Econometric Theory, 2009, Page 1 of 30.
doi:10.1017/50266466609990107

PREDICTION ERRORS
IN NONSTATIONARY
AUTOREGRESSIONS OF
INFINITE ORDER

CHING-KANG ING
Academia Sinica and National Taiwan University

CHOR-YIU SIN
National Tsing Hua University and Xiamen University

SHU-Hu Yu
National University of Kaohsiung

Assume that observations are generated from nonstationary autoregressive (AR)
processes of infinite order. We adopt a finite-order approximation model to predict
future observations and obtain an asymptotic expression for the mean-squared pre-
diction error (MSPE) of the least squares predictor. This expression provides the first
exact assessment of the impacts of nonstationarity, model complexity, and model
misspecification on the corresponding MSPE. It not only provides a deeper under-
standing of the least squares predictors in nonstationary time series, but also forms
the theoretical foundation for a companion paper by the same authors, which obtains
asymptotically efficient order selection in nonstationary AR processes of possibly
infinite order.

1. INTRODUCTION

One of the most popular models for modeling a stationary time series nonpara-
metrically is the autoregressive process of infinite order (AR(c0)). However, since
there are infinitely many unknown coefficients in the model, statistical inferences
are usually based on an approximation AR(k) model for some 1 < k < co. Berk
(1974) showed that when k goes to infinity with the sample size at a suitable rate,
the autoregressive spectral estimates are asymptotically normal and uncorrelated
at different fixed frequencies. Shibata (1980) considered the problem of predict-
ing the future of an independent copy of the observed time series (referred to
as the independent-realization prediction) using a class of candidate AR models.
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He showed that Akaike’s information criterion (AIC) (Akaike, 1974) and its
variants are asymptotically efficient in choosing model orders for independent-
realization predictions. In contrast, Gerencsér (1992) focused on the more natural
same-realization prediction (the prediction of the future of the observed time
series) and gave an asymptotic expression for the mean-squared prediction error
(MSPE) of the ridge regression predictor when the AR order k tends to infinity
sufficiently slowly. Under a less stringent assumption on k than that of Gerencsér
(1992), Ing and Wei (2003, 2005) obtained an asymptotic expression for the
MSPE of the least squares predictor and showed that AIC and its variants are still
asymptotically efficient for same-realization predictions.

However, since the above results are restricted to the stationary case, they may
preclude many economic time series, which often exhibit nonstationary charac-
teristics. To fill this gap, in this paper, we consider a data set, y1, ..., y,, which is
generated from the following AR(co) model:

<1+2ajB~f> (1-B)y, =&, (1)

J=1

where A(z) =1+ Zf.iﬂjzj # Oforall |z] < 1, B is the backshift operator,
0 < d < oo is a nonnegative integer, {¢;,f = 0,£1,+2,...} are independent
random disturbances, each with mean 0, and variance o2 > 0 and the initial
conditions are given by y; = 0, for + < 0. For a discussion of other initial con-
ditions, see Section 4. Model (1), including the ARIMA(p,d,q) model as a
special case, can accommodate many stationary and nonstationary time series
encountered in practice. To predict future observations based on observed data,
a class of approximation models, AR(1), ..., AR(K}), is considered, where K,
is allowed to tend to infinity as n does. When AR(k) is adopted, following
Shibata (1980) and Ing and Wei (2003, 2005), we estimate the associated AR
coefficients using the least squares type estimator, a, (k), where a, (k) satisfies
—[XZk, ¥i (R)Y; ()1, (k) = T2k yj(R)yj+1 with yj(k) = (yj,..o, yj-k+1)-
Let y,,+1 be predicted by y,,41(k) = —y; (k)a,, (k). In Section 3, we give an asymp-
totic expression for the MSPE of 3,11 (k), E(yns1 — 9ns1(k))?; see Theorems 2
and 3 for details. This expression provides the first exact evaluation of the impacts
of nonstationarity, model complexity, and model misspecification on the corre-
sponding MSPE. It not only gives a nontrivial extension of Ing and Wei’s (2005)
Theorem 3, but also forms the theoretical foundation for a companion paper by
Ing, Sin, and Yu (2007), which shows that the asymptotic efficiency (see (32) in
Section 3 of the present paper) of AIC and a two-stage information criterion of Ing
(2007) in various stationary time series models carries over to nonstationary cases.

This paper is organized as follows. Section 2 develops some moment bounds
for the inverse of the normalized Fisher information matrix, which are key tools
for proving Theorems 2 and 3 in Section 3. These moment bounds are also of
independent interest since the matrix under consideration is of increasing dimen-
sion and is formed by highly correlated data. Main results of this paper are given
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in Section 3, and concluding remarks are in Section 4. All proofs of the results in
Sections 2 and 3 are relegated to Appendixes A and B, respectively.

2. MOMENT BOUNDS FOR THE INVERSE OF THE NORMALIZED
FISHER INFORMATION MATRIX OF INCREASING DIMENSION

In the sequel, unless otherwise stated, we assume that

o0 o
A(z) = Zajz/ #0 forall |z] <1 and | jaj | < oo, )
Jj=0 j=1

where ag = 1. Note that (2) yields

o0 o0
AN 2)=B()= Y bjz/ #0 foralllz]<1 and |jbj| < oo, A3)
j=0 j=1

where by = 1. A thorough discussion of condition (2) can be found in Remark 1
of Ing and Wei (2005) and references given therein. Define z; = (1 — B)?y;. Then,
it is not difficult to see that z; = 2};(1)&/8[_.1'. Let 21,00 = 2700 bigi—i, 2:(0) =
2ty eees Zt—l)-H)/’ Zt,oo(l)) = (Zt,oo, ceey Zt—o+l,oo)/, and a(v) = (ar(v),...,
av(v))/ = argmineegr E(z/,00 +z;_1’oo(u)c)2. To give a more analyzable ex-
pression for y, 11 — Ju41(k), we define €11 x—q, (k) and G, (k) as follows:

Zj+1, k=d,
Ejt1k—d = ,
T a1 +a (k—d)z;(k—d), k> d

(a'(k—d),-1,)", k>d=>1,
1(k) = ¢ =1, 1<k<d,
a(k), d=0,

with 1; denoting the /-dimensional vector of 1’s; and

diag(1,..., 1, N~¢H1/2 N2 k>d>1,
Gn(k) = diag(N~4+1/2, N—dt+k=1/2) l<k<d,
diag(1,...,1), d=0,
with N =n — K,, where G, (k) is a k x k matrix and (k) is a k-dimensional
vector. In addition, the k x k matrix Q (k) is implicitly defined by
/
(5 k=), @), .oy (D) k>d=1,
QR)Y;j (k) =4 (yi(d),...,yj(d—k+1), 1<k<d,
z;(k), d=0,
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with y;(v) = (1 — B)?=y;. Now, for k > max({1,d},

Ynt1 = Ynt1(k)

n—1 -1,
= Yng1 =Y, (k) |J2 yj(k)y}(k)] > yik)yis

.:Kn j:Kn

= Yn+1

n—1 -1
— ¥, (k) Q' (k) |J Y. 0(k)y; (k)y; (k) Q/(k)]

Z
n—1
x . 0Ky (K)ej1.h-a —Y; (k) Q' (k) (k)]
j:Kn
—1
1 1 n—1 , n—1
=4 -N7"s, (k) N > sin(k)s; , (k) Y sjn(k)ejr1k—a
j:Kn ./:Kn
+Entlk—d» @)

where the existence of the above inverse matrices are discussed in Remark 3
below, s; , (k) = G, (k) Q(k)y;(k), and the second and third equalities are ensured
by the fact that &j41,k—a = yj+1 +Y; (k) Q" (k)1 (k). Let a; (1) = 0 for j > 1 > 0.
In the rest of this paper, a(v),v > 0, will sometimes be viewed as an infinite-

dimensional vector with the ith component equal to a; (v), i = 1,2,.... Define
14112 = X1<; j<oodid;jyij, where y;i—; = E(Zi,002j,00) and d = (di, da, ...) is an
infinite-dimensional vector satisfying ||d||> = j‘il dj2 < oo. Then, by observing

241,00 +Zj'il AjZi4+1—j00 = €141, ONe has, for [ > 0,

2
la—a()|;=E ( > (@ —q (1))z,+1_j,oo)

Jj=1

2
!
—E (zt+1,oo+ Za,-(l)z,+1_,-,oo> - (5)
Jj=1

As will be seen in Section 3, |[a—a(k —d) |I§ is one of the key components in our
asymptotic expression for the MSPE of ¥, (k).

