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Abstract

Let observations y1, · · · , yn be generated from a first-order autoregressive (AR) model

with positive errors. In both the stationary and unit root cases, we derive moment bounds

and limiting distributions of an extreme value estimator, ρ̂n, of the AR coefficient. These

results enable us to provide asymptotic expressions for the mean squared error (MSE)

of ρ̂n and the mean squared prediction error (MSPE) of the corresponding predictor,

ŷn+1, of yn+1. Based on these expressions, we compare the relative performance of ŷn+1

(ρ̂n) and the least squares predictor (estimator) from the MSPE (MSE) point of view.

Our comparison reveals that the better predictor (estimator) is determined not only by

whether a unit root exists, but also by the behavior of the underlying error distribu-

tion near the origin, and hence is difficult to identify in practice. To circumvent this

difficulty, we suggest choosing the predictor (estimator) with the smaller accumulated

prediction error and show that the predictor (estimator) chosen in this way is asymp-

totically equivalent to the better one. Both real and simulated data sets are used to

illustrate the proposed method.
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1. INTRODUCTION

Over the past few decades, modeling and estimation for positive-valued time series have

attracted great interest in fields such as reliability theory, economics, finance, hydrology and

meteorology; see, e.g., Gaver and Lewis (1980), Lawrance and Lewis (1985), Bell and Smith

(1986), Sim (1987), Lewis, Mckenzie and Hugus (1989), Hutton (1990), Barndorff-Nielsen

and Shephard (2001), Nielsen and Shephard (2003) and Sarlak (2008). Among the many

positive-valued time series models proposed in the literature, the stationary positive AR(1)

model,

yt = ρyt−1 + εt (1)

is one of the most popular, where 0 ≤ ρ < 1 is an unknown constant and εt’s are i.i.d. positive

random disturbances. If µ = E(εt) <∞, then model (1) can be expressed as yt = µ+ρyt−1+δt,

where δt = εt − µ. To appreciate the practical relevance of model (1), note first that when

the distribution of ε1 is carefully specified, the sequence {yt} has a marginal exponential

distribution (e.g., Gaver and Lewis 1980). By making use of this property, one can easily

simulate queues with correlated service times which are useful for checking for the sensitivity

of standard queuing results to departures from the independence. Model (1) has also found

extensive applications in hydrological studies. For example, Bell and Smith (1986) analyzed

two sets of pollution data from the Willamette River, Oregon, using model (1) with different

positive errors, and Sarlak (2008) analyzed the annual streamflow data from Kizilirmak River,

Turkey, showing that model (1) with a Weibull error distribution is more appropriate than a

Gaussian one. In addition, models similar to (1) have been adopted by Barndorff-Nielsen and

Shephard (2001) as components of their continuous time linear stochastic volatility models for

financial assets.

Having observed y1, . . . , yn, ρ can be estimated by the maximum likelihood estimator

(MLE) when the parametric form of the error distribution is known. However, not only is the

error distribution unknown, but the MLE is analytically difficult to work with; see Davis and

McCormick (1989) for a related discussion. On the other hand, the extreme value estimator,

ρ̂n = min
1≤i≤n−1

yi+1/yi, (2)
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which possesses consistency under rather mild assumptions (e.g., Bell and Smith 1986), is a

good alternative to bypass these difficulties. By making use of point process techniques, Davis

and McCormick (1989) further showed that the limiting distributions of ρ̂n depend only on

the local behaviors of the distribution of ε1 near the origin. Specifically, if the probability

density function (pdf) of ε1, fε1(·), satisfies

lim
x↓0

fε1(x)

cxα−1
= 1, for some unknown α > 0 and c > 0, (3)

then Corollary 2.4 (or Corollary 2.5) of Davis and McCormick (1989) yields that for 0 ≤ ρ < 1,

lim
n→∞

P
(
(cMα/α)1/αn1/α(ρ̂n − ρ) > t

)
= exp(−tα), (4)

where Mα = E[(
∑∞

j=0 ρ
jε1−j)

α] (see Section 2 below for more details).

Another commonly used estimator of ρ is the least squares estimator (LSE), ρ̃n [see (9)

below], which also enjoys consistency under general error distributions. Moreover, as shown

in Hamilton (1994), for 0 ≤ ρ < 1, n1/2(ρ̃n − ρ) has a limiting normal distribution. This,

together with (4), reveals a special feature of ρ̂n that its rate of convergence is faster than

ρ̃n if 0 < α < 2, but slower if α > 2. On the other hand, it seems difficult to use (4) to

construct a confidence interval for ρ due to the unknown index of regular variation α, which

appears in the normalizing constant and in the limit. To rectify this deficiency, Datta and

McCormick (1995) proposed an asymptotically pivotal quantity based on ρ̂n and adopted a

bootstrap procedure to consistently estimate the limiting distribution of the proposed pivotal

quantity, thereby leading to a totally nonparametric confidence interval for ρ.

While Davis and McCormick’s (1989) results are profound, they preclude the unit root

model, i.e., model (1) with ρ = 1, which is one of the most widely discussed nonstationary

time series models in the case of zero-mean errors. In the case of positive errors, the unit root

model has also found broad applications since it provides a convenient way to describe some

economic, financial and epidemiological data that are always positive and fluctuate around an

upward trend with variance increasing over time. See, for example, the natural logarithm of

quarterly real GDP for the United States from 1947 to 1989 (Hamilton 1994, chap. 17) and

the yearly cancer death rate in Pennsylvania between 1930 and 2000 (Wei 2006, chap. 6). In
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fact, when ρ = 1, the limiting distribution of ρ̂n has been derived by Nielsen and Shephard

(2003) under exponential innovations. More specifically, their Theorem 2 shows that if

fε1(x) = λ−1exp(−x/λ), (5)

where x ≥ 0 and λ > 0 is an unknown scale parameter, then

lim
n→∞

P
(
2−1n2(ρ̂n − ρ) > t

)
= exp(−t). (6)

However, (5) is quite restrictive compared to (3). Moreover, Nielsen and Shephard’s approach,

relying highly on the likelihood function associated with (5), seems difficult to extend to more

general distributions. Therefore, the first goal of this article is to fill this gap by deriving the

limiting distribution of ρ̂n under model (1) with ρ = 1 and ε1 satisfying (3). By making use

of a somewhat direct approach given in the supplementary document, we obtain for µ <∞,

lim
n→∞

P
(
µ{c/[α(α + 1)]}1/αn1+(1/α)(ρ̂n − ρ) > t

)
= exp(−tα). (7)

See Section 2 for more details. Since (5) yields µ = λ, c = λ−1 and α = 1, (6) becomes an

immediate consequence of (7). In addition, (7) and the fact that n3/2(ρ̃n − ρ) has a limiting

normal distribution if ρ = 1 [see Chan 1989 or (24) in Section 2] imply that ρ̂n is better than

ρ̃n if 0 < α < 2, and worse than ρ̃n if α > 2, in terms of convergence speeds. This conclusion

is exactly the same as the one drawn from the case of 0 ≤ ρ < 1.

