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Assume that observations are generated from nonstationary autoregressive (AR)
processes of infinite order. We adopt a finite-order approximation model to predict
future observations and obtain an asymptotic expression for the mean-squared pre-
diction error (MSPE) of the least squares predictor. This expression provides the first
exact assessment of the impacts of nonstationarity, model complexity, and model
misspecification on the corresponding MSPE. It not only provides a deeper under-
standing of the least squares predictors in nonstationary time series, but also forms
the theoretical foundation for a companion paper by the same authors, which obtains
asymptotically efficient order selection in nonstationary AR processes of possibly
infinite order.

1. INTRODUCTION

One of the most popular models for modeling a stationary time series nonpara-
metrically is the autoregressive process of infinite order (AR(∞)). However, since
there are infinitely many unknown coefficients in the model, statistical inferences
are usually based on an approximation AR(k) model for some 1 ≤ k < ∞. Berk
(1974) showed that when k goes to infinity with the sample size at a suitable rate,
the autoregressive spectral estimates are asymptotically normal and uncorrelated
at different fixed frequencies. Shibata (1980) considered the problem of predict-
ing the future of an independent copy of the observed time series (referred to
as the independent-realization prediction) using a class of candidate AR models.
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He showed that Akaike’s information criterion (AIC) (Akaike, 1974) and its
variants are asymptotically efficient in choosing model orders for independent-
realization predictions. In contrast, Gerencsér (1992) focused on the more natural
same-realization prediction (the prediction of the future of the observed time
series) and gave an asymptotic expression for the mean-squared prediction error
(MSPE) of the ridge regression predictor when the AR order k tends to infinity
sufficiently slowly. Under a less stringent assumption on k than that of Gerencsér
(1992), Ing and Wei (2003, 2005) obtained an asymptotic expression for the
MSPE of the least squares predictor and showed that AIC and its variants are still
asymptotically efficient for same-realization predictions.

However, since the above results are restricted to the stationary case, they may
preclude many economic time series, which often exhibit nonstationary charac-
teristics. To fill this gap, in this paper, we consider a data set, y1, . . . , yn , which is
generated from the following AR(∞) model:(

1+
∞
∑
j=1

aj B j

)
(1− B)d yt = εt , (1)

where A(z) = 1 + ∑∞
j=1 aj z j �= 0 for all |z| ≤ 1, B is the backshift operator,

0 ≤ d < ∞ is a nonnegative integer, {εt , t = 0,±1,±2, . . .} are independent
random disturbances, each with mean 0, and variance σ 2 > 0 and the initial
conditions are given by yt = 0, for t ≤ 0. For a discussion of other initial con-
ditions, see Section 4. Model (1), including the ARIMA(p,d,q) model as a
special case, can accommodate many stationary and nonstationary time series
encountered in practice. To predict future observations based on observed data,
a class of approximation models, AR(1), . . . ,AR(Kn), is considered, where Kn

is allowed to tend to infinity as n does. When AR(k) is adopted, following
Shibata (1980) and Ing and Wei (2003, 2005), we estimate the associated AR
coefficients using the least squares type estimator, ân(k), where ân(k) satisfies
−[∑n−1

j=Kn
yj (k)y′

j (k)]ân(k) = ∑n−1
j=Kn

yj (k)yj+1 with yj (k) = ( yj , . . . , yj−k+1)
′.

Let yn+1 be predicted by ŷn+1(k) = −y
′
n(k)ân(k). In Section 3, we give an asymp-

totic expression for the MSPE of ŷn+1(k), E( yn+1 − ŷn+1(k))2; see Theorems 2
and 3 for details. This expression provides the first exact evaluation of the impacts
of nonstationarity, model complexity, and model misspecification on the corre-
sponding MSPE. It not only gives a nontrivial extension of Ing and Wei’s (2005)
Theorem 3, but also forms the theoretical foundation for a companion paper by
Ing, Sin, and Yu (2007), which shows that the asymptotic efficiency (see (32) in
Section 3 of the present paper) of AIC and a two-stage information criterion of Ing
(2007) in various stationary time series models carries over to nonstationary cases.

This paper is organized as follows. Section 2 develops some moment bounds
for the inverse of the normalized Fisher information matrix, which are key tools
for proving Theorems 2 and 3 in Section 3. These moment bounds are also of
independent interest since the matrix under consideration is of increasing dimen-
sion and is formed by highly correlated data. Main results of this paper are given
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in Section 3, and concluding remarks are in Section 4. All proofs of the results in
Sections 2 and 3 are relegated to Appendixes A and B, respectively.

2. MOMENT BOUNDS FOR THE INVERSE OF THE NORMALIZED
FISHER INFORMATION MATRIX OF INCREASING DIMENSION

In the sequel, unless otherwise stated, we assume that

A(z) =
∞
∑
j=0

aj z
j �= 0 for all |z| ≤ 1 and

∞
∑
j=1

| jaj |< ∞, (2)

where a0 = 1. Note that (2) yields

A−1(z) = B(z) =
∞
∑
j=0

bj z
j �= 0 for all |z| ≤ 1 and

∞
∑
j=1

| jbj | < ∞, (3)

where b0 = 1. A thorough discussion of condition (2) can be found in Remark 1
of Ing and Wei (2005) and references given therein. Define zt = (1− B)d yt . Then,
it is not difficult to see that zt = ∑t−1

j=0 bjεt− j . Let zt,∞ = ∑∞
i=0 biεt−i , zt (v) =

(zt , . . . , zt−v+1)
′, zt,∞(v) = (zt,∞, . . . , zt−v+1,∞)′, and a(v) = (a1(v), . . . ,

av (v))
′ = argminc∈Rv E(zt,∞ + z′

t−1,∞(v)c)2. To give a more analyzable ex-
pression for yn+1 − ŷn+1(k), we define εj+1,k−d , ι(k) and Gn(k) as follows:

εj+1,k−d =
{

zj+1, k = d,

zj+1 +a
′
(k −d)zj (k −d), k > d;

ι(k) =

⎧⎪⎨
⎪⎩

(
a′(k −d),−1′

d

)′
, k > d ≥ 1,

−1k, 1 ≤ k ≤ d,

a(k), d = 0,

with 1l denoting the l-dimensional vector of 1’s; and

Gn(k) =

⎧⎪⎨
⎪⎩

diag(1, . . . ,1, N−d+1/2, . . . , N−1/2), k > d ≥ 1,

diag(N−d+1/2, . . . , N−d+k−1/2), 1 ≤ k ≤ d,
diag(1, . . . ,1), d = 0,

with N = n − Kn , where Gn(k) is a k × k matrix and ι(k) is a k-dimensional
vector. In addition, the k × k matrix Q(k) is implicitly defined by

Q(k)yj (k) =

⎧⎪⎪⎨
⎪⎪⎩

(
z′

j (k −d), yj (d), . . . , yj (1)
)′

, k > d ≥ 1,(
yj (d), . . . , yj (d − k +1)

)′
, 1 ≤ k ≤ d,

zj (k), d = 0,
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with yj (v) = (1− B)d−v yj . Now, for k ≥ max{1,d},
yn+1 − ŷn+1(k)

= yn+1 −y′
n(k)

[
n−1

∑
j=Kn

yj (k)y′
j (k)

]−1 n−1

∑
j=Kn

yj (k)yj+1

= yn+1

−y′
n(k)Q′(k)

[
n−1

∑
j=Kn

Q(k)yj (k)y′
j (k)Q′(k)

]−1

×
n−1

∑
j=Kn

Q(k)yj (k)[εj+1,k−d −y′
j (k)Q′(k)ι(k)]

=
⎧⎨
⎩−N−1s′

n,n(k)

[
1

N

n−1

∑
j=Kn

sj,n(k)s′
j,n(k)

]−1 n−1

∑
j=Kn

sj,n(k)εj+1,k−d

⎫⎬
⎭

+ εn+1,k−d , (4)

where the existence of the above inverse matrices are discussed in Remark 3
below, sj,n(k) = Gn(k)Q(k)yj (k), and the second and third equalities are ensured
by the fact that εj+1,k−d = yj+1 + y′

j (k)Q′(k)ι(k). Let aj (l) = 0 for j > l ≥ 0.
In the rest of this paper, a(v),v ≥ 0, will sometimes be viewed as an infinite-
dimensional vector with the i th component equal to ai (v), i = 1,2, . . .. Define
‖d‖2

z = ∑1≤i, j≤∞ di djγi− j , where γi− j = E(zi,∞zj,∞) and d = (d1,d2, . . .)
′ is an

infinite-dimensional vector satisfying ‖d‖2 = ∑∞
j=1 d2

j < ∞. Then, by observing
zt+1,∞ +∑∞

j=1 aj zt+1− j,∞ = εt+1, one has, for l ≥ 0,

‖a−a(l)‖2
z = E

( ∞
∑
j=1

(aj −aj (l))zt+1− j,∞

)2

= E

(
zt+1,∞ +

l

∑
j=1

aj (l)zt+1− j,∞

)2

−σ 2. (5)

As will be seen in Section 3, ‖a−a(k −d)‖2
z is one of the key components in our

asymptotic expression for the MSPE of ŷn+1(k).
In view of (4), moment properties of the inverse of the normalized Fisher in-

formation matrix,

Ŝn(k) = 1

N

n−1

∑
j=Kn

sj,n(k)s′
j,n(k), (6)

play crucial roles in investigating the MSPE of ŷn+1(k). In particular, it is in-
teresting to ask whether Ŝn(k) is nonsingular in the qth moment, q > 0, in the
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sense that

max
1≤k≤Kn

E{λ−q
min(Ŝn(k))} = O(1), (7)

where λmin(A) denotes the minimum eigenvalue of matrix A. For the special case
where Kn = k > d ≥ 1, ai = 0 for all i ≥ k + 1, and k is a constant fixed with n,
Theorem 3.5.1 of Chan and Wei (1988) and the continuous mapping theorem can
be applied to show that

λ−1
min(Ŝn(k)) ⇒ σ−2λ−1

min

(
�(k −d) 0(k−d)×d

0d×(k−d) F

)
(8)

and

λ−1
min

(
�(k −d) 0d×(k−d)

0(k−d)×d F

)
< ∞ a.s., (9)

where ⇒ denotes convergence in distribution, �(l) = E
(
zt,∞(l)z′

t,∞(l)
)
, l ≥ 1,

0s×t denotes an s × t matrix of 0’s, and with F0(t) = W (t) representing the stan-
dard Brownian motion and Fj (t) = ∫ t

0 Fj−1(s)ds,

F = [
ςi, j

]
i, j=1,...,d =

[∫ 1

0
Fd−i (t)Fd− j (t)dt

]
i, j=1,...,d

.

