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MOMENT BOUNDS AND MEAN SQUARED PREDICTION ERRORS
OF LONG-MEMORY TIME SERIES1
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Chinese University of Hong Kong, National University of Kaohsiung, and
Academia Sinica and National Taiwan University

A moment bound for the normalized conditional-sum-of-squares (CSS)
estimate of a general autoregressive fractionally integrated moving average
(ARFIMA) model with an arbitrary unknown memory parameter is derived
in this paper. To achieve this goal, a uniform moment bound for the inverse
of the normalized objective function is established. An important applica-
tion of these results is to establish asymptotic expressions for the one-step
and multi-step mean squared prediction errors (MSPE) of the CSS predictor.
These asymptotic expressions not only explicitly demonstrate how the multi-
step MSPE of the CSS predictor manifests with the model complexity and the
dependent structure, but also offer means to compare the performance of the
CSS predictor with the least squares (LS) predictor for integrated autoregres-
sive models. It turns out that the CSS predictor can gain substantial advantage
over the LS predictor when the integration order is high. Numerical findings
are also conducted to illustrate the theoretical results.

1. Introduction. Long-memory behavior has been extensively documented in
a spectrum of applications. For background information on long-memory time se-
ries and their applications, readers are referred to Doukhan, Oppenheim and Taqqu
(2003), where important theories and applications of long-memory models in the
areas of finance, insurance, the environment and telecommunications are surveyed.
One distinctive feature of the long-memory phenomenon is that the autocorrelation
function of a long-memory process decays at a polynomial rate, which is much
slower than the exponential rate of a short-memory process. This feature not only
enriches the modeling of time series data, but also offers new challenges. While
considerable attention has been given in the literature to the derivation of the law
of large numbers and the central limit theorem for the estimated parameters in
many long-memory time series models [see, e.g., Dahlhaus (1989), Fox and Taqqu
(1986), Giraitis and Surgailis (1990), Robinson and Hidalgo (1997) and Robinson
(2006)], less attention has been devoted to their moment properties. On the other
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hand, moment properties of the estimated parameters in short-memory time se-
ries models have been widely studied. For example, Fuller and Hasza (1981) and
Kunitomo and Yamamoto (1985) obtained moment bounds for the least squares
(LS) estimators of stationary autoregressive (AR) models, which led to asymp-
totic expressions for the mean squared prediction error (MSPE) of the correspond-
ing least squares predictors. Ing and Wei (2003) established a moment bound for
the inverse of Fisher’s information matrix of increasing dimension under a short-
memory AR(∞) process, which enabled them to derive an asymptotic expression
for the MSPE of the least squares predictor of increasing order. When the moving
average (MA) part is taken into account, moment bounds for the estimated param-
eters are much more difficult to establish, however. Chan and Ing (2011) recently
resolved this difficulty by establishing a uniform moment bound for the inverse of
Fisher’s information matrix of nonlinear stochastic regression models. Based on
this bound, they analyzed the MSPE of the conditional-sum-of-squares (CSS) pre-
dictor (defined in Section 3) and explained how the final prediction error can be
used as an effective tool in the model selection of autoregressive moving average
(ARMA) models.

These aforementioned studies primarily deal with the stationary cases, which
may be inapplicable in many important situations when nonstationary behav-
iors are often encountered. In view of the importance of incorporating long-
memory, short-memory and nonstationary features simultaneously, we are led to
consider the following general autoregressive fractionally integrated moving av-
erage (ARFIMA) model. Specifically, suppose the data y1, . . . , yn are generated
by

(
1 − α0,1B − · · · − α0,p1B

p1
)
(1 − B)d0yt

(1.1)
= (

1 − β0,1B − · · · − β0,p2B
p2
)
εt ,

where η0 = (θT
0, d0)

T = (α0,1, . . . , α0,p1, β0,1, . . . , β0,p2, d0)
T is an unknown coef-

ficient vector with d0 ∈ R and 1 −∑p1
j=1 α0,j z

j �= 0 and 1 −∑p2
j=1 β0,j z

j �= 0 for
|z| ≤ 1, B is the back-shift operator and εt ’s are independent random disturbances
with E(εt ) = 0 for all t . Throughout this paper, it will be assumed that yt = εt = 0
for all t ≤ 0. These types of initial conditions are commonly used in the nonsta-
tionary time series literature; see, for example, Chan and Wei (1988), Hualde and
Robinson (2011) and Katayama (2008). Assume that

θ0 × d0 ∈ � × D,(1.2)

where

D = [L,U ] with −∞ < L < U < ∞(1.3)
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and � is a compact set in Rp1+p2 whose element θ = (α1, . . . , αp1, β1, . . . , βp2)
T

satisfies

A1,θ (z) = 1 −
p1∑

j=1

αjz
j �= 0,

(1.4)

A2,θ (z) = 1 −
p2∑

j=1

βjz
j �= 0 for all |z| ≤ 1;

A1,θ (z) and A2,θ (z) have no common zeros;(1.5)

|αp1 | + |βp2 | > 0.(1.6)

Note that in the current setting, D can be any general compact interval in R,
which encompasses the important case of nonstationary long-memory models
when d ≥ 0.5.

Let εt (η) = A1,θ (B)A−1
2,θ (B)(1 − B)dyt , where η = (η1, . . . , ηp̄)T = (θT, d)T

with p̄ = p1 + p2 + 1. Then, the CSS estimate of η0, η̂n = (θ̂T
n, d̂n)

T, is given
by η̂n = arg minη∈�×D Sn(η), where Sn(η) =∑n

t=1 ε2
t (η) is called the objective

function. The main goal of this paper is to establish a moment bound for n1/2(η̂n −
η0), namely,

E
∥∥n1/2(η̂n − η0)

∥∥q = O(1), q ≥ 1,(1.7)

where ‖ · ‖ denotes the Euclidean norm. We focus on model (1.1) instead of more
general ones because of its specific and simple short-memory component, which
makes our proof much more transparent. On the other hand, it is possible to extend
our proof to a broader class of linear processes; see the discussion given at the of
Section 2 for details.

Although it is assumed in (1.1) that E(yt ) = 0, this condition is not an is-
sue of overriding concern. To see this, assume that yt = ζ(t) + A−1

1,θ0
(B)(1 −

B)−d0A2,θ0(B)εt has a mean ζ(t), where ζ(t) is a polynomial in t whose de-
gree k ∈ {0,1,2, . . .} is known and coefficients are unknown. Then, it is easy
to see that (1 − B)k+1yt is a zero-mean ARFIMA process with memory pa-
rameter d0 − k − 1. Given that (1.7) is valid for any value of d0, the CSS es-
timate of η∗

0 = (θ0, d0 − k − 1)T based on (1 − B)k+1yt , say η̂∗
n, still satisfies

E‖n1/2(η̂∗
n − η∗

0)‖q = O(1), q ≥ 1.
An important and interesting consequence of (1.7) is that asymptotic expres-

sions for the one-step and multi-step MSPEs of the CSS predictor can be es-
tablished. These asymptotic expressions not only explicitly demonstrate how the
multi-step MSPE of the CSS predictor manifests with the model complexity and
the dependent structure, but also offer means to compare the performance of the
CSS predictor with the LS predictor for integrated AR models. It is worth mention-



MOMENT BOUNDS AND PREDICTION ERRORS 1271

ing that Hualde and Robinson (2011) have shown that n1/2(η̂n − η0) converges in
distribution to a zero-mean multivariate normal distribution. However, their result
cannot be applied to obtain (1.7) because convergence in distribution does not im-
ply convergence of moments. While existence of moments of η̂n can be guaranteed
easily by the compactness of � × D, this only yields a bound of O(nq/2) for the
left-hand side of (1.7), which is greatly improved by the bound on the right-hand
side of (1.7). Equation (1.7) can also be used to investigate the higher-order bias
and the higher-order efficiency of η̂n. Because these types of problems require a
separate treatment, they are not pursued in this paper.

Note that under (1.1) with d0 > 1/2, Beran (1995) argued that the consistency
and asymptotic normality of η̂n should hold. However, as pointed out by Hualde
and Robinson (2011), the proof given in Beran (1995) appears to be incomplete be-
cause the property that η̂n lies in a small neighborhood of η0 with probability tend-
ing to 1 is applied with no justification. Indeed, this property, reliant on uniform
probability bounds for {Sn(η) < Sn(η0)}, is difficult to establish for a general d .
To circumvent this difficulty, Hualde and Robinson (2011) partitioned the param-
eter space (after a small ball centered at η0 is removed) into four disjoint subsets
according to the value of d , and devised different strategies to establish uniform
probability bounds for {Sn(η) < Sn(η0)} over different subsets. Consequently, the
consistency and asymptotic normality of η̂n are first rigorously established in
Hualde and Robinson (2011) for model (1.1) with a general d . However, the uni-
form probability bounds given in Hualde and Robinson (2011), converging to zero
without rates, are insufficient to establish (1.7). To prove (1.7), we would require
rates of convergence of uniform probability bounds, which are in turn ensured
by a uniform moment bound of the inverse of the normalized objective function,
a−1
n (d)

∑n
t=1(εt (η) − εt (η0))

2, where an(d) = nI{d≥d0−1/2} + n2(d0−d)I{d<d0−1/2}
with IB denoting the indicator function of set B . This uniform moment bound, as
stipulated and proved in Lemma 2.1, is based on an argument quite different from
those in Chan and Ing (2011) and Hualde and Robinson (2011), and constitutes
one of the major contributions of this article.

In Section 2, by making use of Lemma 2.1 and other uniform probabil-
ity/moment bounds, (1.7) is proved in Theorem 2.1. The problem of extending
(1.7) to a general linear process that encompasses (1.1) as a special case is also
briefly discussed. In Section 3, Lemma 2.1 and Theorem 2.1 are applied to derive
asymptotic expressions for the one-step and multi-step MSPEs of the CSS predic-
tors; see Theorems 3.1 and 3.2. These expressions show that whereas the contri-
bution of the estimated parameters to the MSPE, referred to as the second-order
MSPE, in the one-step case only involves the number of the estimated parameters,
the second-order MSPE in the multi-step case reflects more features of the un-
derlying model, thereby shedding light about the intriguing multi-step prediction
behaviors of the ARFIMA processes. Another important implication of Theorems
3.1 and 3.2 is that even for an integrated AR model, the CSS predictor can out-
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perform the LS predictor when the order of integration is large. To facilitate the
presentation, more technical proofs are deferred to the Appendix. By means of
Monte Carlo simulations, we also demonstrate that the finite-sample behaviors of
the one-step and multi-step MSPEs in ARFIMA models can be revealed by the
asymptotic results obtained in Section 3. Details of this Monte Carlo study, along
with the proof of (2.9), which is the long-memory counterpart of Theorem 3.1 of
Chan and Ing (2011) and crucial in proving (1.7), are provided in the supplemen-
tary material [Chan, Huang and Ing (2013)] in light of space constraint.

2. Moment bounds. The major goal of this section is to prove (1.7). To this
end, we need an assumption on εt .

(A1) There exist 0 < δ0 ≤ 1, 0 < α0 ≤ 1 and 0 < M1 < ∞ such that for any
0 < s − v ≤ δ0, sup1≤t<∞,‖vt‖=1|Ft,vt (s) − Ft,vt (v)| ≤ M1(s − v)α0 , where vt is a
t-dimensional vector and Ft,vt (·) denotes the distribution of vT

t (εt , . . . , ε1).

Note that an assumption like (A1) has been used in the literature to deal with
the moment properties of the LS estimates in the AR or ARMA context; see,
for example, Findley and Wei (2002), Ing (2003), Schorfheide (2005) and Chan
and Ing (2011). When εt ’s are normally distributed, (A1) is satisfied with M1 =
(2πσ 2)−1/2 and α0 = 1 for any δ0 > 0. In addition, when εt ’s are i.i.d. with an in-
tegrable characteristic function, (A1) is satisfied with any δ0 > 0, α0 = 1 and some
M1 > 0. For a more detailed discussion of (A1), see Ing and Sin (2006).

The following two lemmas, which may be of independent interest, play a key
role in proving (1.7). Let Bδ(η0) = {η ∈ Rp̄ :‖η − η0‖ < δ}.