The second goal of this paper is to provide asymptotic comparisons of the mean squared

errors (MSEs), MSEA = E(ρ̂n − ρ)2 and MSEB = E(ρ̃n − ρ)2. Such comparisons, allowing us

to choose the more efficient estimator between ρ̂n and ρ̃n (which are both consistent under

general positive errors), are particularly relevant in situations where the distribution of ε1 is

unknown. However, since convergence in distribution does not imply convergence of moments,

the intended goal cannot be achieved through comparing second moments of the limiting

distributions of ρ̂n and ρ̃n. To overcome this difficulty, we establish moment bounds for ρ̂n−ρ
and ρ̃n − ρ after being multiplied by suitable normalizing constants. These moment bounds

in conjunction with the limiting distributions of ρ̂n and ρ̃n lead to asymptotic expressions

for MSEA and MSEB, which in turn form the basis for our comparisons. Corresponding
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comparison results not only support the previous conclusion that ρ̂n is better (worse) than

ρ̃n if α < 2 (α > 2) from an alternative perspective, but they also reveal a quite subtle

phenomenon in the critical case α = 2. Whether ρ̂n is better than ρ̃n depends on whether c

[the other parameter in (3)] is larger than a threshold value, which varies drastically from the

case of 0 ≤ ρ < 1 to the case of ρ = 1. Based on these comparisons, the rules, (R1) to (R4),

for choosing the more efficient estimator between ρ̂n and ρ̃n are established in Section 2.

One major purpose of time-series modeling is to make forecasts. However, unlike estimation

problems under the positive AR(1) model, which have already attracted a lot of attention,

prediction problems under this model are seldom discussed even in the stationary case. This

motivates us to pursue the third goal of this paper: understanding the behaviors of the mean

squared prediction errors (MSPEs) of the extreme value predictor, ŷn+1, and the least squares

predictor, ỹn+1, in situations where the data are generated from model (1) with 0 ≤ ρ ≤ 1.

Note that

ŷn+1 = µ̂n + ρ̂nyn, (8)

where µ̂n = (n− 1)−1
∑n−1

t=1 (yt+1 − ρ̂nyt) is a natural estimate of µ based on ρ̂n, and

ỹn+1 = µ̃n + ρ̃nyn, (9)

where (µ̃n, ρ̃n)> is the LSE of (µ, ρ)> satisfying (
∑n−1

j=1 xjx
>
j )(µ̃n, ρ̃n)> =

∑n−1
j=1 xjyj+1, with

xj = (1, yj)
>. Moreover, assume that σ2 = var(ε1) <∞. Then, the MSPEs of ŷn+1 and ỹn+1

are given by

MSPEA = E(yn+1 − ŷn+1)2 = σ2 + E{(µ̂n − µ) + (ρ̂n − ρ)yn}2, (10)

and

MSPEB = E(yn+1 − ỹn+1)2 = σ2 + E{(µ̃n − µ) + (ρ̃n − ρ)yn}2, (11)

respectively. By making use of the moment bounds and limiting distributions established

in Section 2, we obtain asymptotic expressions for MSPEA and MSPEB in Section 3. These

expressions reveal that the normalizing constants of MSPEA and MSPEB differ markedly from
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those of MSEA and MSEB, but ordering of MSPEA and MSPEB is still asymptotically the

same as for MSEA and MSEB. As a result, rules (R1) to (R4) can also be used to determine

the more efficient predictor between ŷn+1 and ỹn+1.

Unfortunately, (R1) to (R4), requiring knowledge of ρ and the behavior of the unknown

error distribution near the origin, are rarely implemented in practice. Therefore, the last but

possibly most important goal of this paper is to develop a data-driven method that can choose

the more efficient predictor (estimator) between ŷn+1 and ỹn+1 (ρ̂n+1 and ρ̃n+1) from the MSPE

(MSE) point of view. To achieve this goal, in Section 4, we define the accumulated prediction

errors (APEs) of ŷn+1 and ỹn+1, APEA and APEB, respectively, as

APEA =
n−1∑
i=M1

(yi+1 − ŷi+1)2, (12)

and

APEB =
n−1∑
i=M2

(yi+1 − ỹi+1)2, (13)

where M1 and M2 are prescribed positive integers, and propose choosing the predictor (esti-

mator) with the smaller APE. The whole selection scheme is summarized in three steps: (S1)

to (S3). Instead of estimating ρ, c and α in (3) directly, (S1) to (S3) take the approach of

letting the predictor’s past performance speak for itself, which seems more closely related to

the intrinsic nature of the underlying problem. In particular, by making use of this feature, we

show in Theorem 7 that the predictor and the estimator selected by (S1) to (S3) are asymp-

totically equivalent to the ones selected by (R1) to (R4), thus ensuring the validity of (S1) to

(S3).

In Section 5, the asymptotic results developed for (S1) to (S3) are illustrated by numerical

simulations. The usefulness of (S1) to (S3) is also demonstrated by analyzing three time series

datasets from studies in quality control, insect behavior and epidemiology. All these series are

positive and exhibit significant AR(1) features. Our analysis shows that regardless of whether

the series is stationary or nonstationary, (S1) to (S3) can always choose the predictor with the

smaller empirical MSPE, which is a suitable surrogate for the unobservable MSPE. The proofs

of the theoretical results presented in Section 4 are deferred to the Appendix, whereas those
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in Sections 2 and 3 are provided in the supplementary document in light of space constraint.

2. ASYMPTOTIC PROPERTIES OF ρ̂n

Our aim in this section is to pursue the first and the second goals mentioned in Section

1. To facilitate the exposition, we shall assume throughout the rest of this paper that y0 = 0,

which yields yt =
∑t−1

j=0 ρ
jεt−j for t ≥ 1. We first derive the limiting distribution of ρ̂n, establish

a bound for the qth moment of n1/α(ρ̂n−ρ) with q > 0, and provide an asymptotic expression

for MSEA = E(ρ̂n − ρ)2 in the case of 0 ≤ ρ < 1. Note that since ρ̂n − ρ = min2≤t≤n εt/yt−1,

ρ̂n is always positively biased.

Theorem 1. Assume (1) with 0 ≤ ρ < 1 and (3). If

E(εq11 ) <∞, for some q1 > 0, (14)

then

E{n1/α(ρ̂n − ρ)}q = O(1), for any q > 0. (15)

Moreover, if

E(εq21 ) <∞, for some q2 > α, (16)

then (4) follows, and

E(ρ̂n − ρ)2 = n−2/α
( α

cMα

)2/α
Γ
(α + 2

α

)
+ o(n−2/α), (17)

where Γ(·) denoting the gamma function.

Remark 1. Equation (17) is an immediate consequence of (4) and (15). To see this, note

first that (15) implies that E{n1/α(ρ̂n − ρ)}2+δ = O(1) for some δ > 0, which in turn entails

the uniform integrability of {n2/α(ρ̂n − ρ)2}. This latter property together with (4) yields

lim
n→∞

n2/αE(ρ̂n − ρ)2 =
( α

cMα

)2/α
∫ ∞

0

exp(−tα/2)dt =
( α

cMα

)2/α
Γ
(α + 2

α

)
,
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and hence (17) follows. Similarly, (4) and the uniform integrability of {n1/α(ρ̂n − ρ)} lead to

an asymptotic expression for the bias of ρ̂n,

E(ρ̂n − ρ) = n−1/α
( α

cMα

)1/α
Γ
(α + 1

α

)
+ o(n−1/α). (18)

Remark 2. Assumption (14) is quite general because it holds even when the first moment of ε1

does not exist. At first glance, (16) seems to be restrictive when α is large. This assumption,

however, is indispensable in proving (4) and (17). Indeed, we have found that the rate of

convergence of ρ̂n can be faster than n1/α when (16) is violated. While investigating the

limiting distribution and the MSE of ρ̂n in situations where (16) fails to hold is of theoretical

interest, these types of problems require a separate treatment and are not pursued in this

paper.

A unit-root counterpart of Theorem 1 is developed in the next theorem.