While (8) and (9) suggest that (7) is a valid goal to pursue, some extra complex-
ities are worth mentioning. First, since the dimension of Ŝn(k) in (7) is allowed
to increase to infinity with n and the larger the dimension is, the smaller the cor-
responding minimum eigenvalue is, a certain limitation on the rate of divergence
of Kn is required in order to prevent the matrix from being ill-conditioned. Sec-
ond, since convergence in distribution does not necessarily imply convergence in
mean, (8) cannot guarantee

lim
n→∞Eλ−1

min(Ŝn(k)) = σ−2E

{
λ−1

min

(
�(k −d) 0(k−d)×d

0d×(k−d) F

)}
.

In fact, when the distribution of εt has a mass at zero, it is easy to construct a
counterexample showing that (7) does not hold for any q > 0, even in station-
ary and fixed-dimensional cases. Therefore, some smoothness conditions on the
distribution of εt are needed. In response to these requirements, we impose the
following assumptions:

Maximal Order (MO). Kn → ∞ with

(i) K max{4d−1,2}
n = o(n),

(ii) K max{4d−1,2+δ1}
n = o(n) for some δ1 > 0,

(iii) K 4max{1,d}+2+δ1
n = o(n) for some δ1 > 0, or

(iv) K 4max{1,d}+3+δ1
n = o(n) for some δ1 > 0.



6 CHING-KANG ING ET AL.

Nonsingularity (NS). Let Ft,m,vm (.) be the distribution function of v
′
m(εt , . . . ,

εt+1−m)
′
, where vm = (v1, . . . ,vm)′ ∈ Rm . There exist positive numbers α, δ, and

M such that, for all m ≥ 1, m ≤ t < ∞, and ‖vm‖2 = ∑m
j=1 v2

j = 1,

| Ft,m,vm (x)− Ft,m,vm ( y) |≤ M | x − y |α, as | x − y |≤ δ.

Remark 1. MO imposes some limitations on Kn , reflecting the fact that a
larger order of integratedness yields larger correlations among the observations,
and hence (possibly) a smaller minimum eigenvalue of Ŝn(k). There is also a
tradeoff between the rate of divergence of Kn and the moment restriction on εt .
As will be shown in Theorem 1, (7) can be achieved under MO(ii) accompany-
ing a stronger moment condition on εt or MO(iii) accompanying a weaker one.
MO(iv) is slightly stronger than MO(iii) and will be used in the next section.

Remark 2. Note that NS is fulfilled by most continuous-type distributions.
For instance, when εt ’s are normally distributed, NS is satisfied with M =
(2πσ 2)−1/2, α = 1, and any δ > 0. In addition, when εt ’s are i.i.d. with an in-
tegrable characteristic function, NS is satisfied with any δ > 0, α = 1, and some
M > 0. For more details, see Lemma 4 of Ing and Sin (2006). For some other
similar distributional assumptions used to establish negative moment bounds
for the minimum eigenvalue of the Fisher information matrix in stationary time
series; see Findley and Wei (2002), Ing and Wei (2003), and references given
therein.

Lemma 1 provides an upper bound for E{λ−q
min(Ŝn(kn))} under model (1), where

q > 0 and 1 ≤ kn ≤ Kn . The proof of Lemma 1 is inspired by Lemma 1 of Ing and
Wei (2003). However, as shown in Appendix A, a much more delicate analysis is
required to deal with the extra difficulty introduced by nonstationarity.

LEMMA 1. Assume (1), (2), and NS. Then, for 1 ≤ kn ≤ Kn with Kn satisfying
MO(i), any q > 0, and any 0 < θ < 1,

E
{

λ
−q
min

(
Ŝn(kn)

)}
= O(k(2max{1,d}+θ)q

n ). (10)

Remark 3. Equality (10) guarantees that the inverse of Ŝn(kn) almost surely
(a.s.) exists for all large n. Therefore, we can define Ŝ−1

n (kn) as any generalized
inverse of Ŝn(kn) without causing ambiguity asymptotically. This enables us to
rewrite (10) as

E
∥∥∥ Ŝ−1

n (kn)
∥∥∥q = O

(
k(2max{1,d}+θ)q

n

)
, (11)

where for a matrix A, ‖A‖2 = λmax(A′ A) = sup‖v‖=1 v′ A′ Av. Since

Ŝn(k) = 1

N
Gn(k)Q(k)

(
n−1

∑
j=Kn

yj (k)y
′
j (k)

)
Q

′
(k)G

′
n(k),
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and Gn(k) and Q(k) are nonsingular, (10) implies that the inverses of ∑n−1
j=Kn

yj (k)

y
′
j (k) and ∑n−1

j=Kn
Q(k)yj (k)y

′
j (k)Q′(k) a.s. exist for all large n, and hence (∑n−1

j=Kn

yj (k)y
′
j (k))−1 and (∑n−1

j=Kn
Q(k)yj (k)y

′
j (k)Q′(k))−1 in (4) can be similarly

defined.

The following example illustrates the usefulness of (10) (or (11)) in situations
where kn is bounded by a finite constant.

Example 1

Consider an ARI(p,d) model,

(1+a1 B +·· ·+ap B p)(1− B)d yt = εt ,

where p ≥ 0, d ≥ 1, and εt ’s satisfy the assumptions imposed by (1). Assume
further that sup0<t<∞ E|εt |q1 < ∞,q1 ≥ 2, and NS holds. Define p∗ = p +d and
let Kn = p∗. Then, an argument similar to that used in (4) yields

‖√N{Q′(p∗)G ′
n(p∗)}−1(ân(p∗)− ā(p∗))‖

=
∥∥∥∥∥Ŝ−1

n (p∗)N−1/2
n−1

∑
j=Kn

sj,n(p∗)εj+1

∥∥∥∥∥
≤ ‖Ŝ−1

n (p∗)‖
∥∥∥∥∥N−1/2

n−1

∑
j=Kn

sj,n(p∗)εj+1

∥∥∥∥∥ , (12)

where

ā(p∗) = (ā1(p∗), . . . , āp∗(p∗))′ = Q′(p∗)ι(p∗). (13)

(Note that 1 + ā1(p∗)B + ·· · + āp∗(p∗)B p∗ = (1 + a1 B + ·· · + ap B p)(1 −
B)d .) By (12), Lemma 1, Hölder’s inequality, and Lemmas B.1 and B.3 (see
Appendix B), one has, for any 0 < q < q1,

E‖√N{Q′(p∗)G ′
n(p∗)}−1(ân(p∗)− ā(p∗))‖q

≤ (E‖Ŝ−1
n (p∗)‖qq1/(q1−q))(q1−q)/q1

(
E

∥∥∥∥∥N−1/2
n−1

∑
j=Kn

sj,n(p∗)εj+1

∥∥∥∥∥
q1
)q/q1

= O(1). (14)

It is worth mentioning that while the limiting distribution of
√

N{Q′(p∗)
G ′

n(p∗)}−1(ân(p∗) − ā(p∗)) has been extensively studied in the literature, (14)
seems to be the first result that reports its moment properties.

Although the moment bound provided by (10) (or (11)) tends to infinity as kn

does, it serves as a vehicle for pursuing sharper results (e.g., (7)) at the price of
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imposing stronger moment conditions on εt , as shown in Theorem 1. To state the
result, define

Ŝd,n(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ŝn(k), 1 ≤ k ≤ d,(
�(k −d) 0(k−d)×d

0d×(k−d) Ŝn(d)

)
, k > d ≥ 1,

�(k), d = 0.

THEOREM 1.