LEMMA 2.1. Assume (1.1)–(1.6) and (A1). Then, for any δ > 0 such that
� × D − Bδ(η0) �= ∅, any q > 0 and any θ > 0, we have

E

[{
inf

η∈�×D−Bδ(η0)
a−1
n (d)

n∑
t=1

(
εt (η) − εt (η0)

)2}−q]
= O

(
(logn)θ

)
.(2.1)

To perceive the subtlety of Lemma 2.1, first express a−1
n (d)

∑n
t=1(εt (η) −

εt (η0))
2 as n−1∑n

t=1 g2
t (η), where gt (η) = gt,n(η) = n1/2(εt (η) − εt (η0)) ×

a
−1/2
n (d). Since gt (η) is a scalar-valued continuous function on � × D − Bδ(η0),

in view of the proof of Theorem 2.1 of Chan and Ing (2011), (2.1) follows if
we can show that gt (η) satisfy conditions (C2) and (C3) of the same paper with
slight modifications to accommodate the triangular array feature of gt (η). How-
ever, for d ≤ d0 − 1/2 and for all large n, the correlation between gt (η) and
gs(η) is overwhelmingly large if t, s → ∞ as n → ∞ and |t − s| is bounded
by a positive constant. Therefore, even when (A1) is imposed, it is still diffi-
cult to find a positive constant b such that for all large t and n, the conditional
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distribution of gt (η) given {εs, s ≤ t − b} is sufficiently smooth, which corre-
sponds to (C2) of Chan and Ing (2011). Moreover, while gt (η) is continuous on
� × D − Bδ(η0), it is not differentiable at d = d0 − 1/2, making it quite cum-
bersome to prove that there exist c1 > 0 and nonnegative random variables Bt ’s
satisfying max1≤t≤n E(Bt ) = O(1) such that for all η1,η2 ∈ �×D −Bδ(η0) with
‖η1 − η2‖ < c1, |gt (η1) − gt (η2)| ≤ Bt‖η1 − η2‖ a.s., which corresponds to (C3)
of Chan and Ing (2011). Indeed, this latter condition is particularly difficult to
verify when η1 and η2 lie on different sides of the hyperplane d = d0 − 1/2. As
will be seen in the Appendix, the Bt ’s derive in (A.8) and (A.9) no longer satisfy
max1≤t≤n E(Bt ) = O(1), which also results in a slowly varying component on the
right-hand side of (2.1).

Throughout this paper, C represents a generic positive constant, independent
of n, whose value may differ from one occurrence to another.

LEMMA 2.2. Assume (1.1)–(1.6), (A1) and

sup
t≥1

E|εt |q1 < ∞,(2.2)

where q1 > q ≥ 2. Let δ satisfy � × D − Bδ(η0) �= ∅ and v > 0 be a small con-
stant. Define B0,v = {(θT, d)T : (θT, d)T ∈ � × D − Bδ(η0) with d0 − 1

2 ≤ d ≤ U}
and Bj,v = {(θT, d)T : (θT, d)T ∈ � × D − Bδ(η0) with d0 − 1/2 − jv ≤ d ≤
d0 − 1/2 − (j − 1)v}, j ≥ 1. Then, for any θ > 0,

E
{supη∈Bj,v

|∑n
t=1(εt (η) − εt (η0))εt |

infη∈Bj,v

∑n
t=1(εt (η) − εt (η0))

2

}q

(2.3)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

(
(logn)3/2

n1/2

)q

(logn)θ , j = 0,

C

(
logn

n1/2+jv−2v

)q

(logn)θ , j ≥ 1.

Lemma 2.2 implies

P(η̂n ∈ Bj,v) ≤ P
(

inf
η∈Bj,v

Sn(η) ≤ Sn(η0)
)

= O
({

(logn)3/2/n1/2}q(logn)θ
)

for j = 0, and O({logn/n1/2+jv−2v}q(logn)θ ) for j ≥ 1, suggesting that for d <

d0 − 1/2, the smaller the value of d , the less likely d̂n will fall in a neighborhood
of d . These probability bounds can suppress the orders of magnitude of ‖n1/2(η̂n −
η0)‖q and supη∈Bj,v

n{εn+1(η) − εn+1(η0)}2, thereby yielding that E{‖n1/2(η̂n −
η0)‖q × I{η̂n∈�×D−Bδ(η0)}} and nE[{εn+1(η̂n) − εn+1(η0)}2I{η̂n∈�×D−Bδ(η0)}] are
asymptotically negligible; see Corollary 2.1 and Lemma 3.1. As will become clear
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later, the first moment property is indispensable for proving (1.7), whereas the
second one is important in analyzing the MSPE of the CSS predictor. It is also
worth mentioning that the order of magnitude of supη∈Bj,v

n{εn+1(η)− εn+1(η0)}2

is n(logn)3 for j = 0 and n1+2vj (logn)2 for j ≥ 1, which increases as j does; see
(3.5) for more details. The next corollary is a direct application of Lemma 2.2.

COROLLARY 2.1. Suppose that the assumptions of Lemma 2.2 hold. Then, for
any δ > 0 such that � × D − Bδ(η0) �= ∅,

E
{∥∥n1/2(η̂n − η0)

∥∥qI{η̂n∈�×D−Bδ(η0)}
}= o(1).(2.4)

PROOF. Since both η̂n and η0 are in �×D, ‖η̂n‖ and ‖η0‖ are bounded above
by a finite constant. Therefore, it suffices for (2.4) to show that

P
(
η̂n ∈ � × D − Bδ(η0)

)= o
(
n−q/2).(2.5)

Let q1 > q∗
1 > q and 0 < v < 1

2(1 − q/q∗
1 ). Without loss of generality, assume

that L = d0 − (1/2) − Wv for some large integer W > 0. Then, it follows from
Lemma 2.2 (with q = q∗

1 ) and Chebyshev’s inequality that for any θ > 0,

P
(
η̂n ∈ � × D − Bδ(η0)

) ≤ W∑
j=0

P(η̂n ∈ Bj,v)

≤ C

W∑
j=0

E
{supη∈Bj,v

|∑n
t=1(εt (η) − εt (η0))εt |

infη∈Bj,v

∑n
t=1(εt (η) − εt (η0))

2

}q∗
1

≤ C

(
logn

n1/2−v

)q∗
1
(logn)θ

= o
(
n−q/2),

which gives (2.5). �

While Theorem 2.1 of Hualde and Robinson (2011) showed that η̂n →p η0
under substantially weaker assumptions on εt , it seems tricky to extend their ar-
guments to obtain a convergence rate like the one given in (2.5), which is criti-
cal to proving of (2.4). As a by-product of (2.5), we obtain η̂n → η0 a.s., which
follows immediately from (2.5) with q > 2 and the Borel–Cantelli lemma. The
main result is given in the next theorem. First, some notation. For 1 ≤ m ≤ p̄,
define J(m, p̄) = {(j1, . . . , jm) : j1 < · · · < jm, ji ∈ {1, . . . , p̄},1 ≤ i ≤ m}, and
for j = (j1, . . . , jm) ∈ J(m, p̄) and a smooth function w = w(ξ1, . . . , ξp̄), let
Djw = ∂mw/∂ξj1, . . . , ∂ξjm .
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THEOREM 2.1. Assume (1.1)–(1.6), (A1),

sup
t≥1

E|εt |4q1 < ∞, q1 > q ≥ 1,(2.6)

and

η0 ∈ int� × D.(2.7)

Then (1.7) holds.

PROOF. Since by (2.5) or Theorem 2.1 of Hualde and Robinson (2011),
η̂n → η0 in probability, and since (2.7) is assumed, there exists 0 < τ1 < {1 −
(q/q1)}/2 such that

Bτ1(η0) ⊂ � × D and lim
n→∞P

(
η̂n ∈ Bτ1(η0)

)= 1.(2.8)

Let ∇εt (η) = (∇εt (η)1, . . . ,∇εt (η)p̄)T = (∂εt (η)/∂η1, . . . , ∂εt (η)/∂ηp̄)T and
∇2εt (η) = (∇2εt (η)i,j ) = (∂2εt (η)/∂ηi ∂ηj ). Assume first that the following rela-
tions hold:

E

{
sup

η∈Bτ1 (η0)

λ
−γ
min

(
n−1

n∑
t=1

∇εt (η)
(∇εt (η)

)T)}= O(1)

(2.9)
for any γ ≥ 1,

max
1≤i,j≤p̄

E

{
sup

η∈Bτ1 (η0)

∣∣∣∣∣n−1/2
n∑

t=2

εt∇2εt (η)i,j

∣∣∣∣∣
q1}

= O(1),(2.10)

max
1≤i,j≤p̄,2≤t≤n

E
{

sup
η∈Bτ1 (η0)

∣∣∇2εt (η)i,j
∣∣4q1

}
= O(1),(2.11)

max
1≤i≤p̄,2≤t≤n

E
{

sup
η∈Bτ1 (η0)

∣∣∇εt (η)i
∣∣4q1

}
= O(1),(2.12)

P

{
sup

η∈Bτ1 (η0)

λ−1
min

(
n−1

n∑
t=2

∇εt (η)
(∇εt (η)

)T)
> M̄

}
= O

(
n−q)

(2.13)
for some M̄ > 0,

P

{
sup

η∈Bτ1 (η0)

n−1
n∑

t=2

∥∥∇εt (η)
∥∥2

> M̄

}
= O

(
n−q)

(2.14)
for some M̄ > 0,

max
1≤i,j≤p̄

P

{
sup

η∈Bτ1 (η0)

n−1
n∑

t=2

(∇2εt (η)i,j
)2

> M̄

}
= O

(
n−q)

(2.15)
for some M̄ > 0.
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Then, making use of (2.8)–(2.15) and an argument given in the proof of Theo-
rem 2.2 of Chan and Ing (2011), we obtain

E
(∥∥n1/2(η̂n − η0)

∥∥qIO1n

)= O(1),(2.16)

where O1n = {η̂n ∈ Bτ∗
1
(η0)} with 0 < τ ∗

1 < min{τ1,3−1p̄−1M̄−2}. Moreover, it
follows from Corollary 2.1 that

E
(∥∥n1/2(η̂n − η0)

∥∥qIO2n

)= O(1),(2.17)

where O2n = {η̂n ∈ � × D − Bτ∗
1
(η0)}. Combining (2.16) and (2.17) gives the

desired conclusion (1.7). To complete the proof, it remains to show that (2.9)–
(2.15) are true.

A proof of (2.9), which is similar to that of Theorem 3.1 of Chan and Ing (2011),
but needs to be modified with the long-memory effect of ∇εt (η), η ∈ Bτ1(η0), is
deferred to the supplementary material [Chan, Huang and Ing (2013)]. To prove
(2.15), write

εt (η) = (1 − B)d−d0A2,θ0(B)A−1
1,θ0

(B)A1,θ (B)A−1
2,θ (B)εt

=
t−1∑
s=0

bs(η)εt−s,

where b0(η) = 1. Then, with cs,ij (η) = ∂2bs(θ)/∂ηi ∂ηj and bs,i(η) = ∂bs(η)/

∂ηi , ∇εt (η)i = ∑t−1
s=1 bs,i(η)εt−s and ∇2εt (η)i,j = ∑t−1

s=1 cs,ij (η)εt−s . It is clear
that bs,i(η) and cs,ij (η) have continuous partial derivatives, Djbs,i(η) and
Djcs,ij (η), on Bτ1(η0). Moreover, it follows from arguments similar to those in
the proofs of Theorem 4.1 of Ling (2007) and Lemma 4 of Hualde and Robinson
(2011) that for any s ≥ 1,

max
1≤i,j≤p̄

sup
η∈Bτ1(η0)

∣∣cs,ij (η)
∣∣≤ C

(
log(s + 1)

)2
s−1+τ1(2.18)

and

max
1≤i,j≤p̄

max
j∈J(m,p̄),1≤m≤p̄

sup
η∈Bτ1(η0)

∣∣Djcs,ij (η)
∣∣≤ C

(
log(s + 1)

)3
s−1+τ1 .(2.19)

Define

As(i, j) = max
j∈J(m,p̄),1≤m≤p̄

sup
η∈Bτ1 (η0)

(
Djcs,ij (η)

)2
,

Sr,s(i, j) = max
j∈J(m,p̄),1≤m≤p̄

sup
η∈Bτ1 (η0)

∣∣Dj
{
cr,ij (η)cs,ij (η)

}∣∣
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and Bs(i, j) = supη∈Bτ1 (η0)
c2
s,ij (η). Equations (2.18) and (2.19) yield that for any

1 ≤ i, j ≤ p̄,
∞∑
l=1

c2
l,ij (η0) ≤ C,

(2.20) { ∞∑
l=1

Sl,l(i, j)

}2

≤ C

[{ ∞∑
l=1

Al(i, j)

}2

+
{ ∞∑

l=1

Bl(i, j)

}2]
≤ C.

On the other hand, by (B.6) of Chan and Ing (2011), Chebyshev’s inequality and
(2.6), we have for M̄ > 2σ 2 max1≤i,j≤r

∑∞
s=1 supη∈Bτ1 (η0)

c2
s,ij (η) and any 1 ≤ i,

j ≤ p̄,

P

{
sup

η∈Bτ1 (η0)

n−1
n∑

t=2

(∇2εt (η)i,j
)2

> M̄

}

≤ P

{
sup

η∈Bτ1 (η0)

∣∣∣∣∣n−1
n∑

t=2

[(∇2εt (η)i,j
)2 − E

(∇2εt (η)i,j
)2]∣∣∣∣∣

2q1

>

(
M̄

2

)2q1
}

≤ Cn−2q

{
n−1∑
s=1

(
n−s∑
l=1

c2
l,ij (η0)

)2

+
n−1∑
s=1

(
n−s∑
l=1

Sl,l(i, j)

)2}q1

(2.21)

+ Cn−q1−1
n−1∑
r=2

{[
r−1∑
s=1

(
n−s∑
l=1

Sl+r−s,l(i, j)

)2]q1

+
[

r−1∑
s=1

(
n−s∑
l=1

∣∣cl+r−s,ij (η0)cl,ij (η0)
∣∣)2]q1}

.