Theorem 2. Assume (1) with ρ = 1 and (3). If (14) holds, then

E{n1+(1/α)(ρ̂n − ρ)}q = O(1), for any q > 0. (19)

Moreover, if

E(εq21 ) <∞, for some q2 > 1, (20)

then (7) follows, and

E(ρ̂n − ρ)2 = n−2(1+α−1)µ−2
{α(α + 1)

c

}2/α
Γ
(α + 2

α

)
+ o(n−2(1+α−1)). (21)

Remark 3. In view of the argument given in Remark 1, it is not surprising that (21) can be

obtained directly from (7) and (19). These two equations also yield an asymptotic expression

for the bias of ρ̂n,

E(ρ̂n − ρ) = n−(1+α−1)µ−1
{α(α + 1)

c

}1/α
Γ
(α + 1

α

)
+ o(n−(1+α−1)), (22)

in the case of ρ = 1.

Remark 4. Condition (20), precluding only some heavy-tailed distributions, seems flexible

enough to accommodate a wide range of applications. The appearance of µ in (7) and (21) also
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suggests that (20) is difficult to be weakened. In fact, when (20) is violated, one can construct

examples showing that the rate of converge of ρ̂n to 1 is faster than n1+(1/α). However, the

details are beyond the scope of this paper and will be reported elsewhere.

We now have achieved the first goal of this paper through Theorem 2. To attain the second

goal, we need asymptotic expressions for MSEB = E(ρ̃n − ρ)2 in addition to those for MSEA

given in Theorems 1 and 2. Before proceeding further, it is worthwhile to investigate the

convergence rate of ρ̃n. By Chan (1989), it follows that for µ > 0 and 0 ≤ ρ < 1,

(n1/2(µ̃n − µ), n1/2(ρ̃n − ρ))> ⇒ Z1, (23)

and for µ > 0 and ρ = 1,

(n1/2(µ̃n − µ), n3/2(ρ̃n − ρ))> ⇒ Z2, (24)

where⇒ denotes convergence in distribution and Z1 and Z2 are bivariate normal distributions

with mean vectors zero and covariance matrices

A =

(
1 µ

1−ρ
µ

1−ρ ( µ
1−ρ)2 + σ2

1−ρ2

)−1

σ2, and B =

(
1 µ

2
µ
2

µ2

3

)−1

σ2,

respectively. Unlike the normalizing constants in (4) and (7), those in (23) and (24) are

independent of α. Moreover, (4), (7), (23) and (24) indicate that in both stationary and unit

root cases, the convergence rate of ρ̂n is faster than that of ρ̃n if 0 < α < 2, and is slower if

α > 2. In the critical case of α = 2, both estimators share the same convergence rate, which

is n−1/2 when 0 ≤ ρ < 1, and n−3/2 when ρ = 1.

In the following, we shall provide moment bounds for n1/2(ρ̃n − ρ) with 0 ≤ ρ < 1, and

n3/2(ρ̃n− ρ) with ρ = 1. These bounds can be used in conjunction with (23) and (24) to yield

the desired asymptotic expressions for MSEB. By an argument similar to that used by Yu,

Lin and Cheng (2012), it can be shown that if

E|δ1|s <∞, for some s > 10, (25)

and if there exist positive numbers K, η1, η2 and M such that for all m ≥M and |x− y| ≤ η1,

the distribution function of m−1/2
∑m

t=1(εt − µ), Fm(·), satisfies

|Fm(x)− Fm(y)| ≤ K|x− y|η2 , (26)
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then

E|n1/2(ρ̃n − ρ)|γ1 = O(1), 0 ≤ ρ < 1, (27)

and

E|n3/2(ρ̃n − ρ)|γ1 = O(1), ρ = 1, (28)

where γ1 is some positive number greater than 2. Combining (27) and (28) with (23) and (24)

gives

lim
n→∞

nE(ρ̃n − ρ)2 = 1− ρ2, 0 ≤ ρ < 1, (29)

and

lim
n→∞

n3E(ρ̃n − ρ)2 =
12σ2

µ2
, ρ = 1. (30)

It is clear from (17), (21), (29) and (30) that from the MSE point of view, ρ̂n is again

better (worse) than ρ̃n when 0 < α < 2 (α > 2). Moreover, since (17) and (21) imply that

for α = 2, limn→∞ nE(ρ̂n − ρ)2 = 2{c[σ2(1 − ρ2)−1 + µ2(1 − ρ)−2]}−1 if 0 ≤ ρ < 1, and

limn→∞ n
3E(ρ̂n− ρ)2 = 6/(cµ2) if ρ = 1, one gets from these identities and (29) and (30) that

for α = 2 and 0 ≤ ρ < 1,

lim
n→∞

nE(ρ̂n − ρ)2 < lim
n→∞

nE(ρ̃n − ρ)2 if and only if c >
2(1− ρ)

(1 + ρ)µ2 + (1− ρ)σ2
, (31)

and for α = 2 and ρ = 1,

lim
n→∞

n3E(ρ̂n − ρ)2 < lim
n→∞

n3E(ρ̃n − ρ)2 if and only if c > 1/(2σ2). (32)

To conclude, the above comparison suggests the following rules for choosing the better

estimator (in terms of MSE) between ρ̂n and ρ̃n:

(R1) Choose ρ̂n if 0 < α < 2;

(R2) Choose ρ̃n if α > 2;
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(R3) For α = 2 and 0 ≤ ρ < 1, choose ρ̂n if c > 2(1− ρ){(1 + ρ)µ2 + (1− ρ)σ2}−1, ρ̃n if c <

2(1−ρ){(1+ρ)µ2+(1−ρ)σ2}−1, and either ρ̂n or ρ̃n if c = 2(1−ρ){(1+ρ)µ2+(1−ρ)σ2}−1;

(R4) For α = 2 and ρ = 1, choose ρ̂n if c > 1/(2σ2), ρ̃n if c < 1/(2σ2), and either ρ̂n or ρ̃n if

c = 1/(2σ2).

However, since ρ, α, c, µ and σ2 are unknown, (R1) to (R4) seem to be practically irrelevant.

In Section 4, we shall resolve this difficulty using a data-driven method based on the APE.

3. MEAN SQUARED PREDICTION ERROR

3.1. The MSPE of ŷn+1

Throughout this section it will be assumed that 0 < σ2 = var(ε1) <∞. Recall the definition

of ŷn+1 given in (8). In the case of 0 ≤ ρ < 1, straightforward calculations yield

yn+1− ŷn+1 = δn+1−{(ρ̂n− ρ)(yn− µy) + [(1− ρ)ȳn−1− µ]− (ρ̂n− ρ)(ȳn−1− µy) + zn}, (33)

where µy = µ/(1− ρ), ȳn = n−1
∑n

j=1 yj and zn = (yn− y1)/(n− 1). Since δn+1 is independent

of ρ̂n, yn, ȳn−1 and zn, it follows from (33) that the MSPE of ŷn+1, MSPEA, obeys,

MSPEA − σ2 = E{(ρ̂n − ρ)(yn − µy) + [(1− ρ)ȳn−1 − µ]− (ρ̂n − ρ)(ȳn−1 − µy) + zn}2. (34)

Moreover, it is shown in the supplementary materials that (i) the orders of the magnitude of zn

and (ρ̂n−ρ)(ȳn−1−µy) are negligible compared to that of (1−ρ)ȳn−1−µ, (ii) n(1/2)+(1/α)[(1−
ρ)ȳn−1−µ](ρ̂n−ρ)(yn−µy) has an asymptotic mean of zero, and (iii) n1/α(ρ̂n−ρ) and yn−µy
are asymptotically independent. These facts, together with (15) and (34), lead to

MSPEA − σ2 = E(yn − µy)2E(ρ̂n − ρ)2 + E[(1− ρ)ȳn−1 − µ]2 + o(max{n−1, n−2/α}). (35)

Relation (35) points out that to obtain MSPEA − σ2 from the MSE of ρ̂n, one needs not only

to multiply the latter by an adjustment factor, E(yn−µy)2, which converges to σ2/(1− ρ2) as

n→∞, but also to add the MSE of (1−ρ)ȳn−1, which is a root-n consistent ”semi-population”

estimator of µ. Based on (35), the next theorem provides an asymptotic expression for the

MSPEA in the case of 0 ≤ ρ < 1.

