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A moment bound for the normalized conditional-sum-of-squares (CSS)
estimate of a general autoregressive fractionally integrated moving average
(ARFIMA) model with an arbitrary unknown memory parameter is derived
in this paper. To achieve this goal, a uniform moment bound for the inverse
of the normalized objective function is established. An important applica-
tion of these results is to establish asymptotic expressions for the one-step
and multi-step mean squared prediction errors (MSPE) of the CSS predictor.
These asymptotic expressions not only explicitly demonstrate how the multi-
step MSPE of the CSS predictor manifests with the model complexity and the
dependent structure, but also offer means to compare the performance of the
CSS predictor with the least squares (LS) predictor for integrated autoregres-
sive models. It turns out that the CSS predictor can gain substantial advantage
over the LS predictor when the integration order is high. Numerical findings
are also conducted to illustrate the theoretical results.

1. Introduction. Long-memory behavior has been extensively documented in
a spectrum of applications. For background information on long-memory time se-
ries and their applications, readers are referred to Doukhan, Oppenheim and Taqqu
(2003), where important theories and applications of long-memory models in the
areas of finance, insurance, the environment and telecommunications are surveyed.
One distinctive feature of the long-memory phenomenon is that the autocorrelation
function of a long-memory process decays at a polynomial rate, which is much
slower than the exponential rate of a short-memory process. This feature not only
enriches the modeling of time series data, but also offers new challenges. While
considerable attention has been given in the literature to the derivation of the law
of large numbers and the central limit theorem for the estimated parameters in
many long-memory time series models [see, e.g., Dahlhaus (1989), Fox and Taqqu
(1986), Giraitis and Surgailis (1990), Robinson and Hidalgo (1997) and Robinson
(2006)], less attention has been devoted to their moment properties. On the other
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hand, moment properties of the estimated parameters in short-memory time se-
ries models have been widely studied. For example, Fuller and Hasza (1981) and
Kunitomo and Yamamoto (1985) obtained moment bounds for the least squares
(LS) estimators of stationary autoregressive (AR) models, which led to asymp-
totic expressions for the mean squared prediction error (MSPE) of the correspond-
ing least squares predictors. Ing and Wei (2003) established a moment bound for
the inverse of Fisher’s information matrix of increasing dimension under a short-
memory AR(o0) process, which enabled them to derive an asymptotic expression
for the MSPE of the least squares predictor of increasing order. When the moving
average (MA) part is taken into account, moment bounds for the estimated param-
eters are much more difficult to establish, however. Chan and Ing (2011) recently
resolved this difficulty by establishing a uniform moment bound for the inverse of
Fisher’s information matrix of nonlinear stochastic regression models. Based on
this bound, they analyzed the MSPE of the conditional-sum-of-squares (CSS) pre-
dictor (defined in Section 3) and explained how the final prediction error can be
used as an effective tool in the model selection of autoregressive moving average
(ARMA) models.

These aforementioned studies primarily deal with the stationary cases, which
may be inapplicable in many important situations when nonstationary behav-
iors are often encountered. In view of the importance of incorporating long-
memory, short-memory and nonstationary features simultaneously, we are led to
consider the following general autoregressive fractionally integrated moving av-

erage (ARFIMA) model. Specifically, suppose the data yq, ..., y, are generated
by
(1 —aiB —--—aop B")(1 - B)y,
(1.1)
=(1—Bo1B — - — Bo,p, B")er,
where 5y = (08, do)" = (@015 -+, 00,py> B0,1s - -5 B0, pas do)T is an unknown coef-

ficient vector with dgp € R and 1 — 2571:1 ao,jzj #0and 1 — Zfzzl ,30,ij # 0 for
|z| <1, B is the back-shift operator and ¢;’s are independent random disturbances
with E(e;) = 0 for all #. Throughout this paper, it will be assumed that y; =&, =0
for all + < 0. These types of initial conditions are commonly used in the nonsta-
tionary time series literature; see, for example, Chan and Wei (1988), Hualde and

Robinson (2011) and Katayama (2008). Assume that
(1.2) 0y xdoell x D,
where

(1.3) D=[L,U] with —co< L < U < o0
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and IT is a compact set in RP1TP2 whose element § = (a7, ..., ap, B, ..., ,sz)T
satisfies

P1
ALg()=1-=) ajz/ #0,

=1
(1.4) !
P2 .
A2,0(2)=1—Z,3jzj750 for all |z| < 1;
j=1
(1.5) A19(z) and Ajg(z) have no common zeros;
(16) |ap||+|ﬂp2| >O

Note that in the current setting, D can be any general compact interval in R,
which encompasses the important case of nonstationary long-memory models
when d > 0.5.

Let & (1) = A1,6(B)A5 o(B)(1 — B)y,, where n.= (q1,....15)" = (07, d)"

with p = p1 + p2 + 1. Then, the CSS estimate of n, %, = (9;,3,,)1 is given
by #, = argmingerixp Sp(n), where S, () = 37, e2(n) is called the objective
function. The main goal of this paper is to establish a moment bound for n'/2 (3, —
o), namely,

(1.7) E[n'2@, —np)|? =00,  q=1,

where || - || denotes the Euclidean norm. We focus on model (1.1) instead of more
general ones because of its specific and simple short-memory component, which
makes our proof much more transparent. On the other hand, it is possible to extend
our proof to a broader class of linear processes; see the discussion given at the of
Section 2 for details.

Although it is assumed in (1.1) that E(y;) = 0, this condition is not an is-
sue of overriding concern. To see this, assume that y; = ¢(¢) + AI},O B —
B)_dOAz,oo(B)st has a mean ¢ (¢), where ¢(¢) is a polynomial in ¢ whose de-
gree k € {0,1,2,...} is known and coefficients are unknown. Then, it is easy
to see that (1 — B)*T!y, is a zero-mean ARFIMA process with memory pa-
rameter dyp — k — 1. Given that (1.7) is valid for any value of dy, the CSS es-
timate of 5§ = (09, do — k — 1T based on (1 — B)¥+1y,, say 1, still satisfies
E[n'2@} — )4 =0(1).q = 1.

An important and interesting consequence of (1.7) is that asymptotic expres-
sions for the one-step and multi-step MSPEs of the CSS predictor can be es-
tablished. These asymptotic expressions not only explicitly demonstrate how the
multi-step MSPE of the CSS predictor manifests with the model complexity and
the dependent structure, but also offer means to compare the performance of the
CSS predictor with the LS predictor for integrated AR models. It is worth mention-
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ing that Hualde and Robinson (2011) have shown that n'/?(§, — 1) converges in
distribution to a zero-mean multivariate normal distribution. However, their result
cannot be applied to obtain (1.7) because convergence in distribution does not im-
ply convergence of moments. While existence of moments of 7,, can be guaranteed
easily by the compactness of IT x D, this only yields a bound of O (n?/?) for the
left-hand side of (1.7), which is greatly improved by the bound on the right-hand
side of (1.7). Equation (1.7) can also be used to investigate the higher-order bias
and the higher-order efficiency of 7,,. Because these types of problems require a
separate treatment, they are not pursued in this paper.

Note that under (1.1) with dg > 1/2, Beran (1995) argued that the consistency
and asymptotic normality of #,, should hold. However, as pointed out by Hualde
and Robinson (2011), the proof given in Beran (1995) appears to be incomplete be-
cause the property that 7,, lies in a small neighborhood of 5 with probability tend-
ing to 1 is applied with no justification. Indeed, this property, reliant on uniform
probability bounds for {S, () < S, (1)}, is difficult to establish for a general d.
To circumvent this difficulty, Hualde and Robinson (2011) partitioned the param-
eter space (after a small ball centered at 7 is removed) into four disjoint subsets
according to the value of d, and devised different strategies to establish uniform
probability bounds for {S, (y) < S, ()} over different subsets. Consequently, the
consistency and asymptotic normality of 7,, are first rigorously established in
Hualde and Robinson (2011) for model (1.1) with a general d. However, the uni-
form probability bounds given in Hualde and Robinson (2011), converging to zero
without rates, are insufficient to establish (1.7). To prove (1.7), we would require
rates of convergence of uniform probability bounds, which are in turn ensured
by a uniform moment bound of the inverse of the normalized objective function,
a, ' (d) X (e:(n) — £:(ng))%, where a, (d) = nl{azdy—1/2) +n* "D g gy—172)
with /g denoting the indicator function of set B. This uniform moment bound, as
stipulated and proved in Lemma 2.1, is based on an argument quite different from
those in Chan and Ing (2011) and Hualde and Robinson (2011), and constitutes
one of the major contributions of this article.

In Section 2, by making use of Lemma 2.1 and other uniform probabil-
ity/moment bounds, (1.7) is proved in Theorem 2.1. The problem of extending
(1.7) to a general linear process that encompasses (1.1) as a special case is also
briefly discussed. In Section 3, Lemma 2.1 and Theorem 2.1 are applied to derive
asymptotic expressions for the one-step and multi-step MSPEs of the CSS predic-
tors; see Theorems 3.1 and 3.2. These expressions show that whereas the contri-
bution of the estimated parameters to the MSPE, referred to as the second-order
MSPE, in the one-step case only involves the number of the estimated parameters,
the second-order MSPE in the multi-step case reflects more features of the un-
derlying model, thereby shedding light about the intriguing multi-step prediction
behaviors of the ARFIMA processes. Another important implication of Theorems
3.1 and 3.2 is that even for an integrated AR model, the CSS predictor can out-
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perform the LS predictor when the order of integration is large. To facilitate the
presentation, more technical proofs are deferred to the Appendix. By means of
Monte Carlo simulations, we also demonstrate that the finite-sample behaviors of
the one-step and multi-step MSPEs in ARFIMA models can be revealed by the
asymptotic results obtained in Section 3. Details of this Monte Carlo study, along
with the proof of (2.9), which is the long-memory counterpart of Theorem 3.1 of
Chan and Ing (2011) and crucial in proving (1.7), are provided in the supplemen-
tary material [Chan, Huang and Ing (2013)] in light of space constraint.

2. Moment bounds. The major goal of this section is to prove (1.7). To this
end, we need an assumption on &;.

(A1) There exist 0 < dp < 1,0 <ap <1 and 0 < M; < oo such that for any
0 <5 —v <380, SUP| <t <o v, =1 | F1.v, (8) — Fry, (V)| < Mi(s — v)™, where v; is a
t-dimensional vector and F; y, (-) denotes the distribution of V,T(s,, o, E1).