Since (2.18) and (2.19) also ensure that for some τ1 < τ2 < {1 − (q/q1)}/2,
any 1 ≤ i, j ≤ p̄ and any r > s, {∑∞

l=1 Sl+r−s,l(i, j)}2 ≤ C(r − s)−1+2τ2 and
(
∑∞

l=1 |cl+r−s,ij (η0)cl,ij (η0)|)2 ≤ C(r − s)−1+2τ2 , we conclude from these, (2.20)
and (2.21) that for any 1 ≤ i, j ≤ p̄,

P

(
sup

η∈Bτ1 (η0)

n−1
n∑

t=2

(∇2εt (η)i,j
)2

> M̄

)
= O

(
n−q1(1−2τ2)

)= o
(
n−q).

Thus, (2.15) follows.
By analogy with (2.18) and (2.19), we have

max
1≤i≤p̄

sup
η∈Bτ1(η0)

∣∣bs,i(η)
∣∣≤ C

(
log(s + 1)

)
s−1+τ1(2.22)

and

max
1≤i≤p̄

max
j∈J(m,p̄),1≤m≤p̄

sup
η∈Bτ1(η0)

∣∣Djbs,i(η)
∣∣≤ C

(
log(s + 1)

)2
s−1+τ1 .(2.23)
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In addition, (0.3) and (0.4) in the supplementary material [Chan, Huang and Ing
(2013)] ensure that there exists ¯c > 0 such that for all large n,

inf
η∈Bτ1 (η0)

λmin

(
n−1

n∑
t=2

E
{∇εt (η)

(∇εt (η)
)T})

> ¯c.(2.24)

Denote ∇εt (η)(∇εt (η))T and E{∇εt (η)(∇εt (η))T} by Wt(η) and W̄t (η), respec-
tively. By making use of

inf
η∈Bτ1 (η0)

λmin

(
n−1

n∑
t=2

Wt(η)

)
≥ inf

η∈Bτ1 (η0)
λmin

(
n−1

n∑
t=2

W̄t (η)

)

− sup
η∈Bτ1 (η0)

∥∥∥∥∥n−1
n∑

t=2

[
Wt(η) − W̄t (η)

]∥∥∥∥∥,
(B.6) of Chan and Ing (2011), (2.22)–(2.24) and (2.6), we get from an argument
similar to that used to prove (2.15) that for M̄ > 2/¯c,

P

{
sup

η∈Bτ1 (η0)

λ−1
min

(
n−1

n∑
t=2

Wt(η)

)
> M̄

}
= o

(
n−q),

which gives (2.13). As the proof of (2.14) is similar to (2.13), details are omitted.
To prove (2.10), first note that by (2.6) and (B.5) of Chan and Ing (2011), we

have for any 1 ≤ i, j ≤ p̄,

E

{
sup

η∈Bτ1 (η0)

∣∣∣∣∣n−1/2
n∑

t=2

εt∇2εt (η)i,j

∣∣∣∣∣
q1}

(2.25)

≤ C

[{
n−1∑
s=1

c2
s,ij (η0)

}q1/2

+
{

n−1∑
s=1

As(i, j)

}q1/2]
.

Combining (2.25) with (2.20) gives the desired conclusion. Finally, by (2.6),
(2.18), (2.19), (2.22), (2.23), Lemma 2 of Wei (1987) and an argument used in
the proof of (A.12) in Appendix A, we have for any 1 ≤, i, j ≤ p̄,

E
{

sup
η∈Bτ1 (η0)

∣∣∇2εt (η)i,j
∣∣4q1

}

≤ C

[{ ∞∑
s=1

max
j∈J(m,p̄),1≤m≤p̄

sup
η∈Bτ1 (η0)

(
Dj cs,ij (η)

)2}2q1

(2.26)

+
{ ∞∑

s=1

c2
s,ij (η0)

}2q1]
≤ C
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and

E
{

sup
η∈Bτ1 (η0)

∣∣∇εt (η)i
∣∣4q1

}

≤ C

[{ ∞∑
s=1

max
j∈J(m,p̄),1≤m≤p̄

sup
η∈Bτ1 (η0)

(
Dj bs,i(η)

)2}2q1

(2.27)

+
{ ∞∑

s=1

b2
s,i(η0)

}2q1]
≤ C,

and hence (2.11) and (2.12) hold. This completes the proof of Theorem 2.1. �

We close this section with a brief discussion of generalizing (1.7) to the linear
process

yt = mt(η0) + εt ,(2.28)

where εt ’s obey (A1), η0 = (θ0, d0)
T is an unknown p̄-dimensional vector

with d0 ∈ D and θ0 lying in a given compact set V ⊂ Rp̄−1, and mt(η) =
mt(η, yt−1, . . . , y1) admits a linear representation

∑t−1
s=1 c̃s(η)εt−s with c̃s(η)’s

being twice differentiable on V × D. Assume that η0 ∈ intV × D and c̃s(η)’s sat-
isfy some identifiability conditions leading to (A.19) in the Appendix and (0.1) in
the supplementary material [Chan, Huang and Ing (2013)], and some smoothness
conditions similar to (2.18), (2.19), (2.22), (2.23) and (A.12). Then the same argu-
ment used in the proof of Theorem 2.1 shows that (1.7) is still valid under (2.28).
Note that these identifiability and smoothness conditions are readily fulfilled not
only by (1.1), but also by (1.1) with the ARMA component being replaced by the
exponential-spectrum model of Bloomfield (1973). Moreover, when the ARMA
component of (1.1) is replaced by the more general one given in (1.3) of Hualde
and Robinson (2011), these conditions can also be ensured by their assumptions
A1 and A3, with A1(ii), A2(ii) and A2(iii) suitably modified.

3. Mean squared prediction errors. One important and intriguing applica-
tion of Theorem 2.1 is the analysis of mean squared prediction errors. Assume
that y1, . . . , yn are generated by model (1.1). To predict yn+h, h ≥ 1, based on
y1, . . . , yn, we first adopt the one-step CSS predictor, ŷn+1(η̂n) = yn+1 −εn+1(η̂n),
to forecast yn+1, noting that ŷn+1(η̂n) depends solely on y1, . . . , yn. Define
pt(η, yt−1, . . . , y1) := yt − εt (η) = (1 − (1 − B)dA1,θ (B)A−1

2,θ (B))yt . Then yn+h,
h ≥ 2, can be predicted recursively by the h-step CSS predictor,

ŷn+h(η̂n) := pn+h

(
η̂n, ŷn+h−1(η̂n), . . . , ŷn+1(η̂n), yn, . . . , y1

)
.(3.1)

When restricted to the short-memory AR case where pt(η) = (1 − A1,θ (B))yt ,
ŷn+h(η̂n) is called the plug-in predictor in Ing (2003). Sections 3.1 and 3.2 provide
an asymptotic expression for the MSPE of ŷn+h(η̂n), E{yn+h − ŷn+h(η̂n)}2, with
h = 1 and h > 1, respectively.
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3.1. One-step prediction. In this section, we apply Theorem 2.1 to analyze
E{yn+1 − ŷn+1(η̂n)}2. In particular, it is shown in Theorem 3.1 that the contribution
of the estimated parameters to the one-step MSPE, E{yn+1 − ŷn+1(η̂n)}2 − σ 2, is
proportional to the number of parameters. We start with the following auxiliary
lemma.

LEMMA 3.1. Assume (1.1)–(1.6), (A1) and

sup
t≥1

E|εt |γ < ∞ for some γ > 4.(3.2)

Then, for any δ > 0 such that � × D − Bδ(η0) �= ∅,

nE
[{

εn+1(η̂n) − εn+1(η0)
}2

I{η̂n∈�×D−Bδ(η0)}
]= o(1).(3.3)

PROOF. Let 4 < γ1 < γ and 0 < v < (γ1 − 4)/(2γ1 + 8). Also let Bj,v, j ≥ 0,
be defined as in Lemma 2.2 and W be defined as in the proof of Corollary 2.1. By
Cauchy–Schwarz’s inequality, the left-hand side of (3.3) is bounded above by

n

W∑
j=0

E1/2
{

sup
η∈Bj,v

(
εn+1(η) − εn+1(η0)

)4}
P 1/2(η̂n ∈ Bj,v).(3.4)

By the compactness of Bj,v , (A.32) and (A.33) in the Appendix and an argument
similar to that used to prove (2.27), it follows that

E1/2
{

sup
η∈Bj,v

(
εn+1(η) − εn+1(η0)

)4}

≤ C

{
sup

η∈Bj,v

n∑
s=1

b2
s (η) +

n∑
s=1

max
j∈J (m,p̄),1≤m≤p̄

sup
η∈Bj,v

(
Djbs(η)

)2}(3.5)

=
{

O
(
(logn)3), j = 0,

O
(
n2vj (logn)2), j ≥ 1.

Moreover, Lemma 2.2 yields that for any θ > 0,

P 1/2(η̂n ∈ Bj,v) ≤ C

{
E
(supη∈Bj,v

|∑n
t=1(εt (η) − ε(η0))εt |

infη∈Bj,v

∑n
t=1(εt (η) − εt (η0))

2

)γ1}1/2

(3.6)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O

((
(logn)3/2

n1/2

)γ1/2

(logn)θ
)
, j = 0,

O

((
logn

n1/2+jv−2v

)γ1/2

(logn)θ
)
, j ≥ 1.

Combining (3.4)–(3.6), we obtain for some s > 0, nE[{εn+1(η̂n) − εn+1(η0)}2 ×
I{η̂n∈�×D−Bδ(η0)}] = O(n1+2v−(γ1/2)(1/2−v)(logn)s) = o(1), where the last equal-
ity is ensured by the ranges of γ1 and v given above. As a result, (3.3) is proved.

�
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Equipped with Lemma 3.1, we are now in a position to state and prove Theo-
rem 3.1.

THEOREM 3.1. Suppose that the assumptions of Theorem 2.1 hold except that
(2.6) is replaced by

sup
t≥1

E|εt |γ < ∞ for some γ > 10.(3.7)

Assume also that εt ’s are i.i.d. random variables. Then

lim
n→∞n

[
E
{
yn+1 − ŷn+1(η̂n)

}2 − σ 2]= p̄σ 2.(3.8)

PROOF. Let 0 < τ1 < 1/2 satisfy Bτ1(η0) ⊂ � × D. Define Dn = {η̂n ∈
Bτ1(η0)} and Dc

n = {η̂n ∈ � × D − Bτ1(η0)}. By Taylor’s theorem,

n1/2(yn+1 − ŷn+1(η̂n) − εn+1
)

= n1/2(∇εt (η0)
)T

(η̂n − η0)IDn

(3.9)

+ n1/2

2
(η̂n − η0)

T∇2εn+1
(
η∗)(η̂n − η0)IDn

+ n1/2(εn+1(η̂n) − εn+1(η0)
)
IDc

n
,

where ‖η∗ − η0‖ ≤ ‖η̂n − η0‖. Since Lemma 3.1 ensures that the second moment
of the third term on the right-hand side of (3.9) converges to 0, the desired conclu-
sion (3.8) follows immediately from

lim
n→∞ E

[
n
{(∇εn+1(η0)

)T
(η̂n − η0)

}2
IDn

]= p̄σ 2(3.10)

and

E
[
n
{
(η̂n − η0)

T∇2εn+1
(
η∗)(η̂n − η0)

}2
IDn

]= o(1).(3.11)

Note first that by Theorem 2.2 of Hualde and Robinson (2011),

n1/2(η̂n − η0) ⇒ Q,(3.12)

where Q is distributed as N(0, σ 2�−1(η0)) with �(η0)i,j = limt→∞ E(∇εt (η0)i ×
∇εt (η0)j ) = σ 2 ∑∞

s=1 bs,i(η0)bs,i(η0) for 1 ≤ i, j ≤ p̄ and ⇒ denotes conver-
gence in distribution. [Note that �(η0) is independent of d0 and �(η0)p̄,p̄ =
π2σ 2/6.] Define ∇εn+1,m(η0) = (