11



Theorem 3. Assume (1) with 0 ≤ ρ < 1 and (3). Suppose

E(εq21 ) <∞, for some q2 > max{α, 2}. (36)

Then,

MSPEA − σ2 = n−2/αL0(α, c, ρ, σ2) + σ2n−1 + o(max{n−1, n−2/α}), (37)

where

L0(α, c, ρ, σ2) = Γ((α + 2)/α){α/(cMα)}2/α{σ2/(1− ρ2)}. (38)

When ρ = 1, an alternative decomposition of yn+1 − ŷn+1 is required: yn+1 − ŷn+1 =

δn+1 − {(ρ̂n − 1)(yn − ȳn−1) + (zn − µ)}, which implies

MSPEA − σ2 = E((ρ̂n − 1)(yn − ȳn−1) + (zn − µ))2. (39)

It is easy to see that limn→∞ nE(zn − µ)2 = σ2. In addition, we show in the supplementary

materials that E{(ρ̂n− 1)(yn− ȳn−1)(zn−µ)} = o(max{n−1, n−2/α}), and n1+(1/α)(ρ̂n− 1) and

(yn− ȳn−1)/n are asymptotically independent. These facts, together with (39) and (19), yield

MSPEA − σ2 = E(yn − ȳn−1)2E(ρ̂n − 1)2 + E(zn − µ)2 + o(max{n−1, n−2/α}). (40)

The major difference between the right-hand sides of (35) and (40) is that the adjustment

factor associated with the MSE of ρ̂n, E(yn− ȳn−1)2, of the latter grows at the rate n2 whereas

the former is bounded by a finite constant independent of n. In addition, the second terms

on the right-hand sides of (40) and (35) are MSEs of two different consistent ”estimators” of

µ, namely, zn and (1 − ρ)ȳn−1, respectively. Note however that the MSE of zn in the case of

ρ = 1 and that of (1− ρ)ȳn−1 in the case of 0 ≤ ρ < 1 are both asymptotically equivalent to

σ2/n. With the help of (40), we develop a unit-root counterpart of Theorem 3 in Theorem 4.

Theorem 4. Assume (1) with ρ = 1 and (3). Suppose

E(εq21 ) <∞, for some q2 > 2. (41)
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Then,

MSPEA − σ2 = n−2/αL1(α, c) + σ2n−1 + o(max{n−1, n−2/α}), (42)

where

L1(α, c) = 4−1Γ((α + 2)/α){α(α + 1)/c}2/α. (43)

Equations (35), (37), (40) and (42) reveal that MSPEA − σ2 is mainly contributed by the

MSE of a root-n consistent ”estimator” of µ when 0 < α < 2, by the MSE of ρ̂n times an

adjustment factor when α > 2, and by the sum of both MSEs when α = 2. Equations (17),

(21), (37) and (42) further indicate that while ρ = 1 can improve the convergence rate of the

MSE of ρ̂n, there is no corresponding effect on the MSPE of ŷn+1. To explain this, we note

that as shown in (35) and (40), the contribution of the MSE of ρ̂n to MSPEA − σ2 needs to

be adjusted for the variability of yn, viz E(yn − ȳn−1)2 when ρ = 1 and E(yn − µy)
2 when

0 ≤ ρ < 1. Since E(yn − µy)2 = O(1) in the case of 0 ≤ ρ < 1 and E(yn − ȳn−1)2 ∼ n2 in the

case of ρ = 1, the gain of the unit root in reducing the MSE of ρ̂n is completely eliminated by

the variability of yn. Finally, we remark that the moment condition (36) [(41)] in Theorem 3

(Theorem 4) appears to be reasonable because σ2 <∞ and (16) [(20)] are needed in the proof

of (37) [(42)].

3.2. The MSPE of ỹn+1

In this section, we investigate the MSPE of ỹn+1 under model (1). Note first that

yn+1 − ỹn+1 = δn+1 − x>n (µ̃n − µ, ρ̃n − ρ)>, (44)

where xn is defined after (9). Assume that (26) is true and (25) holds with s > 12. Then, by

an argument similar to that used in Yu, Lin and Cheng (2012), one has for 0 ≤ ρ < 1,

n1/2x>n (µ̃n − µ, ρ̃n − ρ)> ⇒ x>Z1, (45)

where x has the same distribution as that of (1,
∑∞

j=0 ρ
jε1−j)

> and is independent of Z1 defined

in Section 2, and for some η > 0,

E|n1/2x>n (µ̃n − µ, ρ̃n − ρ)>|2+η = O(1). (46)
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Combining (44)-(46) yields

lim
n→∞

n(MSPEB − σ2) = 2σ2. (47)

For ρ = 1, it can similarly be shown that

n1/2x>n (µ̃n − µ, ρ̃n − ρ)> ⇒ (1, µ)Z2, (48)

where Z2 is defined in Section 2, and

lim
n→∞

n(MSPEB − σ2) = E((1, µ)Z2)2 = 4σ2. (49)

Equations (47) and (49) indicate that the convergence rate of MSPEB−σ2 and its correspond-

ing limiting value, in sharp contrast to those of MSPEA−σ2, are independent of the distribu-

tional properties of ε1. Indeed, using arguments similar to those presented in Ing (2001) and

Yu, Lin and Cheng (2012), we can link the second-order MSPE of the least squares predictor

to the Fisher information matrix,
∑n−1

j=1 xjx
>
j , and express (47) and (49) in a unified way:

lim
n→∞

n(MSPEB − σ2)

σ2
= plimn→∞

log det(
∑n−1

j=1 xjx
>
j )

log n
, (50)

noting that plimn→∞(log det(
∑n−1

j=1 xjx
>
j )/ log n) = 2 if 0 ≤ ρ < 1, and 4 if ρ = 1. Since

the right-hand side of (50) corresponds only to the order of growth of the determinant of the

Fisher information matrix, it provides an explanation of why (i) limn→∞ n(MSPEB − σ2) is

independent of the distributional properties of ε1, and (ii) limn→∞ n(MSPEB−σ2) in the case

of ρ = 1 is always larger than that in the case of 0 ≤ ρ < 1.

According to (47), (49), (37) and (42), the ordering of MSPEA and MSPEB is asymptot-

ically the same as for MSEA and MSEB. Therefore, with ρ̂n and ρ̃n replaced by ŷn+1 and

ỹn+1, respectively, (R1) to (R4) can also be used to determine the more efficient predictor

between ŷn+1 and ỹn+1. [In the sequel, these predictor selection rules are still called “(R1) to

(R4)”.] Unfortunately, as noted at the end of Section 2, (R1) to (R4) cannot be implemented

in practice unless ρ, α, c, µ and σ2 are available.

