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Abstract

Consider ℓq -hulls, 0 < q ≤ 1, from a dictionary of M functions in L p space for 1 ≤ p < ∞. Their
precise metric entropy orders are derived. Sparse linear approximation bounds are obtained to characterize
the number of terms needed to achieve accurate approximation of the best function in a ℓq -hull that is
closest to a target function. Furthermore, in the special case of p = 2, it is shown that a weak orthogonal
greedy algorithm achieves the optimal approximation under an additional condition.
c⃝ 2012 Elsevier Inc. All rights reserved.

In recent years, sparse linear combinations of given functions (or variables) have played
important roles in statistical learning theories and methodologies that deal with a large number of
predictors (often more than the number of observations). Let F = { f1, . . . , fM } be a collection
of M functions defined on a measurable space taking values in X with a σ -finite dominating
measure µ. For any θ = (θ1, . . . , θM )

′
∈ RM , define the ℓ0-norm and the ℓq -norm (0 < q ≤ 1)

by

∥θ∥0 =

M
j=1

I (θ j ≠ 0), and ∥θ∥q =


M

j=1

|θ j |
q

1/q

,
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where I (·) is the indicator function (note that for 0 ≤ q < 1, ∥ · ∥q is not a real norm). Define
the ℓq,t -hull of F to be the class of linear combinations of functions in F with the ℓq -constraint

Fq(t) = Fq(t; M; F) =


fθ =

M
j=1

θ j f j : ∥θ∥q ≤ t, f j ∈ F


, 0 ≤ q ≤ 1, t > 0.

In statistical learning theories, the functions in F are either some initial estimates or observ-
able variables. Much of the current statistical research interest on function estimation focuses on
the case of a large dictionary F (often with a small or moderate number of observations of pairs
of response and values of the f j ’s with noise in response). To this goal of efficient estimation of
the regression function (the conditional expectation of the response given the predictors), an un-
derstanding of sparse representation or approximation of the functions in Fq(t) is essential. Note
that for 0 < q ≤ 1, which is the focused case in this paper, a bound on the ℓq -norm implies that
there can be a small number of coefficients that are relatively large. Consequently the function
classes Fq(t) can have good sparse linear approximations. One notable feature here is that no
restrictive assumptions on the relationships between functions in the dictionary F are necessary
for our upper bound results.

The ℓq -ball of RM (often denoted ℓM
q ) for q > 0 is well studied, with the metric entropy order

and Gelfand widths understood. Recently, [13] have derived the metric entropy order for Fq(t)
with 0 < q ≤ 1 (see [11] for earlier but less precise results) and further showed that any function
in Fq(t) can be well approximated by linear combinations of a relatively few terms in F . Their
results deal only with the L2 norm on the function classes. In this work, we complete the result
for a general L p (p ≥ 1).

The rest of the paper is organized as follows. In Section 1, the metric entropy order of the
ℓq -hull (0 < q ≤ 1) under the L p norm is determined. In Section 2, for any target function
in the ℓq -hull, the order of the best linear approximation error in the L p norm using only a
sparse number of terms is obtained. In Section 3, in the special case of p = 2 and under an
additional condition, it is shown that a greedy approximation achieves the optimal sparse linear
approximation. An implication on recovery of sparse vectors is also given. The results in the
different sections complement each other: Theorem 1 characterizes the massiveness of the ℓq -
hull (0 < q ≤ 1); Theorem 2 addresses the capability of sparse linear approximation of functions
in the ℓq -hull; and Theorem 3 deals with a practically efficient term-after-term approximation of
the same functions in a way that does not require searching over a large combinatorial number
of terms.

1. Metric entropy of ℓq-hull under the L p norm

Throughout the paper, let r = min(2, p).

Theorem 1. Suppose F = { f1, f2, . . . , fM } with ∥ f j∥L p(ν) ≤ 1, 1 ≤ j ≤ M for some p ≥ 1,
where ν is a σ -finite measure. For 0 < q ≤ 1, there exists a positive constant cp,q depending

only on q and p such that for any 0 < ε < 1,Fq(1) contains an ε-net {e j }
Nε
j=1 in the L p norm

for j = 1, 2, . . . , Nε, where Nε satisfies

log Nε ≤


cp,qε

−
rq

r−q log


1 + M
1
q −

1
r ε


if ε > M
1
r −

1
q ,

cp,q M log


1 + M
1
r −

1
q ε−1


if ε ≤ M

1
r −

1
q .

(1)

Furthermore, the estimates are best possible up to a constant.
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Remark. Metric entropy plays a central role in determining how well functions in a class can be
estimated based on contaminated observations; see e.g. [14] for references.