(i) Assume (1), (2), NS, and, for some q1 ≥ 2,

sup
0<t<∞

E(|εt |2q1) < ∞. (15)

Then, for Kn that satisfies MO(iii) and any 0 < q < q1,

max
1≤k≤Kn

E‖Ŝ−1
n (k)− Ŝ−1

d,n(k)‖q = o(1), (16)

max
1≤k≤Kn

E‖Ŝ−1
n (k)‖q = O(1), (17)

and

max
1≤k≤Kn

E‖Ŝ−1
n (k)− Ŝ−1

d,n(k)‖q/2(
k2

N

)q/4 = O(1). (18)

(ii) Assume the same assumptions as in (i), but with MO(iii) weakened to
MO(ii) and (15) strengthened to

sup
0<t<∞

E(|εt |s) < ∞, s = 1,2, . . . . (19)

Then, (17) and (18) hold for any q > 0. n

Before leaving this section, we note that Theorem 1 and Lemma 1 play impor-
tant roles in decomposing the prediction error due to estimation uncertainty into
one (asymptotically) stationary part and one nonstationary part; see Section 3.
These results are in line with those developed in Chan and Wei (1988), in which
limiting distributions of the least squares estimator were considered. On the other
hand, it is worth mentioning that the (normalized) regressors and the (normalized)
estimators used for prediction are not asymptotically independent in nonstationary
autoregressions; see Ing and Sin (2006) for simple random walk models. There-
fore, their joint effects need to be considered. In Section 3, a novel approach is
taken to alleviate this difficulty.
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3. ASYMPTOTIC EXPRESSIONS FOR THE MSPE

In this section, we give an asymptotic expression for the MSPE of ŷn+1(k) with
max{1,d} ≤ k ≤ Kn . In view of (4), for k ≥ max{1,d},
E( yn+1 − ŷn+1(k))2 = σ 2 +E(fn(k)+Sn(k −d))2, (20)

where

fn(k) = 1√
N

s′
n,n(k)Ŝ−1

n (k)

(
1√
N

n−1

∑
j=Kn

sj,n(k)εj+1,k−d

)
(21)

and

Sn(k −d) = −(εn+1,k−d − εn+1) =
n

∑
i=1

(ai −ai (k −d))zn+1−i . (22)

For k ≥ max{1,d}, it can be shown that

fn(k) ≈
{

U ′
n,n(d)√

N
Ŝ−1

n (d)

(
1√
N

n−1

∑
j=Kn

Uj,n(d)εj+1,k−d

)}
I{d≥1}

+
{

z′
n(k −d)√

N
�−1(k −d)

(
1√
N

n−1

∑
j=Kn

zj (k −d)εj+1,k−d

)}
I{k>d}

≡ B1n(k,d)+ B2n(k −d), (23)

where Uj,n(v) = ( yj (d)/N d−(1/2), . . . , yj (d − v +1)/N d−v+(1/2))′, I{·} denotes
the indicator function, and the meaning of “≈” is clarified in (B.42). Note that
B1n(k,d) and B2n(k −d) can be further approximated by

f1,n(d) = U ′
n,n(d)√

N
Ŝ−1

n (d)

(
1√
N

n−1

∑
j=Kn

Uj,n(d)εj+1

)
I{d≥1} (24)

and

f2,n(k −d) = z′
n(k −d)√

N
�−1(k −d)

(
1√
N

n−1

∑
j=Kn

zj (k −d)εj+1

)
I{k>d}, (25)

respectively; see (B.44) and (B.46) for details. When d ≥ 1 and sup0<t<∞
E|εt |q< ∞,q > 2, following the arguments used in Phillips (1987) and Chan
and Wei (1988), it can be shown that
√

n −d f̄1,n(d) ⇒ σ ι′F−1ζ, (26)

where f̄1,n(d) is f1,n(d) with Uj,n(d) replaced with Ūj,n(d) = (yj (d)/(n −
d)d−(1/2), . . . , yj (1)/(n −d)1/2)

′
, N replaced with n −d, and Kn replaced with d,

ζ = (
∫ 1

0 Fd−1(t)dW(t), . . . ,
∫ 1

0 F0(t)dW(t))′, and ι = (Fd−1(1), . . . , F0(1))′.
However, the limiting value of E(N f2

1,n(d)) remains unclear. As will be clarified
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later, this limiting value, measuring the contribution of nonstationarity to the
MSPE, is one of the key elements in our asymptotic expression. The following
lemma provides a solution to this problem.

LEMMA 2. Assume (1) with d ≥ 1, (2), NS, Kn = o(n1/2), and sup0<t<∞
E(|εt |q) < ∞,q > 4. Then,

lim
n→∞E(N f2

1,n(d)) = d(d +1)σ 2. (27)
n

Armed with Lemmas 1 and 2 and Theorem 1, the main results of this paper are
given in Theorems 2 and 3 below.

THEOREM 2. Assume (1), (2), NS, MO(iv), and

sup
0<t<∞

E|εt |10+δ1 < ∞, (28)

where δ1 is defined in MO(iv). Then,

lim
n→∞ max

max{1,d}≤k≤Kn

∣∣∣∣∣E{yn+1 − ŷn+1(k)}2 −σ 2

Ld
n(k)

−1

∣∣∣∣∣ = 0, (29)

where

Ld
n(k) = k +d2

N
σ 2 +‖a−a(k −d)‖2

z , (30)

with ‖a−a(k −d)‖2
z defined in (5). n

Remark 4. It is clear from (27), (29), and (30) that when k ≥ max{1,d}, the
MSPE of ŷn+1(k) (after σ 2 is subtracted) can be uniformly and asymptotically de-
composed into three terms. The first term, (k − d)σ 2/N , arising from estimating
the stationary component in (1), is mainly contributed by f2,n(k − d); the sec-
ond term, d(d +1)σ 2/N , arising from estimating the nonstationary component in
(1), is mainly contributed by f1,n(d); whereas the last term, ‖a−a(k −d)‖2

z , due
to model misspecification, is the contribution of Sn(k − d). In fact, it is shown
in Lemma B.7 that f1,n(d), f2,n(k − d), and Sn(k − d) are asymptotically pair-
wise uncorrelated. To see this, note that Sn(k − d) is short-memory and can
be approximated by S∗

n (k − d), which depends only on the latest
√

n random
noises {εn, . . . ,εn−√

n+1}. In contrast to Sn(k − d), f1,n(d) can be approximated
by f∗1,n(d), which is completely determined by {ε1, . . . ,εn−√

n}. On the other hand,
f2,n(k −d) can be approximated by f∗2,n(k −d), which is the inner product of two
random vectors, one of which is a function of {εn, . . . ,εn−√

n+1} and the other is a
function of {ε1, . . . ,εn−√

n}. For the precise definitions of f∗1,n(d), f∗2,n(k −d), and
S∗

n (k −d), see the proof of Lemma B.7. When d = 1, ai = 0 for all i ≥ p −1 ≥ 1,
and the model is correctly specified, the argument used in Fuller and Hasza’s
(1981) Theorem 3.1 can be applied to show that

yn+1 − ŷn+1(p)− εn+1 = Op(n
−1/2). (31)
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Although (31) guarantees that the prediction error due to estimation uncertainty
will vanish as n tends to infinity, it cannot distinguish between different error
sources from the stationary and nonstationary components of the model.

Remark 5. When 1 ≤ k < d, (29) does not hold. For some asymptotic analyses
of ŷn+1(k) in this case, see Ing et al. (2007).

Remark 6. When d = 0, (29) is the same as (3.9) of Ing and Wei (2003),
and hence Theorem 2 can be viewed as an extension of Ing and Wei’s (2003)
Theorem 3. On the other hand, (29) and Remark 4 indicate that stationary and
nonstationary components have substantially different “marginal contributions”
to the MSPE. Therefore, it is indeed difficult to foresee (29) through Ing and
Wei’s (2003) result.

Remark 7. Although (28) requires the boundedness of the 10 + δ1 moment
of εt , it does not seem very stringent compared to the moment conditions used
in the related literature. For example, to give an asymptotic expression for the
MSPE of the least squares predictor in situations where d = 0 and the order of
the predictor is fixed with n, Fuller and Hasza (1981) assume that εt ’s are in-
dependently and identically distributed normal random variables, Kunitomo and
Yamamoto (1985) require that εt ’s are independently, identically, and symmetri-
cally distributed around zero with E|ε1|32 < ∞, and Ing (2003) assumes that εt ’s
are independently distributed with sup−∞<t<∞ E|εt |q < ∞ for some q > 8.

Theorem 3 shows that when the moment condition (28) is strengthened to (19),
the asymptotic expression (29) is valid for more candidate predictors, as charac-
terized by the assumption on the maximal order.

THEOREM 3. Assume (1), (2), NS, MO(ii), and (19). Then (29) follows. n

Define the relative prediction efficiency of ŷn+1(k1) to ŷn+1(k2) by

E{yn+1 − ŷn+1(k2)}2 −σ 2

E{yn+1 − ŷn+1(k1)}2 −σ 2 .

Let k̂n be the order selected by an order selection criterion. This criterion is said
to be asymptotically efficient if k̂n satisfies

limsup
n→∞

E{yn+1 − ŷn+1(k̂n)}2 −σ 2

minmin{d,1}≤k≤Kn E{yn+1 − ŷn+1(k)}2 −σ 2 ≤ 1, (32)

which means that the relative prediction efficiency of the best predictor among
{ŷn+1(max{1,d}), . . ., ŷn+1(Kn)} to ŷn+1(k̂n) will ultimately not exceed 1. Note
that (32) was first proposed by Ing and Wei (2005) for the case of d = 0. Since
Theorem 2 (or Theorem 3) yields

lim
n→∞

minmin{d,1}≤k≤Kn E{yn+1 − ŷn+1(k)}2 −σ 2

Ld
n(k∗

n(d))
= 1,
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where k∗
n(d) = argminmin{d,1}≤k≤Kn Ld

n(k), we can rewrite (32) as

limsup
n→∞

E{yn+1 − ŷn+1(k̂n)}2 −σ 2

Ld
n(k∗

n(d))
≤ 1. (33)

With the help of (33), we are able to make the first step toward the asymptotic
efficiency.