In view of (4), moment properties of the inverse of the normalized Fisher in-
formation matrix,
R 1 n—1
$it) = 2 sin(0)s],,(0), (6)

J=K»

play crucial roles in investigating the MSPE of Vn+1(k). In particular, it is in-
teresting to ask whether S, (k) is nonsingular in the gth moment, ¢ > 0, in the
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sense that

| max E{pin(S2())} = 0 (1), (7

where Amin(A) denotes the minimum eigenvalue of matrix A. For the special case
where K, =k >d >1,a; =0foralli > k+ 1, and k is a constant fixed with n,
Theorem 3.5.1 of Chan and Wei (1988) and the continuous mapping theorem can
be applied to show that

_ Fk—d) Op—ayxa
mln(Sn (k)) =0 2lm11n ) (8)
Ogx(k—ay F
and
I'k—d) 0 _
jot (FE=D Do) ©)
Ok—ayxa F

where = denotes convergence in distribution, I'(!) = E (2,00 ()] o, (1)).1 > 1,
0, denotes an s x ¢ matrix of 0’s, and with Fy(t) = W (t) representing the stan-
dard Brownian motion and F;(¢) = fot Fi_1(s)ds,

[ [ Fasw ,(t)dt}

While (8) and (9) suggest that (7) is a valid goal to pursue, some extra complex-
ities are worth mentioning. First, since the dimension of S’n (k) in (7) is allowed
to increase to infinity with n and the larger the dimension is, the smaller the cor-
responding minimum eigenvalue is, a certain limitation on the rate of divergence
of K, is required in order to prevent the matrix from being ill-conditioned. Sec-
ond, since convergence in distribution does not necessarily imply convergence in
mean, (8) cannot guarantee

L(k—d) Oy-
Jim Ei;fn(Sn(k))za‘zE pieen (k=d) Op-ayxa | |
0yx(k—ay F

.....

In fact, when the distribution of ¢; has a mass at zero, it is easy to construct a
counterexample showing that (7) does not hold for any ¢ > 0, even in station-
ary and fixed-dimensional cases. Therefore, some smoothness conditions on the
distribution of &, are needed. In response to these requirements, we impose the
following assumptions:

Maximal Order (MO). K,, — oo with
(i) Kmax{4d 1,2} o(n)
() K, = o(n) for some J; > 0,

(i) K,
(iv) g Amax(1.d) 3+,
n

max{4d—1,2+0;}

4max{l,d}+2
max{l,d}+2+d = o(n) for some d; > 0, or

= o(n) for some d; > 0.
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Nonsingularity (NS). Let F; ,, v, (.) be the distribution function of v:n (ery..n,

/ . ..
&t41-m) » where v,;, = (vq,...,0,;) € R™. There exist positive numbers a, J, and
M such that, forallm > 1,m <t < oo, and ||, |* = XL 07 = 1,

| Fromovm ) = Frmyv, (D) IS M | x =y %, as [x—y|<0.

Remark 1. MO imposes some limitations on K, reflecting the fact that a
larger order of integratedness yields larger correlations among the observations,
and hence (possibly) a smaller minimum eigenvalue of S‘n (k). There is also a
tradeoff between the rate of divergence of K, and the moment restriction on &;.
As will be shown in Theorem 1, (7) can be achieved under MO(ii) accompany-
ing a stronger moment condition on &, or MO(iii) accompanying a weaker one.
MOC(iv) is slightly stronger than MO(iii) and will be used in the next section.

Remark 2. Note that NS is fulfilled by most continuous-type distributions.
For instance, when ¢;’s are normally distributed, NS is satisfied with M =
(27n72)_1/2, o =1, and any J > 0. In addition, when ¢;’s are i.i.d. with an in-
tegrable characteristic function, NS is satisfied with any 6 > 0, @ = 1, and some
M > 0. For more details, see Lemma 4 of Ing and Sin (2006). For some other
similar distributional assumptions used to establish negative moment bounds
for the minimum eigenvalue of the Fisher information matrix in stationary time
series; see Findley and Wei (2002), Ing and Wei (2003), and references given
therein.

Lemma 1 provides an upper bound for E{i;liqn (3’ (k) } under model (1), where
q > 0and 1 <k, < K,. The proof of Lemma 1 is inspired by Lemma 1 of Ing and
Wei (2003). However, as shown in Appendix A, a much more delicate analysis is

required to deal with the extra difficulty introduced by nonstationarity.

LEMMA 1. Assume (1), (2), and NS. Then, for 1 < k,, < K, with K, satisfying
MO(i), any g > 0, and any 0 <6 < 1,

E{ ity (8utk)) | = 0 G2mxttain), (10)

Remark 3. Equality (10) guarantees that the inverse of S (k) almost surely
(a.s.) exists for all large n. Therefore, we can define S‘n_ !(k,) as any generalized
inverse of S, (k,) without causing ambiguity asymptotically. This enables us to
rewrite (10) as

E‘ 5 o) “1 -0 (kr(l2max{l,d}+9)q)’ 11T

where for a matrix A, | A]|> = Amax(A’A) = supjyj= V'A"Av. Since

J=Kn

R 1 n—1 , , ,
Sn(k) = NGn(k)Q(k) ( > Yj(k)y]'(k)> 0 (k)G (k),
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and G, (k) and Q (k) are nonsingular, (10) implies that the inverses of 2;7; 11<n y;j (k)
y;. (k) and Z;l;}(n Q(k)y; (k)y} (k) Q' (k) a.s. exist for all large n, and hence (2}’; 11<,,
yj(y; (k)" and (ZZg Q(K)y;(K)y;(k)Q'(k))~" in (4) can be similarly
defined.

The following example illustrates the usefulness of (10) (or (11)) in situations
where k;, is bounded by a finite constant.

Example 1
Consider an ARI(p, d) model,
(14+a1B+---+a,B")(1—B)'y, =&,

where p > 0, d > 1, and &;’s satisfy the assumptions imposed by (1). Assume
further that supy_, . Ele/|9" < 00, g1 > 2, and NS holds. Define p* = p+d and
let K,, = p*. Then, an argument similar to that used in (4) yields

IVN{Q' (p*)Gl(p™)Y (@n(p™) —a(p™) |l

n—1
STEPHONTYEY s (e

J=Kn
n—1
< ||S,:1(p*)nHN—“2 Y sia(pHejr]|, (12)
J=Kn
where
a(p”) = (@i (p*),....ap(p")) = Q' (p*)(p"). (13)

(Note that 1+ aj(p*)B + - + ap-(p*)B?" = (1 + a1B + --- + a, BP)(1 —
B)d.) By (12), Lemma 1, Holder’s inequality, and Lemmas B.1 and B.3 (see
Appendix B), one has, for any 0 < ¢ < ¢,

q|>q/q|

ElIVN{Q (p*)GL(p*)) " @a(p™) —a(p*)||
=0(1). (14)

n—1
N7Y2S s (ph)ejm

< (E| §n—1 (p*)||20/ @ =Dy (@1—a)/a (E
J=Kn

It is worth mentioning that while the limiting distribution of /N{Q’(p*)
G, (P}~ 1A, (p*) —a(p*)) has been extensively studied in the literature, (14)
seems to be the first result that reports its moment properties.

Although the moment bound provided by (10) (or (11)) tends to infinity as k&,
does, it serves as a vehicle for pursuing sharper results (e.g., (7)) at the price of
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imposing stronger moment conditions on &;, as shown in Theorem 1. To state the
result, define

S (k), 1<k<d,

A T'k—d) Ox—
San(k) = k=d) O-axd Ck>d> 1,
O0gxk—a)y  Sn(d)
(), d=0.

