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Abstract

Consider £4-hulls, 0 < ¢ < 1, from a dictionary of M functions in L? space for 1 < p < oo. Their
precise metric entropy orders are derived. Sparse linear approximation bounds are obtained to characterize
the number of terms needed to achieve accurate approximation of the best function in a £4-hull that is
closest to a target function. Furthermore, in the special case of p = 2, it is shown that a weak orthogonal
greedy algorithm achieves the optimal approximation under an additional condition.
© 2012 Elsevier Inc. All rights reserved.

In recent years, sparse linear combinations of given functions (or variables) have played
important roles in statistical learning theories and methodologies that deal with a large number of
predictors (often more than the number of observations). Let F = {f1, ..., fu} be a collection
of M functions defined on a measurable space taking values in X with a o-finite dominating
measure u. Forany 0 = (01, ...,0y) € RM define the £o-norm and the £,norm (0 < g < 1)
by

1/q

M M
l6llo =16 #0). and [0l = (> 16,17} .

i=1 j=1
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where I (-) is the indicator function (note that for 0 < g < 1, || - [l is not a real norm). Define
the £, ;-hull of F to be the class of linear combinations of functions in F with the £,-constraint

M
Fo) =F4t; M; F) = fg:ZQ,fj:Hequt,f,eF}, 0<g<l1,t>0.
j=1

In statistical learning theories, the functions in F' are either some initial estimates or observ-
able variables. Much of the current statistical research interest on function estimation focuses on
the case of a large dictionary F (often with a small or moderate number of observations of pairs
of response and values of the f;’s with noise in response). To this goal of efficient estimation of
the regression function (the conditional expectation of the response given the predictors), an un-
derstanding of sparse representation or approximation of the functions in F (¢) is essential. Note
that for 0 < g < 1, which is the focused case in this paper, a bound on the £,-norm implies that
there can be a small number of coefficients that are relatively large. Consequently the function
classes F, () can have good sparse linear approximations. One notable feature here is that no
restrictive assumptions on the relationships between functions in the dictionary F are necessary
for our upper bound results.

The £,-ball of RM (often denoted 22’1 ) for g > 01is well studied, with the metric entropy order
and Gelfand widths understood. Recently, [13] have derived the metric entropy order for F (¢)
with 0 < g < 1 (see [11] for earlier but less precise results) and further showed that any function
in F,(t) can be well approximated by linear combinations of a relatively few terms in F. Their
results deal only with the L? norm on the function classes. In this work, we complete the result
for a general L? (p > 1).

The rest of the paper is organized as follows. In Section 1, the metric entropy order of the
£4-hull (0 < g < 1) under the L” norm is determined. In Section 2, for any target function
in the £,-hull, the order of the best linear approximation error in the L” norm using only a
sparse number of terms is obtained. In Section 3, in the special case of p = 2 and under an
additional condition, it is shown that a greedy approximation achieves the optimal sparse linear
approximation. An implication on recovery of sparse vectors is also given. The results in the
different sections complement each other: Theorem 1 characterizes the massiveness of the £,-
hull (0 < g < 1); Theorem 2 addresses the capability of sparse linear approximation of functions
in the £,4-hull; and Theorem 3 deals with a practically efficient term-after-term approximation of
the same functions in a way that does not require searching over a large combinatorial number
of terms.

1. Metric entropy of £,-hull under the L? norm

Throughout the paper, let »r = min(2, p).

Theorem 1. Suppose F = {f1, f2. ..., fmu} with || fillLroy < 1,1 < j < M for some p > 1,
where v is a o -finite measure. For 0 < q < 1, there exists a positive constant c), ; depending
only on q and p such that for any 0 < ¢ < 1, F,;(1) contains an ¢-net {ej}?’il in the L? norm
for j =1,2,..., N, where N, satisfies

_rq 1_1 1_1
Cpg€ "4 10g(1+M4 ’6‘) ife>Mr 4,
| 1

log N =< 11 1
cp,quog(l—i—M’ ‘18_1) ife<Mr a.