Proof. From classical results (cf. [5, p. 98]), for any positive integer k, the unit ball of ℓM
q can be

covered by 2k−1 balls of radius εk in the ℓ1 norm, where

εk ≤ c



1 1 ≤ k < log2(2M) log2


1 +

2M
k


k


1
q −1

log2(2M) ≤ k ≤ 2M

2−
k

2M (2M)1−
1
q k > 2M,

which is also known to be sharp [9]. Thus, we can have 2k−1 functions g j , 1 ≤ j ≤ 2k−1, such
that

Fq(1) ⊂

2k−1
j=1

(g j + F1(εk)). (2)

For any g ∈ F1(εk), g can be expressed as g =
M

i=1 ci fi with
M

i=1 |ci | ≤ εk . Define a random
function U by

P(U = sign(ci )εk fi ) = |ci |/εk, P(U = 0) = 1 −

M
i=1

|ci |/εk .

Then we have ∥U∥p ≤ εk a.s. and EU = g under the randomness just introduced. Let U1, . . . ,

Um,U ′

1, . . . ,U
′
m , be i.i.d. copies of U , and let V =

1
m

m
i=1 Ui . We have

E∥V − g∥p = E

E′


1
m

m
i=1

U ′

i


−

1
m

m
i=1

Ui


p

≤ EE′

 1
m

m
i=1

(Ui − U ′

i )


p

=
1
m

EE′

 m
i=1

(Ui − U ′

i )


p

=
1
m

EE′

 m
i=1

ξi (Ui − U ′

i )


p

≤
2
m

E

 m
i=1

ξiUi


p

,

where ξi are i.i.d. Rademacher variables and are independent of all U j and U ′

j . Taking
expectation with respect to ξi , and using the fact that L p space is of type r = min(p, 2) (see
e.g., Section 9.2 of [10]), we have

E∥V − g∥p ≤
2Tp

m
E


m

i=1

∥Ui∥
r
p

1/r

≤ 2Tpm
1
r −1εk,
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where Tp is the type-min(p, 2) constant of L p. Therefore, there must exist a realization of V such

that ∥V −g∥p ≤ 2Tpm
1
r −1εk . Clearly, V can be expressed as εkm−1(k1 f1+k2 f2+· · ·+kM fM ),

where k1, k2, . . . , kM are integers, and |k1|+|k2|+· · ·+|kM | ≤ m. The total number of different

realizations of V is therefore bounded above by


2M+m
m


. Together with (2), we conclude that

Fq(1) can be covered by 2k−1


2M+m
m


balls of radius 2Tpm

1
r −1εk .

We have the freedom to choose integers m and k. We choose m according to k as follows.

(i) If log2(2M) ≤ k ≤ 2M , we choose m to be the largest integer such that


2M+m
m


≤ 2k .

Then we have

1
m

≤
c′

k
log2


1 +

2M

k


for some positive absolute constant c′. Thus, Fq(1) can be covered by 22k−1 balls of radius

2Tpm
1
r −1εk ≤ c2


k−1 log2


1 +

2M

k

1/q−1/r

in the L p norm, where c2 depends only on p.

(ii) If k > 2M , we choose m = M . Then Fq(1) can be covered by 2k−1


3M
M


balls of radius

2Tpm
1
r −1εk ≤ c32−

k
2M M

1
r −

1
q

in the L p norm, where c3 depends only on p.

Now, we finish the proof of (1). If M
1
r −

1
q ≤ ε < 1, we choose k to be the smallest integer

such that k ≥ log2(2M), andc2


k−1 log2


1 +

2M

k

1/q−1/r

≤ ε,

c32−
k

2M M
1
r −

1
q ≤ ε.

It is not difficult to see that k ≤ C M for some constant C depending only on p. Indeed, the set
of inequalities above is equivalent to the following setc2


M

k
log2


1 +

2M

k

1/q−1/r

≤ M
1
q −

1
r ε,

c32−
k

2M ≤ M
1
q −

1
r ε.

The right-hand sides of the two inequalities are not less than 1, while the left-hand sides go to
0 as M

k → 0. Hence, the smallest integer k satisfying both inequalities is bounded by C M for
some constant C depending only on p.

If k < 2M , then by (i), Fq(1) can be covered by 22k−1 balls of radius ε in the L p norm. Note
that for such k, we have

22k−1
≤ exp


c4ε

−
rq

r−q log


1 + M
1
q −

1
r ε

,
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where c4 is a constant depending only on p. If 2M ≤ k < C M , then by (ii) Fq(1) can be covered

by 2k−1


3M
M


balls of radius ε in the L p norm. Note that for such k, we have

2k−1


3M

M


≤ 2k−1+3M

≤ 2(C+3)M−1
≤ exp


c5ε

−
rq

r−q log


1 + M
1
q −

1
r ε

,

where c5 is a constant depending only on p. In either case, the first inequality in (1) follows.

