sn(θ) =
∑n

t=1 ε
2
t (θ)

with

εt(θ) =
1

1− θB
yt = yt − (−θyt−1 − θ2yt−2 − · · · ) = yt − gt(θ).
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(Consistency) θ̂n → θ, since (C1) and (C2) are satisfied.

(CLT) According to (1),

√
n(θ̂n − θ0)

d→ N(0,C−1σ2),

where

C = plim
n→∞

1

n

n∑
t=1

(
g ′t(θ0)

)2
= plim

n→∞

1

n

n∑
t=1

(
ε′t(θ0)

)2
.

Notice that when Xn
p→ c , we denote it by plimn→∞Xn = c . To compute

C , note that

ε′t(θ0) =
Byt

(1− θ0B)2
=

yt−1
(1− θ0B)2

=
εt−1

1− θ0B
=
∞∑
j=0

θ0
jεt−1−j ,

which is an AR(1) process with AR coefficient θ0. Therefore,

C = σ2/(1− θ20), and consequently,
√

n(θ̂n − θ0)
d→ N(0, 1− θ20).
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Remark 1. Since y0, y−1 · · · are unobservable in practice, their values
are set to 0. This is why the name “conditional” is given. In our
asymptotic analysis, we still “pretend” y0, y−1, . . . are observed because
this can substantially simplify the mathematical derivation. The
difference between these two will vanish asymptotically.

Reamrk 2. For the AR(1) model, yt = φ0yt−1 + εt , we have already
shown that the LSE φ̂n of φ0 satisfies

√
n(φ̂n − φ0)

d→ N(0, σ2/γ0) = N(0, 1− φ20).
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Application to ARMA(1,1) model. Consider a ARMA(1,1) model,

yt − φ0yt−1 = εt − θ0εt−1.

We have the following facts

(1) εt(φ, θ) = (1−φB1−θB )yt .

(2) Sn(φ, θ) =
∑n

t=1 ε
2
t (φ, θ).

(3) The CLS estimate of (φ0, θ0) is given by

(φ̂n, θ̂n) = argmin(φ,θ)∈ΘSn(φ, θ),

where Θ = [−1 + δ, 1− δ]× [−1 + δ, 1− δ].
(4) The limiting distribution of (φ̂n, θ̂n) is

√
n

[(
φ̂n
θ̂n

)
−
(
φ0
θ0

)]
d−→ N(0,C−1σ2),

where C = plimn→∞
1
n

∑n
t=1∇εt(φ0, θ0)∇ε>t (φ0, θ0).
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To find C, we note that

∂εt(φ0, θ0)

∂φ
=
−yt−1

1− θ0B
=
−εt−1

1− φ0B
:= Wt−1,

∂εt(φ0, θ0)

∂θ
=

(1− φ0B)yt−1
(1− θ0B)2

=
εt−1

1− θ0B
:= St−1,

and hence

C = E
[
∇εt(θ0)∇ε>t (θ0)

]
=

(
σ2/(1− φ02) −σ2/(1− φ0θ0)
−σ2/(1− φ0θ0) σ2/(1− θ02)

)
.

Notice that

E(Wt−1St−1) = E

[
−
( ∞∑

j=0

φ0
jεt−1−j

)( ∞∑
j=0

θ0
jεt−1−j

)]

= −
∞∑
j=0

φ0
jθ0

jσ2 = − σ2

1− φ0θ0
.
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Application to ARMA(p, q) model. Consider a ARMA(p, q) model,

Zt − φ1,0Zt−1 − · · · − φp,0Zt−p = εt − θ1,0εt−1 − · · · − θq,0εt−q,

Define

εt(η) =
1− φ1B − · · · − φpBp

1− θ1B − · · · − θqBq
Zt ,

where η = (φ1, · · · , φp, θ1, · · · , θq)>. The CLS estimate of η is

η̂n = argmin
η∈Θ

Sn(η),

with Sn(η) =
∑n

t=1 ε
2
t (η) and Θ is the stataionary region of the

ARMA(p, q) model.

The limiting distribution of η̂n is

√
n(η̂n − η0)

d→ N(0, σ2C−1),

where C = E[∇εt(η0)∇ε>t (η0)].
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Prediction

To predict Zn+1, we use

Ẑn+1(η̂n) = Zn+1 − εn+1(η̂n).