Example 2

Assume that (1) holds and the ai ’s in (1) satisfy, for some 0 < C1 ≤ C2 < ∞ and
β > 0,

C1e−βl ≤ ‖a−a(l)‖2
z ≤ C2e−βl . (34)

Since (34), equivalent to C ′
1e−βl ≤ ∑i>l a2

i ≤ C ′
2e−βl for some 0 < C ′

1 ≤ C ′
2 < ∞,

is fulfilled by any causal and invertible ARMA(p,q) model, with q > 0, the model
considered in this example includes the ARIMA(p,d,q) model, with q > 0, as a
special case. By algebraic manipulations, it can be shown that for some C3 > 0,

1

β
logn −C3 ≤ k∗

n(d) ≤ 1

β
logn +C3. (35)

Therefore, the divergence rate of the optimal prediction order is logn. However,
asymptotic efficiency cannot be attained if a wrong constant is chosen. According
to Theorem 2 (or Theorem 3), (35), and a straightforward calculation,

lim
n→∞

E{yn+1 − ŷn+1(β
−1
1 logn)}2 −σ 2

Ld
n(k∗

n(d))

= lim
n→∞

E{yn+1 − ŷn+1(β
−1
1 logn)}2 −σ 2

Ld
n(β−1

1 logn)
lim

n→∞
Ld

n(β−1
1 logn)

Ld
n(k∗

n(d))

= lim
n→∞

Ld
n(β−1

1 logn)

Ld
n(k∗

n(d))
=

⎧⎨
⎩

β
β1

, if 0 < β1 < β,

∞, if β1 > β.
(36)

Equations (35) and (36) point out the difficulty in achieving asymptotic efficiency:
It involves the search not only for the best rate, but also for the best constant β−1,
which is usually unknown in practice. In fact, when the AR coefficients decay
algebraically, even the best rate may involve unknown parameters, and hence is
unknown; see Ing et al. (2007).

4. CONCLUDING REMARKS

In analyzing the MSPEs of the least squares predictors of high-dimensional and
nonstationary autoregressions, there are two fundamental difficulties. One is that
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the moment properties of the least squares estimators are difficult to explore
because the associated high-dimensional Fisher information matrix involves
highly correlated data. Another is, as pointed out by Ing and Sin (2006), the
(normalized) regressors and the (normalized) estimators are not asymptotically
independent. Hence, unlike the stationary case, their joint effects need to be
considered. In Section 2 of this paper, we establish the moment bounds of the
inverse of the normalized Fisher information matrix of increasing dimension. To
tackle the second difficulty, Section 3 of this paper adopts an indirect approach,
which is elaborately developed. In sum, the results in Ing and Wei (2003) are
extended from stationary cases to nonstationary cases. An asymptotic expression
for the MSPE of the least squares predictors, which can be decomposed into three
parts (a stationary part, a nonstationary part, and a model-misspecification part)
is obtained at the end of Section 3. The contribution of this paper is two-fold: (1)
It provides a deeper understanding of the least squares predictors in nonstation-
ary time series; and (2) it forms the basis for establishing asymptotically efficient
order selection in nonstationary AR(∞) processes, as detailed in Ing et al. (2007).

Before leaving this section, we remark that when the initial conditions, yt = 0
for all t ≤ 0, are replaced by

sup
−∞<t≤0

E|yt |ν < ∞, for some sufficiently large ν, (37)

and that

{yt , t ≤ 0} are independent of {εt , t ≥ 1}, (38)

all theorems and lemmas in the previous sections still hold. It is also possible to
extend the analysis in this paper to AR(∞) models with deterministic terms or
with unit roots located at other frequencies different from zero. However, filling
in the details for these extensions is beyond the scope of this paper.
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APPENDIX A

Proof of Lemma 1. We only prove the case of d ≥ 1 since the case of d = 0 can
be shown by an argument similar to that used in the proof of Lemma 1 in Ing and Wei
(2003). Without loss of generality, we may assume kn ≥ d + 1 since, for 1 ≤ k1,n ≤ Kn
and k2,n = max{d +1,k1,n},

λ
−q
min

(
1

N

n−1

∑
j=Kn

sj,n(k1,n)s′j,n(k1,n)

)
≤ λ

−q
min

(
1

N

n−1

∑
j=Kn

sj,n(k2,n)s′j,n(k2,n)

)
,

and k(2+θ)q
2,n = O{(k1,n)(2+θ)q }. First note that

sj,n(kn) =
(

j−1

∑
s=0

bsεj−s , . . . ,
j−kn+d

∑
s=0

bsεj−kn+d+1−s ,
1

N d−(1/2)

j−1

∑
s=0

κs(d)εj−s , . . . ,

1

N 1/2

j−1

∑
s=0

κs(1)εj−s

)′
,

where κt (1) = ∑t
s=0 bs and for l1 ≥ 2, κt (l1) = ∑t

s=0 κs(l1 −1). For notational simplicity,
write sj = sj,n(kn). Let q > 0, 0 < θ < 1, and 1/2 < δ2 < 1 be arbitrarily chosen. Define
gn = �(n − �δ2n�)/(νkn)�, where �a� denotes the largest integer ≤ a and ν, a positive
integer depending only on d, q, θ and α, will be specified later. Since MO(i) is imposed,
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we may assume without loss of generality that �nδ2� > Kn and gn > Kn . For j ≥ �nδ2�,
define a truncated version of sj ,

Mj =
(

gn−1

∑
s=0

bsεj−s , . . . ,
gn−kn+d

∑
s=0

bsεj−kn+d+1−s ,
1

N d−(1/2)

gn−1

∑
s=0

κs(d)εj−s , . . . ,

1

N 1/2

gn−1

∑
s=0

κs(1)εj−s

)′
,

and let Rj = sj − Mj . It is clear that

λmin

(
n−1

∑
j=�nδ2�

sj s′j

)
≥

gn−1

∑
j=0

λmin

(
νkn−1

∑
i=0

s�nδ2�+gni+ j s′�nδ2�+gni+ j

)
. (A.1)

In addition,

λ
−q
min

(
1

N

n−1

∑
j=Kn

sj s′j

)
≤ Nqλ

−q
min

(
n−1

∑
j=�nδ2�

sj s′j

)
, (A.2)

By (A.1), (A.2), and the convexity of x−q , x > 0,

λ
−q
min

(
1

N

n−1

∑
j=Kn

sj s′j

)

≤ C

(
νkn

1− δ2

)q 1

gn

gn−1

∑
j=0

λ
−q
min

(
νkn−1

∑
i=0

s�nδ2�+gni+ j s′�nδ2�+gni+ j

)
, (A.3)

where C in (A.3) and the rest of this paper denotes a generic positive constant independent
of n and of any index with an upper (or lower) limit depending on n (but it may represent
different values in different places). In view of (A.3), (10) is guaranteed by showing that
for all j = 0, . . . ,gn − 1, there is a constant C independent of n and j such that, for all
sufficiently large n,

Eλ
−q
min

(
νkn−1

∑
i=0

s�nδ2�+gni+ j s′�nδ2�+gni+ j

)
≤ Ck(2d−1+θ)q

n . (A.4)

In the rest of this proof, we only verify (A.4) for the case of j = 0, since the other cases
can be similarly verified.

Write φi = s�nδ2�+gni . Then, by reasoning analogous to (2.10) of Ing and Wei (2003),

Eλ
−q
min

(
νkn−1

∑
i=0

φi φ
′
i

)

≤ [C̄k(2d−1+θ)
n ]q +

∫ ∞
[C̄k(2d−1+θ)

n ]q
P

(
inf‖h‖=1

νkn−1

∑
i=0

(h′φi )
2 < u−1/q ,
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νkn−1

∑
i=0

‖φi ‖2 ≤ u2lq−1
k−1

n

)
du

+
∫ ∞

[C̄k(2d−1+θ)
n ]q

P

(
νkn−1

∑
i=0

‖φi ‖2 > u2lq−1
k−1

n

)
du

≡
[
C̄k(2d−1+θ)

n

]q + (I )+ (I I ), (A.5)

where l ≥ (3+q)/2 and C̄ > max{1,36σ 2δ−2C∗−1 }, with C∗ > 0 defined in (A.10) below.
Since (3) implies for all t ≥ 0 and j = 1, . . . ,d,

|κt ( j)| ≤ C(t +1) j−1, (A.6)

a straightforward calculation gives, for all i = 0,1, . . . ,νkn − 1, E‖φi ‖2 ≤ Ckn , which,
together with Chebyshev’s inequality, yields

(I I ) ≤ C. (A.7)

To deal with (I ), consider the hypersphere Sn = {ϕ : ‖ϕ‖ = 1} ⊂ Rkn and the hypercube