Furthermore, the estimates are best possible up to a constant.
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Remark. Metric entropy plays a central role in determining how well functions in a class can be
estimated based on contaminated observations; see e.g. [14] for references.

Proof. From classical results (cf. [5, p. 98]), for any positive integer k, the unit ball of E(’}” can be
covered by 2k=1 palls of radius & in the ¢; norm, where

1 1 <k <log,(2M)
1
log, (1 + %) !
g <c 3 logy,(2M) <k <2M
_k -1
27 (2M)" « k> 2M,

which is also known to be sharp [9]. Thus, we can have 2k=1 functions gi-1<j=< 2]‘_1, such
that

2/(—1
Fo) c | g+ Fiten)). )
j=1

For any g € Fj(st), g can be expressed as g = Zl}i] ci f; with Zlﬁil |ci| < &k. Define a random
function U by

M
P(U = sign(ci)ex fi) = Icil/ex, PU=0)=1- Z lcil/€x.-

Then we have ||U ) < é&xas.and EU = g under the randomness just introduced. Let Uy, . . .,

Un, U, ..., U, beiid. copies of U, and let V = nl1 YL, Ui. We have
E|lV —gl, =E|E ( ZU’)——ZU
< —Z(U,» - U)
i »
1 m
= —EE'| > (Ui - U)
" i=1 »
1 m
! /
= —EE ;siwi - U

p

’

p

2 m

ZE|) &U
i=1

where &; are i.i.d. Rademacher variables and are independent of all U; and U;. ©. Taking

expectation with respect to &;, and using the fact that L? space is of type r = mm( Pp,2) (see
e.g., Section 9.2 of [10]), we have

2T, i Hr 1y
EIV —glly < =LE(Y U, ) <2Tm e,
i=1
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where T), is the type-min(p, 2) constant of L?. Therefore, there must exist a realization of V such

that |V —gll, < 2Tpm%_18k. Clearly, V can be expressed as exm L (kg fitkafo+--+kymfm),
where k1, k, . . ., ky are integers, and |k |+ k2| +- - -+ |kps| < m. The total number of different

realizations of V is therefore bounded above by (2M m+m>. Together with (2), we conclude that

F,(1) can be covered by 2¢~! (ZMm“L"’) balls of radius ZTpm}—l e
We have the freedom to choose integers m and k. We choose m according to k as follows.

(1) If log,(2M) < k < 2M, we choose m to be the largest integer such that (ZMm+m ) < 2k,
Then we have

1<c’l 1+2M
— _0 —_—
m~ k £ k

for some positive absolute constant ¢’. Thus, F, (1) can be covered by 22k=1 balls of radius

; oM\ \ Ve
2Tpm7_18k < (k_l 10g2 (1 + T>>

in the L? norm, where ¢> depends only on p.

11 > , W€ cnoose m = . cn can bpe covere - allS Or radius
(i) If k > 2M, we ch M. Then (1) can b d by 2k 1(3,314>b 1Is of radi

1_ _ k11
2Tpymr~ 18k§C32 MM g

in the L? norm, where c3 depends only on p.

1 1
Now, we finish the proof of (1). If M7~ ¢ < ¢ < 1, we choose k to be the smallest integer
such that k > log,(2M), and

4 M 1/g—1/r
| k7 log, 1+7 <e,

k 1_1
c327mMMrd <eg.

It is not difficult to see that k < C M for some constant C depending only on p. Indeed, the set
of inequalities above is equivalent to the following set

M oM\ Ver 1_1
c) 710,%2 1+T SMq "E,

k 1_1
327 < Ma Te.
The right-hand sides of the two inequalities are not less than 1, while the left-hand sides go to
0 as % — 0. Hence, the smallest integer k satisfying both inequalities is bounded by C M for
some constant C depending only on p.