To predict Zn+2, we use

Ẑn+2(η̂n) = Zn+1 − ε∗n+2(η̂n),

where ε∗n+2(η̂n) is εn+2(η̂n) with Zn+1 therein replaced by Ẑn+1(η̂n),
called plug-in method.
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For the mean squared error, we focus on one-step prediction. Note that

E[Zn+1 − Ẑn+1(η̂n)]2 = E[εn+1(η0) + (εn+1(η̂n)− εn+1(η0))]2

= σ2 + E[εn+1(η̂n)− εn+1(η0)]2,

and

nE
(
εn+1(η̂n)− εn+1(η0)

)2 .∼ E
(
∇ε>n+1(η0)

√
n(η̂n − η0)

)2
= E

(√
n(η̂n − η0)>∇εn+1(η0)∇ε>n+1(η0)

√
n(η̂n − η0)

)
. (2)

Discussions:

(1) ∇εn+1(η0) and
√

n(η̂n − η0) are asymptotically independent. This
is similar to AR(p) models which we’ve discussed before.

(2) Therefore, the (2) is asymptotically equivalent to

E

(√
n(η̂n − η0)>E

(
∇εn+1(η0)∇ε>n+1(η0)

)√
n(η̂n − η0)

)
.
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Discussions (continue):

(3) E
(
∇εn+1(η0)∇ε>n+1(η0)

)
= C because by our hypothesis ensures

plim
n→∞

1

n

∑
∇εt(η0)∇ε>t (η0) = plim

n→∞

1

n

∑
∇gt(η0)∇g>t (η0) = C,

and ∇εt(η0) is stationary.
(4) By (3) and CLT for η̂n, we have

√
n(η̂n − η0)>E

(
∇εn+1(η0)∇ε>n+1(η0)

)√
n(η̂n − η0)

σ2
d→ χ2(p + q),

and hence

E
(√

n(η̂n − η0)>∇εn+1(η0)∇ε>n+1(η0)
√

n(η̂n − η0)
)

.∼ (p + q)σ2.

Consequently,

E[Zn+1 − Ẑn+1(η̂n)]2
.∼ σ2 +

(p + q)σ2

n
.
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Model Selection

Consider the following two information criteria,

AIC = log σ̂2n(p, q) +
2(p + q)

n
,

BIC = log σ̂2n(p, q) +
Cn(p + q)

n
,

where Cn →∞, Cn/n→ 0, and σ̂2n(p, q) = n−1
∑n

t=1 ε
2
t (η̂n).

It can be shown that BIC is model selection consistent in ARMA(p, q)
model; see E. J. Hannan (1980, Annals of Statistics).
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ARMA Models with Non-Zero Mean

Application to AR(1) model. Consider a AR(1) model,

Zt − µ0 = φ0(Zt−1 − µ0) + εt .

Define

εt(µ, φ) = (1− φB)(Zt − µ) = (1− φB)Zt − (1− φ)µ.

We have two estimation methods:

(1) Minimize Sn(µ, φ) =
∑
ε2t (µ, φ).

(2) Estimate µ by Z̄ and then treat Zt − Z̄ as a zero-mean process
whose estimation problems have been discussed previously.
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For method (1), we have

(1) ∂
∂µεt(µ0, φ0) = −(1− φ0).

(2) ∂
∂φεt(µ0, φ0) = −(Zt−1 − µ0).

(3) Notice that

C = E

[(
−(1− φ0)
−(Zt−1 − µ0)

)(
−(1− φ0)
−(Zt−1 − µ0)

)> ]
=

(
(1− φ0)2 0

0 σ2/(1− φ20)

)
.

Hence, the limiting distribution of (µ̂n, φ̂n) is

√
n

((
µ̂n
φ̂n

)
−
(
µ0
φ0

))
d→ N

((
0
0

)
,

(
σ2/(1− φ0)2 0

0 1− φ20

))
.
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For method (2), we have

√
n(Z̄ − µ0) =

1√
n

n∑
i=1

(Zi − µ0),

and

E
( 1√

n

n∑
i=1

(Zi − µ0)
)2
→

∞∑
j=−∞

γj = γ0(1 + 2ρ1 + 2ρ2 + · · · )

= γ0

( 2

1− φ0
− 1
)

=
σ2

(1− φ0)2
.

as n→∞.

This means Z̄ is as good as (asymptotically equivalent to) µ̂n obtained
in method (1). Moreover, it can be shown that the LSE of φ0 based on
Zt − Z̄ is as good as φ̂n.
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Application to MA(1) model. Consider a MA(1) model,

Zt = µ0 + εt − θ0εt−1.