THEOREM 1.
(i) Assume (1), (2), NS, and, for some q1 > 2,

sup E(l&]*") < . (15)

0<t<oo

Then, for K, that satisfies MO(iii) and any 0 < g < q1,

el el g _
1232%]3”5” (k) =Sz, ()T =0o(1), (16)

-1 q _—
1;113?}(,,EHS” )1 =0(01), a7
and

E|IS7 (k) — 87! (k))19/2
max 15, (k) = S, , ()l — o). 18
1<k<K, k2 )9/
(&)

(ii) Assume the same assumptions as in (i), but with MO(iii) weakened to
MO(ii) and (15) strengthened to

sup E(|&]°) < oo, s=1,2,.... (19)
0<t<oo
Then, (17) and (18) hold for any q > 0. u

Before leaving this section, we note that Theorem 1 and Lemma 1 play impor-
tant roles in decomposing the prediction error due to estimation uncertainty into
one (asymptotically) stationary part and one nonstationary part; see Section 3.
These results are in line with those developed in Chan and Wei (1988), in which
limiting distributions of the least squares estimator were considered. On the other
hand, it is worth mentioning that the (normalized) regressors and the (normalized)
estimators used for prediction are not asymptotically independent in nonstationary
autoregressions; see Ing and Sin (2006) for simple random walk models. There-
fore, their joint effects need to be considered. In Section 3, a novel approach is
taken to alleviate this difficulty.
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3. ASYMPTOTIC EXPRESSIONS FOR THE MISPE

In this section, we give an asymptotic expression for the MSPE of §,,+ (k) with
max{l,d} <k < K,,. In view of (4), for k > max{l1,d},

E(nt1 = n1(K))? = 02 + E(E, (k) + S (k — d))?, (20)
where
n—1
' (k k S k n(k)e; _ 21
( ) «/_ nn( ) ( )(Wj_zl,(nsj, ( )8]+1,k a') ( )
and
Splk—d) = —(ent1k—d —nt1) = Y (ai —aj(k —d))zny1-i- (22)

i=1

For k > max{1, d}, it can be shown that

f, (k) U’;”(d)S“l(d) ! il Ujn(d) I
n(k) ~ : n — in(d)ej+1,k—d {d>1}
VN VN ;5 !

(k—d =
+ {Z"(W)r—l(k—d) (W ) z;(k—d)e,-+1,k_d> } Ii-a)
J=Kn
EBln(ksd)+B2n(k_d)’ 23)

where Uj ,(0) = (;(d)/N4 /2 yi(d—v+1)/NI=v+1/2y [, denotes
the indicator function, and the meaning of “~” is clarified in (B.42). Note that
By, (k,d) and By, (k —d) can be further approximated by

nn(d) 1y n—1
fi.(d)= /N w (d) «/ﬁ Y Ujn(d)ejs1 | Iasyy 24
J=Kn
and
((—d =
fou(k—d) = Zn(\/ﬁ)r_l(k—d) (ﬁ > Zj(k—d)€j+1> Lk ays (25)
j:Kn

respectively; see (B.44) and (B.46) for details. When d >1 and supg., ..
Ele;|7< 00,q > 2, following the arguments used in Phillips (1987) and Chan
and Wei (1988), it can be shown that

Vn—dfy ,(d)= ol F7'¢, (26)
where f'ljn(d) is f1,(d) with Uj,(d) replaced with Uj’n(d) = (yjd)/(n —
)= yi(1)/(n—d)"/?), N replaced with n —d, and K, replaced with d,

= (Jo Fam1()dW(@), ..., [y Fo()aW (@), and 1 = (Fa—1(1), ..., Fo(1))"
However, the limiting value of E(N f%’n (d)) remains unclear. As will be clarified
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later, this limiting value, measuring the contribution of nonstationarity to the
MSPE, is one of the key elements in our asymptotic expression. The following
lemma provides a solution to this problem.

LEMMA 2. Assume (1) with d > 1, (2), NS, K, = o(n'/?), and sup,_,_ o,
E(ler]7) < 00,q > 4. Then,

lim E(Nf] ,(d)) =d(d+ 1)a°. (27)
n— 00 ’ .

Armed with Lemmas 1 and 2 and Theorem 1, the main results of this paper are
given in Theorems 2 and 3 below.

THEOREM 2. Assume (1), (2), NS, MO(iv), and

sup E|8[|10+5| < 00, (28)
0<t<oo

where 01 is defined in MO(iv). Then,

E{ynt1 — Inp1(k)}? — o2

li —1/=0 29
ngl’olo max{l{ldl?;(kgl(,, Lg(k) ’ ( )
where

k+d?
Li(k) = T”2+ la—a(k—d)l2, (30)
with ||la—a(k — d)||? defined in (5). [

Remark 4. It is clear from (27), (29), and (30) that when k > max{1, d}, the
MSPE of §,,1 (k) (after o2 is subtracted) can be uniformly and asymptotically de-
composed into three terms. The first term, (k —d)o 2/ N, arising from estimating
the stationary component in (1), is mainly contributed by f> , (k — d); the sec-
ond term, d(d + 1)o? /N, arising from estimating the nonstationary component in
(1), is mainly contributed by f; ,(d); whereas the last term, ||a —a(k — d) ||§, due
to model misspecification, is the contribution of S, (k — d). In fact, it is shown
in Lemma B.7 that f{ ,(d), 2, (k — d), and S,(k — d) are asymptotically pair-
wise uncorrelated. To see this, note that S, (k — d) is short-memory and can
be approximated by S} (k — d), which depends only on the latest /n random
noises {¢&,, .. .,8n_ﬁ+1}. In contrast to S, (k — d), £1,,(d) can be approximated
by f7 , (d), which is completely determined by {¢1, ..., &,_ /}. On the other hand,
f>,n(k — d) can be approximated by f; , (k —d), which is the inner product of two
random vectors, one of which is a function of {¢,, ..., ¢, _ Jn+1) and the other is a
function of {e1, ..., &,__ s;}. For the precise definitions of f’f’n (d), f’in(k —d), and
Sy (k—d), see the proof of Lemma B.7. Whend = 1,a4; =0foralli > p—1>1,
and the model is correctly specified, the argument used in Fuller and Hasza’s
(1981) Theorem 3.1 can be applied to show that

Yl = Int1(P) —€ng1 = Op(n_l/z)- (31)
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Although (31) guarantees that the prediction error due to estimation uncertainty
will vanish as n tends to infinity, it cannot distinguish between different error
sources from the stationary and nonstationary components of the model.

Remark 5. When 1 <k < d, (29) does not hold. For some asymptotic analyses
of ¥,,4+1(k) in this case, see Ing et al. (2007).

Remark 6. When d = 0, (29) is the same as (3.9) of Ing and Wei (2003),
and hence Theorem 2 can be viewed as an extension of Ing and Wei’s (2003)
Theorem 3. On the other hand, (29) and Remark 4 indicate that stationary and
nonstationary components have substantially different “marginal contributions”
to the MSPE. Therefore, it is indeed difficult to foresee (29) through Ing and
Wei’s (2003) result.

Remark 7. Although (28) requires the boundedness of the 10 4 J; moment
of &, it does not seem very stringent compared to the moment conditions used
in the related literature. For example, to give an asymptotic expression for the
MSPE of the least squares predictor in situations where d = 0 and the order of
the predictor is fixed with n, Fuller and Hasza (1981) assume that ¢;’s are in-
dependently and identically distributed normal random variables, Kunitomo and
Yamamoto (1985) require that ¢;’s are independently, identically, and symmetri-
cally distributed around zero with E|e1|>? < 0o, and Ing (2003) assumes that &,’s
are independently distributed with sup__ _, . El&/|? < oo for some g > 8.

Theorem 3 shows that when the moment condition (28) is strengthened to (19),
the asymptotic expression (29) is valid for more candidate predictors, as charac-
terized by the assumption on the maximal order.