If £ < 2M, then by (i), F, (1) can be covered by 22k=1 palls of radius ¢ in the L? norm. Note
that for such k, we have

22k=1 — o ~iq i
<explcse alog(l+Mas re)),
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where c4 is a constant depending only on p. If 2M < k < CM, then by (ii) F, (1) can be covered
by 2k-1 <3A1,‘I/1 ) balls of radius ¢ in the L” norm. Note that for such k, we have

2k=1 C{;’) < DTN < 9 CHIMT < oxp (ese™ 7 log (1 + Mql_%s)) :

where cs is a constant depending only on p. In either case, the first inequality in (1) follows.

1 1 1 1
Ife < M 4, we choose k to be the smallest integer such that k > 2M, and ¢3 Z_ﬁ Mr <
e. It is easy to check that
1 1

2M
2% <2 (C3M778—1) .

By (ii), F4 (1) can be covered by k=1 (3,&4 ) balls of radius ¢ in the L?” norm. Note that for such
k, we have

k-1 (3]3[/[) < 2k=13M 93k < exp (cﬁMlog (1 + Méfés*]» ,

where cg is a constant depending only on p. This proves the second inequality in (1).

Finally, we show that the estimates in the theorem are best possible up to a constant. We
construct functions { f1, f2, ..., fu} C LP[0, 1], so that the reverse inequality holds. We need
to consider the cases 1 < p <2 and2 < p < oo separately.

When 1 < p <2, we choose f;(x) = MYPifx e [(j—1)/M, j/M), and fi = O otherwise.
Thus, || f|l, = 1. Because

M M q/p
Z |Cj|q < (Z |lep) Ml—q/ﬂ’
= =1

we have

M M 1/p
Fs() DH = chfj: (Z|cj|p> <M

=1 =1

M 1/p
= (Zmﬂ) :
j=1

1_1 . 1_
and H is isometric to the closed ball of / 2’1 with radius M » 4.1t is known that whene < M» 4
the metric entropy of the latter has a lower bound that is, up to a constant, of the same order as the
upper bound given in the theorem. Hence the metric entropy estimate is sharp when 1 < p <2,
1 1

S |=
Q=

But

M
chfj
=1

p

ande < M» 4.
1
Fore > M7» 4, welet =5/P~DgP/(P=9 Thend := |879] < M/10. Note that

]—'q(l)j)gzz{Z(Sfj:1C{1,2,...,M},|I|=d ,

Jjel
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and G contains (Aj) functions. Foreach g =) ., 8 fj € G, we define

Jjel

N(g,9d/10) = {h =) 8fjeg:lInJ|< 9d/10} .

jeJ
Then NV (g, 9d/10) contains not more than

d M - M
<L9d/10J> (fd/101> h <d>

functions. Therefore, we can find at least (g’ ) disjoint such sets. Note that if g = ) jer 8fj

and g’ = Zje,/ 8f; are chosen from different sets, then [ AI'| > d/5. Thus, ||g — &'ll, =
[IAI'|MP§ > (d/5)1/P§ > . Therefore, the & covering number of F, (1) is at least

)z (e P n (1-08)).

When 2 < p < 0o, we define f; (1) = sgn(sin(2jm)), 1 < j < M. lItisclear that || f||, = 1.
Because

M M q/2
> it (S o
=1 =1

we have

M M
j i=1

Jj=1 J

We define a linear operator P from F, (1) to ! M o that

M
P (Z ijj) = (C1,€2y -\ CM)-
j=1

Let B be the closed ball of lé"’ with radius M'~%/4. Then P~'B F4(1). By our construction

of f;,forany g € P~!B,
p 1/p 1 p 1/p
dt = / dt ,
0

1| M
lgll, = (/ > eifi®

where &; are independent Rademacher random variables. Taking expectation, and using the fact
that | fj| = 1, we obtain

I, 1/2
gl = (Z ci) = 1P gllu-
j=1

Thus, restricted on P! B, P is a contraction map. Hence the metric entropy of Fy (1) under |- ||,

M
Zéjcjfj(t)

j=1

1_1
is bounded below by the metric entropy of B under the || - || i norm. If ¢ < M2 4, the latter
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has a lower bound which is, up to a constant, the same as the upper bound given in the theorem.
11
Hence, the estimate is best possible when2 < p < occande < M2 4.