If ε < M
1
r −

1
q , we choose k to be the smallest integer such that k ≥ 2M , and c32−

k
2M M

1
r −

1
q ≤

ε. It is easy to check that

2k
≤ 2


c3 M

1
r −

1
q ε−1

2M
.

By (ii), Fq(1) can be covered by 2k−1


3M
M


balls of radius ε in the L p norm. Note that for such

k, we have

2k−1


3M

M


≤ 2k−1+3M

≤ 23k
≤ exp


c6 M log


1 + M

1
r −

1
q ε−1


,

where c6 is a constant depending only on p. This proves the second inequality in (1).
Finally, we show that the estimates in the theorem are best possible up to a constant. We

construct functions { f1, f2, . . . , fM } ⊂ L p
[0, 1], so that the reverse inequality holds. We need

to consider the cases 1 ≤ p ≤ 2 and 2 < p < ∞ separately.
When 1 ≤ p ≤ 2, we choose f j (x) = M1/p if x ∈ [( j −1)/M, j/M), and f j = 0 otherwise.

Thus, ∥ f ∥p = 1. Because

M
j=1

|c j |
q

≤


M

j=1

|c j |
p

q/p

M1−q/p,

we have

Fq(1) ⊃ H :=

 M
j=1

c j f j :


M

j=1

|c j |
p

1/p

≤ M
1
p −

1
q

 .
But  M

j=1

c j f j


p

=


M

j=1

|c j |
p

1/p

,

and H is isometric to the closed ball of l M
p with radius M

1
p −

1
q . It is known that when ε < M

1
p −

1
q

the metric entropy of the latter has a lower bound that is, up to a constant, of the same order as the
upper bound given in the theorem. Hence the metric entropy estimate is sharp when 1 ≤ p ≤ 2,

and ε < M
1
p −

1
q .

For ε ≥ M
1
p −

1
q , we let δ = 51/(p−q)ε p/(p−q). Then d := ⌊δ−q

⌋ ≤ M/10. Note that

Fq(1) ⊃ G :=


j∈I

δ f j : I ⊂ {1, 2, . . . ,M}, |I | = d


,
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and G contains


M
d


functions. For each g =


j∈I δ f j ∈ G, we define

N (g, 9d/10) =


h =


j∈J

δ f j ∈ G : |I ∩ J | ≤ 9d/10


.

Then N (g, 9d/10) contains not more than
d

⌊9d/10⌋


M

⌈d/10⌉


≤


M

d



functions. Therefore, we can find at least


M
d


disjoint such sets. Note that if g =


j∈I δ f j

and g′
=


j∈I ′ δ f j are chosen from different sets, then |I∆I ′
| ≥ d/5. Thus, ∥g − g′

∥p =

|I∆I ′
|
1/pδ ≥ (d/5)1/pδ ≥ ε. Therefore, the ε covering number of Fq(1) is at least

M

d


≥ exp


cε−

rq
r−q log


1 + M

1
q −

1
r


.

When 2 < p < ∞, we define f j (t) = sgn(sin(2 jπ t)), 1 ≤ j ≤ M . It is clear that ∥ f ∥p = 1.
Because

M
j=1

|c j |
q

≤


M

j=1

|c j |
2

q/2

M1−q/2,

we have

Fq(1) ⊃ U :=


M

j=1

c j f j :

M
j=1

|c j |
2

≤ M1−2/q


.

We define a linear operator P from Fq(1) to l M
2 , so that

P


M

j=1

c j f j


= (c1, c2, . . . , cM ).

Let B be the closed ball of l M
2 with radius M1−2/q . Then P−1 B ⊂ Fq(1). By our construction

of f j , for any g ∈ P−1 B,

∥g∥p =

 1

0

 M
j=1

c j f j (t)


p

dt

1/p

=

 1

0

 M
j=1

ξ j c j f j (t)


p

dt

1/p

,

where ξ j are independent Rademacher random variables. Taking expectation, and using the fact
that | f j | = 1, we obtain

∥g∥p ≥


M

j=1

c2
j

1/2

= ∥P−1g∥l M
2
.

Thus, restricted on P−1 B, P is a contraction map. Hence the metric entropy of Fq(1) under ∥·∥p

is bounded below by the metric entropy of B under the ∥ · ∥l M
1

norm. If ε < M
1
2 −

1
q , the latter
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has a lower bound which is, up to a constant, the same as the upper bound given in the theorem.

Hence, the estimate is best possible when 2 < p < ∞ and ε < M
1
2 −

1
q .

If ε ≥ M
1
2 −

1
q , then by the same argument as for the case 1 ≤ p ≤ 2, we can find at least

M
d


such sets that are disjoint. Note that if g =


j∈I δ f j and g′

=


j∈I ′ δ f j are chosen

from different sets, then |I∆I ′
| ≥ d/5. Note that ∥g − g′

∥p ≥ ∥Pg − Pg′
∥l M

2
≥ δ|I∆I ′

|
1/2

≥

(d/5)1/2δ ≥ ε. Therefore, the ε covering number of Fq(1) is at least
M

d


≥ exp


cε−

2q
2−q log


1 + M

1
q −

1
2


.