4. PREDICTOR SELECTION BASED ON THE APE
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The goal of this section is to choose the asymptotically more efficient predictor (estimator)

between ŷn+1 and ỹn+1 (ρ̂n and ρ̃n) in a data-driven fashion. Instead of estimating the un-

known parameters in (R1) to (R4) and then implementing these rules based on the estimated

parameters, we suggest calculating APEA and APEB (defined in Section 1) and then choosing

the predictor (estimator) with the smaller APE value. Through investigation of the asymp-

totic behaviors of APEA and APEB, we show in Theorems 5 and 6 below that the ordering of

APEA and APEB is asymptotically equivalent to that of MSPEA and MSPEB, which provides

the theoretical underpinning for the proposed predictor (estimator) selection method. Note

that the asymptotic properties of APE based on least squares predictors have been extensively

studied; see, among many others, Wei (1987, 1992), Hemerly and Davis (1989), Speed and Yu

(1993), and Ing (2004, 2007). The major technical tools used in these papers are some recur-

sive formulas developed for least squares estimates; see, for example, (2.8) of Wei (1987) and

(3.10) of Ing (2004). While these formulas can be directly applied to APEB, their extensions

to APEA seem difficult to obtain because, unlike ρ̃n, ρ̂n has no obvious recursive nature. We

therefore take a quite different approach to dealing with the asymptotic properties of APEA,

as detailed in the Appendix. Let

L(fε1(·), α, ρ) = σ2I{0<α≤2,0≤ρ≤1} + L0(α, c, ρ, σ2)I{α≥2,0≤ρ<1} + L1(α, c)I{α≥2,ρ=1}, (51)

where L0(α, c, ρ, σ2) and L1(α, c) are given in (38) and (43), respectively, and define

L(σ2, ρ) = 2σ2I{0≤ρ<1} + 4σ2I{ρ=1}. (52)

Theorem 5. Assume (1) with 0 ≤ ρ ≤ 1, (3) and (36). Let M1 in APEA be any integer ≥ 2

and remain fixed as n increases. Then, for 0 < α ≤ 2,

APEA =
n−1∑
t=M1

δ2
t+1 + L(fε1(·), α, ρ) log n+ op(log n), (53)

where L0(α, c, ρ, σ2) and L1(α, c) are defined in (38) and (43), respectively, and for α > 2,

APEA =
n−1∑
t=M1

δ2
t+1 + Cn, (54)

where Cn satisfies limn→∞ P(Cn/ log n > K) = 1 for any K <∞.
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Theorem 6. Assume (1) with 0 ≤ ρ ≤ 1, (3) and (41). Let M2 in APEB be the first integer

j such that the LSE (µ̃j, ρ̃j)
> is uniquely defined. Then,

APEB =
n−1∑
t=M2

δ2
t+1 + L(σ2, ρ) log n+ op(log n). (55)

It is worth pointing out that the coefficient associated with the log n term in (53) is

exactly the same as the one associated with the n−1 term in (37) if 0 ≤ ρ < 1, and (42)

if ρ = 1. The same correspondence emerges between (55) and (47) when 0 ≤ ρ < 1, and

(55) and (49) when ρ = 1. These coincidences, together with (54), yield (i) for α > 2,

limn→∞ P(APEB < APEA) = 1, (ii) for 0 < α < 2, limn→∞ P(APEA < APEB) = 1, (iii) for

α = 2, 0 ≤ ρ < 1 and c < 2(1−ρ){(1+ρ)µ2+(1−ρ)σ2}−1, limn→∞ P(APEB < APEA) = 1, (iv)

for α = 2, 0 ≤ ρ < 1 and c > 2(1−ρ){(1+ρ)µ2+(1−ρ)σ2}−1, limn→∞ P(APEA < APEB) = 1,

(v) for α = 2, ρ = 1 and c < 1/(2σ2), limn→∞ P(APEB < APEA) = 1, and (vi) for α = 2,

ρ = 1 and c > 1/(2σ2), limn→∞ P(APEA < APEB) = 1. Combining (i) to (vi) leads to the

following sample counterpart of (R1) to (R4):

(S1) Choose ŷn+1 (ρ̂n) if APEA < APEB.

(S2) Choose ỹn+1 (ρ̃n) if APEA > APEB.

(S3) Choose either ŷn+1 or ỹn+1 (either ρ̂n or ρ̃n) if APEA = APEB.

(The issue of determining M1 and M2 for APEA and APEB from a finite-sample point of view

will be addressed in the next section.)

The following theorem, which is an immediate consequence of Theorems 5 and 6, confirms

the validity of (S1) to (S3). Let y̌n+1(S) and y̌n+1(R) [ρ̌n(S) and ρ̌n(R)] denote the predictors

(estimators) selected by (S1) to (S3) and (R1) to (R4), respectively.

Theorem 7. Assume that the assumptions of Theorems 5 and 6 hold. Then,

lim
n→∞

P(y̌n+1(S) = y̌n+1(R)) = 1 and lim
n→∞

P(ρ̌n(S) = ρ̌n(R)) = 1.
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Some remarks regarding Theorem 7 are in order.

Remark 5. Theorem 7 reveals that (S1) to (S3) can ultimately choose the more efficient

predictor (estimator) between ŷn+1 and ỹn+1 (ρ̂n and ρ̃n) regardless of whether 0 ≤ ρ < 1

or ρ = 1. However, this goal is not directly relevant to unit root tests because, as shown in

Section 3 (Section 2), the relative performance of ŷn+1 and ỹn+1 (ρ̂n and ρ̃n) is determined

not only by ρ, but also by α and c. Moreover, while it is possible to estimate c and α from

some kernel density estimators of fε1(x) based on the AR residuals, asymptotic behaviors of

the resultant estimators of c and α are usually difficult to derive, particularly when α ∈ (0, 1]

(which yields that fε1(x) is nonzero or has a pole at the origin).

Remark 6. Consider a trend stationary model,

yt = ρyt−1 + β + γt+ δt, (56)

where 0 ≤ ρ < 1, γ > 0 and β is large enough such that yt’s are always positive. Model (56)

can be expressed as

yt = β∗ + γ∗t+
∞∑
j=0

αjεt−j, (57)

where β∗ = (β − µ)/(1− ρ)− γρ/(1− ρ)2 and γ∗ = γ/(1− ρ). Unlike the variance of model

(1) with ρ = 1, which grows to infinity as t does, the variance of model (57) does not vary

with t. On the other hand, a linear time trend is a dominant feature shared by both models.

As a result, when data are truly generated from model (56), ρ̂n and ρ̃n [defined in (2) and (9)]

become upwardly biased estimators of ρ. Moreover, the unit root tests (like those of Dickey

and Fuller 1981) for ρ = 1 and γ = 0 in (56) tend to be biased towards accepting ρ = 1 even if

ρ < 1. Fortunately, this dilemma is not an issue of overriding concern from a prediction point

of view. More specifically, if it is unknown whether the data are generated from model (1)

with 0 ≤ ρ ≤ 1 or model (56) and the goal is to choose the best predictor among ŷn+1, ỹn+1

and y∗n+1 in terms of MSPE, where y∗n+1 is the least squares predictor of yn+1 based on (56) and

y1, . . . yn, then one only needs to compute APEA, APEB and APEC =
∑n−1

i=M3
(yi+1 − y∗i+1)2,

and choose the predictor with the smallest APE value, where M3 is the first integer j such
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that the LSE associated with y∗j+1 is uniquely defined. In fact, by an argument similar to that

used to prove Theorems 5 and 6, it can be shown that the predictor chosen in this manner is

asymptotically equivalent to the best one among ŷn+1, ỹn+1 and y∗n+1.

Remark 7. It is also possible to improve prediction performance of (S1) to (S3) through the

following modified procedure: (i) (S1) to (S3) are used to choose the better predictor between

ŷn+1 and ỹn+1 and the better estimator between ρ̂n and ρ̃n, (ii) the residuals produced by the

better estimator are approximated by a parametric family of distributions and with this family

of distributions, a new estimator of ρ and a new predictor of yn+1, denoted by ρ̇n and ẏn+1,

respectively, are derived, (iii) the APE associated with ẏn+1, say APED, is computed and the

final predictor is ẏn+1 if APED < min{APEA,APEB}, and is the one chosen in (i) otherwise.

An investigation of the extent to which this modified procedure performs satisfactorily would

be interesting future work.

5. NUMERICAL STUDIES

We now present some simulations in support of the theoretical results established for (S1)

to (S3). The usefulness of (S1) to (S3) is also illustrated by analyzing three time series data

sets.