Note that an assumption like (A1) has been used in the literature to deal with
the moment properties of the LS estimates in the AR or ARMA context; see,
for example, Findley and Wei (2002), Ing (2003), Schorfheide (2005) and Chan
and Ing (2011). When ¢,’s are normally distributed, (A1) is satisfied with M| =
(27102)_1/2 and «g = 1 for any §g > 0. In addition, when &;’s are i.i.d. with an in-
tegrable characteristic function, (A1) is satisfied with any §p > 0, ap = 1 and some
M > 0. For a more detailed discussion of (A1), see Ing and Sin (2006).

The following two lemmas, which may be of independent interest, play a key
role in proving (1.7). Let Bs(ny) = {n € R? : | — n,|l < 8}.

LEMMA 2.1. Assume (1.1)—(1.6) and (Al). Then, for any § > 0 such that
[T x D — Bs(ng) # 9, any g > 0 and any 6 > 0, we have

nellxD—Bs(ng)

n —-q
2.1) EH inf a, (d)> (e () — s,(no))z} } = 0((logn)?).
t=1

To perceive the subtlety of Lemma 2.1, first express a, L(d) Yo (e () —

er(M))* as n=' Y, g7 (n), where g (n) = gra(n) = n'/>(e;(n) — &:(ng)) X
an 12 (d). Since g;(n) is a scalar-valued continuous function on IT x D — Bs(n),
in view of the proof of Theorem 2.1 of Chan and Ing (2011), (2.1) follows if
we can show that g;(n) satisfy conditions (C2) and (C3) of the same paper with
slight modifications to accommodate the triangular array feature of g;(n). How-
ever, for d < dy — 1/2 and for all large n, the correlation between g;(n) and
gs(n) is overwhelmingly large if #,5s — oo as n — oo and |t — s| is bounded
by a positive constant. Therefore, even when (Al) is imposed, it is still diffi-

cult to find a positive constant b such that for all large ¢ and n, the conditional
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distribution of g;(n) given {e5,s <t — b} is sufficiently smooth, which corre-
sponds to (C2) of Chan and Ing (2011). Moreover, while g;() is continuous on
IT x D — Bs(ng), it is not differentiable at d = dp — 1/2, making it quite cum-
bersome to prove that there exist ¢; > 0 and nonnegative random variables B;’s
satisfying max|<;<, E(B;) = O(1) such that for all n|, 9, € I1 x D — Bs(n,) with
Iy —m2ll <cr, 18:(m) — & (M2)| < Bellny — m2ll as., which corresponds to (C3)
of Chan and Ing (2011). Indeed, this latter condition is particularly difficult to
verify when 9, and 5, lie on different sides of the hyperplane d = dy — 1/2. As
will be seen in the Appendix, the B;’s derive in (A.8) and (A.9) no longer satisfy
maxj<;<, E(B;) = O(1), which also results in a slowly varying component on the
right-hand side of (2.1).

Throughout this paper, C represents a generic positive constant, independent
of n, whose value may differ from one occurrence to another.

LEMMA 2.2. Assume (1.1)—(1.6), (A1) and

(2.2) supE|e |7 < o0,

=
where q1 > q > 2. Let § satisfy T1 x D — Bs(n) # @ and v > 0 be a small con-
stant. Define Bo, = {07, d)T: (07, d)T € T1 x D — Bs(yy) withdy — 5 <d < U}
and Bj, = {07, d)T:(07,d)T € 11 x D — Bs(ny) with dy — 1/2 — ]U <d<
do—1/2—(j — v}, j = 1. Then, for any 6 > 0,

E{ SUPyes; , 121 (e (m) — (o)) e }q
infyep; , >r_1(e:(n) — &:(g))?

(ogn)¥2\¢ .
c(SE—) oz, j=0.

(2.3)

<
logn g .

Lemma 2.2 implies
Py € Bjo) < P(inf $:0) < Sy010)) = O({logn)*?/n'/2} (logn)’)
Jj.v

for j =0, and O({logn/n'/>7v=2V}4(logn)?) for j > 1, suggesting that for d <
do — 1/2, the smaller the value of d, the less likely d, will fall in a neighborhood
of d. These probability bounds can suppress the orders of magnitude of ||n!/ 2(f) —
no) |l and SUPyep;, n{enr1() — ent1(no)}>, thereby yleldlng that E{||n'/2 (5, —
N9 X I, erisD—Byng)y} and nE{ens1(1,) — n1(0) Y L, erix p—Bs ()] are
asymptotically negligible; see Corollary 2.1 and Lemma 3.1. As will become clear
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later, the first moment property is indispensable for proving (1.7), whereas the
second one is important in analyzing the MSPE of the CSS predictor. It is also
worth mentioning that the order of magnitude of SUPyeB;., ni{en+1(m) — ent1 (770)}2
is n(log n)3 for j=0and nlt2vi (log n)? for j > 1, which increases as j does; see
(3.5) for more details. The next corollary is a direct application of Lemma 2.2.

COROLLARY 2.1. Suppose that the assumptions of Lemma 2.2 hold. Then, for
any 8 > 0 such that T1 x D — Bs(ng) # <,

24) E{[n"* @, — 10)|? I, er1x D= Bs oy} = 0 (D).

PROOF.  Since both #,, and ¢ are in [T x D, ||7,,|| and |5 are bounded above
by a finite constant. Therefore, it suffices for (2.4) to show that

(2.5) P (@), € T1 x D — Bs(ng)) = o(n™9/?).

Let g1 > ¢gf >gand 0 < v < %(1 — q/q7). Without loss of generality, assume
that L = dp — (1/2) — Wv for some large integer W > 0. Then, it follows from
Lemma 2.2 (with ¢ = g{) and Chebyshev’s inequality that for any 6 > 0,

w
P(, €1 x D — Bs(np)) < >_ P(ii, € Bj,»)
j=0

<C % E{ SUPyeB;, |Z?:1 (er(m) — &r(mp))erl }‘17
B =0 infyep;, o1 (er(m) — &1(n))?

logn \91

=o(n=?),

IA

which gives (2.5). U

While Theorem 2.1 of Hualde and Robinson (2011) showed that 3, — , 1
under substantially weaker assumptions on ¢&;, it seems tricky to extend their ar-
guments to obtain a convergence rate like the one given in (2.5), which is criti-
cal to proving of (2.4). As a by-product of (2.5), we obtain #,, — 1, a.s., which
follows immediately from (2.5) with ¢ > 2 and the Borel-Cantelli lemma. The
main result is given in the next theorem. First, some notation. For 1 <m < p,
define J(m, p) ={(j1, ..., jm):j1 <+ < Jm,Ji €{1,...,p},1 <i <m}, and
for j = (j1,..., jm) € J(m, p) and a smooth function w = w(&y,...,&p), let
Djw =0"w/d&;,, ..., 0§;,.
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THEOREM 2.1. Assume (1.1)—(1.6), (Al),

(2.6) supBle, "' <00,  q1>g=>1,
t>1

and

2.7) o €intIl x D.

Then (1.7) holds.

PROOF. Since by (2.5) or Theorem 2.1 of Hualde and Robinson (2011),
i, — Mo in probability, and since (2.7) is assumed, there exists 0 < 71 < {I —
(q/q1)}/2 such that

(2.8) By, (ng) CIT x D and nli)ngo P(#), € B, (ng)) = 1.
Let Ve,(n) = (Ve:(M1, ..., Ve p)T = @e()/dn, ..., e:(n)/dnp)T and

st,(n) = (st,(n)i,‘,-) = (828,(17)/877[ 0n;). Assume first that the following rela-
tions hold:

E{ sup x;il(n‘lszw)(wt(n))T)}=0<1)

N€Bz (19) =1
(2.9)
forany y > 1,
n q1
(2.10) max _Ei sup n_l/ZZE,VZe,(n)i’j } =0(),
I=ij=p NeEBy (no) =2
@.11) max_E| sup |[VZe (i Y] =0,
I=i.j=p.2st=n “yeB (n))
(2.12) max _E{ sup |Ve(mi[*'} =0,
Isizp.2si=n TyeBr (ng)
n T _
P{ sup Ar;iln<n_IZV8t(n)(V8;(n)) ) >Mt=0(n"1)
NEBz; (o) =2
(2.13) -
for some M > 0,
n
_ 2 - _
P: sup n IZHV&}(??)” >Mi=0(n"1)
NEBy, (m0) =2
(2.14) _
for some M > 0,
n
max _ Pi sup n! Z(VZa‘,(n),-,j)z >Mi=0(n")
I=si.j=p |neBy, ) 15
(2.15)

for some M > 0.
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Then, making use of (2.8)—(2.15) and an argument given in the proof of Theo-
rem 2.2 of Chan and Ing (2011), we obtain

(2.16) E([n' 2@, —10)[*10,,) = OD),

where Oy, = {1, € B+ ()} with 0 < 7{* < min{r, 371 p=1M~2}. Moreover, it
follows from Corollary 2.1 that

(2.17) E([n' 2@, —10)[*10,,) = O (D),

where Oy, ={f), € 1 x D — B,l* (n9)}. Combining (2.16) and (2.17) gives the
desired conclusion (1.7). To complete the proof, it remains to show that (2.9)-
(2.15) are true.

A proof of (2.9), which is similar to that of Theorem 3.1 of Chan and Ing (2011),
but needs to be modified with the long-memory effect of Ve, (n), n € By, (1), is
deferred to the supplementary material [Chan, Huang and Ing (2013)]. To prove
(2.15), write

e:() = (1= B)! "0 A, 4,(B)AT y,(B)A19(B) A 4 (B,

t—1
= Z bs (n)gt—s s
s=0

where bo() = 1. Then, with ¢ ;; () = szs(t‘))/am dn; and by ;(n) = 0bs(n)/
i, Ve )i = Y\Z bs.i(mes—s and Ve ()i j = Y'Z) ¢5.ij(m)er—s. Tt is clear
that bs;(n) and c;,;;(n) have continuous partial derivatives, Djb;;() and
Djcs,ij(m), on By (1p). Moreover, it follows from arguments similar to those in
the proofs of Theorem 4.1 of Ling (2007) and Lemma 4 of Hualde and Robinson
(2011) that for any s > 1,

(2.18) max  sup |egij ()| < C(log(s + 1))*s ™'
151,]5[7 )]GBTl(nO)
and
(2.19) max max sup | Djcs.ij(n)| < C(log(s + 1))’s~ 7.