∑m
s=1 bs,i(η0)εn+1−s)1≤i≤p̄ . Then by (3.12) and

the independence between ∇εn+1,m(η0) and n1/2(η̂n−m − η0),

Zn,m = n1/2(∇εn+1,m(η0)
)T

(η̂n−m − η0) ⇒ FT
mQ as n → ∞(3.13)

and

FT
mQ ⇒ FTQ as m → ∞,(3.14)
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where F and Fm, independent of Q, have the same distribution as those of
(
∑∞

s=1 bs,i(η0)εs, )1≤i≤p̄ and ∇εm+1,m(η0), respectively. By making use of (2.13),
(2.27), (3.12), η̂n−m →p η0 as n → ∞, and ∇Sn−m(η̂n−m) = 0 on {η̂n−m ∈
Bτ1(η0)}, we obtain that for any ε > 0,

lim
m→∞ lim sup

n→∞
P
{∣∣n1/2(∇εn+1(η0)

)T
(η̂n − η0) − Zn,m

∣∣> ε
}= 0,

which, together with limn→∞ P(Dn) = 1, Theorem 4.2 of Billingsley (1968),
(3.13), (3.14) and the continuous mapping theorem, yields

n
{(∇εn+1(η0)

)T
(η̂n − η0)

}2
IDn ⇒ (

FTQ
)2

.(3.15)

Let 5 < v < γ/2 and θ = (γ /v) − 2. It follows from (3.7), Theorem 2.1 and
Hölder’s inequality that

E
∣∣(∇εn+1(η0)

)T
n1/2(η̂n − η0)

∣∣2+θ

≤ {E∥∥∇εn+1(η0)
∥∥γ }1/v{E∥∥n1/2(θ̂n − θ0)

∥∥γ /(v−1)}(v−1)/v(3.16)

= O(1)

and hence n{(∇εn+1(η0))
T(η̂n −η0)}2IDn is uniformly integrable. This, (3.15) and

E(FTQ)2 = p̄σ 2 together imply (3.10).
On the other hand, since on Dn, ‖η̂n − η0‖ < τ1, we have for any 0 < θ < 2,

‖η̂n − η0‖4IDn ≤ K‖η̂n − η0‖2+θ IDn , where K is some positive constant depend-
ing only on θ and τ1. Let 0 < θ < min{4−1(γ − 2) − 2,2}. Then, it follows from
Theorem 2.1, (3.7) and Hölder’s inequality that

E
{
n1/2(η̂n − η0)

T∇2εn+1
(
η∗)(η̂n − η0)IDn

}2

≤ KE
(
n‖η̂n − η0‖2+θ

∥∥∇2εn+1
(
η∗)∥∥2)

≤ Kn−θ/2(E∥∥n1/2(η̂n − η0)
∥∥(2+θ)γ /(γ−2))(γ−2)/γ(3.17)

×
{
E
(

sup
η∈Bτ1(η0)

∥∥∇2εn+1(η)
∥∥γ )}2/γ

= O
(
n−θ/2){E

(
sup

η∈Bτ1(η0)

∥∥∇2εn+1(η)
∥∥γ )}2/γ

.

An argument similar to that used to prove (2.26) also yields that the expectation
on the right-hand side of (3.17) is bounded above by a finite constant, and hence
(3.11) holds true. This completes the proof of the theorem. �

Theorem 3.1 asserts that the second-order MSPE of ŷn+1(η̂n), p̄σ 2n−1 +
o(n−1), only depending the number of estimated parameters, has nothing to do
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with dependent structure of the underlying process. This result is particularly in-
teresting when compared with the second-order MSPE of the LS predictor in inte-
grated AR models. To see this, assume first that there is a forecaster who believes
that the true model is possibly an integrated AR(p1) model,(

1 − α̃1B − · · · − α̃p1B
p1
)
yt

(3.18)
= (1 − B)v0

(
1 − θ1B − · · · θp1−v0B

p1−v0
)
yt = εt ,

where v0 ∈ {0,1, . . . , p1} is unknown and 1 − θ1z − · · · θp1−dzp1−v0 �= 0 for all
|z| ≤ 1. Then it is natural for this forecaster to predict yn+1 using the LS predictor
ỹn+1, in which ỹn+1 = yT

n(p1)α̃n(p1) with yT
t (p1) = (yt , . . . , yt−p1+1) and α̃n(p1)

satisfies
∑n−1

t=p1
yt (p1)yT

t (p1)α̃n(p1) =∑n−1
t=p1

yt (p1)yt+1. On the other hand, an-
other forecaster who has doubts on whether the v0 in (3.18) is really an integer,
chooses a more flexible alternative as follows:(

1 − α1B − · · · − αp1B
p1
)
(1 − B)d0yt = εt ,(3.19)

where L1 ≤ 0 ≤ d0 ≤ p1 ≤ U1 with −∞ < L1 < U1 < ∞ being some prescribed
numbers, and 1−∑p1

j=1 αjz
j satisfies (1.4). Clearly, model (3.19), including model

(3.18) as a particular case, is itself a special case of model (1.1) with p2 = 0, and
hence the CSS predictor, ŷn+1(η̂n), obtained from (3.19) is adopted naturally by
the second forecaster.

If the data are truly generated by (3.18), then Theorem 2 of Ing, Sin and Yu
(2010) shows that under certain regularity conditions,

lim
n→∞n

[
E{yn+1 − ỹn+1}2 − σ 2]= (

p1 + v2
0
)
σ 2.(3.20)

In addition, by Theorem 3.1 (which is still valid in the case of p2 = 0), we have

lim
n→∞n

[
E
{
yn+1 − ŷn+1(η̂n)

}2 − σ 2]= (p1 + 1)σ 2.(3.21)

As shown in (3.20) and (3.21), while the second-order MSPE of the LS predic-
tor ỹn+1 increases as the strength of dependence in the data does (i.e., v0 in-
creases), the second-order MSPE of the CSS predictor ŷn+1(η̂n) does not vary
with v0. These equalities further indicate the somewhat surprising fact that for
an integrated AR model, even the most popular LS predictor can be inferior to
the CSS predictor, if the integration order is large. To further illustrate (3.20)
and (3.21), we conduct a simulation study to compare the empirical estimates
of n[E{yn+1 − ỹn+1}2 − σ 2] and n[E{yn+1 − ŷn+1(η̂n)}2 − σ 2] for (3.18) with
p1 = 3 and v0 = 0,1 and 2. These estimates, obtained based on 5000 replications
for n = 1000, are summarized in Table 1. As observed in Table 1, the empirical
estimates of n[E{yn+1 − ŷn+1(η̂n)}2 − σ 2] are quite close to 4 for all three mod-
els, whereas those of n[E{yn+1 − ỹn+1}2 − σ 2] are not distant from 7, 4 and 3 for
v0 = 2,1 and 0, respectively. Hence all these estimates align with their correspond-
ing limiting values given in (3.20) and (3.21). This “dependency-free” feature of
the CSS predictor in the one-step case, however, vanishes in the multi-step case,
as will be seen in the next section.



1284 N. H. CHAN, S.-F. HUNAG AND C.-K. ING

TABLE 1
The empirical estimates of the second-order MSPEs of the CSS predictor

(with p1 = 3 and p2 = 0) and the LS predictors with p1 = 3

True model CSS predictor LS predictor

(1 + 0.5B)(1 − B)2yt = εt 4.0689 6.8409
(1 − 0.25B2)(1 − B)yt = εt 4.3732 4.1975
(1 − 0.2B − 0.25B2 + 0.5B3)yt = εt 4.1828 3.1686

3.2. Multi-step prediction. Note that under (1.1), yt = ∑t−1
j=0 ¯cs(η0)εt−s ,

where for η = (θT, d)T = (α1, . . . , αp1, β1, . . . , βp2, d)T ∈ � × D, ¯c0(η) = 1 and

¯cs(η)’s, s ≥ 0, satisfy
∑∞

s=0 ¯cs(η)zs = A2,θ (z)A
−1
1,θ (z)(1 − z)−d, |z| < 1. In addi-

tion, let c̄0(d) = 1 and c̄s(d)’s, s ≥ 0, satisfy
∑∞

s=0 c̄s(d)zs = (1 − z)−d, |z| < 1.
With vt (d) = (1 − B)dyt , define un(η) = (−vn(d), . . . ,−vn−p1+1(d), εn(η), . . . ,

εn−p2+1(η))T. Now the h-step CSS predictor of yn+h is given by ŷn+h(η̂n) =
G

d̂n
(B)yn +∑h−1

s=0 c̄s(d̂n)v̂n+h−s , where Gd(B) = B−h − (1 − B)d
∑h−1

k=0 c̄k(d) ×
Bk−h = (1 − B)d

∑∞
k=h c̄k(d)Bk−h, v̂n+l = −uT

n(η̂n) × Al−1(θ̂n)θ̂n and

A(θ) =

⎛
⎜⎜⎜⎜⎝

α
Ip1−1

0T
p1−1

0p1×p2

β 0p2×(p1−1) 0p2

∣∣∣∣ Ip2−1

0T
p2−1

⎞
⎟⎟⎟⎟⎠ .

Here α = (α1, . . . , αp1)
T, β = (β1, . . . , βp2)

T, and 0m, 0m×n and Im, respec-
tively, denote the m-dimensional zero vector, the m × n zero matrix and the
m-dimensional identity matrix. Define ṽn+l(η0) = −uT

n(η0)A
l−1(θ0)θ0. Then,

it follows that yn+h = Gd0(B)yn + ∑h−1
s=0 c̄s(d0)vn+h−s(d0) = Gd0(B)yn +∑h−1

s=0 c̄s(d0)ṽn+h−s(η0) + ∑h−1
s=0 ¯cs(η0)εn+h−s . In this section, we establish an

asymptotic expression for

E
[
yn+h − ŷn+h(η̂n)

]2
= σ 2

h (η0) + E

{
G

d̂n
(B)yn +

h−1∑
s=0

c̄s(d̂n)v̂n+h−s(3.22)

− Gd0(B)yn −
h−1∑
s=0

c̄s(d0)ṽn+h−s(η0)

}2

,

where σ 2
h (η0) = σ 2∑h−1

s=0 ¯c
2
s (η0). To state our result, first express �(η0) as

�(η0) =
(

�11(θ0) γ 12(θ0)

γ T
12(θ0) π2σ 2/6

)
,
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where �11(θ0) = (�(η0)i,j )1≤i,j≤p1+p2 and γ T
12(θ0) = (�(η0)p̄,i)1≤i≤p1+p2 , not-

ing that �(η0) is independent of d0. Then

�−1(η0) =
(

�̃11(θ0) γ̃ 12(θ0)

γ̃ T
12(θ0) γ̃22(θ0)

)
,

where �̃11(θ0) = (�11(θ0) − γ 12(θ0)γ
T
12(θ0)γ

−1
22 (θ0))

−1, γ̃22(θ0) = (π2σ 2/6 −
γ T

12(θ0)�
−1
11 (θ0)γ 12(θ0))

−1 and γ̃ 12(θ0) = −γ̃22(θ0)�
−1
11 (θ0)γ 12(θ0). Define

∇(1)εt (θ0) = (∇εt (η0)1, . . . ,∇εt (η0)p1+p2)
T [noting that ∇εt (η0)i,1 ≤ i ≤ p̄,

is independent of d0], wt,h = (
∑t−1

k=1 εt−k/(k + h − 1), . . . ,
∑t−1

k=1 εt−k/k)T,
Qh(θ0) = limt→∞ E(∇(1)εt (θ0)wT

t,h) and R(h) = (γi,j )h×h, in which γi,i =
6π−2∑∞

l=h−i+1 l−2, 1 ≤ i ≤ h, and γi,j = γj,i = 6π−2(j − i)−1∑j−i
l=1(h − j +

l)−1, 1 ≤ i < j ≤ h. Now, an asymptotic expression for (3.22) is given as follows.

THEOREM 3.2. Under the hypothesis of Theorem 3.1,

lim
n→∞n

{
E
[
yn+h − ŷn+h(η̂n)

]2 − σ 2
h (η0)

}
(3.23)

= {
¯
fh(p1,p2) +

¯
gh(η0) + 2Jh(η0)

}
σ 2,

where
¯
fh(p1,p2) = tr{�11(θ0) ¯Lh(η0)�̃11(θ0) ¯L

T
h(η0)}, ¯

gh(η0) = (πσ 2/6) ×
γ̃22(θ0)¯c

T
h(η0)R(h)¯ch(η0), and Jh(η0) = γ̃ T

12(θ0) ¯L
T
h(η0)Qh(θ0)¯ch(η0), with

¯ch(η0) = (¯c0(η0), . . . , ¯ch−1(η0))
T, ¯Lh(η0) =∑h−1

s=0 ¯cs(η0) Ãh−1−s(θ0) and

Ã(θ) =

⎛
⎜⎜⎜⎜⎝

α

∣∣∣∣ Ip1−1

0T
p1−1

0p1×p2

0p2×p1 β

∣∣∣∣ Ip2−1

0T
p2−1

⎞
⎟⎟⎟⎟⎠ .