This completes the proof of the theorem. �

2. Sparse linear approximation bounds

Under the assumption that the functions in the dictionary F have finite L p norms, we give
below an upper bound on the approximation error by the best linear combination of a given
number of members in the dictionary.

Theorem 2. Let f0 be any function with ∥ f0∥p < ∞ for some p ≥ 1. Suppose F = { f1, . . . ,

fM } with max1≤ j≤M ∥ f j∥p < ∞ for 1 ≤ j ≤ M. For any 1 ≤ m ≤ M, 0 < q ≤ 1, t > 0,
there exist a subset Jm of {1, . . . ,M} of cardinality m and fθm ∈ F Jm = span of f j in Jm with
∥θm

∥1 ≤ t such that

∥ f0 − fθm ∥p ≤ ∥ f0 − fθ∗∥p + 2Tp max
1≤ j≤M

∥ f j∥p · tm
1
r −

1
q ,

where fθ∗ = arg min fθ∈Fq (t) ∥ f0 − fθ∥p, r = min(p, 2), and Tp depending only on p is the
type-min(p, 2) constant of L p. If µ is a probability measure, then for any 1 ≤ m ≤ M, 0 <
q ≤ 1, t > 0, 1 ≤ p′

≤ p, there exist a subset J ′
m and fθm ∈ F J ′

m
= span of f j in J ′

m with
∥θm

∥1 ≤ t such that

∥ f0 − fθm ∥p′ ≤ ∥ f0 − fθ∗∥p′ + 2Tp max
1≤ j≤M

∥ f j∥p · tm
1
r −

1
q

where fθ∗ = arg min fθ∈Fq (t) ∥ f0 − fθ∥p′ . Furthermore, the estimates are best possible up to a
constant.

Remarks. 1. If M = ∞, the approximation bounds in the theorem continue to hold for each
m ≥ 1 with the obvious change of max1≤ j≤M ∥ f j∥p < ∞ to max1≤ j<∞ ∥ f j∥p < ∞. This
is seen from the proof of the theorem.

2. A currently very active research in statistics and machine learning is on learning when the
number of predictors is huge relative to the number of observations. A particular setting is
high-dimensional linear modeling under the so called soft sparsity assumption, i.e., the ℓM

q
norm of the coefficients of the best (or a good) linear approximation of the target function f0
by the functions in the dictionary F is small for some q ≤ 1. This corresponds to when M is
very large and one can only afford a sparse model with m ≪ M . The theorem characterizes
the capability of sparse models in approximation, which together with statistical estimation
theory can lead to a precise understanding on potential gain of sparse linear modeling (see,
e.g., [13]).
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Proof. We first prove the first result. Without loss of generality, assume max1≤ j≤M ∥ f j∥p ≤ 1

(otherwise consider f ′

j = f j/max1≤ j≤M ∥ f j∥p and observe that
M

j=1 θ j f j : ∥θ∥q ≤ t, f j

∈ F


⊂ {
M

j=1 θ
′

j f ′

j : ∥θ ′
∥q ≤ t max1≤ j≤M ∥ f j∥p, f j ∈ F}). Let fθ∗ =

M
j=1 c j f j =

arg inf fθ∈Fq (t) ∥ fθ − f0∥p. For any 1 ≤ m ≤ M , let L∗
= { j : |c j | > tm−1/q

}. BecauseM
j=1 |c j |

q
≤ tq , we have

|L∗
| tq m−1 <


|c j |

q
≤ tq .

Thus |L∗
| < m (so there are not too many large coefficients). Also

j ∉L∗

|c j | =


j ∉L∗

|c j |
q
|c j |

1−q

≤


j ∉L∗

|c j |
q


t m−
1
q

1−q

=


j ∉L∗

|c j |
q t1−q m1−

1
q

≤ t m1−
1
q ≡ D.

Define ν∗
=


j∈L∗ c j f j and ω∗
=


j ∉L∗ c j f j . Clearly, ω∗
∈ F1(D). Define a random

function U so that

P(U = D sign(c j ) f j ) =
|c j |

D
for j ∉ L∗

and

P(U = 0) = 1 −


j ∉L∗

|c j |

D
.

Note that E(U ) = w∗ and ∥U∥p ≤ D max1≤ j≤M ∥ f j∥p ≤ D.
Let U1, . . . ,Um,U ′

1, . . . ,U
′
m , be i.i.d. copy of U . Then,

E

 f0 − ν∗
−

1
m

m
i=1

Ui


p

≤ ∥ f0 − fθ∗∥p + E

ω∗
−

1
m

m
i=1

Ui


p

.