I=i.j=pje)m.p).1=sm=pyeB,
Define

.. X
As(i, j) = max sup (Dics.ii ()2
s jEJ(m’ﬁ)’lfmfﬁﬂéBfl(no)( §Cs,ij )

S5, j)= max su Diicrii(mesii(n)
ratlsJ jeJ(m,ﬁ),lsmSﬁneBrlIzno)’ J{ RALAA }‘
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and B;(i, j) = SUPyeg,, (n). Equations (2.18) and (2.19) yield that for any

(o) € s ij
1<i,j=<p,
o
chz,ij(no) <C,
=1
(2.20)

o0 2 o0 2 [e.e] 2
{Zsz,za,j)} ECHZAI(LJ')} +{ZBz<i,j>} ]sc

On the other hand, by (B. 6) of Chan and Ing (2011), Chebyshev s inequality and
(2.6), we have for M > 202 Maxi<j j<r Yoo SUPyes,, (p) and any 1 <1,

J=p,

P{ sup n~! Z(Vzet(n),-yj)z > ]\_4}

NE B, (19) =2

(o) € S ij

U (Ve i) — E(V2e ()i )]
=2

2q1 <A;I)2‘“}
> —_—
2

n—1 /n—s n—1 /n—s q1
(2.21) 5Cn—2‘1!z(2c,%ij(no)) +Z<ZSIZ(1 J)) }

s=1 \I=1 s=1 \Il=1

< P{ sup
nE€Bz, (19)

r—1 /n—s 29q1
el z { [z(z Ster a1l J-)) ]

s=1 \I=1

r—1 /n—s 2941
+ [Z(Z|Cl+r—s,ij(ﬂo)Cl,ij(ﬂo)|) } }

s=1 \/=1
Since (2.18) and (2.19) also ensure that for some 71 < » < {1 — (¢/q1)}/2,
any 1 <i,j < p and any r > s, {372 Sir—s1(, j)}> < C(r — s)7172% and
(82 lerr—s.ij(mo)erijMme)N? < C(r —s) 717272, we conclude from these, (2.20)
and (2.21) that for any 1 <i, j < p,

P< sup n! Z(stl(n)i,j)z > M) =0 (n 1722 = o(n9).

”eBrl (m0) =2
Thus, (2.15) follows.
By analogy with (2.18) and (2.19), we have

(2.22) max_ sup |by; ()| < C(log(s + 1))s ™17
1=i=P pe By, )

and

(2.23) max max sup | Djbs,i(m)| < C(log(s + 1))2 —lt1

I<i<pjeJ(m,p),1<m=p 1€Bz, ()
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In addition, (0.3) and (0.4) in the supplementary material [Chan, Huang and Ing
(2013)] ensure that there exists ¢ > 0 such that for all large #n,

(2.24) inf  Amin <n_1 ZE{W,(n)(W,(m)T}) >c.

n€ Bz (o) -

Denote Ve, () (Ve ()" and E{Ve;(n)(Ve; ()T} by W; () and W; (1), respec-
tively. By making use of

n n
inf  Amin (n_l > WM)) > inf  Amin (n_l > Wr(ﬂ))
t=2 t=2

ne B, (19) € Bz, (19)

— sup
NEBz (o)

’

n= D [Wen) — W]
t=2

(B.6) of Chan and Ing (2011), (2.22)—(2.24)_ and (2.6), we get from an argument
similar to that used to prove (2.15) that for M > 2/c,

P{ sup Al (n_l > W,(n)) > M} =o(n79),

NEBr, (19) =2

which gives (2.13). As the proof of (2.14) is similar to (2.13), details are omitted.
To prove (2.10), first note that by (2.6) and (B.5) of Chan and Ing (2011), we
have forany 1 <i, j < p,
n q1
n~1/? Z €tV28z(77)i,j }
=2

n—1 q1/2 n—1 q1/2
SC“Zc?,,;,wo)} +{ZAs<i,j)} }
s=1 s=1

Combining (2.25) with (2.20) gives the desired conclusion. Finally, by (2.6),
(2.18), (2.19), (2.22), (2.23), Lemma 2 of Wei (1987) and an argument used in
the proof of (A.12) in Appendix A, we have forany 1 <,i, j < p,

E{ sup
nE€Bz, (19)
(2.25)

B{ sup [Vie,ni,[*"]
nE€Bz; (19)

0o 2q1
(2.26) §CHZ max sup (Dst,ij(n))z}

s=14€I0m. D). 1=m=p ye B, (ny)

00 2q;
ZCsZ,ij(ﬂo)} ] <C

s=1
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and
4
Bl sup [Ver(m[*]
n€Bz, (19)
00 5 2q;
(2.27) <C max su Db i(n)
[{Sgljej(m,ﬁ),lsmﬁneBﬁgﬂg)( besm)

o) 2q1
+ {stz,i('lo)} ] <C,
s=1
and hence (2.11) and (2.12) hold. This completes the proof of Theorem 2.1. [J

We close this section with a brief discussion of generalizing (1.7) to the linear
process

(2.28) yr =m(Ng) + &,

where &;’s obey (Al), ny = (g, do)" is an unknown p-dimensional vector
with dy € D and 6 lying in a given compact set V C R”~!, and m,(y) =
m:(n, yr—1, ..., y1) admits a linear representation Z;;ll Cs()e;—s with ¢s(n)’s
being twice differentiable on V' x D. Assume that 5 € int V x D and ¢;(n)’s sat-
isfy some identifiability conditions leading to (A.19) in the Appendix and (0.1) in
the supplementary material [Chan, Huang and Ing (2013)], and some smoothness
conditions similar to (2.18), (2.19), (2.22), (2.23) and (A.12). Then the same argu-
ment used in the proof of Theorem 2.1 shows that (1.7) is still valid under (2.28).
Note that these identifiability and smoothness conditions are readily fulfilled not
only by (1.1), but also by (1.1) with the ARMA component being replaced by the
exponential-spectrum model of Bloomfield (1973). Moreover, when the ARMA
component of (1.1) is replaced by the more general one given in (1.3) of Hualde
and Robinson (2011), these conditions can also be ensured by their assumptions
Al and A3, with A1(ii), A2(ii) and A2(iii) suitably modified.

3. Mean squared prediction errors. One important and intriguing applica-
tion of Theorem 2.1 is the analysis of mean squared prediction errors. Assume
that yy, ..., y, are generated by model (1.1). To predict y,+s, A > 1, based on
Y1, -- - Yn, we first adopt the one-step CSS predictor, y,+1(%,) = Yn+1 —En+1(1,,),
to forecast y,41, noting that y,41(#,) depends solely on yi,...,y,. Define
P, yi—1, - yD) =y — &) =0—-(1- B)dAl,o(B)Ai},(B))yr- Then y, 41,
h > 2, can be predicted recursively by the A-step CSS predictor,

(31) }A}n-l-h(ﬁn) = pn-‘rh(ﬁn’ j}n-‘rh—l(ﬁn)’ sy j}n-l-l(ﬁn)’ Ynyooes yl)
When restricted to the short-memory AR case where p;(n) = (1 — A1.6(B))y:,
Yn+n (1) is called the plug-in predictor in Ing (2003). Sections 3.1 and 3.2 provide

an asymptotic expression for the MSPE of $,.1,(1,)» E{ynin — nsn(,)}?, with
h=1and h > 1, respectively.
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3.1. One-step prediction. In this section, we apply Theorem 2.1 to analyze
E{Vn+1— 9ns1(i,,)}>. In particular, it is shown in Theorem 3.1 that the contribution
of the estimated parameters to the one-step MSPE, E{y,+1 — $,+1(1,,)}> — 02, is
proportional to the number of parameters. We start with the following auxiliary
lemma.

LEMMA 3.1. Assume (1.1)—(1.6), (Al) and
(3.2) supE|es |V < 00 for some y > 4.

t>1

Then, for any § > 0 such that T1 x D — Bs(n¢) # 9,
. 2
(3.3) nE[{ens1(0,) — ent1(0) ) Iy, erix p—Bsno)y) = 0(1)-

PROOF. Letd4 <y <yand0<v < (y1 —4)/2y1+8).Alsolet B ,, j >0,
be defined as in Lemma 2.2 and W be defined as in the proof of Corollary 2.1. By
Cauchy—Schwarz’s inequality, the left-hand side of (3.3) is bounded above by

w
(3.4) nY E? Sup (1) = ens1(00))' | P2 (R, € Bj o).
j=0 NEDLjy

By the compactness of Bj ,, (A.32) and (A.33) in the Appendix and an argument
similar to that used to prove (2.27), it follows that

El/z[ sup (en+1(n) — 8n+1(770))4}

ﬂGBj’v
n n 2
(3.5) <Cj su bz(n)+ max sup (Dibs(n)
neBEU; g éjeum,ﬁ),lsmsﬁneggv( ibs ()
| o(aogn)?), j=0,
o dogn)?), j>1.

Moreover, Lemma 2.2 yields that for any 6 > 0,
SUPyesB; , 1> =1 (er () — 8(770))51|)V1 }1/2
infyen,, S (e () — (10))?

(lo n)3/2 71/2 .
o(M5) "wunt). oo

logn v1/2 0 )

Combining (3.4)—(3.6), we obtain for some s > 0, nE[{e,+1(1],)) — €n+1 (110)}2 X
Ii, entxp—gyon] = O (2= (logn)*) = o(1), where the last equal-
ity is ensured by the ranges of y; and v given above. As a result, (3.3) is proved.

O

P2, e Bjy) < C{E(
(3.6)
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Equipped with Lemma 3.1, we are now in a position to state and prove Theo-
rem 3.1.

THEOREM 3.1. Suppose that the assumptions of Theorem 2.1 hold except that
(2.6) is replaced by
(3.7) supElg/|Y <00 for some y > 10.

r>1

Assume also that g;’s are i.i.d. random variables. Then
. ~ A 2 —
(3.8) lim 2[E{yus1 = Su1 (@)} —0°] = po’.