5.1 Finite sample performance of (S1) to (S3)

We generate n ∈ {200, 500, 1000, 2000} observations from model (1), where ρ ∈ {0.2, 0.5, 0.8, 1}
and εt’s are i.i.d. Gamma(α, θ) or Beta(α, θ) distributions, with α ∈ {1, 2, 4} and θ ∈ {1, 2, 6}.
The pdfs of Gamma(α, θ) and Beta(α, θ) distributions are given by Γ−1(α)xα−1θ−αexp(−x/θ)
and Γ(α+θ)Γ−1(α)Γ−1(θ)xα−1(1−x)θ−1, respectively. For each combination of ρ’s and distribu-

tions, we ran 500 simulations and recorded the ratios, F
(500)
n = (1/500)

∑500
l=1 I{y̌(l)n+1(S)=y̌n+1(R)},

in Tables 1 to 3, where y̌
(l)
n+1(S) denotes the predictor selected by (S1) to (S3) in the lth

simulation run. Obviously, a larger F
(500)
n means a better performance of (S1) to (S3). In

fact, since F
(500)
n is an empirical estimate of P(y̌n+1(S) = y̌n+1(R)), Theorem 7 suggests that

F
(500)
n will be close to 1 when n is large. The M1 and M2 in APEA and APEB are both set
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to 20. As will be seen later, these specifications can lead to quite satisfactory performances

except in some difficult cases. To help illustrate the finite-sample performance of (S1) to (S3),

the empirical estimates of nb(α)(MSPEA − σ2), denoted by ŜA,n, are also obtained for each

coefficient/distribution combination, where b(α) = 1 if 0 < α ≤ 2 and 2/α if α > 2. The

closeness of ŜA,n to its limiting value, namely L(fε1(·), α, ρ) given in (51), is measured by the

ratio RA,n = ŜA,n/L(fε1(·), α, ρ).

Tables 1 and 2 summarize F
(500)
n for α = 1 and α = 2, respectively. The performance of

(S1) to (S3) under these settings is affected mainly by

P (fε1(·), α, ρ) =
max{L(fε1(·), α, ρ), L(σ2, ρ)}
min{L(fε1(·), α, ρ), L(σ2, ρ)}

,

and RA,200, where L(σ2, ρ) is defined in (52). Note that P (fε1(·), α, ρ) measures the ”degree

of distinguishability” between the prediction capabilities of ŷn+1 and ỹn+1, and a large (small)

value of P (fε1(·), α, ρ) represents that it is easy (difficult) to tell the difference between the

two predictors. On the other hand, RA,200 is related to the convergence rate of n{E(yn+1 −
ŷn+1)2 − σ2}. A large |RA,200 − 1| suggests that the behaviors of the squared prediction

errors, (yi+1 − ŷi+1)2, are relatively difficult to control for small or even moderate i. These

uncontrollable early errors can actually dominate APEA if the sample size n is not large enough

(see Section 5 of Wei (1992) for a related discussion), and make the ordering of APEA and

APEB different from that of L(fε1(·), α, ρ) and L(σ2, ρ), thereby deteriorating the performance

of (S1) to (S3).

To get a better understanding of the role played by RA,200 and P (fε1(·), α, ρ) in affecting

the finite sample performance of (S1) to (S3), we classify the pairs, (RA,200, P (fε1(·), α, ρ)),

into six categories: (G, S), (G, M), (G, L), (B, S), (B, M) and (B, L), where RA,200 ∈ G if

|RA,200 − 1| < 0.1, RA,200 ∈ B if |RA,200 − 1| ≥ 0.1, P (fε1(·), α, ρ) ∈ S if P (fε1(·), α, ρ) < 1.4,

P (fε1(·), α, ρ) ∈ M if 1.4 ≤ P (fε1(·), α, ρ) < 1.9, and P (fε1(·), α, ρ) ∈ L if P (fε1(·), α, ρ) > 1.9.

Each coefficient/distribution combination belongs to one category, which is also recorded in

Tables 1 and 2. According to the above discussion, (S1) to (S3) should perform well in category

(G, L) or (G, M), but poorly in category (B, S) or (B, M). Our simulation results confirm

this conjecture. Specifically, when n = 200 and (RA,200, P (fε1(·), α, ρ)) ∈ (G, L), (S1) to (S3)
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choose y̌n+1(R) about 76%-92% of the time for 0 < ρ < 1, and over 93% of the time for ρ = 1.

This ratio exceeds 93% in both stationary and unit root cases as n increases to 2000. In

the (G, M) category, (S1) to (S3) perform slightly worse, but they can still identify y̌n+1(R)

between 81%−93% of the time based on 2000 observations. On the other hand, (S1) to (S3) in

the (B, M) category only select y̌n+1(R) for 30%-80% of the simulations even when n = 2000

(noting that there is no coefficient/distribution combination falling into the (B, S) category).

The performance of (S1) to (S3) in the (G, S) category is also poor since the corresponding

ratio for identifying y̌n+1(R) falls between 47% and 67% when n = 200, and between 53% and

67% when n = 2000. In contrast, (S1) to (S3) give quite satisfactory results in the (B, L)

category. In particular, when n = 2000, they choose y̌n+1(R) about 81%-92% of the time in

the stationary case, with the percentage exceeding 96% in the unit root case.

It is worth mentioning that a low percentage of identifying y̌n+1(R) in the (G, S) category

does not necessarily lead to serious repercussions because the prediction capabilities of ŷn+1

and ỹn+1 are very similar in this category. On the other hand, improving the performance

of (S1) to (S3) in the (B, M) category seems to be a valid goal to pursue. One natural

way to tackle this problem is to pick a larger M1 for APEA such that the effects of “early

uncontrollable errors” (which are reflected by a large value of |RA,200 − 1|) are diminished,

thereby turning “B” into “G”. Indeed, our (unreported) simulation results show that under

ρ = 0.8 and ε1 ∼ β(2, θ), F
(500)
2000 , with θ = 1, increases from 0.3 to 0.7 as M1 and M2 increase

to 200; F
(500)
2000 , with θ = 2, increases from 0.546 to 0.78 as M1 and M2 increase to 80; and

F
(500)
2000 , with θ = 6, increases from 0.732 to 0.866 as M1 and M2 also increase to 80. These

findings suggest that in the (B, M) category, the choice of M1 and M2 is quite relevant from

a finite sample point of view.

Table 3 summarizes the values of F
(500)
n for α = 4. Note that the ratio P (fε1(·), α, ρ) is

no longer meaningful because MSPEA− σ2 and MSPEB − σ2 have different convergence rates

when α > 2. On the other hand, RA,200 still has an important impact on the finite sample

performance of (S1) to (S3), and hence the values of RA,200 are included in Table 3. The

performance of (S1) to (S3) is satisfactory under Beta(4, θ) errors. For example, in the case of

0 < ρ < 1, they can identify y̌n+1(R) between 60%-99% of the time when n = 200, and 81%-
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100% of the time when n = 2000. (S1) to (S3) deliver particularly good results under the unit

root model with Beta(4, θ) errors since they choose y̌n+1(R) in all simulations from n = 200

to n = 2000. The performance of (S1) to (S3) under Gamma(4, θ) errors, however, depends

on the value of RA,200, and becomes worse as RA,200 becomes larger. More specifically, in the

case of RA,200 ≤ 2.11, (S1) to (S3) identify y̌n+1(R) between 67% and 99% of the simulations

when n = 500, and between 81% and 100% of the simulations when n = 2000. In contrast, if

RA,200 ≥ 2.4, (S1) to (S3) only select y̌n+1(R) between 51% and 66% of the time even when

n = 2000. Since under Gamma(4, θ) errors, not only RA,200’s but also RA,2000’s are significantly

larger than 1, it seems difficult to enhance the performance of (S1) to (S3) through choosing

a larger M1 or M2. Nevertheless, we have found that the frequency of correct identification of

(S1) to (S3) in the case of RA,200 ≥ 2.4 can improve to 75%, provided n increases to 20000.