THEOREM 3. Assume (1), (2), NS, MO(ii), and (19). Then (29) follows. u

Define the relative prediction efficiency of 3,41 (k1) to Y,,41(k2) by

E{ypt1— )A’n+1 (k2)}2 —o?
E{yn+1— )A7n+1(kl)}2 —0?
Let k, be the order selected by an order selection criterion. This criterion is said
to be asymptotically efficient if k,, satisfies
. E(n+1 = In+1(ka))> =0
lim sup — = 3 5 <1
n—o0 Milmin{d,1}<k<k, E{yn+1 = Int1(k)}* —0

(32)

which means that the relative prediction efficiency of the best predictor among
{(n+1(max{l,d}), ..., Yp+1(Kp)} to )Aan(lgn) will ultimately not exceed 1. Note
that (32) was first proposed by Ing and Wei (2005) for the case of d = 0. Since
Theorem 2 (or Theorem 3) yields

fim MiNmin(d, 1)<k <K, E{Ynt1 = nt1(K)}*> — o2

=1
n—00 L (ki (d)) |
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where & (d) = argminmin(q, 1)<k <K, Ljf (k), we can rewrite (32) as

. E{yn-H _)A’n+1(i€n)}2_0'2
1 < 1.
imsup LI (k3 (d) < 33)

With the help of (33), we are able to make the first step toward the asymptotic
efficiency.

Example 2

Assume that (1) holds and the a;’s in (1) satisfy, for some 0 < C; < C» < 0o and
p >0,

Cie P < Jla—a()|? < Ce™P. (34)

Since (34), equivalent to Cie_ﬂl < 2i>lai2 < Cée_/” for some 0 < C} < C} < 00,
is fulfilled by any causal and invertible ARMA(p, ¢) model, with g > 0, the model
considered in this example includes the ARIMA(p, d, ¢) model, with ¢ > 0, as a
special case. By algebraic manipulations, it can be shown that for some C3 > 0,

1 1
Elogn —C3<k;(d) < Elogn+C3. 35)

Therefore, the divergence rate of the optimal prediction order is logn. However,
asymptotic efficiency cannot be attained if a wrong constant is chosen. According
to Theorem 2 (or Theorem 3), (35), and a straightforward calculation,

E(yn+1 = Sns1 (B logn))? — o2

;
w0 L (k3 ()

i Bt =31 (B logm)? —o® L Li(BT logn)

n— 00 Lﬁ(ﬁfllogn) n— 00 Lg(k;‘;(d))

ﬁ .
gy LG 0w [ OB F
n— 00 Lg(k;(d)) oo, ifp1>p.

Equations (35) and (36) point out the difficulty in achieving asymptotic efficiency:
It involves the search not only for the best rate, but also for the best constant =1,
which is usually unknown in practice. In fact, when the AR coefficients decay
algebraically, even the best rate may involve unknown parameters, and hence is
unknown; see Ing et al. (2007).

(36)

4. CONCLUDING REMARKS

In analyzing the MSPEs of the least squares predictors of high-dimensional and
nonstationary autoregressions, there are two fundamental difficulties. One is that
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the moment properties of the least squares estimators are difficult to explore
because the associated high-dimensional Fisher information matrix involves
highly correlated data. Another is, as pointed out by Ing and Sin (2006), the
(normalized) regressors and the (normalized) estimators are not asymptotically
independent. Hence, unlike the stationary case, their joint effects need to be
considered. In Section 2 of this paper, we establish the moment bounds of the
inverse of the normalized Fisher information matrix of increasing dimension. To
tackle the second difficulty, Section 3 of this paper adopts an indirect approach,
which is elaborately developed. In sum, the results in Ing and Wei (2003) are
extended from stationary cases to nonstationary cases. An asymptotic expression
for the MSPE of the least squares predictors, which can be decomposed into three
parts (a stationary part, a nonstationary part, and a model-misspecification part)
is obtained at the end of Section 3. The contribution of this paper is two-fold: (1)
It provides a deeper understanding of the least squares predictors in nonstation-
ary time series; and (2) it forms the basis for establishing asymptotically efficient
order selection in nonstationary AR(co) processes, as detailed in Ing et al. (2007).

Before leaving this section, we remark that when the initial conditions, y, =0
for all # < 0, are replaced by

sup Ely|” < oo, for some sufficiently large v, 37
—oo<t<0
and that
{yt,t <0} areindependent of {g;, ¢ > 1}, (38)

all theorems and lemmas in the previous sections still hold. It is also possible to
extend the analysis in this paper to AR(co) models with deterministic terms or
with unit roots located at other frequencies different from zero. However, filling
in the details for these extensions is beyond the scope of this paper.

REFERENCES

Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic
Control 19, 716-723.

Barria, J. & P.R. Halmos (1982) Asymptotic toeplitz operators. Transactions of the American Mathe-
matical Society 273, 621-630.

Berk, K.N. (1974) Consistent autoregressive spectral estimates. Annals of Statistics 2, 489-502.

Billingsley, P. (1968) Convergence of Probability Measure. Wiley.

Chan, N.H. & C.Z. Wei (1988) Limiting distribution of least squares estimates of unstable autoregres-
sive processes. Annals of Statistics 19, 367-401.

Choi, M.-D. (1983) Tricks or treats with the Hilbert matrix. American Mathematical Monthly 90,
301-312.

Chow, Y.S. & H. Teicher (1997) Probability Theory: Independence, Interchangeability, Martingale,
3rd ed. Springer-Verlag.

Findley, D.F. & C.Z. Wei (2002) AIC, overfitting principles, and the boundedness of moments of
inverse matrices for vector autoregressions and related models. Journal of Multivariate Analysis
83, 415-450.



14 CHING-KANG ING ET AL.

Fuller, W.A. & D.P. Hasza (1981) Properties of predictors for autoregressive time series. Journal
of the American Statistical Association 76, 155-161.

Gerencsér, L. (1992) AR (co) estimation and nonparametric stochastic complexity. IEEE Transactions
on Information Theory 38, 1768-1778.

Ing, C.-K. (2003) Multistep prediction in autoregressive processes. Econometric Theory 19, 254-279.

Ing, C.-K. (2007) Accumulated prediction errors, information criteria and optimal forecasting for
autoregressive time series. Annals of Statistics 35, 1238-1277.

Ing, C.-K. & C.-y. Sin (2006) On prediction errors in regression models with nonstationary regres-
sors. In H.C. Ho, C.-K. Ing, and T.L. Lai (eds.), Time Series and Related Topics: In Memory of
Ching-Zong Wei, pp. 60-71. IMS Lecture Notes—Monograph Series 52. Institute of Mathematical
Statistics.

Ing, C.-K., C.-y. Sin, & S.-H. Yu (2007) Using Information Criteria to Select an Autoregressive Model:
A Unified Approach without Knowing the Order of Integratedness. Technical report, Academia
Sinica.

Ing, C.-K. & C.Z. Wei (2003) On same-realization prediction in an infinite-order autoregressive pro-
cess. Journal of Multivariate Analysis 85, 130-155.

Ing, C.-K. & C.Z. Wei (2005) Order selection for same-realization predictions in autoregressive pro-
cesses. Annals of Statistics 33, 2423-2474.

Kunitomo, N. & T. Yamamoto (1985) Properties of predictors in misspecified autoregressive time
series. Journal of the American Statistical Association 80, 941-950.

Phillips, P.C.B. (1987) Time series regression with a unit root. Econometrica 55, 277-301.

Shibata, R. (1980) Asymptotic efficient selection of the order of the model for estimating parameters
of a linear process. Annals of Statistics 8, 147-164.

Wei, C.Z. (1987) Adaptive prediction by least squares predictors in stochastic regression models with
applications to time series. Annals of Statistics 15, 1667-1682.