A few comments on Theorem 3.2 are in order. When h = 1, straightforward
calculations imply

¯
fh(p1,p2) +

¯
gh(η0) + 2Jh(η0) = p̄, which leads immediately

to Theorem 3.1. When p1 = p2 = 0,
¯
fh(p1,p2) and 2Jh(η0) vanish, and γ̃22(η0)

and ¯ch(η0) in
¯
gh(η0) become 6/(π2σ 2) and c̄h(d0) = (c̄0(d0), . . . , c̄h−1(d0))

T, re-
spectively. As a result, the right-hand side of (3.23) is simplified to

ḡh(d0)σ
2 = c̄T

h(d0)R(h)c̄h(d0)σ
2,(3.24)

yielding the second-order MSPE of the h-step CSS predictor for a pure I(d) pro-
cess. Alternatively, if d0 = 0 is known, then

¯
gh(η0) and 2Jh(η0) vanish, and the

right-hand side of (3.23) becomes

f̄h(p1,p2) = tr
{
�11(θ0)L̃h(θ0)�

−1
11 (θ0)L̃

T
h(θ0)

}
,(3.25)
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where L̃h(θ0) is ¯Lh(η0) with d0 = 0. Note that (3.25) has been obtained by
Yamamoto (1981) under the stationary ARMA(p1,p2) model through a some-
what heuristic argument that does not involve the moment bounds of the estimated
parameters. When p2 = 0, the right-hand side of (3.25) further reduces to f1,h(p1)

in (10) of Ing (2003), which is the second-order MSPE of the h-step plug-in pre-
dictor of a stationary AR(p1) model. In view of the similarity between

¯
fh(p1,p2)

and f̄h(p1,p2) and that between
¯
gh(η0) and ḡh(d0), (3.23) displays not only an

interesting structure of the multi-step prediction formula from the ARMA case to
the I(d) case, and eventually to the ARFIMA case, but also reveals that the multi-
step MSPE of an ARFIMA model is the sum of one ARMA term,

¯
fh(p1,p2), one

I(d) term,
¯
gh(η0) and the term 2Jh(η0) that is related to the ARMA and I(d) joint

effect. This expression is different from the ones obtained for the LS predictors in
the integrated AR models, in which the AR and I(d) joint effect vanishes asymp-
totically; see Theorem 2.2 of Ing, Lin and Yu (2009) and Theorem 2 of Ing, Sin
and Yu (2010) for details.

Before leaving this section, we remark that the dependence structure of (1.1) has
a substantial impact on the multi-step MSPE. To see this, consider the pure I(d)
case. By (3.24) and a straightforward calculation, it follows that for any d0 ∈ R,
there exist 0 < C1,d0 ≤ C2,d0 < ∞ such that

C1,d0h
−1+2d0 ≤ ḡh(d0) ≤ C2,d0h

−1+2d0,(3.26)

which shows that for h > 1, a larger d0 (or a stronger dependence in the data) tends
to result in a larger second-order MSPE. Finally, if the true model is a random
walk model, yt = αyt−1 + εt , with α = 1, and is modeled by an I(d) process, (1 −
B)dyt = εt , in which d = 1 corresponds to the true model, then by Theorem 3.2
and (3.24), limn→∞ n{E[yn+h − ŷn+h(d̂n)]2 − hσ 2} = σ 2 for h = 1, and the limit
is smaller than (4.87h + (1 + logh)2 − 2(1 + log 2h))σ 2 for h ≥ 2. On the other
hand, for the h-step LS predictor ỹn+h of the above AR(1) model, it follows from
Theorem 2.2 of Ing, Lin and Yu (2009) that limn→∞ n{E(yn+h − ỹn+h)

2 −hσ 2} =
2h2σ 2, which is larger than σ 2 when h = 1, and larger than (4.87h+(1+ logh)2 −
2(1 + log 2h))σ 2 when h ≥ 2. Hence ŷn+h(d̂n) is always better than ỹn+h in terms
of the MSPE. The convergence rates of their corresponding estimates, however,
are completely reversed because the LS estimate converges much faster to 1 than
d̂n for a random walk model. This finding is reminiscent of the fact that when
the true model simultaneously belongs to several different parametric families, the
so-called optimal choice of parametric families may vary according to different
objectives. For a random walk model, when estimation is the ultimate goal, then
LS estimate may be preferable. On the other hand, for prediction purposes, CSS
predictor is more desirable according to Theorem 3.2.

APPENDIX

PROOF OF LEMMA 2.1. We only prove (2.1) for q ≥ 1 because for 0 < q < 1,
(2.1) is an immediate consequence of for the case of q ≥ 1 and Jensen’s inequality.
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Since � × D − Bδ(η0) is compact, there exists a set of m points {η1, . . . ,ηm} ⊂
� × D − Bδ(η0) and a small positive number 0 < δ1 < 1, depending possibly on
δ and �, such that

� × D − Bδ(η0) ⊂
m⋃

i=1

Bδ1(ηi ),(A.1)

‖η − η0‖ ≥ δ/2 and θ obeys (1.4)–(1.6)(A.2)

for each η = (θT, d)T ∈ B̄δ1(ηi ) and 1 ≤ i ≤ m, where B̄δ1(ηi ) denotes the closure
of Bδ1(ηi ). In view of (A.1), it suffices for (2.1) to show that

E

[{
inf

η∈B̄δ1 (ηi )
a−1
n (d)

n∑
t=1

(
εt (η) − εt (η0)

)2}−q]
= O

(
(logn)θ

)
,

(A.3)
i = 1, . . . ,m,

hold for any q ≥ 1 and θ > 0. Let Di = {d : (θT, d)T ∈ B̄δ1(ηi )}, G1 = {i : 1 ≤ i ≤
m,D̄i = supDi ≤ d0 − 1/2}, G2 = {i : 1 ≤ i ≤ m, ¯Di = infDi ≥ d0 − 1/2} and
G3 = {i : 1 ≤ i ≤ m, ¯Di < d0 − 1/2 < D̄i}. Then {1, . . . ,m} = ⋃3

�=1 G�. In the
following, we first prove (A.3) for the most challenging case, i ∈ G3. The proofs
of (A.3) for the cases of i ∈ G1 or G2 are similar, but simpler and are thus omitted.

By the convexity of x−q, x ≥ 0, it follows that for any fixed 0 < ι < 1,{
a−1
n (d)

n∑
i=1

(
εt (η) − εt (η0)

)2}−q

≤
{
n−1

n∑
t=nι+1

g2
t (η)

}−q

(A.4)

≤ {�q/(1 − ι)
}q

z−1
n

zn−1∑
j=0

{�q−1∑
r=0

g2
nι+1+rzn+j (η)

}−q

,

where � > max{(2/α0) + (�1 + 1)p̄/(α0q), (ι−1 − 1)/q}, with �1 > 2q , gt (η) is
defined after Lemma 2.1, and zn = (1 − ι)n/(�q). Here nι, �q and zn are assumed
to be positive integers. According to (A.4), if for any q ≥ 1 and all large n,

E

[{
inf

η∈B̄δ1 (ηi )

�q−1∑
r=0

g2
nι+1+znr+j (η)

}−q]
≤ C(logn)5/2,

(A.5)
j = 0, . . . , zn − 1,

holds, then (A.3) follows with θ = 5/2. Moreover, since q is arbitrary, this result
is easily extended to any θ > 0 using Jensen’s inequality. Consequently, (A.3) is
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proved. In the rest of the proof, we only show that (A.5) holds for j = 0 because
the proof of (A.5) for 1 ≤ j ≤ zn − 1 is almost identical. For j = 0, the left-hand
side of (A.5) is bounded above by

K +
∫ ∞
K

P

(
inf

η∈B̄δ1 (ηi )

�q−1∑
r=0

g2
nι+1+rzn

(η) < μ−q−1
,R(μ)

)
dμ

+
∫ ∞
K

P
(
Rc(μ)

)
dμ(A.6)

:= K + (I) + (II),

where K , independent of n and not smaller than 1, will be specified later, with
cμ = 2p̄1/2μ−(�1+1)/(2q),

R(μ) =
�q−1⋂
r=0

{
sup

‖ηa−ηb‖≤cμ

ηa,ηb∈B̄δ1 (ηi )

∣∣gnι+1+rzn(ηa) − gnι+1+rzn(ηb)
∣∣< 2μ−1/(2q)

}
,

and Rc(μ) is the complement of R(μ).
We first show that

(II) ≤ C(logn)5/2.(A.7)

Define Q
(i)
1 = {(θT, d)T : (θT, d)T ∈ B̄δ1(ηi ), d ≤ d0 − 1/2} and Q

(i)
2 = {(θT, d)T :

(θT, d)T ∈ B̄δ1(ηi ), d ≥ d0 − 1/2}. It is clear that gt (η) is differentiable on Q
(i)
1,0

and Q
(i)
2,0, the interior of Q

(i)
1 and Q

(i)
2 , and is continuous on B̄δ1(ηi ). By the mean

value theorem, we have for any ηa,ηb ∈ B̄δ1(ηi ),∣∣gt (ηa) − gt (ηb)
∣∣

(A.8)
≤ ‖ηa − ηb‖

(
sup

η∈Q
(i)
1,0

∥∥∇gt (η)
∥∥+ sup

η∈Q
(i)
2,0

∥∥∇gt (η)
∥∥),

noting that ∂gt (η)/∂p̄ = ∂gt (η)/∂d does not exist at any point in B̄δ1(ηi ) with
d = d0 − 1/2. As will be seen later, (A.8) together with

max
2≤t≤n

E
(

sup
η∈Q

(i)
v,0

∥∥∇gt (η)
∥∥)= O

(
(logn)5/2), v = 1,2,(A.9)

constitutes a key step in the proof of (A.7).
To prove (A.9) for v = 1, define g

(L)
t (η) = √

n{n(1 − B)}d−d0A−1
1,θ0

(B) ×
A2,θ0(B)A1,θ (B)A−1

2,θ (B)εt − nd−d0+1/2εt . Then, g
(L)
t (η) = gt (η) for η ∈ Q

(i)
1 .



MOMENT BOUNDS AND PREDICTION ERRORS 1289

In addition, ∇g
(L)
t (η) = ((∇g

(L)
t (η))i)1≤i≤p̄ satisfies

(∇g
(L)
t (η))k

n1/2
(A.10)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−{n(1 − B)
}d−d0 A2,θ0(B)

A1,θ0(B)A2,θ (B)
εt−k,

if 1 ≤ k ≤ p1,{
n(1 − B)

}d−d0 A2,θ0(B)

A1,θ0(B)

A1,θ (B)

A2
2,θ (B)

εt+p1−k,

if p1 + 1 ≤ k ≤ p1 + p2,{
n(1 − B)

}d−d0
(
logn + log(1 − B)

)A2,θ0(B)

A1,θ0(B)

A1,θ (B)

A2,θ (B)
εt

− (logn)nd−d0εt , if k = p̄.

Denote ηi by (θT
i , di)

T. We first consider the case of di ≥ d0 − 1/2. Write

(∇g
(L)
t (η))k =∑t−1

s=1 c
(n)
s,k (η)εt−s , and define η

(L)
i = (η

(L)
i,1 , . . . , η

(L)
i,p̄ )T := (θT

i , d0 −
1/2)T. Clearly, c(n)

s,k (η) has continuous partial derivatives, Djc
(n)
s,k (η) on Q

(i)
1 . More-

over, since for any η = (η1, . . . , ηp̄)T ∈ Q
(i)
1 , the hypercube formed by η

(L)
i and η

is included in Q
(i)
1 , it follows from (3.10) of Lai (1994) and the Cauchy–Schwarz

inequality that for any η ∈ Q
(i)
1 , 1 ≤ k ≤ p̄ and t ≥ 2,

{(∇g
(L)
t (η)

)
k − (∇g

(L)
t

(
η

(L)
i

))
k

}2

=
{ p̄∑

m=1

∑
j∈J (m,p̄)

∫ ηjm

η
(L)
i,jm

· · ·
∫ ηj1

η
(L)
i,j1

t−1∑
s=1

R
(k)
s,j εt−s dξj1 · · ·dξjm

}2

≤ 2p̄
p̄∑

m=1

∑
j∈J (m,p̄)

{∫ ηjm

η
(L)
i,jm

· · ·
∫ ηj1

η
(L)
i,j1

t−1∑
s=1

R
(k)
s,j εt−s dξj1 · · ·dξjm

}2

(A.11)

≤ 2p̄
p̄∑

m=1

∑
j∈J (m,p̄)

vol
(
Q

(i)
1 (m, j)

)

×
∫

· · ·
∫
Q

(i)
1 (m,j)

(
t−1∑
s=1

R
(k)
s,j εt−s

)2

dξj1 · · ·dξjm,

where

R
(k)
s,j = R

(k)
s,j (ξj1, . . . , ξjm) = Djc

(n)
s,k (ξ1, . . . , ξp̄)|

ξj=η
(L)
i,j ,j /∈j
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and

Q
(i)
1 (m, j)

= {
(ηj1, . . . , ηjm) :