5.2 Data Analysis

We analyze three positive-valued time series with sample sizes of n = 45, 82 and 71 to demon-

strate the usefulness of our predictor selection method. The first series, reported on page 134

of Burr (1976), consists of 45 daily average number of defects per truck found in the final

inspection at the end of the assembly line of a truck manufacturing plant. Example 6.1 of Wei

(2006) indicates that a stationary AR(1) model may be suitable for this series. The second

series is a laboratory series of blowfly data taken from Nicholson (1950). A fixed number of

adult blowflies with balanced sex ratios were kept in a cage and given a fixed amount of food

daily. The blowfly population was then enumerated every other day for approximately two

years, giving a total of 364 observations. Following Example 6.3 of Wei (2006), we only use

the latest 82 data points in our analysis. It is shown in this example that a stationary AR(1)

model also fits these data quite well. The third series is the yearly cancer death rate (per

100,000 population) of Pennsylvania between 1930 and 2000 published in the 2000 Pennsylva-

nia Vital Statistics Annual Reports by the Pennsylvania Department of Health. Example 6.5

of Wei (2006) shows that while this series is clearly nonstationary with an increasing trend,

it still exhibits first-order autoregressive behavior. Plots of the data and the sample autocor-

relation and the partial autocorrelation functions (ACFs and PACFs) given in Figure 1 also

21



demonstrate the appropriateness of AR(1) models for each series. Note that these ACFs and

PACFs are computed in terms of correlations rather than covariances because, as shown in

Nielsen (2006), the latter may be inappropriate for non-stationary time series. In view of the

features of these series, it would be interesting to ask whether (S1) to (S3) can choose the

better predictor between ŷn+1 and ỹn+1 for each series.

To investigate this question, we split each series, {y1, · · · , yn}, into two parts. The first

part contains the first 90% of the data points, {y1, · · · , yTn}, which are used for deriving

APEA(Tn) =
∑Tn−1

i=M1
(yi+1 − ŷi+1)2 and APEB(Tn) =

∑Tn−1
i=M2

(yi+1 − ỹi+1)2, and implementing

(S1) to (S3) based on APEA(Tn) and APEB(Tn), where Tn = bn × 0.9c with bxc denoting

the largest integer ≤ x. The second part contains n − Tn data points, which are reserved

for calculating empirical MSPEs (EMSPEs), EMSPEA = (n− Tn)−1
∑n−1

i=Tn
(yi+1 − ŷi+1)2 and

EMSPEB = (n− Tn)−1
∑n−1

i=Tn
(yi+1− ỹi+1)2. In light of the simulation results given in Section

5.1, both M1 and M2 in APEA(Tn) and APEB(Tn) are set to 20 for all three datasets. If the

sign of APEA(Tn)−APEB(Tn) is consistent with that of EMSPEA−EMSPEB, then (S1) to

(S3) will choose the predictor with the smaller EMSPE. Since EMSPEA and EMSPEB are

suitable surrogates for the unobservable MSPEA and MSPEB and since these types of errors

are frequently used in practice to make forecast evaluations (Clark and West 2004), (S1) to

(S3) are considered satisfactory if the “sign consistency” phenomenon mentioned above is

observed in each time series.

Our calculations show that in the first series APEA(Tn) = 4.852 < APEB(Tn) = 5.062 and

EMSPEA = 0.0145 < EMSPEB = 0.0148, in the second series APEA(Tn) = 4.901 × 107 >

APEB(Tn) = 4.894× 107 and EMSPEA = 386349.8 > EMSPEB = 360928.1, and in the third

series APEA(Tn) = 334.3 < APEB(Tn) = 348.7 and EMSPEA = 12.986 < EMSPEB = 17.023.

Therefore, the sign consistency phenomenon appears in each series, in spite of the sign being

negative in the first and third series and positive in the second. In summary, our data analysis

reveals that (S1) to (S3) can successfully combine the strengths of ŷn+1 and ỹn+1, thereby

producing better prediction results.

APPENDIX: PROOFS OF THEOREMS 5 and 6

To prove Theorem 5, we need the following lemma, whose proof is given in the supplemen-
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tary document. This lemma provides sufficient conditions for a sequence of random variables

{dn} to satisfy

plimn→∞(log n)−1

n∑
i=1

di = S, (A.1)

where plim denotes the probability limit and S is some constant.

Lemma 1. Let {dn} be a sequence of random variables. Assume (i) there exist a posi-

tive integer M and a positive number Ū such that for all n ≥ M , E(n2d2
n) ≤ Ū ; (ii)

limn→∞ E(ndn) = S; and (iii) there exist 0 < η < 1 and a sequence of positive numbers {an},
with limn→∞ an = ∞ and log an/ log n = o(1), such that maxM≤i≤n/an, iηan≤j≤n |E (QiQj) | =

o(1), where Qi = {idi − E(idi)}. Then (A.1) follows.

We are now ready to prove Theorem 5. We first focus on the case of ρ = 1. By Chow

(1965) and straightforward calculations,
∑n−1

i=2 (yi+1− ŷi+1)2 =
∑n−1

i=2 δ
2
i+1 +

∑n−1
i=2 (yi+1− ŷi+1−

δi+1)2(1 + o(1)) + O(1) a.s., and
∑n−1

i=2 (yi+1 − ŷi+1 − δi+1)2 =
∑n−1

i=2 (zi − µ)2 +
∑n−1

i=2 (ρ̂1 −
1)2(yi− ȳi−1)2 + 2

∑n−1
i=2 (ρ̂1−1)(yi− ȳi−1)(zi−µ). In addition, Theorem 2 of Wei (1987) (with

xi = 1,bi = zi and β = µ) implies
∑n−1

i=2 (zi − µ)2 = σ2 log n + op(log n). In view of these

identities, Theorem 5 follows if one can show that for α = 2,

G1,n +G2,n = 3(2c)−1 log n+ op(log n), (A.2)

for 0 < α < 2,

G1,n +G2,n = op(log n), (A.3)

and for α > 2,

plimn→∞(G1,n +G2,n)/ log n =∞, (A.4)

where G1,n =
∑n−1

i=2 (ρ̂i − 1)2(yi − ȳi−1)2 and G2,n = 2
∑n−1

i=2 (ρ̂i − 1)(yi − ȳi−1)(zi − µ).

We start by proving the most challenging result (A.2). Let M be the smallest positive

integer such that for all i ≥M , E(i3/2(ρ̂i − 1))4 <∞ [noting that the existence of such an M
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is guaranteed by (19)]. It is not difficult to see that (A.2) is ensured by

n−1∑
i=M

(ρ̂i − 1)2(yi − ȳi−1)2 = 3(2c)−1 log n+ op(log n), (A.5)

and

n−1∑
i=M

(ρ̂i − 1)(yi − ȳi−1)(zi − µ) = op(log n). (A.6)

Applying (19), (36), Hölder’s inequality and Chebyshev’s inequality, one has

n−1∑
i=M

(ρ̂i − 1)2(yi − ȳi−1)2 = (µ2/4)
n−1∑
i=M

{i3/2(ρ̂i − 1)}2/i+ op(log n). (A.7)

Let di = {i3/2(ρ̂i − 1)}2/i, Si = E(idi) and Qi = idi − Si. By (19), (36) and (21), it holds

that E(n2d2
n) = O(1) and limn→∞ Sn = 6/(cµ2). Hence conditions (i) and (ii) of Lemma 1 are

satisfied. If we can further show that condition (iii) of Lemma 1 holds, then

n−1∑
i=M

{i3/2(ρ̂i − 1)}2/i = µ−2c−16 log n+ op(log n), (A.8)

which, together with (A.7), leads to (A.5).