1 1
If ¢ > M2 4, then by the same argument as for the case 1 < p < 2, we can find at least
8fjand g = > .., 8f; are chosen
from different sets, then [/ AI'| > d/5. Note that ||g — g'll, > | Pg — Pg,”lé” > S|IAI')V? >

d /5)1/ 25 > . Therefore, the & covering number of JF (1) is at least

M ~Titog (14 Mi~?
> —-q q
(d>_exp<cs og(—i— ))

This completes the proof of the theorem. [

(1dv1> such sets that are disjoint. Note that if g = Zje,

2. Sparse linear approximation bounds

Under the assumption that the functions in the dictionary F have finite L” norms, we give
below an upper bound on the approximation error by the best linear combination of a given
number of members in the dictionary.

Theorem 2. Let fy be any function with || foll, < oo for some p > 1. Suppose F = {f1,...,
fm}y with maxi<j<m || fill, < ooforl < j <M. Foranyl <m <M,0<gq <1,1>0,
there exist a subset Jy, of {1, ..., M} of cardinality m and fom € F;, = spanof f; in Jy, with
1611 < t such that

1

1_
I fo— forllp < llfo — foxllp + 2T, max | fjllp-tm" @,
I<j<Mm

where for = argminger, ) fo — follp, r = min(p, 2), and T}, depending only on p is the
type-min(p, 2) constant of LP. If w is a probability measure, then for any 1 < m < M, 0 <
g <1,t>0,1< p' < p, there exist a subset J,, and fz. € Fy, = span of fjin J;, with
||9~m||1 < t such that

1_1
o — famlly < fo— follp +2T)p  max I fillp -tmr 4
<j<M

where f5. = argminger, ) | fo — foll . Furthermore, the estimates are best possible up to a
constant.

Remarks. 1. If M = oo, the approximation bounds in the theorem continue to hold for each
m > 1 with the obvious change of maxj<j<pm || fjll, < 00 to maxi<j<co || fjllp < 00. This
is seen from the proof of the theorem.

2. A currently very active research in statistics and machine learning is on learning when the
number of predictors is huge relative to the number of observations. A particular setting is
high-dimensional linear modeling under the so called soft sparsity assumption, i.e., the 22”
norm of the coefficients of the best (or a good) linear approximation of the target function fy
by the functions in the dictionary F is small for some ¢ < 1. This corresponds to when M is
very large and one can only afford a sparse model with m « M. The theorem characterizes
the capability of sparse models in approximation, which together with statistical estimation
theory can lead to a precise understanding on potential gain of sparse linear modeling (see,
e.g., [13]).
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Proof. We first prove the first result. Without loss of generality, assume maxi<j<u | fjll, < 1
. . M

(otherwise consider f; = fj/maxi<j<m |l fjll p and observe that {ijl 0ifi  I0llg < t, fj

e Fl c (Z)L05f) 10l < rmaxiciem W fillp f5 € FD. Let for = S0 icifi =
arginffgefq(t) lfo — follp. Forany 1 < m < M,let L* = {j : |cj| > tm~1/4}. Because
Zﬁ/lzl lcj1? <11, we have

[L*|t9m~! < Z|cj|q <.

Thus |L*| < m (so there are not too many large coefficients). Also

1—
D el =D leld el

JEL* JEL*
_1y\1—q
= > deslt (rm77)
jéL-
_1
=Y e
JgL*

_1
fl‘ml 9 =D.