Now, for p ≥ 1,

E

ω∗
−

1
m

m
i=1

Ui


p

= E

E′


1
m

m
i=1

U ′

i


−

1
m

m
i=1

Ui


p

≤ EE′

 1
m

m
i=1

(Ui − U ′

i )


p

=
1
m

EE′

 m
i=1

(Ui − U ′

i )


p

=
1
m

EE′

 m
i=1

ξi (Ui − U ′

i )


p
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≤
2
m

E

 m
i=1

ξiUi


p

where ξi are i.i.d. Bernoulli random variables, independent of all U j and U ′

j . Taking expectation
with respect to ξi , and using the fact that the L p space is of type r = min(p, 2), we have

E

ω∗
−

1
m

m
i=1

Ui


p

≤
2Tp

m
E


m

i=1

∥Ui∥
r
p

1/r

≤ 2Tpm
1
r −1 D = 2Tptm

1
r −

1
q .

So there exists a realization of U1, . . . ,Um , such that f0 − ν∗
−

1
m

m
i=1

ui


p

≤ ∥ f0 − fθ∗∥p + 2Tptm
1
r −

1
q .

Note that
ν∗

+
1
m

m
i=1 ui


0

≤ (m − 1) + m = 2m − 1. Consider m = ⌊(m + 1)/2⌋. Then

2m − 1 ≤ m and m ≥ m/2. The first result of Theorem 2 then follows from above.
Now for the second result, from the earlier derivation, withν∗, ω∗, Ui and θ∗ defined under

L p′

, we have

E

 f0 −ν∗
−

1
m

m
i=1

Ui


p′

≤ ∥ f0 − fθ∗∥p′ + E

ω∗
−

1
m

m
i=1

Ui


p′

≤ ∥ f0 − fθ∗∥p′ + E

ω∗
−

1
m

m
i=1

Ui


p

.

The second sparse approximation error bound in the theorem then follows similarly. Also, the
examples of the functions constructed in the proof of Theorem 1 prove the sharpness of the
estimates. This completes the proof of the theorem. �

3. A greedy approximation for p = 2

Greedy approximation, among nonlinear approximations, has received an increasing attention
in research and application as a means of providing accurate and computationally fast
approximation. See [12] for convergence results for various versions of greedy approximation
and earlier works, and some recent statistical applications of orthogonal greedy approximations
are in e.g., [1,7], and [8]. In particular, Theorem 3 of [12] shows that an orthogonal greedy
algorithm leads to m-term approximation error of order m−1/2 for functions in the ℓ1-hull of a
dictionary in a Hilbert space.

In the case of p = 2, for a general 0 < q ≤ 1, we show below that, under an extra condition

on the functions in the dictionary, the convergence rate m
1
r −

1
q = m

1
2 −

1
q in the first expression

of Theorem 2 is attainable by an m-term approximation of fθ∗ based on the weak orthogonal
greedy algorithm (WOGA) defined below. An implication on recovering a hard or strong sparse
function is given later.

3.1. Optimal approximation by WOGA

Weak Orthogonal Greedy Algorithm. Let 0 < ξ ≤ 1 and f be any function with ∥ f ∥2 < ∞.
Define f o,ξ

0 := f . Then for each m ≥ 1, we inductively define the following.
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(1) ϕo,ξ
m ∈ F is any choice that satisfies

|⟨ f o,ξ
m−1, ϕ

o,ξ
m /∥ϕo,ξ

m ∥2⟩| ≥ ξ sup
g∈F

|⟨ f o,ξ
m−1, g/∥g∥2⟩|,

where ⟨·, ·⟩ denotes the inner product in L2.
(2) Go,ξ

m ( f, F) := PH ξ
m
( f ), where H ξ

m = span(ϕo,ξ
1 , . . . , ϕ

o,ξ
m ) and PH ξ

m
is the orthogonal pro-

jector on H ξ
m .

(3) f o,ξ
m := f − Go,ξ

m ( f, F).

Theorem 3. Let f0 be any function with ∥ f0∥2 < ∞. Suppose F = { f1, . . . , fM } with
max1≤ j≤M ∥ f j∥2 < ∞, and λ := λmin(Σ ) > 0, where λmin(A) denotes the minimum eigenvalue
of a symmetric matrix A and Σ = (γi j )1≤i, j≤M with γi j = ⟨ fi/∥ fi∥2, f j/∥ f j∥2⟩. Then, with
fθ∗ defined as in Theorem 2, for any m ≥ 1, 0 < q ≤ 1, t > 0,

∥ f0 − Go,ξ
m ( fθ∗ , F)∥2 ≤ ∥ f0 − fθ∗∥2 + Sm

1
2 −

1
q ,

where S is some positive number which depends on ξ, t, q, λ,max1≤ j≤M ∥ f j∥2, ∥ fθ∗∥2 and
whose precise form will be clear in the proof.