APPENDIX A

Proof of Lemma 1. We only prove the case of d > 1 since the case of d = 0 can
be shown by an argument similar to that used in the proof of Lemma 1 in Ing and Wei
(2003). Without loss of generality, we may assume k, > d + 1 since, for 1 <k, < K
and kp , = max{d + 1, ky ,},

_ 1 n—1 _ 1 n—1
Amiqn <N 2]4( Sj,n(kl,n)s;,n(kl,n)> < /lmiqn (N z[‘( Sj,n(k2,n)s},n(k2,n)> >
J=Kn J=A&n

and k5 7 = O{(ky ) ®+?). First note that

Jj—1 J—knt+d 1 Jj—1
Sj,n(kn)z 2 bxgj—x,m, Z bxgj—kn+d+1—s,mzks(d)gj—s,~~~a
s=0 s=0 s=0

1! /
~172 Z ks(Dej—s | o
NY s=0

where k(1) = X% _ by and for [} > 2, k¢ (I1) = X% _ x5 (l; — 1). For notational simplicity,
write s; =8; ,, (k). Let g > 0,0 <0 <1, and 1/2 < §, < 1 be arbitrarily chosen. Define
gn = L (n—|oon])/(vky)], where |a| denotes the largest integer < a and v, a positive
integer depending only on d, ¢, 6 and a, will be specified later. Since MO(i) is imposed,
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we may assume without loss of generality that |ndy| > K, and g, > K. For j > |[nd; |,
define a truncated version of s;,

gn_l gn_kn‘f‘d 1 gn_l
Z bsej—gs...» Z bs?,’—k,,+d+1—s,m Z Ks(d)ej—s,. -,
s= 5s=0 s=0

1 gn_l !
~i2 2 Ks(l)gj—s> >
N/ s=0
and let R; =s; — M;. Itis clear that

n—1 an—1 N
’1min< > Sjs}) > 'lmin( > Sln5zj+gni+jS/Ln§2J+gni+j>' (A.1)
j=0

Jj=lnd] i=0

In addition,

_ 1 n—1 n—1
q q
min <N 2 SJS;> <NY imln ( 2 Sjs}) ’ (A.2)
Jj=Kn Jj=ns]

By (A.1), (A.2), and the convexity of x =7, x > 0,

- 1 n—1 ,
’lmin NZ SjS;

J=Kn

vk q 1 gn—1 - vk,—1 ,
—C<71_5 ) 2 in | 2 Stnda)tui+iS|ngs | +gai+) | o (A.3)
2 8&n j=0 i—=0

where C in (A.3) and the rest of this paper denotes a generic positive constant independent
of n and of any index with an upper (or lower) limit depending on » (but it may represent
different values in different places). In view of (A.3), (10) is guaranteed by showing that
forall j =0,...,g, — 1, there is a constant C independent of n and j such that, for all
sufficiently large n,

vk,—1
Qd—1+6
E’lm?n ( Z SLn52J+g,li+jS/Lna‘2J+g,,i+j> < Chn )q’ a4

i=0

In the rest of this proof, we only verify (A.4) for the case of j = 0, since the other cases
can be similarly verified.
Write ¢; =S|, | +g,i- Then, by reasoning analogous to (2.10) of Ing and Wei (2003),

vk, —1
/
EZm?n( Eb ¢i¢i>
=

vk,—1
<[Ck(2d 1+0)]q+/

—l/q
£ 2a=140)1q <|h|| Z (h ¢) <u
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VRt 2 _ g -1
Z lgill” <u”? "k, | du

i=0
00 vk,—1 3
+/[C'vk(2d—l+0)]q P ( > il > u k"_1> du
n i=0
~ — q
= [k v i)+ an, (A.5)

where ! > (34+¢)/2 and C > max{l, 36025_2C*_1 }, with C* > 0 defined in (A.10) below.
Since (3) implies forall# >0and j =1,...,d,

e ()l < Cr+ 1)/ 71, (A.6)

a straightforward calculation gives, for all i =0, 1,...,vk, — 1, E||¢; ||2 < Cky, which,
together with Chebyshev’s inequality, yields

(I1)<CcC. (A7)
To deal with (), consider the hypersphere S, ={¢ : |lp|| =1} C Rk and the hypercube

R =1 =2~ 0+/20a ™ (U007 Ly ke

with u > [C_’k,(,Zd_He)]" . Divide H*" into subhypercubes, each of which has an edge of
length 26~ +1/2197" and a circumscribed hypersphere of radius y/kyu—{+(1/2)a ™",
Let these subhypercubes be denoted by B;,i = 1,...,m*. Then, it can be seen that the
number of B;’s, m*, does not exceed (Lu{l"’(l/z)}q_lj + 1)*n. Define G; = Sy N B; and
let {GCS ;s =1,...,m} denote all nonempty G;’s. Since S, C Hk", Sp = U;"ZlGG. The
arguments similar to those used in (2.11) and (2.12) of Ing and Wei (2003) yield
vk, —1 _1 Vka—l 1
P ( inf Y W) <um?, Y gl < u? k,tl)

Ihi=1";=o i=0

m vk,—1
<y E< I szq,.), (A8)

j=1 i=0

where I, ; is the indicator function for the event D; ; and D; ; = {Il; #i| < 3u~1/24}, with
1; being a vector arbitrarily chosen from GC/' Obviously, '

vk,—1
E( II i,
i=0
vk, —2
=E H Ip;;
i=0

PV M 15y 4 g, 0k —1) + U Ringy 460 (vky—1)| < 3072 ey, < l,,)},

(A9)
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where 1, = |nd> ] + gn(vky, —2). It is shown in Lemma A.2 that for all sufficiently large
nand j; =0,...,vk, — 1,

*

n

By (A.9), (A.10), NS, and independence of aj’s, we have, for u > [C_‘k,(fd_l"'a)]q and all
sufficiently large n,

vk,—1 vk, —2 _ (73
E( I1 IDj,i) SE( I1 IDj,i>M(6kg_(l/2)”c* 1/2”_1/24)
i=0 i=0

avk,

< MVFkn (6kff_(1/2)oc*_l/2u_1/2q) ’ (A11)

where the second inequality is obtained from repeating the same argument vk, — 1 times.
By (A.8), (A.11), and taking

2(d=4+5)@r+1+29)
v >
- ol

+1,

one obtains, for sufficiently large n,

vy (g d=(1/2)  u=1/2\@Vkn 00 —kn(av—2I—1)/2q
(1) = cm* (k) S— du<C. (A12)

In view of (A.5), (A.7), and (A.12), the proof is complete. |
To prove (A.10), we need an auxiliary lemma.

LEMMA A.1. Assume that (1) with d > 1 and (2) hold. Define

qn—1

/
1 l qn_l

Va(d) = <d_(1/2) 2 xj(d)gn_j,...,l—/z z Kj(l)gn—j) >
qn Jj=0 qn  j=0

where 1 < qn <n and g, — o0 as n — oo. Then,

Jim E{Va @V}, @)} = Z(d) =[zij1i j=1,...a> (A.13)
where z;j = V3(2d —i — j+1)H(d —)!(d — )L, with VG = az(z;iobjﬁ and the
convention that 0! = 1. In addition, Z(d) is positively definite for alld = 1,2, ....

Proof. (A.13) can be obtained by (3), (A.6), and a straightforward calculation. The de-
tails are omitted. To show that Z(d) is positively definite, write

Z(d) = Vidiag(1/(d = 1)!,..., 1/0) A(d) H(d) A (d)diag(1/(d —1)!,...,1/0!), (A.14)

where the (i, j)-th element of H (d) is given by (i + j — D~ land A(d) = Lfi,jli,j=1,....d
with f; j=1ifi+j=d+1and f; j =0ifi+j #d+1.Since H(d), known as Hilbert
matrix, is positively definite (see Barria and Halmos, 1982, or Choi, 1983), in view of
(A.14), the positive definiteness of Z(d) follows. u
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LEMMA A.2. Assume that (1) withd > 1, (2), and MO(i) hold. Then (A.10) follows.