Define v* = } ;.- cjfj and o* = 3,5 ¢ fj. Clearly, ®* € Fi(D). Define a random
function U so that

P(U = Dsign(c)) fj) = % for j ¢ L*

and

lc;]
PU=0)=1-Y
U =0) > 5
JEL*
Note that E(U) = w* and |U ||, < Dmax;i<j<um || fjll, < D.
LetUi,...,Un, Uy, ..., Uy, beiid. copy of U. Then,
1 m
< lfo— forllp +E w*—Z;Ui
» —

1 m
Elfo—v'—=>"U
mi3

Now, for p > 1,

p

r5u| ele(LE) L5
Elo*— =Y U =B|E(=) U ])-=Y U
m = » m = mi=3 »
1 m
< EE | =) (Wi -U)
m= »
1 m
= —EE Z(U,-—U;)
i=1 P
1 / - /
= —EE ;éi(ui—un

p
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m
Y &U;
i=1

where &; are i.i.d. Bernoulli random variables, independent of all U; and U’.. Taking expectation
with respect to &;, and using the fact that the L? space is of type r = min(p, 2), we have

1
a)* - — E Ui
m “
i=1 P

So there exists a realization of Uy, ..., U,,, such that
1 m
fo—v*— P ; Ui

v Ly u,-‘o < (m—1)+m=2m — 1. Consider @ = |(m + 1)/2]. Then
2m — 1 < m and m > m/2. The first result of Theorem 2 then follows from ab%/e.

Now for the second result, from the earlier derivation, with V*, @*, U; and 8* defined under
LP | we have

2
< —E
m

p

2T m r 11

1 1_1

E 5—”E(§ ||U,-||;,> <2T,m+~'D =2T,tm" " 7.
i=1

m

11
<fo— foxllp +2Tptm" 4.
p

Note that

E|fo—7"—

m
5 =0
of = — i
m “
m
5~ 0
o —— i
m

The second sparse approximation error bound in the theorem then follows similarly. Also, the
examples of the functions constructed in the proof of Theorem 1 prove the sharpness of the
estimates. This completes the proof of the theorem. [J

m ~
5
i=1

< lfo— fallpy +E
p/

S[=

< lIfo— fgllp +E

p

3. A greedy approximation for p = 2

Greedy approximation, among nonlinear approximations, has received an increasing attention
in research and application as a means of providing accurate and computationally fast
approximation. See [12] for convergence results for various versions of greedy approximation
and earlier works, and some recent statistical applications of orthogonal greedy approximations
are in e.g., [1,7], and [8]. In particular, Theorem 3 of [12] shows that an orthogonal greedy
algorithm leads to m-term approximation error of order m~!/2 for functions in the £;-hull of a
dictionary in a Hilbert space.

In the case of p = 2, for a general 0 < g < 1, we show below that, under an extra condition
1_1 11 .
on the functions in the dictionary, the convergence rate m” ¢ = m?2 4 in the first expression

of Theorem 2 is attainable by an m-term approximation of fp+ based on the weak orthogonal
greedy algorithm (WOGA) defined below. An implication on recovering a hard or strong sparse
function is given later.

3.1. Optimal approximation by WOGA

Weak Orthogonal Greedy Algorithm. Let 0 < £ < 1 and f be any function with || f|j» < oo.
Define f(;) A f. Then for each m > 1, we inductively define the following.
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@)) @,0,,’5 € F is any choice that satisfies
[ Es s oof Mol = & sup [(ff 1, g/ lglla)l,
geF
where (-, -) denotes the inner product in L2
Q) GS5(f, F) = P& (f). where H = span(golo’g, @25y and P ¢ is the orthogonal pro-
jector on H,i.

B) fof = f — GRS, F).