(
η

(L)
i,1 , . . . , η

(L)
i,j1−1, ηj1, η

(L)
i,j1+1, . . . , η

(L)
i,j2−1,

ηj2, η
(L)
i,j2+1, . . . , η

(L)
i,jm−1, ηjm, η

(L)
i,jm+1, . . . , η

(L)
i,p̄

) ∈ Q
(i)
1

}
,

j ∈ J (m, p̄),

is an m-dimensional partial sphere. Now, by (A.2), (A.10), (A.11) and a change of
the order of integration, we obtain for 1 ≤ k ≤ p̄,

E
[

sup
η∈Q

(i)
1

{(∇g
(L)
t (η)

)
k − (∇g

(L)
t

(
η

(L)
i

))
k

}2
]

≤ C

p̄∑
m=1

∑
j∈J (m,p̄)

vol2
(
Q

(i)
1 (m, j)

)
(A.12)

×
{

t−1∑
s=1

max
j∈J (m,p̄),1≤m≤p̄

sup
η∈Q

(i)
1

(
Djc

(n)
s,k (η)

)2}

= O
(
(logn)5),

where the last relation follows from for any 1 ≤ s ≤ t − 1 with 2 ≤ t ≤ n,
sup

η∈Q
(i)
1

|Djc
(n)
s,k (η)| ≤ Cs−1/2 if 1 ≤ k < p̄ and p̄ /∈ j; C(logn)s−1/2 if k = p̄ and

p̄ /∈ j or if 1 ≤ k < p̄ and p̄ ∈ j; and C(logn)2s−1/2 if k = p̄ and p̄ ∈ j. Similarly,

for all 1 ≤ t ≤ n − 1, E((∇g
(L)
t (η

(L)
i ))2

k) ≤ C logn if 1 ≤ k < p̄, and C(logn)3 if
k = p̄. Combining these, with (A.12), yields that for di ≥ d0 − 1/2,

max
2≤t≤n

E
(

sup
η∈Q

(i)
1,0

∥∥∇gt (η)
∥∥2
)

≤ max
2≤t≤n

E
(

sup
η∈Q

(i)
1

∥∥∇g
(L)
t (η)

∥∥2
)

(A.13)
= O

(
(logn)5).

Replacing η
(L)
i by ηi and using an argument similar to that used in proving (A.13),

it can be shown that (A.13) is still valid in the case of di < d0 − 1/2. As a result,
(A.9) holds for v = 1.

Define

g
(R)
t (η) = (1 − B)d−d0A2,θ0(B)A−1

1,θ0
(B)A1,θ (B)A−1

2,θ (B)εt − εt .
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Then, g
(R)
t (η) = gt (η) on η ∈ Q

(i)
2 . Moreover, note that

(∇g
(R)
t (η)

)
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1 − B)d−d0
A2,θ0(B)

A1,θ0(B)A2,θ (B)
εt−k,

if 1 ≤ k ≤ p1,

(1 − B)d−d0
A2,θ0(B)

A1,θ0(B)

A1,θ (B)

A2
2,θ (B)

εt+p1−k,

if p1 + 1 ≤ k ≤ p1 + p2,

(1 − B)d−d0
(
log(1 − B)

)A2,θ0(B)

A1,θ0(B)

A1,θ (B)

A2,θ (B)
εt ,

if k = p̄.

(A.14)

Using (A.14) in place of (A.10), we can prove (A.9) with v = 2 in the same way
as v = 1. The details are omitted to save space. Equipped with (A.8), (A.9) and
Chebyshev’s inequality, we obtain∫ ∞

K
P
(
Rc(μ)

)
dμ

≤ 2lq

∫ ∞
K

max
1≤v≤2,2≤t≤n

P

(
sup

η∈Q
(i)
v,0

∥∥∇gt (η)
∥∥≥ μ�1/(2q)

2p̄1/2

)
dμ

≤ C(logn)5/2
∫ ∞
K

μ−�1/(2q) dμ

≤ C(logn)5/2,

where the last inequality is ensured by �1 > 2q . Hence (A.7) is proved.
In view of (A.6) and (A.7), (A.5) follows by showing that for all large n,

(I) ≤ C.(A.15)

To establish (A.15), motivated by page 1543 of Chan and Ing (2011), we are led
to consider the p̄-dimensional hypercube, H(i), circumscribing B̄δ1(ηi ). Choose
μ ≥ K . We then divide H(i) into sub-hypercubes, H(i)

j (μ) (indexed by j ), of equal

size, each of which has an edge of length 2δ1(�μ(�1+1)/(2q)
1 � + 1)−1 and a circum-

scribed hypersphere of radius
√

p̄δ1(�μ(�1+1)/(2q)
1 � + 1)−1, where �a� denotes the

largest integer ≤ a. Let G
(i)
j (μ) = B̄δ1(ηi )∩H

(i)
j (μ) and {G(i)

vj (μ), j = 1, . . . ,m∗}
be the collection of nonempty G

(i)
j (μ)’s. Then it follows that

B̄δ1(ηi ) =
m∗⋃
j=1

G(i)
vj

(μ) and m∗ ≤ C∗μ(�1+1)p̄/(2q),(A.16)
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where C∗ > 0 is independent of μ. In addition, we have

A(μ) :=
{

inf
η∈B̄δ1 (ηi )

�q−1∑
r=0

g2
nι+1+rzn

(η) < μ−1/q,R(μ)

}

⊂
m∗⋃
j=1

�q−1⋂
r=0

{
inf

η∈G
(i)
vj

(μ)

∣∣gnι+1+rzn(η)
∣∣< μ−1/(2q),

(A.17)
sup

‖ηa−ηb‖≤cμ

ηa,ηb∈B̄δ1 (ηi )

∣∣gnι+1+rzn(ηa) − gnι+1+rzn(ηb)
∣∣< 2μ−1/(2q)

}

:=
m∗⋃
j=1

�q−1⋂
r=0

Dj,r(μ).

Let η
(j)
a ∈ G

(i)
vj (μ), j = 1, . . . ,m∗, be arbitrarily chosen. Then for any η ∈ G

(i)
vj (μ),

we have∣∣gnι+1+rzn

(
η(j)

a

)∣∣≤ ∣∣gnι+1+rzn

(
η(j)

a

)− gnι+1+rzn(η)
∣∣+ ∣∣gnι+1+rzn(η)

∣∣
≤ sup

‖ηa−ηb‖≤cμ

ηa,ηb∈B̄δ1 (ηi )

∣∣gnι+1+rzn(ηa) − gnι+1+rzn(ηb)
∣∣+ ∣∣gnι+1+rzn(η)

∣∣,

where the last inequality is ensured by ‖η(j)
a − η‖ ≤ 2δ1

√
p̄(�μ(�1+1)/(2q)� +

1)−1 ≤ cμ, and hence, Dj,r(μ) ⊂ Sj,r (μ) := {|gnι+1+rzn(η
(j)
a )| < 3μ−1/(2q)}.

Combining this with (A.17) yields

(I) ≤
∫ ∞
K

m∗∑
j=1

P

(�q−1⋂
r=0

Sj,r (μ)

)
dμ.(A.18)

It is shown at the end of the proof that for some s0 > 0 and all large t ,

inf
η∈B̄δ1 (ηi )

E1/2{(εt (η) − εt

)2
a−1
t (d)t

}
> s0.(A.19)

By letting K = max{1, [(6σ/(s0δ0))max{(�q/(1− ι))d0−1/2−L,1}]2q}, (A.15) fol-
lows. To see this, denote by Ft the σ -algebra generated by {εs,1 ≤ s ≤ t}, and re-
call that εt (η) =∑t−1

s=0 bs(η)εt−s , with b0(η) = 1. We obtain, after some algebraic
manipulations,

P

(�q−1⋂
r=0

Sj,r (μ)

)
= E

[�q−2∏
r=0

ISj,r (μ)P
(
Sj,�q−1(μ)|Fn+1−2zn

)]
(A.20)
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and

P
(
Sj,�q−1(μ)|Fn+1−2zn

)

= P

(
M1
(
η(j)

a ,μ
)
<

∑zn−1
s=1 bs(η

(j)
a )εn+1−zn−s

var1/2((εzn(η
(j)
a ) − εzn)/σ )

< M2
(
η(j)

a ,μ
)∣∣∣(A.21)

Fn+1−2zn

)
,

where

Mi(η,μ) = (−1)i3μ−1/(2q)a
1/2
n (d)n−1/2

var1/2((εzn(η) − εzn)/σ )

−
∑n−zn

s=zn
bs(η)εn+1−zn−s

var1/2((εzn(η) − εzn)/σ )
, i = 1,2.

Since (A.19) yields that for μ ≥ K and n sufficiently large,

M2
(
η(j)

a ,μ
)− M1

(
η(j)

a ,μ
)

= 6σμ−1/(2q)E−1/2{(εzn

(
η(j)

a

)− εzn

)2
a−1
zn

(d)zn

}a1/2
n (d)n−1/2

a
1/2
zn (d)z

−1/2
n

≤ 6σμ−1/(2q)s−1
0 max

{(
�q

1 − ι

)d0−1/2−L

,1
}

≤ δ0

and since
∑zn−1

s=1 b2
s (η

(j)
a ) = var((εzn(η

(j)
a ) − εzn)/σ ), it follows from (A1), (A.20)

and (A.21) that

P

(�q−1⋂
t=0

Sj,r (μ)

)

≤ M1

(
6σμ−1/(2q)s−1

0 max
{(

�q

1 − ι

)d0−1/2−L

,1
})α0

E

(�q−2∏
r=0

ISj,r (μ)

)
.

Moreover, since � > q−1(ι−1 − 1), we can repeat the same argument �q times to
get

P

(�q−1⋂
r=0

Sj,r (μ)

)

(A.22)

≤ M
�q
1

(
6σμ−1/(2q)s−1

0 max
{(

�q

1 − ι

)d0−1/2−L

,1
})α0�q

.
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By noting that the bound on the right-hand side of (A.22) is independent of j and
� > (2/α0) + {(�1 + 1)p̄/(α0q)}, it is concluded from (A.16), (A.18) and (A.22)
that for all large n, (I) is bounded above by

C∗M�q
1

(
6σs−1

0 max
{(

�q/(1 − ι)
)d0−1/2−L

,1
})α0�q

×
∫ ∞
K

μ−(α0�/2−(�1+1)p̄/(2q)) dμ ≤ C.

To complete the proof of the lemma, it only remains to show (A.19). Define

Ut,θ = A2,θ0(B)

A1,θ0(B)

A1,θ (B)

A2,θ (B)
εt =

t−1∑
s=0

ds(θ)εt−s,(A.23)

noting that d0(θ) = 1. By (1.4)–(1.6), there exist 0 < c1, c2 < ∞ such that

sup
θ∈�

∣∣ds(θ)
∣∣≤ c1 exp(−c2s).(A.24)

Let �t(θ) = E[(U1,θ , . . . ,Ut,θ )
T(U1,θ , . . . ,Ut,θ )]. It can be shown that there exists

C0 > 0 such that for all t ≥ 1,

inf
θ∈�

λmin
(
�t(θ)

)≥ C0σ
2.(A.25)

Express εt (η) as (1 − B)d−d0Ut,θ = ∑t−1
s=0 vs(d)Ut−s,θ . Then, there exists G =

G(L,U) > 0, depending only on L and U , such that for any s ≥ 0 and d ∈ D,∣∣vs(d)
∣∣≤ G(s + 1)d0−d−1.(A.26)

Let 0 < η∗ < 1/2 be given. Straightforward calculations yield that there exists
Cη∗ > 0 such that for any s ≥ 0 and L ≤ d ≤ d0 − η∗,∣∣vs(d)

∣∣≥ Cη∗(s + 1)d0−d−1.(A.27)

Let ι1 > 0 be small enough such that

0 < ι1 < 1
2 − η∗, d0 − 1

2 − ι1 > ¯Di,
(A.28)

d0 − 1
2 + ι1 < D̄i and C0C

2
η∗
(
log ι−1

1

)
ι
2ι1
1 > 2.

Define

A1 = {(
θT, d

)T :
(
θT, d

)T ∈ B̄δ1(ηi ), ¯Di ≤ d ≤ d0 − 1
2 − ι1

}
,

A2 = {(
θT, d

)T :
(
θT, d

)T ∈ B̄δ1(ηi ), d0 − 1
2 − ι1 < d < d0 − 1

2

}
,

A3 = {(
θT, d

)T :
(
θT, d

)T ∈ B̄δ1(ηi ), d = d0 − 1
2

}
,

A4 = {(
θT, d

)T :
(
θT, d

)T ∈ B̄δ1(ηi ), d0 − 1
2 < d < d0 − 1

2 + ι1
}
,

A5 = {(
θT, d

)T :
(
θT, d

)T ∈ B̄δ1(ηi ), d0 − 1
2 + ι1 ≤ d ≤ D̄i

}
.
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Then, (A.19) is ensured by showing that there exist ζi > 0, i = 1, . . . ,5, such that
for all large t

inf
η∈Ai

E
{(

εt (η) − εt

)2
a−1
t (d)t

}
> ζi, i = 1, . . . ,5.(A.29)

To show (A.29) with i = 1, we deduce from (A.25), (A.27), (A.28) and a
straightforward calculation that for all η ∈ A1 and t ≥ 2,

E
(
ε2
t (η)a−1

t (d)t
)≥ σ 2C0C

2
η∗

t2(d0−d)−1

t−1∑
s=0

(s + 1)2(d0−d)−2

(A.30)

≥ σ 2C0C
2
η∗{1 − (1/2)2ι1}

2(d0 − ¯Di) − 1
.