Hkn = [1−2u−{l+(1/2)}q−1
(�u{l+(1/2)}q−1�+1), 1]kn ,

with u ≥ [C̄k(2d−1+θ)
n ]q . Divide Hkn into subhypercubes, each of which has an edge of

length 2u−{l+(1/2)}q−1
and a circumscribed hypersphere of radius

√
knu−{l+(1/2)}q−1

.
Let these subhypercubes be denoted by Bi , i = 1, . . . ,m∗. Then, it can be seen that the

number of Bi ’s, m∗, does not exceed (�u{l+(1/2)}q−1�+ 1)kn . Define Gi = Sn ∩ Bi and
let {Gζs : s = 1, . . . , m̄} denote all nonempty Gi ’s. Since Sn ⊆ Hkn , Sn = ∪m̄

i=1Gζi . The
arguments similar to those used in (2.11) and (2.12) of Ing and Wei (2003) yield

P

(
inf‖h‖=1

νkn−1

∑
i=0

(h′φi )
2 < u−q−1

,
νkn−1

∑
i=0

‖φi ‖2 ≤ u2lq−1
k−1

n

)

≤
m̄

∑
j=1

E

(
νkn−1

∏
i=0

IDj,i

)
, (A.8)

where IDj,i is the indicator function for the event Dj,i and Dj,i = {|l′j φi | ≤ 3u−1/2q }, with
lj being a vector arbitrarily chosen from Gζj . Obviously,

E

(
νkn−1

∏
i=0

IDj,i

)

= E

{
νkn−2

∏
i=0

IDj,i

P(|l′j M�nδ2�+gn(νkn−1) + l′j R�nδ2�+gn(νkn−1)| ≤ 3u−1/2q |εr ,r ≤ ιn)

}
,

(A.9)
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where ιn = �nδ2�+ gn(νkn − 2). It is shown in Lemma A.2 that for all sufficiently large
n and j1 = 0, . . . ,νkn −1,

var(l′j M�nδ2�+gn j1) ≥ C∗

k2d−1
n

. (A.10)

By (A.9), (A.10), NS, and independence of εj ’s, we have, for u ≥ [C̄k(2d−1+θ)
n ]q and all

sufficiently large n,

E

(
νkn−1

∏
i=0

IDj,i

)
≤ E

(
νkn−2

∏
i=0

IDj,i

)
M

(
6kd−(1/2)

n σC∗−1/2
u−1/2q

)α

≤ Mνkn
(

6kd−(1/2)
n σC∗−1/2

u−1/2q
)ανkn

, (A.11)

where the second inequality is obtained from repeating the same argument νkn − 1 times.
By (A.8), (A.11), and taking

ν ≥
⎢⎢⎢⎣2

(
d − 1

2 + θ
2

)
(2l +1+2q)

αθ

⎥⎥⎥⎦+1,

one obtains, for sufficiently large n,

(I ) ≤ C Mνkn
(

6kd−(1/2)
n σC∗−1/2

)ανkn
∫ ∞

[C̄k(2d−1+θ)
n ]q

u−kn(αν−2l−1)/2q du ≤ C. (A.12)

In view of (A.5), (A.7), and (A.12), the proof is complete. n

To prove (A.10), we need an auxiliary lemma.

LEMMA A.1. Assume that (1) with d ≥ 1 and (2) hold. Define

Vn(d) =
(

1

qd−(1/2)
n

qn−1

∑
j=0

κj (d)εn− j , . . . ,
1

q1/2
n

qn−1

∑
j=0

κj (1)εn− j

)′
,

where 1 ≤ qn ≤ n and qn → ∞ as n → ∞. Then,

lim
n→∞E

{
Vn(d)V′

n(d)
} = Z(d) = [zi j ]i, j=1,...,d , (A.13)

where zi j = V 2
0 (2d − i − j +1)−1{(d − i)!(d − j)!}−1, with V 2

0 = σ 2(∑∞
j=0 bj )

2 and the
convention that 0! = 1. In addition, Z(d) is positively definite for all d = 1,2, . . . .

Proof. (A.13) can be obtained by (3), (A.6), and a straightforward calculation. The de-
tails are omitted. To show that Z(d) is positively definite, write

Z(d) = V 2
0 diag(1/(d −1)!, . . . ,1/0!)�(d)H(d)�′(d)diag(1/(d −1)!, . . . ,1/0!), (A.14)

where the (i, j)-th element of H(d) is given by (i + j −1)−1 and �(d) = [ fi, j ]i, j=1,...,d ,
with fi, j = 1 if i + j = d +1 and fi, j = 0 if i + j �= d +1 . Since H(d), known as Hilbert
matrix, is positively definite (see Barria and Halmos, 1982, or Choi, 1983), in view of
(A.14), the positive definiteness of Z(d) follows. n



18 CHING-KANG ING ET AL.

LEMMA A.2. Assume that (1) with d ≥ 1, (2), and MO(i) hold. Then (A.10) follows.

Proof. We only prove the case of j1 = 0 since the other cases can be obtained similarly.
By noticing that ‖lj ‖ = 1, and the definition of λmin(.), we have

var(l′j M�nδ2�) ≥ λmin

{
E(M�nδ2�M ′�nδ2�)

}

≥ λmin

⎧⎨
⎩
⎛
⎝E(M(1)

�nδ2�M(1)′
�nδ2�) 0(kn−d)×d

0′
d×(kn−d) E(M(2)

�nδ2�M(2)′
�nδ2�)

⎞
⎠
⎫⎬
⎭

−
∥∥∥∥∥∥E(M�nδ2�M ′�nδ2�)−

⎛
⎝E(M(1)

�nδ2�M(1)′
�nδ2�) 0(kn−d)×d

0′
d×(kn−d) E(M(2)

�nδ2�M(2)′
�nδ2�)

⎞
⎠
∥∥∥∥∥∥

≥ min
{
λmin

{
E(M(1)

�nδ2�M(1)′
�nδ2�)

}
,λmin

{
E(M(2)

�nδ2�M(2)′
�nδ2�)

}}

−
∥∥∥∥∥∥
⎛
⎝ 0(kn−d)×(kn−d) E(M(1)

�nδ2�M(2)′
�nδ2�)

E(M(2)
�nδ2�M(1)′

�nδ2�) 0d×d

⎞
⎠
∥∥∥∥∥∥ , (A.15)

where the matrix norms are defined in Remark 3,

M(1)
�nδ2� =

(
gn−1

∑
i=0

bi ε�nδ2�−i , . . . ,
gn−kn+d

∑
i=0

bi ε�nδ2�−kn+d+1−i

)′
,

and

M(2)
�nδ2� =

(
1

N d−(1/2)

gn−1

∑
s=0

κs(d)ε�nδ2�−s , . . . ,
1

N 1/2

gn−1

∑
s=0

κs(1)ε�nδ2�−s

)′
.

By (2) and (3), it is not difficult to see that, for some C∗
1 > 0 and all sufficiently large n,

λmin

{
E(M(1)

�nδ2�M(1)′
�nδ2�)

}
≥ C∗

1 . (A.16)

Also observe that

E(M(2)
�nδ2�M(2)′

�nδ2�) = diag

(( gn

N

)d−(1/2)
, . . . ,

( gn

N

)1/2
)

Zn(d)

×diag

(( gn

N

)d−(1/2)
, . . . ,

( gn

N

)1/2
)

,

where, with

M̄(2)
�nδ2� =

(
1

gd−(1/2)
n

gn−1

∑
s=0

κs(d)ε�nδ2�−s , . . . ,
1

g1/2
n

gn−1

∑
s=0

κs(1)ε�nδ2�−s

)′
,

Zn(d) = E(M̄(2)
�nδ2�M̄(2)

′
�nδ2�). By Lemma A.1, limn→∞ Zn = Z(d), and hence, for some

C∗
2 > 0 and all sufficiently large n,

λmin

{
E(M(2)

�nδ2�M(2)′
�nδ2�)

}
≥ C∗

2 k1−2d
n . (A.17)
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Moreover, armed with (A.6), it can be shown that, for some C∗
3 > 0 and all sufficiently

large n,∥∥∥∥∥∥
⎛
⎝ 0(kn−d)×(kn−d) E(M(1)

�nδ2�M(2)′
�nδ2�)

E(M(2)
�nδ2�M(1)′

�nδ2�) 0d×d

⎞
⎠
∥∥∥∥∥∥ ≤ C∗

3

(
kn

N

)1/2
. (A.18)

Consequently, the desired result follows from (A.15)–(A.18) and the assumption that
Kn = o(n1/(4d−1)). n

The following lemma is required in the proof of Theorem 1.