Proof. We only prove the case of j; = 0 since the other cases can be obtained similarly.
By noticing that [[1;]| = 1, and the definition of A, (.), we have

var(l; Mg, |) = Zmin {E(M 110 M [ )}

1y o,y
e E(MLn)aszanszj) 0k, —d)xd
- o Em2 M) )
dx (kn—d) [nd2] ™ [ndz]

1) a1y
EM|,5, M5, Ok, —d)xd
) / [nd2] ™ [ndy ] (kn—d)
E(MUlszMLmFZJ)_< v
%]

(2) (&)}
sz (ky—d) E(M (102 ] M [n

> min {imin {E(Mfrllgszj MS:SS;J)} > #min {E(Mfrzzzin M&;J)}}

, (A.15)

¢! 2)
( 0, —ad)x (ky—a)  EM ansz M LnZSz 1) )
@ 0
E(M y5,) M, ) Odxd

where the matrix norms are defined in Remark 3,

) gn—1 gn—ky+d !
M5, = bi oy —i>-r D, Diflngy|—kytrd+1-i | -
i=0 i=0
and

@ ( 1 gil 1 gnz—l ’

M = ————= ks (d)e gy — ks(Deinsy 1—s | -
5 — S ndy|—s 172 S [ndy)—s

[nda) Na=(72) & N2 &

By (2) and (3), it is not difficult to see that, for some Cik > 0 and all sufficiently large n,
1 1)

Amin {E(an)&2 MO J)} > Ct. (A.16)
Also observe that

@ @ . (r&n\4=0/2) gm\1/2
E(MLnézJMLnZFzJ):dlag«ﬁn) (ﬁ") Zu(d)

aag((%) 7 (5)'),

where, with

- (2) 1 gn—l 1 gn—l !

MLnézj = ( d—(1/2) Z ’CS(d)ngSzJ—s,n-,T/z Z Ksﬂ)ﬂné‘z]—s) s
8n s=0 8n  s=0

-2 5@ .
Zn(d) = E(anzizj anzizj)' By Lemma A.1, lim;,—s o0 Z, = Z(d), and hence, for some

C5 > 0 and all sufficiently large n,

2 2) _
Amin {E(M o Ml J)} > C3k) =2, (A17)
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Moreover, armed with (A.6), it can be shown that, for some C; > 0 and all sufficiently
large n,

1) 0
Ok, —d)x (k—d) ~ E(M 5 M35 1) <C*(kn)”2 (A18)
= 3 —— .

@ 0 N
E(M 55,1 M 5,)) Oixa

Consequently, the desired result follows from (A.15)-(A.18) and the assumption that
Kn = o(n/@d=1)y [

The following lemma is required in the proof of Theorem 1.

LEMMA A.3. Assume (1), (2), and for some q > 2, sup0<l<ooE(|s,|2‘1) < 0. Then,
for1 < K,<n—1land1<l<d,

E

— q
NI 2050
max <

1<k<K, K \9/2 -
N

(A.19)

Proof. By the convexity of x7, x > 0,
n—1 4q

N7 2 )y (1)
j:Kn

/2 k=1
) S

s=0

E

n—1
Z Zj—syj (D)

j=Kn

q
} . (A.20)

In view of (A.20), it remains to be shown that, fors =0,1,..., K,, — 1,

E {N_lq

We only show (A.21) for the case s = 0, since the other cases can be obtained similarly.
Changing the order of summation, we obtain

n—1 q
PRSI H() } <cC. (A.21)
=K,

J

n

n—1 n—1 n—1 —1 (s—1 n—1
Y ziyih=Y, ( Y Kj—t(l)bj—t) ety {2 ( Y Kj—t(l)bj—s> 8:} &s
j s=2 (t=1 \j=K,Vs

j=Kn =1 \ j=K,Vt
n—1 (r—1 n—1
XA Y by s e
t=2 (s=1 \j=K, Vvt
=)+UD+UII). (A.22)
By (A.6) and (3), one has, forall 1 <t <n—1,
S ke PP (A23)
Kj— i—t] < .
v T T lent? 12,

Equation (A.23), the assumption that supg ., - oo E(les |2q) < 00, and Minkowski’s inequal-
ity together imply

N~UE|(D)? < C. (A.24)
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Since both (II) and (III) are martingale transformations, by (A.6), (3), Minkowski’s in-
equality, and applying Wei (1987, Lem. 2) repeatedly, we obtain

E[(IT)]4 < Cn'? and E|(I11)]? < Cn™. (A.25)
Consequently, (A.21) follows from (A.22), (A.24), and (A.25). |

Proof of Theorem 1. We only prove the case of d > 1, since the case of d = 0 can be
shown by an argument similar to that used in the proof of Theorem 2 in Ing and Wei (2003).
We start by verifying (16). In view of the definition of 3',,,d(k), it suffices to consider the
case of k > d + 1. First note that foralld + 1 < k < K,

E||S), (k) — S, (k)| 71

H : z](k Ayt (k—d)—~T(k—d) 33 sz(k—d)Ujf,n(d) !

Ujn(d)z;(k—d) 04 xa

k4
<C (W) > (A.26)

where the inequality follows from Lemma A.3 and an analogy with Lemma 2 of Ing and
Wei (2003). In addition, Lemma 1 yields, forany » > Oand 1 > 6 > 0,

NS (Ka)l" = 0 (K240, (A.27)

By Lemma 1 (taking k, = d) and (2), one has, for any r > 0,

EIIS7 ) (Kol = 0(1). (A.28)
Since
18,1 () = S0 19 < 18 (Ki) 1185 (k) = S n (NI 18 7, (Kn) 19, (A29)

(A.26)—(A.28) and Holder’s inequality imply, for all d +1 < k < K, and all sufficiently
large n,

a_ a_ A A q/q
EISy () = 37,0017 = € (K (B8 (0 = Sa )™

xAd+2420\ 4/2
<C HT . (A.30)

Set 20 < 6. Then (16) follows from (A.30) and MO(iii). Moreover, (17) is an immediate
consequence of (16), (A.28), and the fact that

1871 G19 < CAUST, N + 18, o) = 87, (1),

Finally, (18) is guaranteed by (17), (A.26), (A.28), (A.29), and Holder’s inequality.
The second part of this theorem follows from (A.30), MOC(ii), and an argument similar
to that used to verify Theorem 2(ii) in Ing and Wei (2003). The details are skipped. n
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APPENDIX B

LEMMA B.1. Assume (1) with d > 1, (2), and supy.; <o Ele:|? < 00,q > 2. Then,
for K, > d and K, = o(n),

Kﬂg}aﬁ E|U;j (@)1= 0(1), (B.1)
and

I 4q
Kn<11<lz<n 1 HWJE;IU,»JL(CI);,JFI =0(1), (B.2)

where Uj ,(d) is defined after (23).

Proof. Equalities (B.1) and (B.2) can be shown by (A.6) and an argument similar to that

used in the proof of Lemma 4 of Ing and Wei (2003). The details are omitted. |
LEMMA B.2.
E(*(/F~ )Y =odd+1), (B.3)

where 1, F, and { are defined in (26).

Proof. Since it is difficult to obtain (B.3) through direct calculations, we adopt an indi-
rect approach. Consider an AR(d) model,

xXp = Prx—1+- -+ BaXi—a te, (B.4)

where, fori =1,...,d, i = (— 1)‘+1Cd with sz =m ‘/[mz!(ml —m»)!], &’s are i.i.d.
normal random variables with zero means and variances o 2 ,and x; = 0 for ¢ < 0. Having
observed Xlseees Xiy the least squares estimator of A(d) = (B1,...,Ba4), Bi(d), is given by

(Zj. % (d)x (d))ﬁ, d) = _dxj(d)x]+1 where x;(d) = (xj,...,xj_d+1)’. By Chan
and Wei (1988) it can be shown that

n{x, (d)(Bn(d) = p@)Y* = o2 F710)%,  asn— . (B.5)

Since model (B.4) is a special case of model (1), by Lemma 1 (taking k, = d), (B.1), (B.2),
and Holder’s inequality, there is a positive integer 2* such that, for any d; > 0,

sup Eln{x, (d)(fn(d) — p@))?)' 1 < C, (B.6)
n>h*

which implies that the sequence {n{x],(d) (,én d)— ﬁ(d))}z}n2 p* 1s uniformly integrable
(see Chow and Teicher, 1997, Ex. 4.2.6). This fact, (B.5), and Billingsley (1968, Thm. 5.4)
give

lim_Eln{x},(d)(Bu (@) = B@)1 = *E(('F~'0)%). (B.7)