Theorem 3. Let fo be any function with || foll2 < oo. Suppose F = {fi,..., fu} with
maxi<j<um || fjll2 < 00, and A := Ayin(X) > 0, where Anin(A) denotes the minimum eigenvalue
of a symmetric matrix A and X = (yij)1<i,j<m with vij = {fi/ll fill2, fj /I fill2). Then, with
fox defined as in Theorem 2, foranym > 1,0 <gq <1,t >0,

1

1_
I fo — G (foes F)ll2 < Ifo — forlla 4+ Sm2 74,

where S is some positive number which depends on &,t,q, A, maxi<j<m || fjll2, | foxll2 and
whose precise form will be clear in the proof.

The minimum eigenvalue assumption in Theorem 3 seems to be commonly used in the
contexts of time series and high-dimensional data analysis. A further discussion of this condition
will also be given at the end of this section.

To prove Theorem 3, we need the following ancillary lemma, which is an extension of
Lemma 3.4 of [4].

Lemma 1. Let {a,} be a sequence of non-negative numbers. Suppose that there exist A, C > 0
and 0 < o < 1 such that

a; < A, ant1 < ap(1—Ca?), n=1,2,....
Then, for eachn > 1,

an < Kn™ ",
where K = K(C, a, A) = max{2% " (Ca)~® "', A).

Proof. We proceed by induction on n. The statement being obvious when n = 1, suppose a, <
Kn~ V% forn = 1,..., N. We will show that ayy; < K(N + 1)~V If ay,| = 0, then the
desired conclusion holds trivially. If ay+1 > 0,thena; > Ofori =1, ..., N. By the assumption
of the lemma and using the inductive hypothesis, it follows that for eachi =1, ..., N,

ar za (1= CaH " 2 a7 (1 4+ Caf) = a7+ CRON i
Summing both sides of the expression over 1 <i < N yields

_ _ -1 -1
ayl, = CaK* YN/(N + D}* (N +D*
> Cal2¢ (Ca)™ Yok~ (N 4 1)

— KW+

v

\

Therefore, ay+1 < K(N + 1)_“71. a
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Proof of Theorem 3. Let D = (t max << | fjll2)4/ @924 =D/2=® Tt suffices to show that

tm = Il for — G%5 (for, F)I3 < K(E2D72,q/Q2 — @), |l for|13m' =9,

where K is defined as in Lemma 1. Denote by Jg ,, the set of positive integers consisting of the
subscripts of the functions in F chosen by the WOGA (with f = fy+) after m iterations. Then,
it follows that

Wm = <fa* — G%5 (for, F), Z ijj>

I1<j<M,jéJem

M

sup [(fi/lfill2s for = Gof (fors Y| D [ejl I fjlla,

1=j=M J=1j¢)em

IA

recalling that fy« = Z?”zl c;j fj- In addition, one has jt,, > A Z;v:l,ng_m c3||fj 3. By making
use of these two inequalities, Holder’s inequality and (Zj”: L lejld Y4 < t, we know that i, is
bounded above by

1
2—q

sup |(fi/Ifilla for — GO N[ 3 lesleI 0

I=j=M 1<j<M,jdJsm

2 2
x DR Va1 b

I1<j<M,jéJem

1— 2—
< sup [(f/1fillas for — GoE(faor, F))| Dy 9/,
1<j<M

l—q
2—q

which gives i, ©~ " < Dsupy< <y [(£7/11 fill2. for — G’ (for. F))|. As a result,

2
st < | for = Gof (fors ) = o = Gt o, P e e N 1B

=t — | for — GoE (for, F), 005 /1005 1)1
< tm — &2 sup |(for — GLE(for, F), £i/1fil2)1P

1<j<M
—2 2/(2— — 2—
<nu 5 D2 n/( q) Mm(l—SZD 2#?/( q))‘

This, together with Lemma 1 and u1 < || fp* ||%, gives the desired conclusion. [J
3.2. An implication on recovering a hard sparse function