The minimum eigenvalue assumption in Theorem 3 seems to be commonly used in the
contexts of time series and high-dimensional data analysis. A further discussion of this condition
will also be given at the end of this section.

To prove Theorem 3, we need the following ancillary lemma, which is an extension of
Lemma 3.4 of [4].

Lemma 1. Let {an} be a sequence of non-negative numbers. Suppose that there exist A,C > 0
and 0 < α ≤ 1 such that

a1 ≤ A, an+1 ≤ an(1 − Caαn ), n = 1, 2, . . . .

Then, for each n ≥ 1,

an ≤ K n−α−1
,

where K = K (C, α, A) = max{2α
−2
(Cα)−α

−1
, A}.

Proof. We proceed by induction on n. The statement being obvious when n = 1, suppose an ≤

K n−1/α for n = 1, . . . , N . We will show that aN+1 ≤ K (N + 1)−1/α . If aN+1 = 0, then the
desired conclusion holds trivially. If aN+1 > 0, then ai > 0 for i = 1, . . . , N . By the assumption
of the lemma and using the inductive hypothesis, it follows that for each i = 1, . . . , N ,

a−1
i+1 ≥ a−1

i (1 − Caαi )
−1

≥ a−1
i (1 + Caαi ) ≥ a−1

i + C K α−1i−1+α−1
.

Summing both sides of the expression over 1 ≤ i ≤ N yields

a−1
N+1 ≥ CαK α−1

{N/(N + 1)}α
−1
(N + 1)α

−1

≥ Cα{2α
−2
(Cα)−α

−1
}
αK −12−α−1

(N + 1)α
−1

= K −1(N + 1)α
−1
.

Therefore, aN+1 ≤ K (N + 1)−α
−1

. �
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Proof of Theorem 3. Let D = (t max1≤ j≤M ∥ f j∥2)
q/(2−q)λ(q−1)/(2−q). It suffices to show that

µm := ∥ fθ∗ − Go,ξ
m ( fθ∗ , F)∥2

2 ≤ K (ξ2 D−2, q/(2 − q), ∥ fθ∗∥
2
2)m

1−(2/q),

where K is defined as in Lemma 1. Denote by Jξ,m the set of positive integers consisting of the
subscripts of the functions in F chosen by the WOGA (with f = fθ∗ ) after m iterations. Then,
it follows that

µm =


fθ∗ − Go,ξ

m ( fθ∗ , F),


1≤ j≤M, j ∉Jξ,m

c j f j



≤ sup
1≤ j≤M

|⟨ f j/∥ f j∥2, fθ∗ − Go,ξ
m ( fθ∗ , F)⟩


M

j=1, j ∉Jξ,m

 c j | ∥ f j∥2,

recalling that fθ∗ =
M

j=1 c j f j . In addition, one has µm ≥ λ
M

j=1, j ∉Jξ,m c2
j∥ f j∥

2
2. By making

use of these two inequalities, Hölder’s inequality and (
M

j=1 |c j |
q)1/q ≤ t , we know that µm is

bounded above by

sup
1≤ j≤M

⟨ f j/∥ f j∥2, fθ∗ − Go,ξ
m ( fθ∗ , F)⟩

 
1≤ j≤M, j ∉Jξ,m

|c j |
q
∥ f j∥

q
2

 1
2−q

×

 
1≤ j≤M, j ∉Jξ,m

c2
j∥ f j∥

2
2


1−q
2−q

≤ sup
1≤ j≤M

⟨ f j/∥ f j∥2, fθ∗ − Go,ξ
m ( fθ∗ , F)⟩

 Dµ(1−q)/(2−q)
m ,

which gives µ1/(2−q)
m ≤ D sup1≤ j≤M |⟨ f j/∥ f j∥2, fθ∗ − Go,ξ

m ( fθ∗ , F)⟩|. As a result,

µm+1 ≤

 fθ∗ − Go,ξ
m ( fθ∗ , F)− ⟨ fθ∗ − Go,ξ

m ( fθ∗ , F), ϕo,ξ
m+1⟩ϕ

o,ξ
m+1/∥ϕ

o,ξ
m+1 ∥

2
2

2

2

= µm − |⟨ fθ∗ − Go,ξ
m ( fθ∗ , F), ϕo,ξ

m+1/∥ϕ
o,ξ
m+1∥2⟩|

2

≤ µm − ξ2 sup
1≤ j≤M

|⟨ fθ∗ − Go,ξ
m ( fθ∗ , F), f j/∥ f j∥2⟩|

2

≤ µm − ξ2 D−2µ
2/(2−q)
m = µm(1 − ξ2 D−2µ

q/(2−q)
m ).