In addition, it is clear that supη∈A1
E(ε2

t a
−1
t (d)t) ≤ σ 2/t2ι1 → 0, as t → ∞,

which, together with (A.30), yields (A.29) with i = 1. By (A.28), Taylor’s theorem
and an argument similar to that of (A.30), we have for all η ∈ A2 and sufficiently
large t ,

E
(
ε2
t (η)a−1

t (d)t
)≥ σ 2C0C

2
η∗

t2(d0−d)−1

∫ t

ι1t
x2(d0−d)−2 dx

≥ σ 2C0C
2
η∗

2(d0 − d) − 1

(
1 − ι

2(d0−d)−1
1

)
(A.31)

≥ σ 2C0C
2
η∗
(
log ι−1

1

)
ι
2ι1
1 > 2σ 2.

Moreover, supη∈A2
E(ε2

t a
−1
t (d)t) ≤ σ 2. This and (A.31) together imply (A.29) for

i = 2. Equation (A.29) for i = 3 follows directly from (A.25) and (A.27). The
details are skipped. To show that (A.29) holds for i = 4, we get from Taylor’s
theorem and (A.28) that for all η ∈ A4 and sufficiently large t ,

E
(
ε2
t (η)a−1

t (d)t
)= E

(
ε2
t (η)

)≥ σ 2C0C
2
η∗
∫ ι−1

1

1
x2(d0−d)−2 dx

≥ σ 2C0C
2
η∗
(
log ι−1

1

)
ι
2ι1
1 > 2σ 2.

Hence, the desired conclusion follows. For η ∈ A5, define Wt(η) = E(εt (η)− εt )
2.

Then, it follows from (A.24), (A.26) and the Weierstrass convergence theorem
that Wt(η) converges uniformly on A5 to some function W∞(η). Moreover,
since Wt(η) is continuous on A5, the uniform convergence of Wt(η) ensures
that W∞(η) is also continuous. In view of (1.4)–(1.6) and (A.2), we have (1 −
z)d−d0A2,θ0(z)A

−1
1,θ0

(z)A1,θ (z)A
−1
2,θ (z) �= 1. Hence, for each η ∈ A5, Wt(η) > 0 for

all sufficiently large t . This, the continuity of W∞(η) and the compactness of A5
yield that there exists θ̃ > 0 such that infη∈A5 W∞(η) > θ̃ . By making use of this
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finding and the uniform convergence of Wt(η) to W∞(η), we obtain (A.29) with
i = 5. This complete the proof of Lemma 2.1. �

PROOF OF LEMMA 2.2. Following the proof of Lemma 2.1, write εt (η) −
εt = ∑t−1

s=1 bs(η)εt−s . Note first that bs(η) has continuous partial derivatives,
Djbs(η), on � × D. By an argument similar to that used to derive bounds for

sup
η∈Q

(i)
1

|Djc
(n)
s,k (η)| in Lemma 2.1, we have for all s ≥ 1,

sup
η∈Bj,v

∣∣Djbs(η)
∣∣≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cs−1/2, if j = 0 and p̄ /∈ j,
Cs−1/2 log(s + 1), if j = 0 and p̄ ∈ j,
Csvj−1/2, if j ≥ 1 and p̄ /∈ j,
Csvj−1/2 log(s + 1), if j ≥ 1 and p̄ ∈ j.

(A.32)

Moreover, it follows from (A.24) and (A.26) that

sup
η∈Bj,v

n−1∑
s=0

b2
s (η) =

{
O(logn), if j = 0,
O
(
n2vj

)
, if j ≥ 1.

(A.33)

In view of (A.32), (A.33), the compactness of Bj,v , j ≥ 0 and (B.5) of Chan and
Ing (2011), we get

E

{
sup

η∈Bj,v

∣∣∣∣∣
n∑

t=1

(
εt (η) − εt (η0)

)
εt

∣∣∣∣∣
q1}

≤ Cnq1/2

[{
sup

η∈Bj,v

n−1∑
s=1

b2
s (η)

}q1/2

(A.34)

+
{

n−1∑
s=1

max
j∈J (m,p̄),1≤m≤p̄

sup
η∈Bj,v

(
Djbs(η)

)2}q1/2]

=
{

O
(
n(logn)3)q1/2

, if j = 0,

O
(
n1+2vj (logn)2)q1/2

, if j ≥ 1.

By Hölder’s inequality, the left-hand side of (2.3) is bounded above by{
E

(
inf

η∈Bj,v

a−1
n (d)

n∑
t=1

(
εt (η) − εt (η0)

)2)−qq1/(q1−q)}(q1−q)/q1

×
{

E

(
sup

η∈Bj,v

∣∣∣∣∣
n∑

t=1

(
εt (η) − εt (η0)

)
εt

∣∣∣∣∣
q1)}q/q1

× (n1+2(j−1)vI{j≥1} + nI{j=0}
)−q

,

which together with (A.34) and Lemma 2.1, gives the desired conclusion. �
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PROOF OF THEOREM 3.2. By a calculation similar but more complicated than
that in the proof of Theorem 3.1, we obtain

yn+h − ŷn+h(η̂n) −
h−1∑
s=0 ¯cs(η0)εn+h−s

(A.35)
= (∇(1)εn+1(θ0)

)T
¯Lh(η0)(θ̂n − θ0) + ¯c

T
h(η0)wn+1,h(d̂n − d0) + rn,

where rn satisfies nE(r2
n) = o(1), and ((∇(1)εn+1(θ0))

T

¯Lh(η0), ¯c
T
h(η0)wn+1,h)

T

and n1/2(η̂n − η0) are asymptotically independent. The desired conclusion (3.23)
follows by a direct application of (A.35), (3.12) and Theorem 2.1. �
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SUPPLEMENTARY MATERIAL

Supplement to “Moment bounds and mean squared prediction errors of
long-memory time series” (DOI: 10.1214/13-AOS1110SUPP; .pdf). The supple-
mentary material contains a Monte Carlo experiment of finite sample performance
of the CSS predictor and the proof of (2.9).
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This supplement contains a Monte Carlo experiment of finite sample per-
formance of the CSS predictor and the proof of (2.9).

NUMERICAL EXAMPLES

To illustrate the finite sample properties of the one-step and multi-step
prediction results obtained in Section 3, we conduct a Monte Carlo simu-
lation to assess the performance of the empirical estimates of n{E(yn+h −
ŷn+h(η̂n))

2−σ2
h(η0)} under I(d0) and ARFIMA(1, d0, 1) models with εt’s be-

ing i.i.d. standard normal random variables, −0.6 ≤ d0 ≤ 2.0 and (α0,1, β0,1)
= (0.5, 0.2) and (0.3,0.8). These estimates, denoted by gh,n andmh,n for I(d0)
and ARFIMA(1, d0, 1) models, respectively, are obtained based on 5,000
replications for n =100, 500, 2,000 and h = 1, . . . , 10. The closeness of
gh,n and mh,n to the corresponding limiting values ḡh(d0) and mh(η0) =
{f

h
(1, 1) + g

h
(η0) + 2Jh(η0)}, defined in (3.24) and (3.23), is measured by

the ratios R
(1)
h,n = gh,n/ḡh(d0) and R

(2)
h,n = mh,n/mh(η0), which is summa-

rized in Tables 1–3.
Table 1, listing ḡh(d0) and R

(1)
h,n with n =100 and 500, shows that except

for a few cases where n = 100, d0 = −0.6 and h = 2, 3 and 4, all values of

R
(1)
h,n are between 0.88 and 1.15. This result suggests that gh,n can be well

predicted by ḡh(d0) even for moderate sample sizes. Note also that in the

exceptional cases mentioned above, R
(1)
h,n’s fall within the interval [1.2, 1.4].

Tables 2 and 3, listing mh(η0) and R
(2)
h,n with n =500 and 2,000, show that

the behaviours of R
(2)
h,n vary not only with n, h and d0, but also with α0,1

and β0,1, and hence are somewhat different from those of R
(1)
h,n. In particular,

it is shown in Table 2 ((α0,1, β0,1) = (0.5, 0.2)) and Table 3 ((α0,1, β0,1) =

(0.3, 0.8)) that when mh(η0) > 0.06, R
(2)
h,2000’s fall between 0.9 and 1.1 ; and

when mh(η0) ≤ 0.06, the values are between 1.12 and 2.11 except for a small
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number of exceptional cases in Table 3 in which 1.04 ≤ R
(2)
h,2000 ≤ 1.1. This

feature seems to reflect the desirable property that as long as the asymptotic
MSPEs of the h-step CSS predictors are large enough (e.g., > 0.06), they
can be readily estimated by the corresponding finite sample counterparts.
It is also worth noting that the cases where mh(η0) ≤ 0.06 in Table 2, only
including the pairs (d0, h) = (−0.6, 8), (−0.6, 9), (−0.6, 10), (−0.5, 9) and (-
0.5, 10), are substantially rarer than those in Table 3 which contain 21 such
pairs in the upper right corner.

The behaviours of R
(2)
h,500 are not explicable by a simple rule related to

the value of mh(η0), unlike those of R
(2)
h,2000. When (α0,1, β0,1) = (0.5, 0.2)

and d0 ≥ −0.4, all R
(2)
h,500’s lie between 0.9 and 1.1, suggesting the sim-

ilarities between mh(η0) and mh,500 in these cases. Alternatively, when

(α0,1, β0,1) = (0.5, 0.2) and d0 ≤ −0.5, |R
(2)
h,500 − 1| is usually slightly larger

than |R
(2)
h,2000 − 1| and varies between 0.83 and 1.5. On the other hand, in

the case of (α0,1, β0,1) = (0.3, 0.8), R
(2)
h,500 is significantly smaller than 1 if

d0 ≥ 0, and oscillates between 0.75 and 1.46 if d0 ≤ −0.4.
To conclude, our numerical findings are consistent with the asymptotic

results established in Theorems 3.1 and 3.2 even when the prediction lead
time h is large. For I(d0) models, n = 500 is large enough for our asymp-
totic results to become effective. However, to attain a similar precision for
ARFIMA(1, d0, 1) models, n = 2, 000 seems indispensable.

PROOF OF (2.9)

In view of Theorem 2.1 of Chan and Ing (2011), it suffices for (2.9) to show
that conditions (C1)-(C4) of the same paper hold when f t(·) and Θ therein
equal ∇εt(η) and Bτ1(η0), respectively. It is clear that ∇εt(η) is continuous
on Bτ1(η0), and hence (C1) of Chan and Ing (2011) follows. To verify (C2)
of Chan and Ing (2011), define Λ = {v : v ∈ Rp̄, ||v|| = 1}. We will first
prove that for any η ∈ B̄τ1(η0) and v = (µ1, . . . , µp1 , s1, . . . , sp2 , µ0)

T ∈ Λ,
there exists some cη,v > 0 such that

(0.1) lim
t→∞

E(vT∇εt(η))
2 := H(v,η) > cη,v.

If µ0 = 0, then (0.1) follows from (1.4)-(1.6) and an argument similar to
that used in proving (3.20) of Chan and Ing (2011). On the other hand, if
µ0 6= 0, straightforward calculations yield

(0.2) vT∇εt(η) = Fη,v(B)Wη(B)εt,



SUPPLEMENTARY OF MOMENT BOUNDS AND PREDICTION ERRORS 3

where Fη,v(z) = −
∑p1

i=1 µiz
i+µ0A1,θ(z) log(1−z)+A1,θ(z)A

−1
2,θ(z)

∑p2
j=1 sjz

j

andWη(z) = A2,θ0(z)A
−1
2,θ(z)A

−1
1,θ0

(z)(1−z)d−d0 . By virtue of A1,θ(z) 6= 0 for

|z| ≤ 1, it can be shown that A1,θ(z) log(1 − z) =
∑∞

j=1 ljz
j with |lj | ≥ ξ/j

for some ξ > 0 and all large j. This together with A2,θ(z) 6= 0 for |z| ≤ 1
yields Fη,v(z) 6= 0. In addition, it is clear that Wη(z) 6= 0. Combining
Fη,v(z)Wη(z) 6= 0 with (2.22) and (0.2) gives (0.1). Now, by (0.1), (2.22),
the continuity of E(vT∇εt(η))

2 on Λ× B̄τ1(η0) (which is compact) and the
Weierstrass convergence theorem, we obtain

(0.3) E(vT∇εt(η))
2 converges to H(v,η) uniformly on Λ× B̄τ1(η0),

and

(0.4) inf
v∈Λ,η∈B̄τ1 (η0)

H(v,η) > 0.