Let fy, € F4(t) forsome 0 < g < 1,and 6y = (cy, ..., cy) ' be an s-sparse vector, namely,
I < |Jgyl <5 <K M, where Joy = {i : 1 <i < M,¢; # 0}. In the next corollary, making
use of Theorem 3, we show that the index set determined by the WOGA, with f = fp, and
0 < & < 1, includes Jg,, provided a minimum eigenvalue condition is fulfilled and the number
of iterations is reasonably large. To state the result, for J C {1, ..., M}, define X; = (i )i, jeJ-

.. 2\—1 _ -1 .
In addition, let W, ¢ = 2097 (£28)= @A™ and B,(x) = (Lx/mlnie/(,o lcil] + 1)%8, where
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x>0,8=8(q) =q/(2—q) and |a] denotes the largest integer < a. Fix 0 < & < 1, denote
by Je,n (8p) the index set chosen by the WOGA after m iterations.

Corollary 1. Suppose that for some ¢ > max {Wq,gtmaxlstM I fill2, Nl foo |I2}, we have s +

By(¢) +1 <M and

AlC) = inf Amin(2y) > max
[J|=s+Bg(0)+1 c

2q

W, et max || fill2\ -4
q.6 , Jl2 2
1<j<M (IIfeOII)

C

Then for m > B,(C) + 1, we must have Jg, C Jg i (00).

Suppose the smallest eigenvalue of X' is bounded below by 0 < ¢ < 1. Then, the magnitude
of By (c) in Corollary 1 depends on g, t and ¥. As a simple example, consider the special case that
the s nonzero elements of 6 are of the same order, and max;<;j<um || f;ll2 and || fg, |l2 are bounded
above by 1. Then for ¢ = max{Wq,gtt/f(q_z)/(z‘“, W12} A(¢) satisfies the above lower bound

2

glg)s T4
¥

condition, and hence B (¢) is of order , where g(q) — oo as ¢ — 0. With ¢ close to 0,

I+
this is F{C)T R for some @ close to zero (but g(g) can be large). Thus, when s is small compared

to M, with the number of iterations of a slightly higher order than s, the WOGA is guaranteed to
include all the nonzero terms. From Corollary 1, it is clear that the minimum eigenvalue lower

2
bound condition (bounded below by ) is only needed on all X~; with |J| < CsZ< for some
large enough constant C > 0.

Proof. Let w, = || fo, — G:;{E(fgo, F)||% ifl <m < By(¢)+1,and 0if m > B,(c) + 1. Since
for1 <m < By(c), |Jay U Je,m(6p)| < s + By (C), one obtains from the definition of A(c) and an
argument similar to that used in the proof of Theorem 3 that for 1 <m < B, (¢),

wm < sup [(fi/1fillas foo — GGE o ENL 3 lejl £l

lijM jEJHO\JE,m(QO)

n = 2@ Y Gl

J€Joy\Je,m (60)

and
Um+1 = Um (1 - SZQ_ZMZ) s
where D = (t maxi<j<u | fjll2)P{1()}4~1/C=D_ Therefore, by Lemma 1,
a1 2 _ —p~!
pom < m P max {25 (£07%8) . ||f90||%} . om= 1
Now, if Jg, & J%‘,Bq(E)J’»] (6o), then