PROOF. Let 0 < 71 < 1/2 satisfy B (n9) C I1 x D. Define D, = {3, €
B, (ny)} and D = {4, € I1 x D — By, (n9)}. By Taylor’s theorem,

12 (Yns1 = 1 (@) — Ent1)

T, A
=n'?(Vei(n9)) (W, — 10)Ip,
1/2
n ~ ~
+ (i — 10)" Veni1 (0*) A, — no) Ip,

3.9

+ 1 (eng1 (B) — ens1(ng)) I,

where ||9* — n9ll < 11,, — noll- Since Lemma 3.1 ensures that the second moment
of the third term on the right-hand side of (3.9) converges to 0, the desired conclu-
sion (3.8) follows immediately from

(3.10) Lim E[n{(Vens1(n0))" (8, = n0)}* I, ] = o

and

(3.11) E[n (G — 10)"Venr1 (1) Gy — 10} I, ] = 0(1).
Note first that by Theorem 2.2 of Hualde and Robinson (2011),

(3.12) n'2 (i, —19) = Q.

where Q is distributed as N (0, o>T'~! (1)) with ' ();.j = lim;— o E(Ve; ()i X
Ve (ng)j) = o2 Y02 bs,i(ng)bs,i(ng) for 1 <i, j < p and = denotes conver-
gence in distribution. [Note that I'(n() is independent of dy and I'(n¢)p; =
7202 /6.1 Define Ve, t1.m(Mg) = (7 by.i (9)€n+1—s5)1<i<j- Then by (3.12) and
the independence between Ve, 11, (1) and nl/z(ﬁn_m — 7o),

B13)  Zum =" (Venit1mM0) Ginm —10) = FrQ  asn— oo
and

(3.14) F/Q=F'Q asm— oo,
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where F and F,,, independent of Q, have the same distribution as those of
(o521 bs.i(mg)es, Vi<i<p and Vep, 11, (1), respectively. By making use of (2.13),
(2.27), 3.12), 9,_, = p Mo as n — oo, and VS,_,,(§),_,,) =0 on {7),_, €
Bz, (n9)}, we obtain that for any € > 0,

lim lim sup P{\nl/z(V8n+1(ﬂo))T(f7n —19) = Znm| > €} =0,

m—00 p—o0

which, together with lim, oo P(D,) = 1, Theorem 4.2 of Billingsley (1968),
(3.13), (3.14) and the continuous mapping theorem, yields

(3.15) n{(Veur1(10)) (i — 10)} Ip, = (FTQ)7.

Let 5<v<y/2and 0 = (y/v) — 2. It follows from (3.7), Theorem 2.1 and
Holder’s inequality that

E|(Vent1(mg) 0" G, — mo)|

(3.16) < {E||V8n+1(n0)||”}1/”{E||n1/2(9n _ 00)”)//(11—1)}(11—1)/11
=0()

246

and hence n{(Ve,+1(19) " (@, — 770)}211),1 is uniformly integrable. This, (3.15) and
E(FTQ)? = po? together imply (3.10).

On the other hand, since on D,, |4, — ol < 71, we have for any 0 < 6 < 2,
n, — ’70||41Dn <Kl|#, — 1;0||2+9 Ip,, where K is some positive constant depend-

ing only on 8 and 71. Let 0 < 6 < min{4_1(y —2) — 2,2}. Then, it follows from
Theorem 2.1, (3.7) and Holder’s inequality that

E{n'2(@, — 10)"V2ent1(n™) (@, — 'Io)IDn}2
< KE(nlli, — noll*** | V2ens1 (n%) )
3-17) < Kn P (B[n' 2@, — ng)| TV TR0 2Y

2 v\ 12"
) {E(ﬂei;rllrzrlo) ”V 8n+1(n) ” >}

_ 2y
=0(n WZ){E( sup ||V28n+1(7])”y)} )
1€8z ()

An argument similar to that used to prove (2.26) also yields that the expectation
on the right-hand side of (3.17) is bounded above by a finite constant, and hence
(3.11) holds true. This completes the proof of the theorem. [

Theorem 3.1 asserts that the second-order MSPE of 3,.1(#,), po’n~! +
o(n~"), only depending the number of estimated parameters, has nothing to do
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with dependent structure of the underlying process. This result is particularly in-
teresting when compared with the second-order MSPE of the LS predictor in inte-
grated AR models. To see this, assume first that there is a forecaster who believes
that the true model is possibly an integrated AR(p1) model,

(1—aiB—---—apB")y,
(3.18)

= (1 - B)Uo(l —hB—--- epl—vonl_vO)yt =&,

where vo € {0, 1, ..., p1} is unknown and 1 — 601z — -0, 42”7 # 0 for all
|z| < 1. Then it is natural for this forecaster to predict y,+; using the LS predictor
Fn+1,in which 3,41 =y (p1)e, (p1) withy] (p1) = (yr, - .., Yi—p,+1) and &, (p1)
satisfies 372}y, (p1)y; (p1)@n(p1) = 3=, ¥(p1)yi+1. On the other hand, an-
other forecaster who has doubts on whether the vg in (3.18) is really an integer,
chooses a more flexible alternative as follows:

(3.19) (1—a1B—---—a, BP)(1 - B)y, =¢,

where L1 <0 <dy < p; <U; with —oo < L1 < U; < 0o being some prescribed
numbers, and 1 — Zf‘zl o ij satisfies (1.4). Clearly, model (3.19), including model
(3.18) as a particular case, is itself a special case of model (1.1) with p, =0, and
hence the CSS predictor, y,+1(7,,), obtained from (3.19) is adopted naturally by
the second forecaster.

If the data are truly generated by (3.18), then Theorem 2 of Ing, Sin and Yu
(2010) shows that under certain regularity conditions,

(3.20) im n[E{yr1 — Sn1)? — 0% = (p1 + vg)o”.

In addition, by Theorem 3.1 (which is still valid in the case of p, = 0), we have
. N A 12

(3.21) Jim n[E{yn1 = $ar1 @)} = 0] = (p1+ 1o,

As shown in (3.20) and (3.21), while the second-order MSPE of the LS predic-
tor y,41 increases as the strength of dependence in the data does (i.e., vg in-
creases), the second-order MSPE of the CSS predictor y,+1(%,,) does not vary
with vg. These equalities further indicate the somewhat surprising fact that for
an integrated AR model, even the most popular LS predictor can be inferior to
the CSS predictor, if the integration order is large. To further illustrate (3.20)
and (3.21), we conduct a simulation study to compare the empirical estimates
of n[B{ynt1 — us1}* — 0] and n[E{ynq1 — Fns1(i,)}* — 2] for (3.18) with
p1 =3 and vg =0, 1 and 2. These estimates, obtained based on 5000 replications
for n = 1000, are summarized in Table 1. As observed in Table 1, the empirical
estimates of n[E{y,4+1 — §n+1(f7n)}2 — 02] are quite close to 4 for all three mod-
els, whereas those of n[E{y,+1 — jnﬂ}z — ¢2] are not distant from 7, 4 and 3 for
vo = 2, 1 and 0, respectively. Hence all these estimates align with their correspond-
ing limiting values given in (3.20) and (3.21). This “dependency-free” feature of
the CSS predictor in the one-step case, however, vanishes in the multi-step case,
as will be seen in the next section.
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TABLE 1
The empirical estimates of the second-order MSPEs of the CSS predictor
(with p1 =3 and py = 0) and the LS predictors with p1 =3

True model CSS predictor LS predictor
(1+05B)(1 = By =¢ 4.0689 6.8409
(1-0.25B%)(1— B)y; =& 4.3732 4.1975
(1-0.2B—0.25B2+0.5B3)y; =& 4.1828 3.1686

3.2. Multi-step prediction. Note that under (1.1), y, = th_:]o cs(Mo)&r—s,
where for g = 07, d)T = (ozl,...,apl,ﬁl,...,ﬂpz,d)T eIl x D, ¢co(n) =1 and
cs()’s, s > 0, satisfy 302 ¢;()z* = A29(2) AT (2)(1 —2)7, |z| < 1. In addi-
tion, let &o(d) = 1 and & (d)’s, s > 0, satisfy 2%, ¢s(d)z* = (1 —2)~%, |z] < 1.
With v;(d) = (1 — B)?y,, define u, () = (—v,(d), ..., —Vn—p,+1(d), n (), ...,
n—p,+1(M)T. Now the h-step CSS predictor of y,4+p is given by Jn4n(f),) =
G (B)Yn + X020 & (dn)Pnyn—s, where Ga(B) = B™" — (1 - B)? Y-} 7) & (d) x
B*h = (1 - BY 302, &c(d)BX", b0 = —ul (3,) x A!71(8,)8, and

Ip -1
E .
A®) = s ;
p2—1
B Opzx(m—l) 01?2 01'2—
p2—1
Here o = (al,...,apl)T, B = (,81,...,,3p2)T, and 0,,, 0,,x, and I, respec-
tively, denote the m-dimensional zero vector, the m x n zero matrix and the
m-dimensional identity matrix. Define 0,4;(no) = —uZ(nO)Al*I(OO)Oo. Then,

it follows that yu4n = Gay(B)yn + Y4 Cs(d0)vntin—s(do) = Gay(B)yn +
Zi’;& Cs(do) Uptn—s(mo) + Z?;& ¢s(Mo)en+n—s- In this section, we establish an
asymptotic expression for

E[yn+h - )A’n—f—h (ﬁn)]z
h—1

(3.22) = G}%(”O) + E{ng (B))’n + Z Cs (dAn)ﬁn+h—s
s=0

h—1 2
— Gay(B)yn — Y _ Cs (do)6n+hs(no)} ,
s=0

where a,%(no) =02 Zh_l 02(170). To state our result, first express I' (1) as

s=0 =s
I"11(00) )’12(00))

Fmo) = (yL(oo) 7262/6
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where T'11(00) = (I'(0)i, j) 1<i, j<pi+p» and ¥]5(00) = (I'(M0) 5,i) 1 <i<pi+ps» DOL-
ing that I"(n) is independent of dy. Then

T'11(00) }712(90))
71,00) 7200) /)’

where I'11(80) = ("11(80) — ¥ 1,007 [, (00)y3,' B0)) ™", 722(60) = (270> /6 —
Y1, (00077 00)y12(80)~" and 7,(80) = —722(00)T};' (00)¥12(8o). Define
Ve, (00) = (Ver(o)1, -, Ver(Mo) p+py) | [noting that Ve, (ng)i, 1 <i < p,
is independent of dpl, w;; = (Z;c;l] g—k/(k + h — 1),...,22_:11 g1/ 0T,
0r(00) = lim; o E(VWe,(B0)W] ) and R(h) = (i, j)hxh. in which y;; =
6 25 il I <i<hand yi =y =62 — DT LT -+
I)~',1<i < j <h. Now, an asymptotic expression for (3.22) is given as follows.