LEMMA A.3. Assume (1), (2), and for some q ≥ 2, sup0<t<∞E(|εt |2q ) < ∞. Then,
for 1 ≤ Kn ≤ n −1 and 1 ≤ l ≤ d,

max
1≤k≤Kn

E
∥∥∥N−l−(1/2) ∑n−1

j=Kn
zj (k)yj (l)

∥∥∥q

(
k
N

)q/2 ≤ C. (A.19)

Proof. By the convexity of xq , x > 0,

E

∥∥∥∥∥N−(1/2)−l
n−1

∑
j=Kn

zj (k)yj (l)

∥∥∥∥∥
q

≤
(

k

N

)q/2
(k)−1

k−1

∑
s=0

E

{
N−lq

∣∣∣∣∣
n−1

∑
j=Kn

zj−s yj (l)

∣∣∣∣∣
q}

. (A.20)

In view of (A.20), it remains to be shown that, for s = 0,1, . . . , Kn −1,

E

{
N−lq

∣∣∣∣∣
n−1

∑
j=Kn

zj−s yj (l)

∣∣∣∣∣
q}

≤ C. (A.21)

We only show (A.21) for the case s = 0, since the other cases can be obtained similarly.
Changing the order of summation, we obtain

n−1

∑
j=Kn

zj yj (l) =
n−1

∑
t=1

(
n−1

∑
j=Kn∨t

κj−t (l)bj−t

)
ε2

t +
n−1

∑
s=2

{
s−1

∑
t=1

(
n−1

∑
j=Kn∨s

κj−t (l)bj−s

)
εt

}
εs

+
n−1

∑
t=2

{
t−1

∑
s=1

(
n−1

∑
j=Kn∨t

κj−t (l)bj−s

)
εs

}
εt

≡ (I )+ (I I )+ (I I I ). (A.22)

By (A.6) and (3), one has, for all 1 ≤ t < n −1,∣∣∣∣∣
n−1

∑
j=Kn∨t

κj−t (l)bj−t

∣∣∣∣∣ ≤
{

C l = 1,2,

Cnl−2 l ≥ 3.
(A.23)

Equation (A.23), the assumption that sup0<t<∞ E(|εt |2q ) < ∞, and Minkowski’s inequal-
ity together imply

N−lq E|(I )|q ≤ C. (A.24)
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Since both (II) and (III) are martingale transformations, by (A.6), (3), Minkowski’s in-
equality, and applying Wei (1987, Lem. 2) repeatedly, we obtain

E|(I I )|q ≤ Cnlq and E|(I I I )|q ≤ Cnlq . (A.25)

Consequently, (A.21) follows from (A.22), (A.24), and (A.25). n

Proof of Theorem 1. We only prove the case of d ≥ 1, since the case of d = 0 can be
shown by an argument similar to that used in the proof of Theorem 2 in Ing and Wei (2003).
We start by verifying (16). In view of the definition of Ŝn,d (k), it suffices to consider the
case of k ≥ d +1. First note that for all d +1 ≤ k ≤ Kn ,

E‖Ŝn(k)− Ŝd,n(k)‖q1

= E

∥∥∥∥∥∥
⎛
⎝ 1

N ∑n−1
j=Kn

zj (k −d)z′
j (k −d)−�(k −d) 1

N ∑n−1
j=Kn

zj (k −d)U ′
j,n(d)

1
N ∑n−1

j=Kn
Uj,n(d)z′

j (k −d) 0d×d

⎞
⎠
∥∥∥∥∥∥

q1

≤ C

(
kq1

Nq1/2

)
, (A.26)

where the inequality follows from Lemma A.3 and an analogy with Lemma 2 of Ing and
Wei (2003). In addition, Lemma 1 yields, for any r > 0 and 1 > θ > 0,

E‖Ŝ−1
n (Kn)‖r = O(K (2d+θ)r

n ). (A.27)

By Lemma 1 (taking kn = d) and (2), one has, for any r > 0,

E‖Ŝ−1
d,n(Kn)‖r = O(1). (A.28)

Since

‖Ŝ−1
n (k)− Ŝ−1

d,n(k)‖q ≤ ‖Ŝ−1
n (Kn)‖q‖Ŝn(k)− Ŝd,n(k)‖q‖Ŝ−1

d,n(Kn)‖q , (A.29)

(A.26)–(A.28) and Hölder’s inequality imply, for all d + 1 ≤ k ≤ Kn and all sufficiently
large n,

E‖Ŝ−1
n (k)− Ŝ−1

d,n(k)‖q ≤ C
(

K (2d+θ)q
n

)(
E‖Ŝn(k)− Ŝd,n(k)‖q1

)q/q1

≤ C

(
K 4d+2+2θ

n
N

)q/2

. (A.30)

Set 2θ ≤ δ1. Then (16) follows from (A.30) and MO(iii). Moreover, (17) is an immediate
consequence of (16), (A.28), and the fact that

‖Ŝ−1
n (k)‖q ≤ C(‖Ŝ−1

d,n(k)‖q +‖Ŝ−1
n (k)− Ŝ−1

d,n(k)‖q ).

Finally, (18) is guaranteed by (17), (A.26), (A.28), (A.29), and Hölder’s inequality.
The second part of this theorem follows from (A.30), MO(ii), and an argument similar

to that used to verify Theorem 2(ii) in Ing and Wei (2003). The details are skipped. n
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APPENDIX B
LEMMA B.1. Assume (1) with d ≥ 1, (2), and sup0<t<∞ E|εt |q < ∞,q ≥ 2. Then,

for Kn ≥ d and Kn = o(n),

max
Kn≤ j≤n−1

E‖Uj,n(d)‖q = O(1), (B.1)

and

max
Kn≤l1≤l2≤n−1

E

∥∥∥∥∥ 1√
l2 − l1 +1

l2

∑
j=l1

Uj,n(d)εj+1

∥∥∥∥∥
q

= O(1), (B.2)

where Uj,n(d) is defined after (23).

Proof. Equalities (B.1) and (B.2) can be shown by (A.6) and an argument similar to that
used in the proof of Lemma 4 of Ing and Wei (2003). The details are omitted. n

LEMMA B.2.

E{σ 2(ι′F−1ζ )2} = σ 2d(d +1), (B.3)

where ι, F, and ζ are defined in (26).

Proof. Since it is difficult to obtain (B.3) through direct calculations, we adopt an indi-
rect approach. Consider an AR(d) model,

xt = β1xt−1 +·· ·+βd xt−d + εt , (B.4)

where, for i = 1, . . . ,d, βi = (−1)i+1Cd
i with Cm1

m2 = m1!/[m2!(m1 −m2)!], εt ’s are i.i.d.

normal random variables with zero means and variances σ 2, and xt = 0 for t ≤ 0. Having
observed x1, . . . , xi , the least squares estimator of β(d) = (β1, . . . ,βd )′, β̂i (d), is given by
(∑i−1

j=d xj (d)x′
j(d))β̂i (d) = ∑i−1

j=d xj (d)xj+1, where xj (d) = (xj , . . . , xj−d+1)′. By Chan

and Wei (1988), it can be shown that

n{x′
n(d)(β̂n(d)−β(d))}2 ⇒ σ 2(ι′F−1ζ )2, as n → ∞. (B.5)

Since model (B.4) is a special case of model (1), by Lemma 1 (taking kn = d), (B.1), (B.2),
and Hölder’s inequality, there is a positive integer h∗ such that, for any δ1 > 0,

sup
n≥h∗

E|n{x′
n(d)(β̂n(d)−β(d))}2|1+δ1 ≤ C, (B.6)

which implies that the sequence {n{x′
n(d)(β̂n(d)−β(d))}2}n≥h∗ is uniformly integrable

(see Chow and Teicher, 1997, Ex. 4.2.6). This fact, (B.5), and Billingsley (1968, Thm. 5.4)
give

lim
n→∞E[n{x′

n(d)(β̂n(d)−β(d))}2] = σ 2E{(ι′F−1ζ )2}. (B.7)

In addition, by Theorem 5 of Wei (1987),[
1

logn

n

∑
i=h∗

{x′
i (d)(β̂i (d)−β(d))}2

]
−σ 2d(d +1) = op(1). (B.8)



22 CHING-KANG ING ET AL.

According to (B.6) and Minkowski’s inequality, for any δ1 > 0,

sup
n≥h∗

E

∣∣∣∣∣ 1

logn

n

∑
i=h∗

{x′
i (d)(β̂i (d)−β(d))}2

∣∣∣∣∣
1+δ1

≤ C, (B.9)

which, together with (B.8), yields

lim
n→∞

1

logn

n

∑
i=h∗

E{x′
i (d)(β̂i (d)−β(d))}2 = σ 2d(d +1). (B.10)

Consequently, (B.3) follows from (B.7) and (B.10). n

Proof of Lemma 2. By the arguments used in Phillips (1987) and Chan and Wei (1988),∥∥∥∥∥∥
(

1

n −d

n−1

∑
j=d

Ūj,n(d)Ū
′
j,n(d)

)−1
∥∥∥∥∥∥ = Op(1).

This and Lemma B.1 imply

N 1/2f1,n(d)− (n −d)1/2 f̄1,n(d) = op(1),

which, together with (26), Slutsky’s lemma, and the continuous mapping theorem, yields

N f2
1,n(d) ⇒ σ 2(ι

′
F−1ζ )2. (B.11)

Moreover, by Lemmas 1 and B.1, Hölder’s inequality, and the moment condition imposed
on {εt }, one has

sup
n≥h∗

E|N f2
1,n(d)|1+δ1 < ∞,

where h∗ is some positive integer and δ1 is some positive number. Consequently, the de-
sired result follows from the above inequality, (B.3), and (B.11). n

To verify Theorem 2, we need several auxiliary lemmas.