Define

εt(µ, θ) =
Zt − µ
1− θB

.

Again, we have two estimation methods:

(1) Minimize Sn(µ, θ) =
∑
ε2t (µ, θ).

(2) Estimate µ by Z̄ and then treat Zt − Z̄ as a zero-mean process.
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For method (1), we have

(1) ∂
∂µεt(µ0, θ0) = −1/(1− θ0).

(2) ∂
∂θεt(µ0, θ0) = εt−1/(1− θ0B).

(3) Since

C =

(
1/(1− θ0)2 0

0 σ2/(1− θ20)

)
,

the limiting distribution of (µ̂n, θ̂n) is

√
n

((
µ̂n
θ̂n

)
−
(
µ0
θ0

))
d→ N

((
0
0

)
,

(
σ2(1− θ0)2 0

0 1− θ20

))
.
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For method (2), we have

E
(√

n(Z̄ − µ0)
)2 → σ2(1− θ0)2,

as n→∞.

This means that method (1) and method (2) are asymptotically
equivalent.

Exercise. The application to ARMA(1,1) model is left as an exercise.
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Prediction

In the following, we focus on the AR(1) model with non-zero mean, i.e.,

Zt − µ0 = φ0(Zt−1 − µ0) + εt .

To predict Zn+1, we use

Ẑn+1 = Zn+1 − εn+1(µ̂n, φ̂n)

= Zn+1 − (1− φ̂nB)Zn+1 + (1− φ̂n)µ̂n

= φ̂n(Zn − µ̂n) + µ̂n.

Ching-Kang Ing (NTHU) Nonlinear Least Square Estimates and Estimations in ARMA Models 25 / 47



The one-step mean squared error is

E(Zn+1 − Ẑn+1)2 = E(εn+1(µ̂n, φ̂n))2

= E[εn+1 + (εn+1(µ̂n, φ̂n)− εn+1(µ0, φ0))]2

.∼ σ2 +
1

n
E[∇ε>n+1(η0)

√
n(η̂n − η0)]2

.∼ σ2
(

1 +
2

n

)
.

where η0 = (µ0, φ0) and η̂n = (µ̂n, φ̂n).

What if we use Z̄ to predict Zn+1? Let St = Zt − µ0, then the one-step
mean squared error becomes

E(Zn+1 − Z̄ )2 = E(Sn+1 − (Z̄ − µ0))2

= E
(

Sn+1 −
1

n

n∑
t=1

St

)2 .∼ σ2

1− φ20

(
1 +

1

n

)
.
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Regression Models with Time Series Error

Consider the following model

yt = β0,0 + β1,0xt1 + · · ·+ βr ,0xtr + εt := ft + εt ,

where εt ∼ ARMA(p, q), i.e.,

(1− φ1,0B − · · · − φp,0Bp)εt = (1− θ1,0B − · · · − θq,0Bq)δt ,

with δt ’s are i.i.d. random variables with mean 0 and variance σ2.

The CLS of η0 = (β0,0, . . . , βr ,0, φ1,0, . . . , φp,0, θ1,0, . . . , θq,0)> is

η̂n = argmin
η∈Θ

Sn(η) = argmin
η∈Θ

∑
δ2t (η),

where

δt(η) =
Φp(B)

Θp(B)
εt(β),

with εt(β) = (yt − β0 − · · · − βrxt,r ) for t ≥ 1 and εt(β) = 0 for t ≤ 0.
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In the following, we will focus on the following three scenarios:

(a) εt ∼ AR(1),
(b) εt ∼ MA(1),
(c) εt ∼ ARMA(1,1).

Case 1: ft = β0,0, i.e.,
yt = β0,0 + εt .

In this case, it reduces to the case that ARMA models with non-zero
mean, which we have already shown their properties in the previous
section.
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Case 2: ft = β0,0 + β1,0t, i.e.,

yt = β0,0 + β1,0t + εt .

We first consider the scenario (a), εt ∼ AR(1). It is easy to see that

(1) δt(η) = (1− φ1B)(yt − β0 − β1t).

(2) ∇δt(η0) =
(
− (1− φ1,0),−(1− φ1,0B)t,−εt−1

)>
.