r g = (

THEOREM 3.2. Under the hypothesis of Theorem 3.1,

lim 1 {E[ynh — Snsn(@)]” — 02 (00))

n—oo

(3.23)
= {fu(p1. p2) + gn(mg) + 2J4(mp)}o?,

where  fr(p1, p2) = t{T11(00)Lr(m)T11(00) L] (o)}, gn(mg) = (m0?/6) x
72(80)¢], () R(Wen(mo), and Iy (ng) = ¥1,00)L] (o) Qn(@0)en (o), with
cn (o) = (o) - - -» 1)) Lin(ng) = X1 =h es(mg) A"=15(8¢) and

1, _
0’4”—‘ 05, p»
A@6) = pi-1

0P2><P1

Iﬁz—l

T—
0P2—1

B

A few comments on Theorem 3.2 are in order. When i = 1, straightforward
calculations imply f5,(p1, p2) + gn(ng) + 2J1 () = p, which leads immediately
to Theorem 3.1. When pP1L=p2 = 0, fh(pl, p2) and 2Jj(n¢) vanish, and y22(n)
and ¢;,(19) in gi (1) become 6/(w?6%) and & (do) = (Co(do), . . ., En—1(dp)) T, re-
spectively. As a result, the right-hand side of (3.23) is simplified to

(3.24) gn(do)a® =& (do) R(h)&y (do)o?,

yielding the second-order MSPE of the h-step CSS predictor for a pure I(d) pro-
cess. Alternatively, if dy = 0 is known, then 8gh (ng) and 2J,(ny) vanish, and the
right-hand side of (3.23) becomes

(3.25) Fu(p1, p2) =tr{T11(80) L1 (00)T 1, (B0) L] (80)),
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where Zh(Oo) is Lp(ny) with dy = 0. Note that (3.25) has been obtained by
Yamamoto (1981) under the stationary ARMA(p1, p2) model through a some-
what heuristic argument that does not involve the moment bounds of the estimated
parameters. When py = 0, the right-hand side of (3.25) further reduces to f1 ,(p1)
in (10) of Ing (2003), which is the second-order MSPE of the A-step plug-in pre-
dictor of a stationary AR(p1) model. In view of the similarity between fj,(p1, p2)
and fh( D1, p2) and that between g, (1) and g, (dp), (3.23) displays not only an
interesting structure of the multi-step prediction formula from the ARMA case to
the I(d) case, and eventually to the ARFIMA case, but also reveals that the multi-
step MSPE of an ARFIMA model is the sum of one ARMA term, f;(p1, p2), one
1(d) term, g5 (n() and the term 2J; () that is related to the ARMA and I(d) joint
effect. This expression is different from the ones obtained for the LS predictors in
the integrated AR models, in which the AR and I(d) joint effect vanishes asymp-
totically; see Theorem 2.2 of Ing, Lin and Yu (2009) and Theorem 2 of Ing, Sin
and Yu (2010) for details.

Before leaving this section, we remark that the dependence structure of (1.1) has
a substantial impact on the multi-step MSPE. To see this, consider the pure I(d)
case. By (3.24) and a straightforward calculation, it follows that for any dy € R,
there exist 0 < Cy 4, < C2,4, < 00 such that

(3.26) Craph™ 172 < g1,(do) < Cagph ™12,

which shows that for 2 > 1, a larger dy (or a stronger dependence in the data) tends
to result in a larger second-order MSPE. Finally, if the true model is a random
walk model, y; = ay;—1 + &, with @ = 1, and is modeled by an I(d) process, (1 —
B)?y, = &, in which d = 1 corresponds to the true model, then by Theorem 3.2
and (3.24), limy— 0o 1{E[Ypth — Inan(dn)]? — ho?} = o2 for h = 1, and the limit
is smaller than (4.87h + (1 4 log h)? —2(1+ log 2h))o? for h > 2. On the other
hand, for the h-step LS predictor y,1, of the above AR(1) model, it follows from
Theorem 2.2 of Ing, Lin and Yu (2009) that lim,, _, oo 2{E(ynih — Yuin)> —ho?} =
2h02, which is larger than o> when h = 1, and larger than (4.87h + (1 +log h)? —
2(1 +log 2h))o? when h > 2. Hence Ynan(dy) is always better than ¥, in terms
of the MSPE. The convergence rates of their corresponding estimates, however,
are completely reversed because the LS estimate converges much faster to 1 than
dy, for a random walk model. This finding is reminiscent of the fact that when
the true model simultaneously belongs to several different parametric families, the
so-called optimal choice of parametric families may vary according to different
objectives. For a random walk model, when estimation is the ultimate goal, then
LS estimate may be preferable. On the other hand, for prediction purposes, CSS
predictor is more desirable according to Theorem 3.2.

APPENDIX

PROOF OF LEMMA 2.1.  We only prove (2.1) for ¢ > 1 because for 0 < ¢ < 1,
(2.1) is an immediate consequence of for the case of ¢ > 1 and Jensen’s inequality.
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Since IT x D — Bs(n,) is compact, there exists a set of m points {5, ..., n,,} C
IT x D — Bs(ng) and a small positive number 0 < §; < 1, depending possibly on
é and IT, such that

(A.1) I x D — Bs(ng) C | Bs, (n,),

i=1

(A.2) In—noll = 8/2 and 6 obeys (1.4)~(1.6)

for each n = (0T, S Bgl (n;) and 1 <i <m, where l_?(g] (n;) denotes the closure
of Bs, (n;). In view of (A.1), it suffices for (2.1) to show that

n —-q

EH inf a;l(d)Z(sz(m—et(no))z} }=0(<logn>"),
neBs (n;) =1

(A.3)

i=1,...,m,

hold for any ¢ > 1 and 6 > 0. Let D; = {d:(é’T,d)T € Bal )}, Gi={i:1<i<

m, D; = supD; <dy—1/2}, Go={i:1 <i <m,D; =inf D; > dyp — 1/2} and

Gy={i:1<i<m,D; <dy—1/2 < D;}. Then {1,...,m} = ;_, G¢. In the

following, we first prove (A.3) for the most challenging case, i € G3. The proofs

of (A.3) for the cases of i € G| or G, are similar, but simpler and are thus omitted.
By the convexity of x ™7, x > 0, it follows that for any fixed 0 < < 1,

n —-q
{a”_l(d) > (e — st(no))z}

i=I

n —-q
(A.4) < {n—l > g?(n)}

t=nt+1

zn—1(Lg—1 -4
=< {ZC]/(l - L)}qZ;] Z { Z g%t—l—l—i—rzn—l-j(n)} ’

j=0 Ur=0

where £ > max{(2/a0) + (¢1 + Dp/(a0q), ("' = 1)/q}, with £; > 2q, g () is
defined after Lemma 2.1, and z,, = (1 — ¢)n/(£q). Here nt, £q and z,, are assumed
to be positive integers. According to (A.4), if for any ¢ > 1 and all large #,

lg—1 -9
EH inf Zg,%mﬂnw(n)} }scaognf/z,

neBs (i) . —o
(AS)
j=0,...,z, — 1,

holds, then (A.3) follows with 8§ = 5/2. Moreover, since ¢ is arbitrary, this result
is easily extended to any 6 > O using Jensen’s inequality. Consequently, (A.3) is
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proved. In the rest of the proof, we only show that (A.5) holds for j = 0 because
the proof of (A.5) for 1 < j <z, — 1 is almost identical. For j = 0, the left-hand
side of (A.5) is bounded above by

00 Lg—1 »
K+/ ( inf Y gmie, ) <p? ,R(M)> dup
kK \neBs, ) ‘2
(A.6) + / P(R*(w)) dpu

=K+ (D +dD),

where K, independent of n and not smaller than 1, will be specified later, with
cp= 2p1 2D/ Q)

Lg—1
Rw= | s lentiire, 000 = Suriirs, )] <217
r=0 “7’a_7’b”55;4
1q:05€Bs; (0;)

1/(261)}’

and R¢(u) is the complement of R(w).
We first show that

(A.7) () < C(logn)*’.

Define 0\ = {07, &)7: 0", d)" € Bs,(1;),d <do— 1/2} and Q%) = {(87,d)" :

@7, d)7 e le (m;),d = do—1/2}. It is clear that g;(n) is differentiable on Q(’)
and Q;”)O, the interior of Qﬁ’) and Q2 , and is continuous on Bgl (n;). By the mean
value theorem, we have for any 3,, 7, € Bs, (1;),

|gt(77a) - gt(ﬂb)|
(A.8)

< lg = nl( sup [V + sup [Ven])
UEQH) ”eQZO

noting that dg;(n)/dp = dg:(n)/dd does not exist at any point in B,gl(nl-) with
d =doy — 1/2. As will be seen later, (A.8) together with

(A.9) max E( sup ||Vg:(n) ||) 0 ((logn)>'?), v=1,2,
2<t=n @)
VIEQU,Q
constitutes a key step in the proof of (A.7).
To prove (A.9) for v =1, define g (n) = /n{n(1 — B)}4"DATy (B) x
A2,0,(B)A1o(B)AS y(B)e; — n?=4+1/2¢, Then, g™ () = g(n) for n € 0}’
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In addition, Vg; L)(n) = ((Vg )(11)),-)151513 satisfies

(Ve )i
W12
(A.10)
(1 — B} A2,0,(B)
A1,9,(B)Ay, 0(3)
if 1 <k <pi,
{n(1 — B)}d—do A2z9,(B) A1’0(8)8z+p1—k,

= A],o()(B) A%,G(B)
if p1+1<k<pi+p2,

~ A (B)A10(B)
1 B)}*"®(logn +log(1 — B)) 2%
{n( )} (logn + log( ))Awo(B) Azo(B)

— (logn)n9=g,, ifk = p.