LEMMA B.3. Assume that (1) holds and sup0<t<∞ E|εt |q < ∞,q ≥ 2. Then,

sup
j≥1

max
1≤k≤ j

k−q/2E‖zj (k)‖q ≤ C, (B.12)

and

sup
l2≥l1≥1

max
1≤k≤l1

k−q/2E

∥∥∥∥∥ 1√
l2 − l1 +1

l2

∑
j=l1

zj (k)εj+1

∥∥∥∥∥
q

≤ C. (B.13)

Proof. Inequalities (B.12) and (B.13) can be shown by an argument used in the proof of
Lemma 4 in Ing and Wei (2003). We skip the details. n

LEMMA B.4. Under the same assumptions as in Lemma B.1, but with the moment
condition replaced with sup0<t<∞ E|εt |2q < ∞,q ≥ 2, one has, for all 0 ≤ k ≤ Kn,

E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

Uj,n(d)(εj+1,k − εj+1)

∥∥∥∥∥
q

≤ C

( ∞
∑
i=1

|ai −ai (k)|
)q

≤ C

( ∞
∑

i≥k+1
|ai |

)q

. (B.14)
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Proof. First note that

E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

Uj,n(d)(εj+1,k − εj+1)

∥∥∥∥∥
q

= E

⎧⎨
⎩

d

∑
l=1

(
n−1

∑
j=Kn

yj (l)

Nl (εj+1,k − εj+1)

)2
⎫⎬
⎭

q/2

≤ d−1+(q/2)
d

∑
l=1

E

∣∣∣∣∣
n−1

∑
j=Kn

yj (l)

Nl (εj+1,k − εj+1)

∣∣∣∣∣
q

≤ d−1+(q/2)
d

∑
l=1

E

∣∣∣∣∣
n−1

∑
m=1

(am −am(k))

(
n−1

∑
j=Kn∨m

yj (l)

Nl zj+1−m

)∣∣∣∣∣
q

≤ d−1+(q/2)
d

∑
l=1

⎡
⎣n−1

∑
m=1

|am −am(k)|
(

E

∣∣∣∣∣
n−1

∑
j=Kn∨m

yj (l)

Nl zj+1−m

∣∣∣∣∣
q)1/q

⎤
⎦

q

,

where the first inequality is due to the convexity of xq/2, x ≥ 0, the second inequal-
ity follows from (22) and changing the order of summation, and the last one is due to
Minkowski’s inequality. Moreover, by an argument similar to that used to obtain (A.21),
one has, for all 1 ≤ l ≤ d and 1 ≤ m ≤ n −1,

E

∣∣∣∣∣
n−1

∑
j=Kn∨m

yj (l)

Nl zj+1−m

∣∣∣∣∣
q

≤ C.

As a result, the first inequality of (B.14) follows. The second inequality of (B.14) is an
immediate consequence of Lemma 4 of Berk (1974). n

LEMMA B.5. Assume (1) and (2). Then, for Kn = o(n), there are sequences of positive
numbers {ωn} and {χn}, with ωn = o(n−1) and χn = o(n−2), such that, for all 0 ≤ k ≤ Kn,

∣∣∣E(
εn+1,k − εn+1

)2 −‖a−a(k)‖2
z

∣∣∣ ≤ ωn

∞
∑
i=1

(ai −ai (k))2 +χn . (B.15)

Proof. Denote ai −ai (k) by ri (k). Then, algebraic manipulations yield

E(εn+1,k − εn+1)2 = E

(
n

∑
i=1

ri (k)zn+1−i,∞
)2

−E

{
n

∑
i=1

ri (k)(zn+1−i,∞ − zn+1−i )

}2

= (I )− (I I ). (B.16)

Since Kn = o(n), there are 0 < � < 1 and M∗ ≥ 1 such that, for all n ≥ M∗, Kn ≤ �n.
Now, for all n ≥ M∗ and 0 ≤ k ≤ Kn ,

σ−2(I I ) =
∞
∑
l=0

(
n

∑
i=1

ri (k)bn+1+l−i

)2
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≤ 2

⎧⎨
⎩

∞
∑
l=0

(
�n

∑
i=1

ri (k)bn+1+l−i

)2

+
∞
∑
l=0

(
n

∑
i=�n+1

ri (k)bn+1+l−i

)2
⎫⎬
⎭

≤ 2

[
�n

∑
i1=1

�n

∑
i2=1

|ri1(k)ri2(k)|
( ∞

∑
l=0

|bn+1+l−i1 bn+1+l−i2 |
)

+
∞
∑
l=0

{
n

∑
i=�n+1

r2
i (k)

n

∑
i=�n+1

b2
n+1+l−i

}]

≤ 2

(
�n

∑
i=1

r2
i (k)

)
�n

{ ∞
∑

j=(1−�)n+1
b2

j

}
+2

(
n

∑
i=�n+1

r2
i (k)

)

×
{

(1−�)n

∑
j=1

jb2
j + (1−�)n

∞
∑

j=(1−�)n+1
b2

j

}

≤ ω1,n

∞
∑
i=1

(ai −ai (k))2 +C1

∞
∑

i=�n+1
a2

i , (B.17)

where ω1,n = 2n ∑∞
j=(1−�)n+1 b2

j and C1 = 2∑∞
j=1 jb2

j . Note that according to (3),

ω1,n = o(n−1) and C1 < ∞. Similarly, for all n ≥ M∗ and 0 ≤ k ≤ Kn , there are
C2,C3 > 0 such that

σ−2|(I )−‖a−a(k)‖2
z | ≤ C2

∞
∑

i=�n+1
a2

i +C3

{
n−1

∞
∑

l=(1−�)n+1
|γl |

} ∞
∑

i=k+1
|ai |, (B.18)

where γl is defined after (4). Since (2) and (3) imply

∞
∑

i=�n+1
a2

i = o(n−2) and
∞
∑

l=(1−�)n+1
|γl | = o(n−1),

(B.15) follows from (B.16)–(B.18). n

LEMMA B.6. Assume (1), (2), and, for some q ≥ 2, sup0<t<∞ E|εt |2q < ∞. Then,
for 1 ≤ Kn ≤ n −1 and all 1 ≤ k ≤ Kn,

E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

zj (k)(εj+1,k − εj+1)

∥∥∥∥∥
q

≤ Ckq/2
(
‖a−a(k)‖q

z + N−q/2
)

. (B.19)

Proof. First note that

E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

zj (k)(εj+1,k − εj+1)

∥∥∥∥∥
q

≤ C

{
E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

(zj (k)− zj,∞(k))(εj+1,k − εj+1)

∥∥∥∥∥
q
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+ E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

zj,∞(k)(εj+1,k − ε∗
j+1,k)

∥∥∥∥∥
q

+ E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

zj,∞(k)(ε∗
j+1,k − εj+1)

∥∥∥∥∥
q}

≡ C{(I )+ (I I )+ (I I I )}, (B.20)

where ε∗
j+1,k = ∑k

i=0 ai (k)zj+1−i,∞ with a0(k) = 1. Without loss of generality, we can

assume sup−∞<t≤0 E|εt |2q < ∞ in the rest of the proof. By the convexity of xq , x ≥ 0,
Minkowski’s inequality, and the Cauchy-Schwarz inequality,

(I ) ≤ k(q/2)−1
k

∑
l=1

N−q/2

{
n−1

∑
j=Kn

(E|zj+1−l − zj+1−l,∞|2q )1/2q

×(E|εj+1,k − εj+1|2q )1/2q

}q

. (B.21)

In view of (B.16), for all Kn ≤ j ≤ n −1 and 0 ≤ k ≤ Kn ,

E(εj+1,k − εj+1)2 ≤ E

(
j

∑
i=1

(ai −ai (k))zj+1−i,∞
)2

≤ C
∞
∑
i=1

(ai −ai (k))2

≤ C‖a−a(k)‖2
z ,

where the last two inequalities are ensured by (2). This fact and Wei (1987, Lem. 2) yield
that, for all Kn ≤ j ≤ n −1 and 0 ≤ k ≤ Kn ,

E|εj+1,k − εj+1|2q ≤ C{E(εj+1,k − εj+1)2}q ≤ C‖a−a(k)‖2q
z ≤ C. (B.22)

Moreover, it follows from Wei (1987, Lem. 2) and (3) that, for all 1 ≤ l ≤ Kn ,

n−1

∑
j=Kn

(E|zj+1−l − zj+1−l,∞|2q )1/2q ≤ C
n−1

∑
j=Kn

∞
∑

s= j+1−l
|bs | ≤ C

∞
∑
j=1

j |bj | < ∞, (B.23)

which, together with (B.21) and (B.22), implies

(I ) ≤ Ckq/2 N−q/2. (B.24)

By (B.12) and arguments similar to those used in (B.21)–(B.23),

(II) ≤ k(q/2)−1
k

∑
l=1

N−q/2

{
n−1

∑
j=Kn

(E|zj+1−l,∞|2q )1/2q

×
k

∑
i=0

|ai (k)|(E|zj+1−i,∞ − zj+1−i |2q )1/2q

}q

≤ Ck(q/2)−1
k

∑
l=1

N−q/2

(
k

∑
i=0

|ai (k)|
)q

≤ Ckq/2 N−q/2, (B.25)
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where the last inequality follows from Lemma 4 of Berk (1974), which yields supk≥1 ∑k
i=0|ai (k)| < ∞. Moreover, by Lemma 3 of Ing and Wei (2003),

(III) ≤ Ckq/2‖a−a(k)‖q
z . (B.26)

Consequently, (B.19) is ensured by (B.20) and (B.24)–(B.26). n

LEMMA B.7. Assume (1), (2), NS, and sup0<t<∞ E|εt |6+θ1 < ∞ for some θ1 > 0.
Then, for Kn = o(n1/2),

lim
n→∞ max

max{1,d}≤k≤Kn

∣∣∣∣∣E{f1,n(d)+ f2,n(k −d)+Sn(k −d)}2

Ld
n (k)

−1

∣∣∣∣∣ = 0,

where Ld
n (k) is defined in Theorem 2.