In addition, by Theorem 5 of Wei (1987),

17 Z X/ (@) (B; () — B} | —o2d(d+1) = 0p(1). (B.8)
i=h*
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According to (B.6) and Minkowski’s inequality, for any d; > 0,
1+0;

I & N
sup B|o—— 3 (@) (Bi@) = @] <C, (B.9)
n>h* | 1081 ; Zpx
which, together with (B.8), yields
R SR I 2_ 2
L :2h E{x; (d)(Bi (d) = p(d)}" = o d(d +1). (B.10)
Consequently, (B.3) follows from (B.7) and (B.10). u

Proof of Lemma 2. By the arguments used in Phillips (1987) and Chan and Wei (1988),

1 n—1 _ ., -1
<n_d _221 Uj,n(d)Uj,n(d)> = 0p(1).
]:

This and Lemma B.1 imply

N8y, (d) = (=)' ?Ey (@) = 0p (D),

which, together with (26), Slutsky’s lemma, and the continuous mapping theorem, yields
NE ()= o2 ( F7' )% (B.11)

Moreover, by Lemmas 1 and B.1, Holder’s inequality, and the moment condition imposed
on {&;}, one has

sup E|Nf% n(d)|1+(51 < 00,

n>h* ’

where h* is some positive integer and J; is some positive number. Consequently, the de-

sired result follows from the above inequality, (B.3), and (B.11). u
To verify Theorem 2, we need several auxiliary lemmas.

LEMMA B.3. Assume that (1) holds and supq ;<o Eler|? < 00,q > 2. Then,

sup max k_q/2E||zj(k)||q <C, (B.12)
jz1lsksj
and
/2 ! < !
sup max kYE||—— z;(k)ejq|| <C. (B.13)
>l >11<k<l; «/12—11+1j§;1 S

Proof. Inequalities (B.12) and (B.13) can be shown by an argument used in the proof of
Lemma 4 in Ing and Wei (2003). We skip the details. u

LEMMA B.4. Under the same assumptions as in Lemma B.1, but with the moment
condition replaced with supy .; - Elstlzq < 00,q > 2, one has, forall 0 <k < Ky,

1 nil q %o: q
E||l-—= Uind)(ejr1k—¢ej+1)| <C la; —a; (k)|
J.n JT1, ] i i
VN jZk, i=1

00 q
§C< Y |ai|> ) (B.14)

i>k+1
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Proof. First note that

n—1 q
Z Ujn(d)(ejg1k—¢€j+1)
] =K,
2
d n—1 YJ() 2\
=E< > | X N1 e 8
=1 Jj=Kn
d n—1 . 1 q
<d "TaM Ny El Y y](l)(8j+1k_5j+l)
= |j=x, N o

q

>l/q q

where the first inequality is due to the convexity of x4/2 x > 0, the second inequal-
ity follows from (22) and changing the order of summation, and the last one is due to
Minkowski’s inequality. Moreover, by an argument similar to that used to obtain (A.21),
one has, foralll </ <dandl1<m<n-—1,

< q—1+a/2) 2 E
=1

n—1 1
2 (am — am (k)) ( z y;v([)zj+l m)

m=1 j=K,vm

"il Yj (l)Z ~
[ <jtl-m
=1 |m=1 N

d | n—1
<d™TUD NS Jay —am (k)| (E

Jj=Knvm

n—1 q
2 Y/(l) <c.

E N Zj+1-m

j=K,vm

As a result, the first inequality of (B.14) follows. The second inequality of (B.14) is an
immediate consequence of Lemma 4 of Berk (1974). u

LEMMA B.5. Assume (1) and (2). Then, for K, = o(n), there are sequences of positive
numbers {wp} and { yn}, with w, = o(n_l) and yp = o(n_z), such that, forall 0 <k < K,

o0
2 <on Y (@ —a;(k)* + tn. (B.15)
i=1

)E (5n+1,k _5n+1)2

Proof. Denote a; — a; (k) by r; (k). Then, algebraic manipulations yield

2 2
n n
Eepy1,6— ény1)’ =E (Z ri (k)Zn+1—i,oo) —E{ > ri (k) (znt1-i,00 _Zn+l—i)}

i=1 i=1
=()—I). (B.16)

Since K, = o(n), there are 0 < p < 1 and M™* > 1 such that, for all n > M*, K, < pn.
Now, foralln > M* and 0 < k < K,

o0 n 2
AOEDY <2 ri(k)bn+l+l—i>

=0 \i=1
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oo [ on 2 x n 2
<2 2<zri(k)bn+l+l—i> +z< Y ri(k)bn+1+l—i)

1=0 \i=1 1=0 \i=pn+1

on
|:2 2 |"zl(k)r12(k)|<2|bn+l+l i1 byyi41— 12|>

i1=lip=1 0

"‘2{ DAY b5+1+1—1}]

=0 \i=pn+1 i=pn+1

on o0 n
_2<2ri2(k)> Qn{ D b}}+2< > r}(k)>
i=1 j=(1—p)n+1 i=pn+1

aom 00 )
x{ D, jbi+(-on bj}

j=1 j=(gn+1
v 2 S 2

<o, Y @—ak) +C Y af, (B.17)
i=1 i=pn+1

where wy , = 2n2/ —(1—p)n+1 ] 2 and C = ZZjﬁljb]Z. Note that according to (3),

oy = o(n™ 1) and C; < oo. Similarly, for all n > M* and 0 < k < K, there are
C», C3 > 0 such that

a ()~ la—a®)?<Ccy Y a3+cg{n‘1 Y |yz|} S lail, (B.18)

i=pn+1 I=(1—p)n+1 i=k+1

where y; is defined after (4). Since (2) and (3) imply

- 2 2 < 1
Y ai=o(®™") and > Inl=o™h,
i=pn+1 I=(1—p)n+1
(B.15) follows from (B.16)—(B.18). n

LEMMA B.6. Assume (1), (2), and, for some q > 2, sup0<l<ooE|gl|2q < o0. Then,
for1 <Ky, <n—1landalll <k <K,

q
< ck9/? (||a—a(k)||§1+N—q/2). (B.19)

n—1

Z zj (k) (&j 41,6 —&j+1)
J =Kpn

Proof. First note that

n—1

SC{E

zj (k) (&j1+1,k —&j+1)

q

1 n—1
NG > (2 (k) = 2j,00(K) (€ 41,k —€j+1)
j=Ki
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n—1 q
z Zj, oo(k)(3]+l k— ]+1,k)
] Ky
n—1 4q
+E 2j,00(K) (/41 —€j41) }
=C{(H+UDH+UID}, (B.20)

where 8] k= 2{;0 a; (k)zj41—i,00 With ag(k) = 1. Without loss of generality, we can

assume Sup_ s, <1 <( E|g,|2‘1 < 00 in the rest of the proof. By the convexity of x4,x > 0,
Minkowski’s inequality, and the Cauchy-Schwarz inequality,

k n—1
(1 <k@2-1y N_"/z{ > Elzjp1—1 — 2jp 11,001
=1 j=Kn

q
X (Elej 41,k =41 |24)”2q} : (B.21)

In view of (B.16), forall K, < j <n—1and 0 <k < K,
: 2
2 L < 2
E(ejt1,6k—¢j+1)" <E (Z (ai —a; (k))Zj+1—i,oo> < C Y (g —aj(k)
i=1 i=1
2
< C”a_a(k)nza

where the last two inequalities are ensured by (2). This fact and Wei (1987, Lem. 2) yield
that, forall K, < j <n—1and 0 <k < K,

2
Elej 1,6 —€j+1 1% < C{E(¢j41,k —8j+1)2}q <Cla—a()|:? < C. (B.22)
Moreover, it follows from Wei (1987, Lem. 2) and (3) that, for all 1 </ < K,,,

n—1 n—1 00

o0
S Elzjgi—i—zjr1-10l DV <C Y Y bl <C Y jIbjl <0, (B23)
J=Kn J=Kps=j+1-1 Jj=1
which, together with (B.21) and (B.22), implies
(I) < Ck1/2N~4/2, (B.24)

By (B.12) and arguments similar to those used in (B.21)-(B.23),

k n—1
(1 < /-1 z N—Q/Z{ z (E|Zj+l—l,oo|2q)1/2q
=1 J=Kn

q
x 2|a,(k)|(E|zj+1 —i00 = Zj41— Fq)W}
i=0

k q
< ckl4/D-1 2 NT4/2 (2 la; (k)|) < CkI2N~1/2, (B.25)
=1 i=0
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where the last inequality follows from Lemma 4 of Berk (1974), which yields supy > 2?:0
|a; (k)| < co. Moreover, by Lemma 3 of Ing and Wei (2003),

(i < cki’?ja—agk)|f. (B.26)
Consequently, (B.19) is ensured by (B.20) and (B.24)—(B.26). u

LEMMA B.7. Assume (1), (2), NS, and sup0<t<ooE|8[|6+01 < oo for some 01 > 0.
Then, for K, = o(nl/z),

E{f0(d) +fr0(k—d)+Spk—d)}*

L (k) :

1 max
n—00 max{l,d}<k<K,

=0,

where Lff(k) is defined in Theorem 2.