Denote 5; by (0 d )T. We first consider the case of d; > dy — 1/2. Write
(Ve e = Y12 e mer—s. and define " = (7, ... )T = (0] do
1/2)7. Clearly, c (”)(17) has continuous partial derivatives, DJCE, ,z(n) on Qgi). More-
over, since for any y = (11, ..., nﬁ)T € Qgi), the hypercube formed by nl(L) and 5
is included in Q(l) it follows from (3.10) of Lai (1994) and the Cauchy—Schwarz
inequality that for any » € Q(’) l<k<pandt>2,

(Ve ), — (Ve ")), )

ﬁ M jm 77]1 (/() 2
= Z Z /(L) /(L) R 8[ Sd%-jl dé]m
m=1jeJ(m,p) i jm i ji s=1

2
N jm ’7]1 (k)
Z {/(L) o /(L) ZR Er—s d&j; - déjm}
1jeJ(m,p)

i jm Mij1 s=1

vol(Q\” (m, j))

2
2®
/ /Qi”<mn( 1 JSH) e
S=

where

k k
R‘E) R()(Sn’-- Eju) = .]Csk(sl"' SP)|§ D
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and
0\ (m.j)
_ . N (D) (L) ) (L) (L)
_{(n_ll""’n./m)'(ni,]’""nl‘,j]—]’njl’niyj]“‘l’""ni,jQ—l’
(L) (L) (L) (L) @)
Mjgs i iyt =+ o> Wi et Mims iy 415 -5 i p) € O

je€Jm,p),

is an m-dimensional partial sphere. Now, by (A.2), (A.10), (A.11) and a change of
the order of integration, we obtain for 1 <k < p,

B[ sup {(Vei” ), — (Vi ("))

ne@”
? 20
<Cy > vol(0V(m,))
m=1jeJ(m,p)
(A.12) .
l‘_
() . \\2
X max sup (Djc, . (n)
{;jej(m,ﬁ),lgmgﬁﬂeg(li)( s,k )
= 0((logn)°),

where the last relation follows from for any 1 <s <t — 1 with 2 <t < n,

sup Dic" ()| < Cs™'2if <k < pand p ¢ j; C(logn)s~'/2if k = j and

reo) |
péjorif 1 <k < pand p ej;and Clogn)?s~!/? if k = p and p € j. Similarly,
forall 1 <t <n—1,E(Vg" @"))3) < Clogn if 1 <k < p, and C(logn)? if
k = p. Combining these, with (A.12), yields that for d; > dy — 1/2,

2 (L) 2
max B( sup |Veia[) = max E( sup [Ver”al’)
ﬂte,() neQ;
(A13)
= O((logn)).

Replacing nEL) by »; and using an argument similar to that used in proving (A.13),
it can be shown that (A.13) is still valid in the case of d; < dyp — 1/2. As a result,
(A.9) holds for v =1.

Define

g ) = (1= BY" A 0,(B)AT y (B)A19(B)A5 y(B)e; — ;.
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Then, g,(R)(n) =g:/(p)onne Qg). Moreover, note that

A 9,(B) -
1—K»
A1,9,(B)A29(B)
if 1 <k <py,
A2 9,(B) AI,O(B)S
Al,oo(B) A%’o(B)
if pr+1<k=<pi+pa,
A B) A B
(1 _ B)d—d()(log(l _ B)) 2,00( ) 1,0( )81,
A1,9,(B) Az 9(B)

—(1—B)?~b

(1— B)d— T

(A14) (Ve ), =

if k=p.
Using (A.14) in place of (A.10), we can prove (A.9) with v = 2 in the same way

as v = 1. The details are omitted to save space. Equipped with (A.8), (A.9) and
Chebyshev’s inequality, we obtain

[ PR )

K

o 1 6/2a)
< ZIq/K 1<v§21:c12X<t<nP< sup. V| = 25172 )d“
UGQU,Q

[e.e]

< C(logn)? / W00 gy
K

< C(logn)>?,

where the last inequality is ensured by £; > 2¢q. Hence (A.7) is proved.
In view of (A.6) and (A.7), (A.5) follows by showing that for all large 7,

(A.15) D =cC.

To establish (A.15), motivated by page 1543 of Chan and Ing (2011), we are led
to consider the p-dimensional hypercube, H¥), circumscribing le (n;). Choose
w > K. We then divide H¥) into sub-hypercubes, H ;i)(u) (indexed by j), of equal
size, each of which has an edge of length 24, (I_,uEZ‘H)/ (Zq)J + 1)~! and a circum-
scribed hypersphere of radius +/pd; (I_[L(IZ]_H)/ @0 | 4 1)~ where |a] denotes the
largest integer < a. Let G?)(M) = Bgl )N H;i)(,u) and {Ggf'j) (w),j=1,...,m*}
be the collection of nonempty G;i)(u)’s. Then it follows that

*

m
(A.16) Bsm)=JGY(w) and m* <CcrpllitDr/Co,
j=1
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where C* > 0 is independent of . In addition, we have

Lg—1
A(M):={ inf Y @i, ) <Y R()
neBs (1) 1=

m* £q—
C U ﬂ [ inf ’gnt+1+rzn (7])‘ < M—l/(Zq)’
~ neGy ()
=1 r=0

sup |gm+1+rzn Ma) — 8nit14rz, (ﬂb)| <2u
”ﬂa_”bnfc,u

ﬂaﬂnbeéél(”i)

—1/(2q)}

m* £g—1

= U ﬂ Dj ().

j=1r=0

Let n(j) GE;’? (w), j=1,...,m*, be arbitrarily chosen. Then for any 5 € ng)(u),
we have

|gm+l+rzn( (]))| = |gm+1+rzn (”L(z] ) Sni+1+4rz, (77)| + }gm—f—l—i—rzn (77)|

= sup |gm+1+rzn (ﬂa) - gm+1+rz,,(77b){ + |gm+l+rz,,
lng—npll<cy

a-M€Bs; (0;)

where the last inequality is ensured by ||n(]) pl < 281\/_(LM(E1+1)/(2‘7)J +

1)7! < ¢4, and hence, Dj, (1) C S (1) := {lgnis15rz, @) < 3~V @D},
Combining this with (A.17) yields

lg—1
(A18) (I)sf ZP(H S,,w)) dp.

It is shown at the end of the proof that for some sg > 0 and all large ¢,

(A.19) inf  E'2{(e,(n) — &)°a; ()t} > so.
neBs (1;)

By letting K = max{1, [(60/(5080)) max{(£q /(1 —1))~1/2=L 1}124}, (A.15) fol-
lows. To see this, denote by F; the o -algebra generated by {e;, 1 <s <t}, and re-

call that &;() = Z;;%) bs(n)e;—s, with bg(n) = 1. We obtain, after some algebraic
manipulations,

Lg—1 lg—2
(A.20) P( N Sj,r(M)) =E{ I1 Isj,,(u)P(Sj,zq—l(M)I}"n+1—2zn)i|

r=0 r=0
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and
P(Sj eq—1() Fut1-2z,)
n— ()
; > by 0 ens1—z, - ;
A21) = P(M(n ) < SIS a0, )
varl/2((e,, (nd") — &2,)/0)
‘7:7!+1—2Zn>’
where
(=1)3p"V/C0a, > (@d)n~1/2
var'/<((gg, (m) — 82,,)/0)
. Z?;Z: bs(n)gn-i-l—zn—s =12
var!/2((e;, () — &2,)/0) o
Since (A.19) yields that for © > K and n sufficiently large,
Mo 1) = Mi (0. )
1/2 —1/2
—1/Qq)p—1/2 ' 2 1 an’”(d)n
=60 /CVE"Y {(ez, (’75/)) —&z,) a,, (@%}W
daz, ( )Zn
Y] do—1/2—L
<6ou /D] max{(l 1 ) : 1} <do
—
and since Y1 b2() = var((e,, (1) — £.,) /o), it follows from (A1), (A.20)
and (A.21) that
lg—1
P( N Sj,r(u))
t=0

lg—2

Zq do—1/2—L oo
<M <6JM—1/(2<1)S0_1max{(1 ) 1}) E( I Isj’,,(m>.
r=0

— 1

Moreover, since £ > g~ '(:! — 1), we can repeat the same argument £ times to
get

lg—1
P( N S,-,r(m)

r=0

(A.22)
¢ | Eq do—1/2—L aolq
§M1q(6au_1/(zq)s0 max{(l ) , 1}) .

—1
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By noting that the bound on the right-hand side of (A.22) is independent of j and
£> 2/ag) + {(€1 + 1) p/(xpq)}, it is concluded from (A.16), (A.18) and (A.22)
that for all large n, (I) is bounded above by

C*M{ (6055 max{(tq/(1 — )~ 1/2E 1))t

o -
« fK @t 2=(O+ DR gy < .

To complete the proof of the lemma, it only remains to show (A.19). Define

A20,(B) A1p(B) '
(A.23) Upg=—2 T e = di(0)e_s,
"0 Avgy(B) Agp(B) ; e

noting that dy(0) = 1. By (1.4)—(1.6), there exist 0 < c1, ¢ < oo such that

(A.24) sup|ds (0)| < c1 exp(—cas).
eIl

Let 2;(0) =E[(U1,, ..., U,’Q)T(Ul’a, ..., Us 9)]. It can be shown that there exists
Co > O such that forall r > 1,

(A.25) inf Amin(Z;(0)) > Coo.

fell
Express :(n) as (1 — B)d*dOU,,g = Zi;}) vs(d)U;—s 9. Then, there exists G =
G(L,U) > 0, depending only on L and U, such that for any s >0 and d € D,
(A.26) lug(d)| < G(s + 1)P=d=1,

Let 0 < n* < 1/2 be given. Straightforward calculations yield that there exists
Cy+ > 0 such that forany s >0 and L <d <dp —n*,

(A.27) [vg(d)] = Cppe (s + P91,
Let ¢; > 0 be small enough such that
0<£1<%—77*, do—%—L1>Dl~,
(A.28) _ 5
do— %41 <D; and C()C%*(logtl_l)tl“ > 2.
Define

07.d)" € Bs,(n;), Di <d <do— 1 —u1},

07,d)" € Bs, (), do— 1 — 11 <d <do— 1},

07.d)"

€ Bs,(n;),do— % <d <do— 5 +u},
;

{(07.d) :(6".4)
{(07.d) :(6".4)
As={(07,d)": (07, d)" € Bs,(n;), d =do — 1},
{(07.d) :(6".4)
{07.d) :(6".4)

07.d)’ € Bs,(n;),do— % +u <d < D;}.
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Then, (A.19) is ensured by showing that there exist ; > 0,i =1, ..., 5, such that
for all large ¢

(A.29) inf E{(e:(n) — &) ’a; ()t} > &, i=1,...,5.
NEA;

To show (A.29) with i = 1, we deduce from (A.25), (A.27), (A.28) and a
straightforward calculation that for all n € A; and ¢ > 2,