Proof. We only prove the case of d ≥ 1, since the case of d = 0 can be shown by
an argument similar to that used in the proof of Theorem 3 in Ing and Wei (2003).
Define

(I ) = max
d≤k≤Kn

∣∣∣∣∣E(f1,n(d)+ f2,n(k −d)+Sn(k −d))2

Ld
n (k)

−1

∣∣∣∣∣ . (B.27)

Then,

(I ) ≤ (II)+ (III)+ (IV)+ (V )+ (VI)+ (VII), (B.28)

where

(II) = max
d≤k≤Kn

∣∣∣∣∣∣
E(f2

1,n(d))− d(d+1)σ 2

N

Ld
n (k)

∣∣∣∣∣∣ ,

(III) = max
d≤k≤Kn

∣∣∣∣∣∣
E(f2

2,n(k −d))− (k−d)σ 2

N

Ld
n (k)

∣∣∣∣∣∣ ,

(IV) = max
d≤k≤Kn

∣∣∣∣∣E(S2
n (k −d))−‖a−a(k −d)‖2

z

Ld
n (k)

∣∣∣∣∣ ,

(V ) = max
d≤k≤Kn

∣∣∣∣2E(f1,n(d)f2,n(k −d))

Ld
n (k)

∣∣∣∣ ,

(VI) = max
d≤k≤Kn

∣∣∣∣2E(f1,n(d)Sn(k −d))

Ld
n (k)

∣∣∣∣ ,

(VII) = max
d≤k≤Kn

∣∣∣∣2E(f2,n(k −d)Sn(k −d))

Ld
n (k)

∣∣∣∣ .
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By Lemma 2, it is easy to see that

lim
n→∞(II) = 0. (B.29)

According to Lemma B.3 and an argument used in the proof of Theorem 3 in Ing and Wei
(2003),

lim
n→∞(III) = 0, (B.30)

and

lim
n→∞(VII) = 0. (B.31)

Lemma B.5 and (22) imply

(IV) ≤ max
d≤k≤Kn

∣∣∣∣∣wn ∑∞
i=1(ai −ai (k −d))2 +χn

Ld
n (k)

∣∣∣∣∣ , (B.32)

where wn = o(n−1) and χn = o(n−2). Moreover, since (2) yields, for some C1,C2 > 0,

C1‖a−a(k −d)‖2
z ≤

∞
∑
i=1

(ai −ai (k −d))2 ≤ C2‖a−a(k −d)‖2
z , (B.33)

one obtains from (B.32) and (B.33) that

lim
n→∞(IV) = 0. (B.34)

To show

lim
n→∞(V ) = 0 (B.35)

and

lim
n→∞(VI) = 0, (B.36)

consider

f∗1,n(d) =

⎧⎪⎨
⎪⎩

U∗′
n,n(d)√

N

⎧⎨
⎩N−1

n−√
n−1

∑
j=Kn

Uj,n(d)U ′
j,n(d)

⎫⎬
⎭

−1

× N−1/2
n−√

n−1

∑
j=Kn

Uj,n(d)εj+1

⎫⎬
⎭ I{d≥1},

f∗2,n(k −d) =
⎧⎨
⎩z∗′

n (k −d)√
N

�−1(k −d)N−1/2
n−√

n−1

∑
j=Kn

zj (k −d)εj+1

⎫⎬
⎭ I{k>d},
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and

S∗
n (k −d) =

√
n/2

∑
i=1

(ai −ai (k −d))z∗∗
n+1−i ,

where

U∗
n,n(d) =

⎛
⎝ 1

N d−1/2

n−1

∑
j=√

n

κj (d)εn− j , . . . ,
1

N 1/2

n−1

∑
j=√

n

κj (1)εn− j

⎞
⎠

′
,

z∗
n(l) =

⎛
⎝

√
n−Kn

∑
j=0

bj εn− j , . . . ,

√
n−Kn

∑
j=0

bj εn−l+1− j

⎞
⎠

′
, l ≥ 1,

and z∗∗
n+1−i = ∑

√
n/2

j=0 bj εn+1−i− j . By (2), (3), Minkowski’s inequality, Lemma 4 of Berk
(1974), the moment restriction imposed on {εt }, and analogies with (B.1) and (B.12), for
any 0 < q ≤ 6+ θ1,

max
1≤l≤Kn

l−q/2E
∥∥zn(l)− z∗

n(l)
∥∥q = o(n−q/2), (B.37)

E
∥∥Un,n(d)−U∗

n,n(d)
∥∥q = o(n−q/4), (B.38)

and

max
0≤l≤Kn

E|Sn(l)−S∗
n (l)|q = o(n−q/2). (B.39)

Armed with (B.37)–(B.39), Lemmas 1, B.1, and B.3, Hölder’s inequality, and some alge-
braic manipulations, we obtain

lim
n→∞ max

d≤k≤Kn
E

∣∣∣∣∣
f1,n(d)f2,n(k −d)− f∗1,n(d)f∗2,n(k −d)

Ld
n (k)

∣∣∣∣∣ = 0 (B.40)

and

lim
n→∞ max

d≤k≤Kn
E

∣∣∣∣∣
f1,n(d)Sn(k −d)− f∗1,n(d)S∗

n (k −d)

Ld
n (k)

∣∣∣∣∣ = 0. (B.41)

As a result, (B.35) and (B.36) follow from (B.40), (B.41), and the facts that for all d ≤
k ≤ Kn , E{f∗1,n(d)f∗2,n(k − d)} = E{f∗1,n(d)S∗

n (k − d)} = 0. Finally, (B.27) is ensured by
(B.28)–(B.31) and (B.34)–(B.36). n

We are now ready to prove Theorem 2.

Proof of Theorem 2. We only prove the case of d ≥ 1, since the proof of the case of
d = 0 is similar and much simpler. By (A.26)–(A.28), the moment restriction imposed on
{εt }, Lemmas B.1, B.3, B.4, and B.6, and Hölder’s inequality, one has for all d ≤ k ≤ Kn
and any 0 < θ < 1,
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E{fn(k)− B1n(k,d)− B2n(k −d)}2

≤ C

N

(
E‖sn,n(k)‖10+δ1

)2/(10+δ1)
(

E‖Ŝ−1
n (Kn)‖(40+4δ1)/δ1

×E‖Ŝ−1
d,n (Kn)‖(40+4δ1)/δ1

)δ1/(20+2δ1)

×
⎛
⎝E‖Ŝn(k)− Ŝd,n(k)‖(10+δ1)/2

×E

∥∥∥∥∥ 1√
N

n−1

∑
j=Kn

sj,n(k)εj+1,k−d

∥∥∥∥∥
(10+δ1)/2

⎞
⎠

4/(10+δ1)

≤ C
k

N

K 4d+3+2θ
n

N
.

Taking 2θ ≤ δ1, it follows that

lim
n→∞ max

d≤k≤Kn

E{fn(k)− B1n(k,d)− B2n(k −d)}2

Ld
n (k)

= 0, (B.42)

Lemmas 1, B.1, and B.4 ensure that, for all d ≤ k ≤ Kn ,

E
{

B1n(k,d)− f1,n(d)
}2 ≤ C N−1

( ∞
∑

j=k−d+1
|ai |

)2

. (B.43)

If ai �= 0 for infinitely many i , then k∗
n (d) → ∞ as n → ∞, where k∗

n (d) is defined after
(32). This fact, (2), and (B.43) yield that

max
d≤k≤Kn

E
{

B1n(k,d)− f1,n(d)
}2

Ld
n (k)

≤ C
(∑∞

j=1 |ai |)2

k∗
n (d)

→ 0

as n → ∞. On the other hand, if for some 0 ≤ k0 < ∞, ak0 �= 0 and ai = 0 for all i > k0
(note that a0 = 1), then

max
d≤k≤Kn

E
{

B1n(k,d)− f1,n(d)
}2

Ld
n (k)

≤
{ C

N‖a−a(k0−1)‖2
z

k0 ≥ 1,

0 k0 = 0.

As a result,

lim
n→∞ max

d≤k≤Kn

E
{

B1n(k,d)− f1,n(d)
}2

Ld
n (k)

= 0. (B.44)

In addition, by Lemmas B.3 and B.6 and (2),

E
{

B2n(k −d)− f2,n(k −d)
}2 ≤ (k −d)2

N
(‖a−a(k −d)‖2

z + N−1)

≤ (k −d)2

N

( ∞
∑

j=k−d+1
a2

j + N−1

)

≤ C

N
. (B.45)
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Then (B.45) and an argument similar to that used to obtain (B.44) yield

lim
n→∞ max

d≤k≤Kn

E
{

B2n(k −d)− f2,n(k −d)
}2

Ld
n (k)

= 0. (B.46)

Consequently, (29) follows from (B.42), (B.44), (B.46), Lemma B.7, and the Cauchy-
Schwarz inequality. n

Proof of Theorem 3. Theorem 3 can be shown by the same argument as in the proof
of Theorem 2, except that Theorem 1(ii) is used instead of (A.27) in verifying (B.42). The
details are skipped. n