(3) η̂n − η0
.∼ −
(∑n

t=1∇δt(η0)∇δ>t (η0)
)−1∑n

t=1∇δt(η0)δt .

Remark 1. Since in this case n−1
∑n

t=1∇δt(η0)∇δ>t (η0) does not
converge to a constant matrix, the previous theory on the CLS estimate,
which require n−1

∑n
t=1∇δt(η0)∇δ>t (η0) have a constant limit, is no

longer applicable here. So, the analysis has to “redo from scratch”.

Ching-Kang Ing (NTHU) Nonlinear Least Square Estimates and Estimations in ARMA Models 29 / 47



Remark 2. Fact (3) follows from the fact that

0 = ∇Sn(η̂n)
.∼ ∇Sn(η0) + (∇2Sn(η))−1(η̂n − η0),

with ∇Sn(η0) = 2
∑n

t=1∇δt(η0)δt and

∇2Sn(η0) = 2
n∑

t=1

∇δt(η0)∇δ>t (η0) + 2
n∑

t=1

(∇2δ(η0))δt .

Notice that 2
∑n

t=1(∇2δ(η0))δt is asymptotically negligible compared to∑n
t=1∇δt(η0)∇δ>t (η0).
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Let D = diag(1, 1/n, 1), it follows that

η̂n − η0 ∼̇

 n∑
t=1

 1− φ1,0

(1− φ1,0B)t
εt−1

 1− φ1,0

(1− φ1,0B)t
εt−1

>

−1

n∑
t=1

 1− φ1,0

(1− φ1,0B)t
εt−1

 δt

∼̇D

D n∑
t=1

 1− φ1,0

(1− φ1,0B)t
εt−1

 1− φ1,0

(1− φ1,0B)t
εt−1

>D


−1

D
n∑

t=1

 1− φ1,0

(1− φ1,0B)t
εt−1

 δt

∼̇D

 n∑
t=1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

>

−1

n∑
t=1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

 δt ,

and hence

√
nD−1 (η̂n − η0) ∼̇

1

n

n∑
t=1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

>

−1

· 1√
n

n∑
t=1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

 δt
d→ N(0,C−1σ2).
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To compute C, notice that

C =plim
n→∞

1

n

n∑
t=1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

 1− φ1,0

(1− φ1,0B)t/n
εt−1

>

=plim
n→∞

1

n

n∑
t=1

(1− φ1,0)
2 (1− φ1,0)(1− φ1,0B)t/n (1− φ1,0)εt−1

−
(
(1− φ1,0B)t/n

)2
(1− φ1,0B)tεt−1/n

− − ε2t−1


∼̇plim

n→∞

1

n

n∑
t=1

(1− φ1,0)
2 (1− φ1,0)

2t/n (1− φ1,0)εt−1

−
(
(1− φ1,0)t/n

)2
(1− φ1,0)tεt−1/n

− − ε2t−1

 .

The last step holds because t
.∼ t − 1.
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Now, we list some key facts to simply this matrix

(1)
∑n

t=1 t ∼
∫ n
1 t dt ∼ n2/2.

(2)
∑n

t=1 t2 ∼
∫ n
1 t2 dt ∼ n3/3.

(3) Var(n−2
∑n

t=1 tεt−1) = O(1/n)→ 0.

To show fact (3), remember that λmax(B>AB) ≤ λmax(A)λmax(B>B),
provided A is symmetric and positive definite. Then the required result
follows from the assumption that λmax(R) is bounded and

Var

(
n−2

n∑
t=1

tεt−1

)
= n−4

1
...
n


>

E


 ε0

...
εn−1


 ε0

...
εn−1


>
1

...
n


≤ n−4λmax(R)

n∑
t=1

t2.
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Therefore, we have

C =

 (1− φ1,0)2 (1− φ1,0)2/2 0
(1− φ1,0)2/2 (1− φ1,0)2/3 0

0 0 σ2/(1− φ21,0)

 ,

and hencen0.5 0 0
0 n1.5 0
0 0 n0.5

 (η̂n−η0)
d→ N

0
0
0

 ,

 4λ −4λ 0
−6λ 12λ 0

0 0 1− φ21,0

 ,

where λ = limn→∞ Var(n−0.5
∑n

t=1 εt) = σ2/(1− φ1,0)2.
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We next show that the LSE (β̃0, β̃1) (method (2) for the regression part)
is asymptotically equivalent to (β̂0, β̂1). Note first that

diag(
√

n, n1.5)