2 2 -1
2 -1 2(dy—d)—2
E(ef a, (@1) = =g §O:<s + 1)H =D
5=

(A.30) 5 5 5
0°CoCp{l —(1/2) 1}
>

2(do— Di) — 1

In addition, it is clear that SUPpca, E(etzat_](d)t) < 02/t2t1 — 0, as t —> o0,

which, together with (A.30), yields (A.29) with i = 1. By (A.28), Taylor’s theorem
and an argument similar to that of (A.30), we have for all n € A, and sufficiently
large ¢,

2 2
o“CoC= ot
2 -1 2(dp—d)—2
E(e; (n)a; " (d)t) > 7t2(do—d)zl /mx (do=d)=2

O'ZC()Cg*
>__ "
T 2(dy—d)—1

> O'ZC()C%* (IOgLII)L%H > 202,

2(dp—d)—1
(1_ (do—d) )

(A.31) 1

Moreover, sup, . 4, E(¢?a; ' (d)t) < 0. This and (A.31) together imply (A.29) for
i = 2. Equation (A.29) for i = 3 follows directly from (A.25) and (A.27). The
details are skipped. To show that (A.29) holds for i =4, we get from Taylor’s
theorem and (A.28) that for all n € A4 and sufficiently large ¢,

-1

B(e? (ma; ! (@)1) =B(ef () = 0> CoCy /1 X202 g
> 02CoC2(logi )" > 202,

Hence, the desired conclusion follows. For n € As, define W;(y) = E(g;(n) — )2
Then, it follows from (A.24), (A.26) and the Weierstrass convergence theorem
that W;(n) converges uniformly on As to some function Wy (7). Moreover,
since W;(n) is continuous on As, the uniform convergence of W;(y) ensures
that Wso () is also continuous. In view of (1.4)—(1.6) and (A.2), we have (1 —
z)d_dOAz’oo(z)Al_’},O(z)Al,o(z)Az_’é(z) # 1. Hence, for each 5 € As, W;(n) > 0 for
all sufficiently large ¢. This, the continuity of W (57) and the compactness of As
yield that there exists 6 > 0 such that infycas Woo(n) > 6. By making use of this
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finding and the uniform convergence of W;(5) to W, (), we obtain (A.29) with
i = 5. This complete the proof of Lemma 2.1. [

PROOF OF LEMMA 2.2. Following the proof of Lemma 2.1, write & () —
& = Z;;ll bs(n)e;—s. Note first that bs(n) has continuous partial derivatives,
Djbs(n), on IT x D. By an argument similar to that used to derive bounds for

supneQ(li) |ch§7,2 ()| in Lemma 2.1, we have for all s > 1,

Cs™2, if j=0and j ¢j,
(A.32)  sup |Djbs(n)| < Cs—.l/Zlog(s + 1), if j=0and p €},
veB | CstT2 if j > 1and p¢j,

Cs¥=121og(s +1), if j>1and p €j.
Moreover, it follows from (A.24) and (A.26) that

{ O(logn), if j =0,

(A33) sup sz( =10, ifj=1.

ne€Bjv s—0

In view of (A.32), (A.33), the compactness of B; ,, j > 0 and (B.5) of Chan and
Ing (2011), we get
q1

n—1 6]1/2
< qu‘/z[{ sup be(n)}

nEBj,U s=1

n

> () — & (ng))

t=1

E{ sup
ﬂEBj'U

(A.34)

n—1 q1/2
+ [Z max sup (Djbs (1]))2] ]

1 d€Jm.p),1sm=pyep; ,

_ | o(n@ogn)®)®/?, if j =0,
O(n' ™2 (logm)®)?/?,  ifj> 1.

By Holder’s inequality, the left-hand side of (2.3) is bounded above by

—qq91/(q1—q) \ (q1—9)/q1
{ ( inf a, 1(d)X: (e:(m) — &:(ng)) ) }
N€Bj t=1
n q1\ 4/91
X {E( sup Z(&(ﬂ) —&(ng))e:s )}
n€Bj =1
X (2T oy o)

which together with (A.34) and Lemma 2.1, gives the desired conclusion. [
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PROOF OF THEOREM 3.2. By a calculation similar but more complicated than
that in the proof of Theorem 3.1, we obtain

h—1
Yn+h — )A’n—f—h(ﬁn) - Z Qs(no)gn-i—h—s
s=0
= (VDe,11(80)) L (00) @ — 00) + € (1) Wa+-1,4(dn — do) +

where r, satisfies nE(r;) = o(1), and ((Ve,11(00))"Li (o), € (1) Wn1,0)"
and n'/2(4, — 5,) are asymptotically independent. The desired conclusion (3.23)
follows by a direct application of (A.35), (3.12) and Theorem 2.1. [J

(A.35)
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SUPPLEMENTARY MATERIAL

Supplement to “Moment bounds and mean squared prediction errors of
long-memory time series” (DOI: 10.1214/13-A0S1110SUPP; .pdf). The supple-
mentary material contains a Monte Carlo experiment of finite sample performance
of the CSS predictor and the proof of (2.9).
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SUPPLEMENT TO “MOMENT BOUNDS AND MEAN
SQUARED PREDICTION ERRORS OF FRACTIONAL
TIME SERIES MODELS”

By Nca1r HANG CHAN, SHIH-FENG HUANG AND CHING-KANG ING

Chinese University of Hong Kong, National University of Kaohsiung, and
Academia Sinica and National Taiwan University

This supplement contains a Monte Carlo experiment of finite sample per-
formance of the CSS predictor and the proof of (2.9).

NUMERICAL EXAMPLES

To illustrate the finite sample properties of the one-step and multi-step
prediction results obtained in Section 3, we conduct a Monte Carlo simu-
lation to assess the performance of the empirical estimates of n{E(y,+n —
Untn(f1,))2—02(ny)} under I(dp) and ARFIMA(1, dy, 1) models with &;s be-
ing i.i.d. standard normal random variables, —0.6 < dy < 2.0 and (.1, 50.1)
= (0.5,0.2) and (0.3,0.8). These estimates, denoted by g, , and my, ,, for I(dp)
and ARFIMA(1,dp,1) models, respectively, are obtained based on 5,000
replications for n =100, 500, 2,000 and h = 1,...,10. The closeness of
Ghn and my, , to the corresponding limiting values gp(do) and mp(no) =
{£,(1,1) + g, (no) + 2Jn(no) }, defined in (3.24) and (3.23), is measured by
the ratios RSZL = ghn/dn(dp) and R;?ZL = mpn/mp(no), which is summa-
rized in Tables 1-3.

Table 1, listing gp,(dy) and RSZL with n =100 and 500, shows that except
for a few cases where n = 100, do = —0.6 and h = 2,3 and 4, all values of
R;llzl are between 0.88 and 1.15. This result suggests that g, can be well

predicted by gp(do) even for moderate sample sizes. Note also that in the

exceptional cases mentioned above, Rﬁzl’s fall within the interval [1.2,1.4].
Tables 2 and 3, listing my,(no) and R,(le with n =500 and 2,000, show that
the behaviours of R;?ZL vary not only with n,h and dy, but also with ag 1
and fp,1, and hence are somewhat different from those of R,glzl In particular,
it is shown in Table 2 ((c,1,B0,1) = (0.5,0.2)) and Table 3 ((ao,1,50,1) =

(0.3,0.8)) that when my(n) > 0.06, Rﬁf%ooojs fall between 0.9 and 1.1 ; and
when my,(no) < 0.06, the values are between 1.12 and 2.11 except for a small

1
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number of exceptional cases in Table 3 in which 1.04 < Rﬁ%ooo < 1.1. This
feature seems to reflect the desirable property that as long as the asymptotic
MSPEs of the h-step CSS predictors are large enough (e.g., > 0.06), they
can be readily estimated by the corresponding finite sample counterparts.
It is also worth noting that the cases where my(n9) < 0.06 in Table 2, only
including the pairs (dp, h) = (—0.6,8),(—0.6,9), (—0.6,10), (—0.5,9) and (-
0.5, 10), are substantially rarer than those in Table 3 which contain 21 such
pairs in the upper right corner.

The behaviours of Rgéoo are not explicable by a simple rule related to

the value of my(mo), unlike those of Rﬁf%ooo- When (ag 1, 5o,1) = (0.5,0.2)

and dy > —0.4, all ngoo’s lie between 0.9 and 1.1, suggesting the sim-
ilarities between mp(no) and mp 500 in these cases. Alternatively, when

(20,1, B0,1) = (0.5,0.2) and dy < —0.5, |R§3%00 — 1| is usually slightly larger
than ’Rg,gooo — 1| and varies between 0.83 and 1.5. On the other hand, in

the case of (a,1,50,1) = (0.3,0.8), Rgéoo is significantly smaller than 1 if
do > 0, and oscillates between 0.75 and 1.46 if dy < —0.4.

To conclude, our numerical findings are consistent with the asymptotic
results established in Theorems 3.1 and 3.2 even when the prediction lead
time h is large. For I(dy) models, n = 500 is large enough for our asymp-
totic results to become effective. However, to attain a similar precision for
ARFIMA(1, dy, 1) models, n = 2,000 seems indispensable.

PROOF OF (2.9)

In view of Theorem 2.1 of Chan and Ing (2011), it suffices for (2.9) to show
that conditions (C1)-(C4) of the same paper hold when f;(-) and © therein
equal Ve (n) and By, (ng), respectively. It is clear that Ve, (n) is continuous
on B: (ng), and hence (C1) of Chan and Ing (2011) follows. To verify (C2)
of Chan and Ing (2011), define A = {v : v € RP ||v|| = 1}. We will first

prove that for any n € B, (ny) and v = (f1,.. ., tbp,, S1, - - .,spg,,uo)T €A,
there exists some ¢,y > 0 such that

(0.1) Jim E(v'Ve/(n)? := H(v,n) > cyv.

If o = 0, then (0.1) follows from (1.4)-(1.6) and an argument similar to
that used in proving (3.20) of Chan and Ing (2011). On the other hand, if
1o # 0, straightforward calculations yield

(0.2) vIVei(n) = Fyv(B)Wy(B)e,
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where Fy, o (2) = — Y02 piz'+p0A1e(2) log(l—z)—i—ALg(z)AQ_’(l,(z) b2 852
and Wp(z) = A2,00(Z)A2_,(19(2)A1_,(190 (2)(1—2)4=. By virtue of A; g(2) # 0 for
|z| <1, it can be shown that A; g(2)log(1 — 2) = >272,; 120 with [l;] > &£/
for some £ > 0 and all large j. This together with Agg(z) # 0 for 2| < 1
yields Fy, v(z) # 0. In addition, it is clear that W,(z) # 0. Combining
Fyv(2)Wy(2) # 0 with (2.22) and (0.2) gives (0.1). Now, by (0.1), (2.22),
the continuity of E(vTVei(n))? on A x B;,(n,) (which is compact) and the
Weierstrass convergence theorem, we obtain

(0.3)  E(v'Vei(n))? converges to H(v,n) uniformly on A x By, (1),
and

(0.4) veA,nlenlng ) H(v,n) > 0.
Consequently, (C2) of Chan and Ing (2011) follows from (0.3), (0.4), (A1)
and an argument similar to that used in proving (3.25) of Chan and Ing
(2011).