Consequently, (C2) of Chan and Ing (2011) follows from (0.3), (0.4), (A1)
and an argument similar to that used in proving (3.25) of Chan and Ing
(2011).

To show (C3) of Chan and Ing (2011), note first that by the mean value
theorem for vector-valued functions, we have for any η1,η2 ∈ Bτ1(η0),

||∇εt(η2)−∇εt(η1)||
2

≤ ||η2 − η1||
2||

∫ 1

0
∇2εt(η1 + v(η2 − η1)) dv||

2 ≤ ||η2 − η1||
2B̃2

t ,
(0.5)

where B̃2
t =

∑

1≤i,j≤r supθ∈Bτ1 (η0)
(∇2εt(η)i,j)

2. Our aim is to show that

(0.6) sup
t≥2

E(B̃2
t ) < ∞.

In view of the first inequality in (2.20), it suffices for (0.6) to show that for
any 1 ≤ i, j ≤ r and t ≥ 2, there exists 0 < Ū < ∞, independent of i, j and
t, such that

(0.7) E{ sup
θ∈Bτ1 (η0)

[∇2εt(η)i,j −∇2εt(η0)i,j]
2} < Ū.

Using an argument similar to that used in proving (A.12), we have for any
1 ≤ i, j ≤ r and t ≥ 2,

E
{

sup
θ∈Bτ1 (η0)

[∇2εt(η)i,j −∇2εt(η0)i,j]
2
}

≤C
{

∞
∑

s=1

max
j∈J(m,p̄),1≤m≤p̄

sup
η∈Bτ1 (η0)

(Djcs,ij(η))
2
}

.

(0.8)
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Combining (0.8), with (2.19), yields (0.7), and hence (C3) of Chan and Ing
(2011) is proved. Finally, (C4) of Chan and Ing (2011) follows immediately
from (2.22), (0.5) and (0.6).
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Table 1

Values of R
(1)
h,n and ḡh(d0), with −0.6 ≤ d0 ≤ 2.0, n = 100, 500, and h = 1, . . . , 10.

h

1 2 3 4 5 6 7 8 9 10

d0 = −0.6
ḡh(d0) 1.0000 0.0226 0.0090 0.0048 0.0029 0.0019 0.0014 0.0010 0.0008 0.0006

R
(1)
h,100 1.09 1.39 1.27 1.20 1.15 1.12 1.09 1.07 1.05 1.03

R
(1)
h,500 1.06 1.11 1.14 1.15 1.14 1.13 1.12 1.11 1.10 1.09

d0 = −0.5
ḡh(d0) 1.0000 0.0341 0.0118 0.0062 0.0038 0.0026 0.0019 0.0015 0.0012 0.0009

R
(1)
h,100 1.04 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97

R
(1)
h,500 0.99 1.02 1.03 1.01 1.00 0.99 0.98 0.98 0.97 0.96

d0 = −0.4
ḡh(d0) 1.0000 0.0657 0.0230 0.0121 0.0076 0.0053 0.0039 0.0030 0.0024 0.0020

R
(1)
h,100 1.04 0.92 0.96 0.96 0.96 0.95 0.94 0.93 0.91 0.90

R
(1)
h,500 1.03 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99

d0 = 0.0
ḡh(d0) 1.00 0.39 0.24 0.17 0.13 0.11 0.09 0.08 0.07 0.06

R
(1)
h,100 1.05 0.95 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.88

R
(1)
h,500 1.04 1.02 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02

d0 = 0.4
ḡh(d0) 1.00 1.04 1.02 0.99 0.96 0.94 0.92 0.90 0.89 0.87

R
(1)
h,100 1.09 1.04 1.01 1.00 0.99 0.98 0.97 0.97 0.96 0.96

R
(1)
h,500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

d0 = 0.5
ḡh(d0) 1.00 1.25 1.35 1.41 1.45 1.47 1.49 1.50 1.52 1.52

R
(1)
h,100 1.05 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00

R
(1)
h,500 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98

d0 = 0.6
ḡh(d0) 1.00 1.48 1.76 1.96 2.12 2.24 2.35 2.44 2.52 2.60

R
(1)
h,100 1.09 1.05 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02

R
(1)
h,500 1.06 1.04 1.03 1.02 1.01 1.01 1.00 1.00 1.00 1.00

d0 = 1.0
ḡh(d0) 1.00 2.61 4.37 6.20 8.06 9.95 11.86 13.78 15.70 17.64

R
(1)
h,100 1.12 1.07 1.05 1.03 1.02 1.01 1.01 1.00 1.00 0.99

R
(1)
h,500 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.01

d0 = 1.5
ḡh(d0) 1.00 4.47 10.68 19.75 31.73 46.66 64.56 85.45 109.35 136.25

R
(1)
h,100 1.14 1.11 1.09 1.08 1.08 1.07 1.07 1.06 1.06 1.06

R
(1)
h,500 1.03 1.02 1.01 1.01 1.00 1.00 1.00 1.00 0.99 0.99

d0 = 2.0
ḡh(d0) 1.00 6.82 22.06 51.50 100.06 172.71 274.47 410.36 585.47 804.87

R
(1)
h,100 1.08 1.06 1.05 1.04 1.03 1.03 1.02 1.02 1.02 1.01

R
(1)
h,500 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98
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Table 2

Values of R
(2)
h,n and mh(η0), with (α0,1, β0,1) = (0.5, 0.2), −0.6 ≤ d0 ≤ 2.0, n = 500, 2000,

and h = 1, . . . , 10.

h

1 2 3 4 5 6 7 8 9 10

d0 = −0.6
mh(η0) 3.00 1.31 0.48 0.29 0.21 0.14 0.08 0.05 0.03 0.02

R
(2)
h,500 1.00 1.17 1.15 1.02 0.89 0.87 0.93 1.10 1.25 1.50

R
(2)
h,2000 1.04 1.09 1.09 1.08 1.03 1.02 1.06 1.13 1.20 1.25

d0 = −0.5
mh(η0) 3.00 1.48 0.67 0.41 0.30 0.21 0.14 0.09 0.06 0.04

R
(2)
h,500 1.03 1.08 1.03 0.97 0.86 0.83 0.85 0.95 1.02 1.14

R
(2)
h,2000 1.03 1.05 1.04 1.05 1.03 1.03 1.05 1.09 1.12 1.13

d0 = −0.4
mh(η0) 3.00 1.71 0.92 0.59 0.45 0.34 0.25 0.17 0.12 0.09

R
(2)
h,500 1.00 1.07 1.00 1.00 0.94 0.90 0.91 0.94 0.97 1.03

R
(2)
h,2000 1.04 1.08 1.07 1.07 1.05 1.03 1.04 1.06 1.08 1.10

d0 = 0.0
mh(η0) 3.00 3.25 3.04 2.69 2.43 2.23 2.04 1.85 1.67 1.52

R
(2)
h,500 1.00 0.98 0.94 0.97 0.97 0.96 0.95 0.94 0.94 0.94

R
(2)
h,2000 1.04 1.07 1.06 1.06 1.06 1.05 1.04 1.04 1.04 1.04

d0 = 0.4
mh(η0) 3.00 5.74 7.95 9.41 10.51 11.42 12.17 12.77 13.23 13.58

R
(2)
h,500 0.99 0.95 0.92 0.92 0.92 0.92 0.91 0.91 0.90 0.90

R
(2)
h,2000 1.04 1.05 1.05 1.06 1.07 1.07 1.07 1.07 1.07 1.07

d0 = 0.5
mh(η0) 3.00 6.52 9.81 12.40 14.56 16.46 18.17 19.66 20.96 22.07

R
(2)
h,500 1.03 0.97 0.93 0.94 0.94 0.93 0.92 0.92 0.91 0.90

R
(2)
h,2000 1.03 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.02

d0 = 0.6
mh(η0) 3.00 7.35 11.99 16.13 19.88 23.39 26.69 29.76 32.60 35.21

R
(2)
h,500 1.00 0.95 0.94 0.95 0.96 0.97 0.97 0.96 0.96 0.96

R
(2)
h,2000 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.04 1.04 1.04

d0 = 1.0
mh(η0) 3.00 11.28 24.55 41.51 61.37 83.82 108.62 135.51 164.21 194.44

R
(2)
h,500 1.00 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.96 0.96

R
(2)
h,2000 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.04 1.04

d0 = 1.5
mh(η0) 3.00 17.55 51.96 112.42 203.66 329.83 494.85 702.20 954.93 1255.57

R
(2)
h,500 1.00 0.96 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96

R
(2)
h,2000 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

d0 = 2.0
mh(η0) 3.00 25.32 97.85 262.90 571.13 1080.50 1855.85 2968.30 4494.44 6515.39

R
(2)
h,500 1.05 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R
(2)
h,2000 1.03 1.02 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04
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Table 3

Values of R
(2)
h,n and mh(η0), with (α0,1, β0,1) = (0.3, 0.8), −0.6 ≤ d0 ≤ 2.0, n = 500, 2000,

and h = 1, . . . , 10.

h

1 2 3 4 5 6 7 8 9 10

d0 = −0.6
mh(η0) 3.0000 1.1229 0.1056 0.0350 0.0192 0.0094 0.0046 0.0023 0.0012 0.0006

R
(2)
h,500 0.87 1.04 1.12 1.24 1.01 0.95 0.96 1.00 1.13 1.46

R
(2)
h,2000 1.04 1.05 1.10 1.22 1.11 1.10 1.17 1.31 1.57 2.11

d0 = −0.5
mh(η0) 3.0000 0.9076 0.1039 0.0299 0.0190 0.0113 0.0067 0.0041 0.0026 0.0016

R
(2)
h,500 0.86 1.23 1.01 1.31 1.02 0.88 0.83 0.83 0.87 0.97

R
(2)
h,2000 0.99 1.03 1.04 1.18 1.07 1.04 1.06 1.12 1.23 1.41

d0 = −0.4
mh(η0) 3.0000 0.7523 0.1078 0.0271 0.0192 0.0140 0.0100 0.0072 0.0053 0.0039

R
(2)
h,500 0.87 1.05 1.02 1.39 1.08 0.89 0.81 0.76 0.75 0.77

R
(2)
h,2000 1.04 1.07 1.05 1.31 1.19 1.12 1.11 1.14 1.20 1.29

d0 = 0.0
mh(η0) 3.00 0.73 0.29 0.13 0.09 0.09 0.08 0.08 0.08 0.07

R
(2)
h,500 0.87 0.92 0.82 0.82 0.75 0.67 0.62 0.59 0.57 0.56

R
(2)
h,2000 1.04 1.09 1.04 1.10 1.09 1.07 1.04 1.03 1.02 1.02

d0 = 0.4
mh(η0) 3.00 1.67 1.24 0.98 0.85 0.81 0.81 0.82 0.84 0.86

R
(2)
h,500 0.86 0.82 0.77 0.72 0.68 0.65 0.62 0.60 0.59 0.57

R
(2)
h,2000 0.99 1.00 1.01 1.03 1.04 1.04 1.03 1.02 1.01 1.00

d0 = 0.5
mh(η0) 3.00 2.05 1.71 1.47 1.35 1.32 1.34 1.38 1.43 1.49

R
(2)
h,500 0.86 0.81 0.77 0.73 0.69 0.67 0.64 0.62 0.60 0.59

R
(2)
h,2000 0.99 0.99 1.00 1.02 1.03 1.03 1.02 1.01 1.00 0.99

d0 = 0.6
mh(η0) 3.00 2.50 2.30 2.05 2.08 2.10 2.17 2.27 2.40 2.53

R
(2)
h,500 0.87 0.82 0.79 0.76 0.73 0.70 0.68 0.66 0.64 0.62

R
(2)
h,2000 1.04 1.06 1.06 1.06 1.06 1.05 1.04 1.03 1.02 1.01

d0 = 1.0
mh(η0) 3.00 4.88 6.46 7.88 9.26 10.69 12.24 13.93 15.74 17.70

R
(2)
h,500 0.87 0.83 0.80 0.78 0.76 0.73 0.71 0.70 0.68 0.66

R
(2)
h,2000 1.04 1.06 1.06 1.06 1.06 1.05 1.05 1.04 1.03 1.03

d0 = 1.5
mh(η0) 3.00 9.20 17.80 28.64 41.67 57.00 74.85 95.45 119.05 145.88

R
(2)
h,500 0.87 0.83 0.81 0.79 0.78 0.76 0.74 0.73 0.71 0.70

R
(2)
h,2000 1.04 1.05 1.06 1.06 1.06 1.05 1.05 1.05 1.04 1.04

d0 = 2.0
mh(η0) 3.00 15.03 40.09 82.09 144.81 232.22 348.61 498.73 687.77 921.35

R
(2)
h,500 0.90 0.87 0.85 0.84 0.83 0.81 0.80 0.79 0.78 0.76

R
(2)
h,2000 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97
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