This, together with Lemma 1 and µ1 ≤ ∥ fθ∗∥
2
2, gives the desired conclusion. �

3.2. An implication on recovering a hard sparse function

Let fθ0 ∈ Fq(t) for some 0 < q ≤ 1, and θ0 = (c1, . . . , cM )
⊤ be an s-sparse vector, namely,

1 ≤ |Jθ0 | ≤ s ≪ M , where Jθ0 = {i : 1 ≤ i ≤ M, ci ≠ 0}. In the next corollary, making
use of Theorem 3, we show that the index set determined by the WOGA, with f = fθ0 and
0 < ξ ≤ 1, includes Jθ0 , provided a minimum eigenvalue condition is fulfilled and the number
of iterations is reasonably large. To state the result, for J ⊂ {1, . . . ,M}, define ΣJ = (γi, j )i, j∈J .

In addition, let Wq,ξ = 2(2β
2)−1

(ξ2β)−(2β)
−1

and Bq(x) = (⌊x/mini∈Jθ0
|ci |⌋ + 1)2β , where
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x ≥ 0, β = β(q) = q/(2 − q) and ⌊a⌋ denotes the largest integer ≤ a. Fix 0 < ξ ≤ 1, denote
by Jξ,m(θ0) the index set chosen by the WOGA after m iterations.

Corollary 1. Suppose that for some c̄ > max

Wq,ξ t max1≤ j≤M ∥ f j∥2, ∥ fθ0∥2


, we have s +

Bq(c̄)+ 1 ≤ M and

λ(c̄) := inf
|J |=s+Bq (c̄)+1

λmin(ΣJ ) > max


Wq,ξ t max

1≤ j≤M
∥ f j∥2

c̄


2q

2−q

,


∥ fθ0∥

c̄

2

 .
Then for m ≥ Bq(c̄)+ 1, we must have Jθ0 ⊂ Jξ,m(θ0).

Suppose the smallest eigenvalue of Σ is bounded below by 0 < ψ < 1. Then, the magnitude
of Bq(c̄) in Corollary 1 depends on q, t andψ . As a simple example, consider the special case that
the s nonzero elements of θ0 are of the same order, and max1≤ j≤M ∥ f j∥2 and ∥ fθ0∥2 are bounded
above by 1. Then for c̄ = max{Wq,ξ tψ (q−2)/(2q), ψ−1/2

}, λ(c̄) satisfies the above lower bound

condition, and hence Bq(c̄) is of order g(q)s
2

2−q

ψ
, where g(q) → ∞ as q → 0. With q close to 0,

this is g(q)s1+ϖ

ψ
for someϖ close to zero (but g(q) can be large). Thus, when s is small compared

to M , with the number of iterations of a slightly higher order than s, the WOGA is guaranteed to
include all the nonzero terms. From Corollary 1, it is clear that the minimum eigenvalue lower

bound condition (bounded below by ψ) is only needed on all ΣJ with |J | ≤ Cs
2

2−q for some
large enough constant C > 0.

Proof. Let µm = ∥ fθ0 − Go,ξ
m ( fθ0 , F)∥2

2 if 1 ≤ m ≤ Bq(c̄)+ 1, and 0 if m > Bq(c̄)+ 1. Since
for 1 ≤ m ≤ Bq(c̄), |Jθ0 ∪ Jξ,m(θ0)| ≤ s + Bq(c̄), one obtains from the definition of λ(c̄) and an
argument similar to that used in the proof of Theorem 3 that for 1 ≤ m ≤ Bq(c̄),

µm ≤ sup
1≤ j≤M

|⟨ f j/∥ f j∥2, fθ0 − Go,ξ
m ( fθ0 , F)⟩|


j∈Jθ0\Jξ,m (θ0)

|c j | ∥ f j∥2,

µm ≥ λ(c̄)


j∈Jθ0\Jξ,m (θ0)

c2
j∥ f j∥

2,

and

µm+1 ≤ µm


1 − ξ2 D−2µβm


,

where D = (t max1≤ j≤M ∥ f j∥2)
β
{λ(c̄)}(q−1)/(2−q). Therefore, by Lemma 1,

µm ≤ m−β−1
max


2β

−2

ξ2 D−2β

−β−1

, ∥ fθ0∥
2
2


, m ≥ 1.