- . 1/2 - — —
1M2@) min feil < gy < (By@ + DO/ max{W, e DEOM | fy o).
%

1
yielding A1/2(¢) < max{W, ¢t maxi<j<m ||fj||2&1_5(5)/5, Il fa,ll2/€}, which contradicts the
hypothesis on A(c) of the corollary. This completes the proof. [
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Remark. Under the assumptions of Corollary 1, it is possible for Jg ,,(6p) to include some
indices i whose corresponding coefficients ¢; are zero. However, one can still exactly recover
0o through 6 = (c{™)1<i<u, where ¢ = 0if i & Jg n(00) and (] Vicsy i) = X7, )
Ef. .00 f0), With £, @) = (fi)ies. .6 being a |Jg m(6p)|-dimensional vector. The rele-
vance of this to real applications of high-dimensional regression is that when B, (c) + 1 is much
smaller than the sample size, then both E(f, ,, ) fo,) and X, , (g,) may be accurately estimated
based on data for m slightly larger than B, (c) + 1. Therefore, assuming Jg, is sparse relative to
the sample size, after a suitable number of data-driven iterations of WOGA and a subsequent sta-
tistical determination of the zero-coefficient terms as suggested above, the true set of predictors
Jg, can be obtained with a high probability.

We close this section by noting that the minimum eigenvalue condition used in Corollary 1 is
related to the restricted isometry property (RIP), introduced in [2] and defined for the n x M ma-
trix A = (a;,j)1<i<n,1<j<m in the linear system A6y = y. More specifically, RIP of order k > 1
requires that there exists the smallest constantO < 8¢ < 1 for which 1—6; < inf|;— Xmln(E 7)<
Sup|s|= k)tmax(EJ) < 1 + &, where EJ =A) AJ/” Ay = (alj)1<l<n jeJ and Amax(A) de-
notes the maximum eigenvalue of a symmetric matrix A. When (a; 1, ..., a;, M) 1 <i<n,
are independent and identically distributed copies of (f1, .. fM)—r E 7 can be viewed as a
“sample version” of X; and the difference between the two matrices is negligible uniformly over
all |J| <« n as n is sufficiently large (see [8] for more details). It is shown in [3] that when
835 + 3845 < 2, any s-sparse vector 0y is exactly recovered via solving the /;-minimization
problem associated with the linear system mentioned above. Under a more flexible assumption,
e —1 < 4(«/2 — D (k/s)M D=1/ for some 0 < g < 1 and some k > s, where ro;y =
sup| J|=2k Amax(Z‘ 7)/ inf| yj=ok kmln(Z‘ 7), [6] further showed that the same exact recovery result
is achieved through solving the corresponding /,-minimization problem.

While the minimum eigenvalue assumption described in Corollary 1 is not necessarily weaker
than those in [3,6], the maximum eigenvalue assumption is dropped in this corollary, thereby
substantially expanding its applicability in particular to cases where the correlations between
fi’s are large. To see this, assume that for any J C {1, ..., M}, X, satisfies yf;; = 1if i = j,
and y;; = p forsome 0 < p < 1ifi # j. Itis straightforward to show that Ain (X)) =1 — p,
and hence by Corollary 1 and the remark given after it, Jg, C Jg 1n (6p) and 6y is exactly recovered
by 0" if m > B,(¢) + 1 with

5>maX{qut max, llfjllz(l—,o) ool = p) 1/2}

In contrast, if b 7 is the same as Xy, then Amax(f 7) = 1+(|J|—1)p foreach J, which implies that
unless p is very small, 835 + 3845 < 2 can fail to hold even for a moderate value of s, say s = 5.
This simple example illustrates a typical challenge that /;-minimization faces while pursuing
exact recovery in highly correlated dictionaries. Alternatively, since for any 0 < p < 1, there
exists a sufficiently small ¢ such that rog40 —1 = 2sp(1—p) ! < 4(v/2=1)(1 +s~HI/D=1/2)
the above difficulty encountered by /{-minimization is alleviated by /,-minimization, provided g
is sufficiently small. However, when 0 < ¢ < 1, this /,-minimization problem is nonconvex, and
therefore, very difficult to solve globally. For an approximate sparse solution to this problem, see
Section 4 of [6]. Finally, we point out an inevitable difficulty with WOGA (besides the obvious
challenge with p being close to 1) that when min;¢ Jo |ci| is close to 0, WOGA may require a
large number of iterations to include all the non-zero terms, as disclosed by Corollary 1.
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