[(
β̃0
β̃1

)
−
(
β0,0
β1,0

)]

= diag(
√

n, n1.5)

(
n∑

t=1

(
1
t

)(
1
t

)>)−1 n∑
t=1

(
1
t

)[
yt −

(
1
t

)>(
β0,0
β1,0

)]

=

(
1

n

n∑
t=1

(
1

t/n

)(
1

t/n

)>)−1
1√
n

n∑
t=1

(
1

t/n

)
εt

→
(

1 1/2
1/2 1/3

)−1(
n−0.5

∑n
t=1 εt

n−1.5
∑n

t=1 tεt

)
.
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For the first element,

E

(
1√
n

n∑
t=1

εt

)2

= nVar(ε̄)→
∞∑

j=−∞
γj =

σ2

(1− φ1,0)2
.

For the second element,

E

(
1

n1.5

n∑
t=1

tεt

)2

=
1

n3

n∑
i=1

n∑
j=1

ijγi−j =
γ0
n3

n∑
i=1

n∑
j=1

ijρi−j .

Using the fact that ρj = φ
|j |
1,0, we have

E

(
1

n1.5

n∑
t=1

tεt

)2

=
γ0
n3

n∑
i=1

i

(
i∑

j=1

φi−j1,0︸ ︷︷ ︸
(S1)

+
n∑

j=i+1

jφj−i1,0︸ ︷︷ ︸
(S2)

)

.
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We first simply (S1),

(S1) =
i∑

j=1

φi−j1,0 = φi−11,0 + 2φi−21,0 + · · ·+ iφ01,0

= iφ01,0 + (i − 1)φ11,0 + · · ·+ (i − (i − 1))φi−11,0

= i
1− φi1,0
1− φ1,0

−
i−1∑
j=1

jφj1,0∼̇
i

1− φ1,0
−

i−1∑
j=1

jφj1,0.

Similarly, (S2) can be simplified as

(S2) =
n∑

j=i+1

jφj−i1,0 = (i + 1)φ11,0 + (i + 2)φ21,0 + · · ·+ (i + (n − i))φn−i1,0

=
n−i∑
j=1

jφj1,0 + iφ1,0
1− φn−i1,0

1− φ1,0
∼̇ iφ1,0

1− φ1,0
.
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It follows that

E

(
1

n1.5

n∑
t=1

tεt

)2

∼̇γ0
n3

n∑
i=1

i2
1 + φ1,0
1− φ1,0

→ 1

3

σ2

(1− φ1,0)2
.

Similarly, we have

E

 1

n2

n∑
i=1

n∑
j=1

jεiεj

→ 1

2

σ2

(1− φ1,0)2
.

As a result,(√
n 0

0 n1.5

)[(
β̃0
β̃1

)
−
(
β0,0
β1,0

)]
d→ N

((
0
0

)
,

σ2

(1− φ1,0)2

(
4 −6
−6 12

))
,

meaning that (β̃0, β̃1)> is asymptotically equivalent to (β̂0, β̂1)>.

In fact, we can further the LSE φ̃1 of φ1,0 based on the detrended series
yt − β̃0 − β̃1t is asymptotically equivalent to φ̂1.
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We now turn to the scenario (b), εt ∼ MA(1).

Main result.n0.5 0 0
0 n1.5 0
0 0 n0.5

 (η̂n−η0)
d→ N

0
0
0

 ,

 4ψ −4ψ 0
−6ψ 12ψ 0

0 0 1− θ21,0

 ,

where ψ = limn→∞ Var(n−0.5
∑n

t=1 εt) = (1− θ1,0)2σ2.

Some details:

(1) δt(η) = yt−β0−β1t
1−θ1B .

(2) ∇δt(η0) = (−1/(1− θ1,0),−t/(1− θ1,0B), δt/(1− θ1,0B))>.
(3) −t/(1− θ1,0B)∼̇ − t/(1− θ1,0) as t is large.
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Some details (continue):

(4) Let D = diag(1, n−1, 1), then

1

n

n∑
t=1

D∇δt(η0)∇δ>t (η0)D
p→ C,

where

C =

 1/(1− θ1,0)2 1/(2(1− θ1,0)2) 0
1/(2(1− θ1,0)2) 1/(3(1− θ1,0)2) 0

0 0 σ2/(1− θ21,0)

 .