Now, if Jθ0 ⊈ Jξ,Bq (c̄)+1(θ0), then

λ1/2(c̄) min
i∈Jθ0

|ci | ≤ µ
1/2
Bq (c̄)+1 ≤ (Bq(c̄)+ 1)(q−2)/(2q) max{Wq,ξ D(2−q)/q , ∥ fθ0∥2},

yielding λ1/2(c̄) ≤ max{Wq,ξ t max1≤ j≤M ∥ f j∥2λ
1−

1
q (c̄)/c̄, ∥ fθ0∥2/c̄}, which contradicts the

hypothesis on λ(c̄) of the corollary. This completes the proof. �
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Remark. Under the assumptions of Corollary 1, it is possible for Jξ,m(θ0) to include some
indices i whose corresponding coefficients ci are zero. However, one can still exactly recover
θ0 through θ (m) = (c(m)i )1≤i≤M , where c(m)i = 0 if i ∉ Jξ,m(θ0) and (c(m)i )i∈Jξ,m (θ0) = Σ−1

Jξ,m (θ0)

E(fJξ,m (θ0) fθ0), with fJξ,m (θ0) = ( fi )i∈Jξ,m (θ0) being a |Jξ,m(θ0)|-dimensional vector. The rele-
vance of this to real applications of high-dimensional regression is that when Bq(c̄)+ 1 is much
smaller than the sample size, then both E(fJξ,m (θ0) fθ0) and ΣJξ,m (θ0) may be accurately estimated
based on data for m slightly larger than Bq(c̄)+ 1. Therefore, assuming Jθ0 is sparse relative to
the sample size, after a suitable number of data-driven iterations of WOGA and a subsequent sta-
tistical determination of the zero-coefficient terms as suggested above, the true set of predictors
Jθ0 can be obtained with a high probability.

We close this section by noting that the minimum eigenvalue condition used in Corollary 1 is
related to the restricted isometry property (RIP), introduced in [2] and defined for the n × M ma-
trix A = (ai, j )1≤i≤n,1≤ j≤M in the linear system Aθ0 = y. More specifically, RIP of order k ≥ 1
requires that there exists the smallest constant 0 ≤ δk < 1 for which 1−δk ≤ inf|J |=k λmin(ΣJ ) ≤

sup|J |=k λmax(ΣJ ) ≤ 1 + δk , where ΣJ = A⊤

J AJ /n, AJ = (ai, j )1≤i≤n, j∈J and λmax(A) de-
notes the maximum eigenvalue of a symmetric matrix A. When (ai,1, . . . , ai,M )

⊤, 1 ≤ i ≤ n,
are independent and identically distributed copies of ( f1, . . . , fM )

⊤,ΣJ can be viewed as a
“sample version” of ΣJ and the difference between the two matrices is negligible uniformly over
all |J | ≪ n as n is sufficiently large (see [8] for more details). It is shown in [3] that when
δ3s + 3δ4s < 2, any s-sparse vector θ0 is exactly recovered via solving the l1-minimization
problem associated with the linear system mentioned above. Under a more flexible assumption,
r2k − 1 < 4(

√
2 − 1)(k/s)(1/q)−(1/2) for some 0 < q ≤ 1 and some k ≥ s, where r2k =

sup|J |=2k λmax(ΣJ )/ inf|J |=2k λmin(ΣJ ), [6] further showed that the same exact recovery result
is achieved through solving the corresponding lq -minimization problem.

While the minimum eigenvalue assumption described in Corollary 1 is not necessarily weaker
than those in [3,6], the maximum eigenvalue assumption is dropped in this corollary, thereby
substantially expanding its applicability in particular to cases where the correlations between
fi ’s are large. To see this, assume that for any J ⊆ {1, . . . ,M},ΣJ satisfies γ fi j = 1 if i = j ,
and γi j = ρ for some 0 < ρ < 1 if i ≠ j . It is straightforward to show that λmin(ΣJ ) = 1 − ρ,
and hence by Corollary 1 and the remark given after it, Jθ0 ⊂ Jξ,m(θ0) and θ0 is exactly recovered
by θ (m) if m ≥ Bq(c̄)+ 1 with

c̄ > max


Wq,ξ t max
1≤ j≤M

∥ f j∥2(1 − ρ)
−

2−q
2q , ∥ fθ0∥(1 − ρ)−1/2


.

In contrast, if ΣJ is the same as ΣJ , then λmax(ΣJ ) = 1+(|J |−1)ρ for each J , which implies that
unless ρ is very small, δ3s + 3δ4s < 2 can fail to hold even for a moderate value of s, say s = 5.
This simple example illustrates a typical challenge that l1-minimization faces while pursuing
exact recovery in highly correlated dictionaries. Alternatively, since for any 0 < ρ < 1, there
exists a sufficiently small q such that r2s+2 −1 = 2sρ(1−ρ)−1 < 4(

√
2−1)(1+s−1)(1/q)−(1/2),

the above difficulty encountered by l1-minimization is alleviated by lq -minimization, provided q
is sufficiently small. However, when 0 < q < 1, this lq -minimization problem is nonconvex, and
therefore, very difficult to solve globally. For an approximate sparse solution to this problem, see
Section 4 of [6]. Finally, we point out an inevitable difficulty with WOGA (besides the obvious
challenge with ρ being close to 1) that when mini∈Jθ0

|ci | is close to 0, WOGA may require a
large number of iterations to include all the non-zero terms, as disclosed by Corollary 1.
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