Proof. We only prove the case of d > 1, since the case of d = 0 can be shown by
an argument similar to that used in the proof of Theorem 3 in Ing and Wei (2003).
Define

E(f(d) + 62,0 (k—d)+Sp(k=d))*
L (k)

(I) = max 1.

B.27
d<k<Ky ( )

Then,
(D) < D)+ I + AV) + (V) + (VD) + (VID), (B.28)
where

2
E(fz d)) — d(d+1)o
(II) = max 1’"( ) N s

d<k<Kj

IIT) = max
ut d<k<K,

IV) = max
(V) d<k<K,

(V)= max
d<k<K,

VI) = max
VD d<k<K,

VII) = max
vih d<k<Kj,

L (k)

_ 2
B, (k—d) - C5p~

>

Li (k)

E(S2(k—d))—|la—a(k—d)|?

L (k)

2E(f), 5 (D)2, (k —d))

s

Ld (k)

2E(f),, (d)Sn (k —d))

E)

L (k)

2E(fy, (k = d)S, (k= d)) ’
L (k) '

s
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By Lemma 2, it is easy to see that
ngmw(lﬂ =0. (B.29)

According to Lemma B.3 and an argument used in the proof of Theorem 3 in Ing and Wei
(2003),

nli>moo(111) =0, (B.30)
and
nll)moo(VII) =0. (B.31)

Lemma B.5 and (22) imply

W< max |2 Y2 (i —aj(k —d))* + xn
T d<k<K, Lff(k) ’

(B.32)

where w;, = o(n_l) and y, = o(n™2). Moreover, since (2) yields, for some Cy,Cp > 0,

Cilla—atk—d)|2 < Y (a; —a;(k—d))* < Cola—atk —d)| 2, (B.33)
i=1

one obtains from (B.32) and (B.33) that
nll)moo(IV) =0. (B.34)
To show
lim (V)=0 (B.35)
n— o0
and
nll)moo(VI) =0, (B.36)

consider

U;:ﬂ(d) —ln_\/ﬁ_1 /
N N FZK Ujn(d)Uj ,(d)

1a(d)=

1
—l/2n & X .
x N z U],n(d)gj+l Iia=1y,

Z:l/(k—d) » _l/zn—ﬁ—l
5, (k—d)= Tr (k—d)N Y zik—d)ejq g Igsays

J=Kn
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and
Vn/2
Sik—dy="Y (@ —a;j(k—d)zi .,
i=1
where
/
1 n—l 1 n—l
*
Upn(d) = W.Z ’Cj(d)en—js-~-’m'z ki(Dep—j | »
j=n j=n
V=K, =K, '
)= Y bjen—jioon 2, bjeg_iyi—j| ,1>1,
j=0 j=0
*% \/’;/2 . PR .
and Tyt1—i = 2j=0 bj8n+1—i—j- By (2), (3), Minkowski’s inequality, Lemma 4 of Berk

(1974), the moment restriction imposed on {¢;}, and analogies with (B.1) and (B.12), for
any 0 <g <646,

max [~92E ||z, (1) —z;(1)||? = 0o(n™1/?), (B.37)
1<I<K,
E[|Unn(d) = Uy @[T = 0™, (B.38)
and

—S*(D4 = o(n—9/?
Ofr?e;;(nEISn(l) SO =o(n=17). (B.39)

Armed with (B.37)—(B.39), Lemmas 1, B.1, and B.3, Holder’s inequality, and some alge-
braic manipulations, we obtain

£y, (), (k—d) = (D)F (k—d)
lim max E Ln & 2,n )d Ln 77 2.n =0 (B.40)
n—00d<k<K, L4 (k)
and

f1 ,(d)Sp(k—d)—1F (d)St(k—d
lm  max E| LD ) = Fin DSy ) _o, (B.41)
n—00d<k<K, L (k)

As a result, (B.35) and (B.36) follow from (B.40), (B.41), and the facts that for all d <
k < Kp, E{f] n(d)f; o (k—d)} =E{f] n(d)S;; (k —d)} = 0. Finally, (B.27) is ensured by
(B.28)—(B.31) and (B.34)—(B.36). n

We are now ready to prove Theorem 2.
Proof of Theorem 2. We only prove the case of d > 1, since the proof of the case of
d = 0 is similar and much simpler. By (A.26)-(A.28), the moment restriction imposed on

{e+}, Lemmas B.1, B.3, B.4, and B.6, and Holder’s inequality, one has for all d < k < K,
andany 0 <6 < 1,
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E{f, (k) — By, (k,d) — By, (k—d)}*

c \2/(10407) /.
< (Ellsn,n(k)ll“”"l) (EllSn LK) || 40+401)/01

Al 01/(20+201)
XE|| 37}, (Kn)|40H40/01)
x | EllSy (k) — 84, (k)| 10F00/2

(10+67)/2\ 4/(10+41)
xE

1 n—1
ﬁ z Sj.n (k)8j+1,k—d
J=Kn

k K3d+3+29
<C——"———

- N N
Taking 20 < dy, it follows that
i E{f, (k) — B, (k,d) = By, (k—d)}* _
1im max =
n—00d<k<K, L (k)

0, (B.42)

Lemmas 1, B.1, and B.4 ensure that, for alld < k < K,

0 2
E{Bln(kad)—fl,n(d)}zSCN_I( > |ai|). (B.43)
j=k—d+1

If a; # 0 for infinitely many i, then k;; (d) — oo as n — oo, where k;: (d) is defined after
(32). This fact, (2), and (B.43) yield that

2 2
E{By,(k,d)—1f ,(d &2 lail)
max { 1n(k,d) l,n( )} <C j=11"1 N
d<k<K, L4 (k) kx(d)
as n — 00. On the other hand, if for some 0 < ky < 00, a, # 0 and a; =0 for all i > kg
(note that ag = 1), then

2 c
E{BinGk,d) ~11.,@)}" _ | Nacag-nz K021
d<k<K, Ld (k) o ko = 0.

As aresult,

2
I E{Bln(kad)_fl,n(d)}
m max d =
n—=00d<k<K, L4 (k)

In addition, by Lemmas B.3 and B.6 and (2),
(k—d)?

0. (B.44)

E{By,(k—d)—ty ,(k—d)}* < (la—a(k—d)|I2+ N1

N2 00
s S e

j=k—d+1

c
x (B.45)

IN
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Then (B.45) and an argument similar to that used to obtain (B.44) yield

2
, E{By(k—d)—fr ,(k—d)}
im  max =
n—=00d<k<Kp Ld (k)

0. (B.46)

Consequently, (29) follows from (B.42), (B.44), (B.46), Lemma B.7, and the Cauchy-
Schwarz inequality. u

Proof of Theorem 3. Theorem 3 can be shown by the same argument as in the proof
of Theorem 2, except that Theorem 1(ii) is used instead of (A.27) in verifying (B.42). The
details are skipped. n