(5) It follows that

C−1σ2 =

 4ψ −4ψ 0
−6ψ 12ψ 0

0 0 1− θ21,0

 ,

where ψ = (1− θ1,0)2σ2.
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It can be shown that the LSE (β̃0, β̃1)> of (β0, β1)> is asymptotically
equivalent to (β̂0, β̂1)>, and the CLS of θ1,0 based on detrended time
series yt − β̃0 − β̃1t, denoted by θ̃1, is asymptotically equivalent to θ̂1.

Exercise. The scenario (c), εt ∼ ARMA(1, 1), is left as an exercise.
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Prediction

To predict yn+1,we use

ŷn+1(η̂n) = yn+1 − δn+1(η̂n).

To predict yn+2, we use

ŷn+2(η̂n) = yn+2 − δ∗n+2(η̂n),

where δ∗n+2(η̂n) is δn+2(η̂n) with yn+1 therein replaced by ŷn+1(η̂n).

The predictor of yn+h, h ≥ 3, can be obtained recursively using the same
manner.
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For the mean squared error, we focus on one-step prediction, with
ft = β0,0 + β1,0t and εt is an AR(1) model. Note that

E(yn+1 − ŷn+1(η̂n))2 = E(δn+1(η̂n)− δn+1(η0) + δn+1(η0))2

= σ2 +
1

n
E
[
n
(
δn+1(η̂n)− δn+1(η0)

)2]
,

and

E
[
n
(
δn+1(η̂n)− δn+1(η0)

)2] ∼̇E
(
∇δ>n+1(η0)

√
n(η̂n − η0)

)2
= E


 −(1− φ1,0)
−(1− φ1,0B)(n + 1)/n

−εn

>D1 (η̂n − η0)


2

∼̇E


−(1− φ1,0)
−(1− φ1,0)
−εn

>D1 (η̂n − η0)


2

where D1 = diag(n0.5, n1.5, n0.5).
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Notice that

(1) D1(η̂n − η0) and (−(1− φ1,0),−(1− φ1,0), εn) are asymptotically
independent.

(2) D1(η̂n − η0)
d→ N(0,Σ), where

Σ =

 4λ −6λ 0
−6λ 12λ 0

0 0 1− φ21,0


with λ = σ2/(1− φ1,0)2.

(3) If X ∼ (µ,Σ), then E(X>AX) = µ>Aµ + tr(AΣ).
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Therefore, we obtain

nE(δn+1(η̂n)− δn+1(η0))2

∼̇ tr

(1− φ1,0)2 (1− φ1,0)2 0
(1− φ1,0)2 (1− φ1,0)2 0

0 0 σ2/(1− φ21,0)

Σ


∼̇ tr

σ2
λ−1 λ−1 0
λ−1 λ−1 0

0 0 (1− φ21,0)−1

 4λ −6λ 0
−6λ 12λ 0

0 0 1− φ21,0


= 5σ2.

As a result,

E(yn+1 − ŷn+1(η̂n))2 = σ2 +
5σ2

n
.

Since 5 6= 3 (the number of estimated parameters), this mean squared
prediction error in nonstationary time series is quite different from that in
the stationary case. We will go back to this point when discussing unit
root models.
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Appendix

Proof of (1). Define Wn as

Wn =

{
max
θ∈Θξ

∣∣∣∣∣2n
n∑

i=1

(gi (θ)− gi (θ0))εi

∣∣∣∣∣ ≥ min
θ∈Θξ

1

n

n∑
i=1

(gi (θ)− gi (θ0))2

}
.

Then,

Pr(Wn) ≤ Pr

(
Wn ∩

{
min
θ∈Θξ

1

n

n∑
i=1

(gi (θ)− gi (θ0))2 ≥ η

})

+ Pr

({
min
θ∈Θξ

1

n

n∑
i=1

(gi (θ)− gi (θ0))2 < η

})
.

By (C1), we obtain

Pr(Wn) ≤ Pr

(
Wn ∩

{
min
θ∈Θξ

1

n

n∑
i=1

(gi (θ)− gi (θ0))2 ≥ η

})
+ δ.
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Moreover, by definition of Wn, we have

Pr(Wn) ≤ Pr

(
max
θ∈Θξ

∣∣∣∣∣2n
n∑

i=1

(gi (θ)− gi (θ0))εi

∣∣∣∣∣ ≥ η
)

+ δ.

Since the first term on the RHS goes to zero by (C2), we have the
required result.
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