To show (C3) of Chan and Ing (2011), note first that by the mean value
theorem for vector-valued functions, we have for any n,,n, € B, (1),

IVee(n2) — Ve ()|

(0.5) 1 .
< llnz = mil 1] | Vi + vlny =) ol < [imy = P52

where B? = Y1<ij<r SUPGEB,, (no)(VQest(n)i,j)Q. Our aim is to show that

(0.6) sup E(B?) < oc.

t>2
In view of the first inequality in (2.20), it suffices for (0.6) to show that for
any 1 <i,j <r and t > 2, there exists 0 < U < oo, independent of 4, j and
t, such that

(0.7) E{ sup [v25t(77)i,j — v2€t(7]0)z"j]2} <U.
9637’1 ("70)

Using an argument similar to that used in proving (A.12), we have for any
1<i,75<randt>2,

E{ sup [v25t(77)i,j_v25t(n0)i,j]2}
96371(770)
(0.8) 00
§C{Z max sup (chs,z‘j("?))2}-

i i€d(mp) 1<m<p ne B, (ny)
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Combining (0.8), with (2.19), yields (0.7), and hence (C3) of Chan and Ing
(2011) is proved. Finally, (C4) of Chan and Ing (2011) follows immediately
from (2.22), (0.5) and (0.6).
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TABLE 1
Values of RY"), and gn(do), with —0.6 < do < 2.0, n = 100,500, and h = 1,...,10.

h
1 2 3 4 5 6 7 8 9 10
do = —0.6
gn(do)  1.0000 0.0226 0.0090 0.0048 0.0029 0.0019 0.0014 0.0010 0.0008 0.0006
R0 109 139 127 120 115 112 109  1.07  1.05  1.03
R, 106 111 114 115 114 113 112 111 110 1.09
do = —0.5
gn(do) ~ 1.0000 0.0341 0.0118 0.0062 0.0038 0.0026 0.0019 0.0015 0.0012  0.0009
R 104 097 097 097 097 098 097 097 097 097
R 099 102  1.03 101  1.00 099 098 098 097  0.96
do = —0.4
gn(do) ~ 1.0000 0.0657 0.0230 0.0121 0.0076 0.0053 0.0039 0.0030 0.0024 0.0020
R 104 092 096 096 096 095 094 093 091  0.90
R{'M . 103 098 099 099 099 100 099 099 099  0.99
do = 0.0
g (do) 100 039 024 017 013 011 009 008 007  0.06
RN 105 095 093 092 091 090 090 089 089  0.88
Rl 104 102 100 101 102  1.02 102  1.02  1.02 102
do = 0.4
G (do) 100 104  1.02 099 096 094 092 090 089 087
R 109  1.04 101  1.00 099 098 097 097 096 096
R 100 100 1.00 100 100 100 100  1.00 100  1.00
do =05
g (do) 100 125 135 141 145 147 149 150 152 1.52
R 105 103  1.02 102 101 101 10l  1.00 100  1.00
R0 097 097 097 097 097 098 098 098 098 098
do = 0.6
g (do) 100 148 176 196 212 224 235 244 252 260
R0 109 105 103  1.03  1.03  1.03  1.02  1.02  1.02  1.02
Rl 106 104 103 102 101  1.01  1.00  1.00  1.00  1.00
do = 1.0
gn(do) 100 261 437 620 806  9.95 11.86 1378 1570  17.64
R 112 1.07 105  1.03 102 1.0l 1.0l  1.00  1.00  0.99
R 103  1.03 102  1.02 102 101 101 101 1.0l 101
do =15
g (do) 100 447 1068 1975 31.73  46.66 6456 8545 109.35 136.25
RN 114 111 109 108  1.08  1.07  1.07 106  1.06  1.06
R 103  1.02 101 1.0l 100 100 100  1.00 099  0.99
do = 2.0
g (do) 100 682 2206 5150 100.06 172.71 27447 410.36 585.47 804.87
R0 108 106 105 104 103  1.03  1.02  1.02  1.02  1.01
R 100 1.00 099 099 099 099 099 098 098  0.98




Values of Rfl and mp(no), with (ao,1, fo,1) = (0.5,0.2), —0.6 < do
and h =1,...,10.
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TABLE 2

< 2.0, n = 500, 2000,

h
1 2 3 4 5 6 7 8 9 10
do = —0.6
mp(no) 300 131 048 029 021 0.14 0.08 0.05 0.03 0.02
RPL, 100 117 115 102 089  0.87 0.93 1.10 1.25 1.50
R, 104 109 109 108 103 1.02 1.06 1.13 1.20 1.25
do = —0.5
mu(mo) 300 148 0.67 041 030 021 0.14 0.09 0.06 0.04
RPl, 103 108 103 097 086 0.83 0.85 0.95 1.02 1.14
R, 103 105 104 105 103 1.03 1.05 1.09 112 1.13
do = —04
mp(no) 300 171 092 059 045 0.34 0.25 0.17 0.12 0.09
R, 100 107 100  1.00 094  0.90 0.91 0.94 0.97 1.03
R 104 108 107 107 105 1.03 1.04 1.06 1.08 1.10
do = 0.0
mp(no) 300 325 304 269 243 223 2.04 1.85 1.67 1.52
R, 100 098 094 097 097  0.96 0.95 0.94 0.94 0.94
R®., 104 107 106 106  1.06 1.05 1.04 1.04 1.04 1.04
do = 0.4
mu(mo) 300 574 795 941 1051 1142 1217 1277 1323 13.58
R, 099 095 092 092 092 0.92 0.91 0.91 0.90 0.90
R 104 105 105 106 107 1.07 1.07 1.07 1.07 1.07
do = 0.5
mn(mo) 300 652 9.8 1240 1456 1646  18.17  19.66  20.96  22.07
R, 103 097 093 094 094 093 0.92 0.92 0.91 0.90
R 103 102 102 102 103 1.03 1.03 1.03 1.03 1.02
do = 0.6
mp(no) 300 7.35 1199 1613  19.88  23.39 2669 2976  32.60  35.21
R, 100 095 094 095 096 097 0.97 0.96 0.96 0.96
R, 104 105 105 105 105 1.05 1.05 1.04 1.04 1.04
do = 1.0
mp(no)  3.00 1128 2455 4151 6137  83.82 10862 13551  164.21  194.44
R, 100 095 095 095 096  0.96 0.97 0.97 0.96 0.96
R 104 105 105 105 105 1.05 1.05 1.05 1.04 1.04
do =15
mp(no)  3.00 17.55 51.96 11242 203.66 329.83  494.85 70220  954.93 125557
R, 100 096 095 095 096  0.96 0.96 0.96 0.96 0.96
R 104 105 105 105 105 1.05 1.05 1.05 1.05 1.05
do = 2.0
mp(no)  3.00 2532 97.85 262.90 57113 1080.50 1855.85 2968.30 4494.44  6515.39
RPL 105 102 101 100  1.00 1.00 1.00 1.00 1.00 1.00
R, 103 102 102 103 103 1.03 1.04 1.04 1.04 1.04
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TABLE 3

Values of RY), and my (o), with (ao,1,Bo1) = (0.3,0.8), —0.6 < do < 2.0, n = 500, 2000,

and h =1,...,10.

7

h
1 2 3 4 5 6 7 8 9 10

do = —0.6

mu(mo)  3.0000 1.1229 0.1056 0.0350 0.0192 0.0094 0.0046 0.0023 0.0012  0.0006

R, 087 104 112 124 101 095 096 100 113  1.46

R o 104 105 110 122 111 110 117 131 157 211
do = —0.5

mp(mo)  3.0000 0.9076 0.1039 0.0299 0.0190 0.0113 0.0067 0.0041 0.0026 0.0016

R, 08 123 1.01 131  1.02 08 083 083 087 097

R, 099 103 104 118 107 104 106 112 123 141
do = —0.4

mp(mo)  3.0000 07523 0.1078 0.0271 0.0192 0.0140 0.0100 0.0072 0.0053  0.0039

R, 087  1.05 102 139 108 089 081 076 075 077
R o0 104 107 105 131 119 112 111 114 120 129
do = 0.0

mu(mo) 300 073 029 013 009 009 008 008 008 007

R, 087 092 08 08 075 067 062 059 057  0.56
R0 104 109 104 110  1.09  1.07  1.04  1.03  1.02  1.02
do = 0.4

mn(mo) 300 167 124 098 085 081 081 082 084 086

R 086 082 077 072 068 065 062 060 059 057
Rﬁlooo 099 100 1.0l 103 104 104 103 102 101  1.00
do = 0.5

mu(mo) 300 205 171 147 135 132 134 138 143 149

R0 086 081 077 073 069 067 064 062 060  0.59
R 099 099 100 102 103 103 102 10l 100 099
do = 0.6

mu(no)  3.00 250 230 205 208 210 217 227 240 253

R, 087 082 079 076 073 070 068 066 064  0.62
R oo 104 106 106 106 106  1.05  1.04  1.03  1.02  1.01
do = 1.0

mn(mo) 300 488 646 788 926  10.69 1224  13.93 1574  17.70

R, 087 0.8 08 078 076 073 071 070  0.68  0.66
RSZOOO 104 106 106 106 106  1.05  1.05  1.04  1.03  1.03
do = L5

mu(mo) 300 920  17.80  28.64 41.67 57.00 7485 9545 119.05 145.88

R0 087 083 08 079 078 076 074 073 071  0.70
R oo 104 105 106 106  1.06  1.05  1.05  1.05  1.04  1.04
do = 2.0

mu(no)  3.00 1503  40.09  82.09 144.81 232.22 348.61 498.73 687.77 921.35

R, 090 087 08 084 083 081 08 079 078  0.76
R, 098 098 098 098 098 098 0985 098 098 097
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