Let limn→∞ an =∞, log an/ log n = o(1) and 0 < η < 1. Also choose a sequence of positive

numbers {gn} satisfying limn→∞ gn = ∞ and gn/an = o(1). Define Qj,i = jdj,i − Sj and

Q̃j,i = jd̃j,i − Sj, where dj,i = minign≤s≤j(jεs/ys−1)2 and d̃j,i = minign≤s≤j(jεs/ys−1,i)
2, with

yl,i =
∑l−i−1

r=0 εl−r. By (19), (36), Hölder’s inequality and some algebraic manipulations, one

obtains

max
M≤i≤n/an, ηian≤j≤n

|E{Qi(Qj −Qj,i)}| = o(1),

and

max
M≤i≤n/an, ηian≤j≤n

|E{Qi(Qj,i − Q̃j,i)}| = o(1).

In addition, maxM≤i≤n/an, ηian≤j≤n |E(QiQ̃j,i)| = o(1) follows from E(Qi) = 0 and independence

between Qi and Q̃j,i. As a result, condition (iii) of Lemma 1 holds true. This completes the
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proof of (A.8) and therefore of (A.5). To deal with (A.6), let di = (ρ̂i−1)(yi−ȳi−1)(zi−µ). It is

shown in the supplementary document that E(ndn) = o(1). Using this equation in conjunction

with (19), (36), Hölder’s inequality and an argument similar to that used to prove (A.8), one

obtains (A.1) with S = 0, which results in (A.6). Consequently, (A.2) is proved.

By making use of (19), it is not difficult to verify (A.3). We therefore skip the details. To

show (A.4), note first that G1,n ≥ (ρ̂n − 1)2
∑n−1

i=2 (yi − ȳi−1)2. This inequality and Theorem 2

together imply that for any 0 < ε1 < 1, there exists ε2 > 0 such that

lim inf
n→∞

P(G1,n/n
1−(2/α) > ε2) ≥ 1− ε1. (A.9)

In addition, G2,n = op(n
1−(2/α)) follows from (36), (19) and Hölder’s inequality. Combining

this with (A.9) leads to (A.4). As a result, the proof of Theorem 5 for ρ = 1 is complete. The

proof of Theorem 5 for 0 ≤ ρ < 1 is similar to that for ρ = 1, and is thus omitted. Finally, we

note that Theorem 6 is an immediate consequence of Theorem 2 of Wei (1987).

SUPPLEMENTARY MATERIALS

Supplementary materials contain the proofs of Theorems 1-4 and Lemma 1.
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Table 1: F (500)
n and the categories of (RA,200, P (fε1 (·), α, ρ)) under model (1) with Gamma(1,θ) or Beta(1, θ) errors

Gamma(1, θ) errors β(1, θ) errors

ρ θ n =200 n =500 n =1000 n =2000 Category n =200 n =500 n =1000 n =2000 Category

0.2 1 0.904 0.948 0.960 0.954 (G,L) 0.906 0.944 0.954 0.982 (G,L)
2 0.916 0.922 0.954 0.970 (G,L) 0.912 0.934 0.968 0.966 (G,L)
6 0.906 0.932 0.958 0.988 (G,L) 0.896 0.934 0.968 0.970 (G,L)

0.5 1 0.916 0.948 0.968 0.986 (G,L) 0.880 0.936 0.960 0.976 (G,L)
2 0.900 0.938 0.964 0.976 (G,L) 0.882 0.942 0.950 0.984 (G,L)
6 0.898 0.946 0.972 0.978 (G,L) 0.892 0.956 0.968 0.966 (G,L)

0.8 1 0.764 0.846 0.914 0.938 (G,L) 0.626 0.662 0.778 0.812 (B,L)
2 0.818 0.858 0.912 0.956 (G,L) 0.668 0.772 0.854 0.866 (B,L)
6 0.816 0.854 0.912 0.938 (G,L) 0.740 0.840 0.870 0.920 (B,L)

1.0 1 0.986 1.000 1.000 1.000 (G,L) 0.932 0.974 0.988 0.998 (B,L)
2 0.988 0.998 1.000 1.000 (G,L) 0.972 0.998 0.998 1.000 (G,L)
6 0.996 0.996 0.998 1.000 (G,L) 0.984 0.998 1.000 1.000 (G,L)

Table 2: F (500)
n and the categories of (RA,200, P (fε1 (·), α, ρ)) under model (1) with Gamma(2,θ) or Beta(2, θ) errors

Gamma(2, θ) errors β(2, θ) errors

ρ θ n =200 n =500 n =1000 n =2000 Category n =200 n =500 n =1000 n =2000 Category

0.2 1 0.752 0.824 0.850 0.882 (G,M) 0.472 0.534 0.526 0.530 (G,S)
2 0.790 0.840 0.850 0.880 (G,M) 0.670 0.636 0.648 0.666 (G,S)
6 0.816 0.818 0.828 0.850 (G,M) 0.758 0.776 0.812 0.816 (G,M)

0.5 1 0.836 0.888 0.906 0.932 (G,M) 0.594 0.636 0.658 0.652 (G,S)
2 0.832 0.884 0.882 0.914 (G,M) 0.738 0.750 0.752 0.814 (G,M)
6 0.824 0.886 0.902 0.930 (G,M) 0.782 0.820 0.858 0.884 (G,M)

0.8 1 0.706 0.754 0.786 0.812 (B,L) 0.210 0.244 0.258 0.300 (B,M)
2 0.666 0.694 0.812 0.818 (B,L) 0.358 0.454 0.504 0.546 (B,M)
6 0.668 0.730 0.798 0.820 (B,L) 0.542 0.628 0.664 0.732 (B,M)

1.0 1 0.892 0.938 0.954 0.960 (B,L) 0.938 0.964 0.976 0.994 (G,L)
2 0.888 0.936 0.950 0.966 (B,L) 0.730 0.766 0.772 0.798 (B,M)
6 0.874 0.930 0.968 0.972 (B,L) 0.652 0.668 0.714 0.724 (B,M)

Table 3: F (500)
n and RA,200 under model (1) with Gamma(4,θ) or Beta(4, θ) errors

Gamma(4, θ) errors β(4, θ) errors

ρ θ n =200 n =500 n =1000 n =2000 RA,200 n =200 n =500 n =1000 n =2000 RA,200

0.2 1 0.564 0.676 0.760 0.840 2.090 0.950 0.976 0.994 0.998 1.070
2 0.578 0.672 0.752 0.850 2.050 0.890 0.976 0.982 1.000 1.210
6 0.578 0.710 0.750 0.810 2.110 0.764 0.838 0.922 0.962 1.510

0.5 1 0.452 0.494 0.572 0.660 2.410 0.900 0.912 0.964 0.992 1.190
2 0.438 0.462 0.586 0.620 2.450 0.784 0.888 0.932 0.958 1.380
6 0.428 0.486 0.524 0.624 2.430 0.604 0.726 0.778 0.854 1.750

0.8 1 0.600 0.578 0.512 0.574 4.800 0.992 0.986 0.992 0.994 2.530
2 0.572 0.566 0.538 0.514 4.850 0.942 0.944 0.950 0.968 2.740
6 0.598 0.558 0.534 0.524 4.870 0.780 0.792 0.778 0.810 3.640

1.0 1 0.922 0.986 0.996 1.000 1.600 1.000 1.000 1.000 1.000 1.030
2 0.908 0.976 0.994 1.000 1.600 1.000 1.000 1.000 1.000 1.150
6 0.914 0.972 1.000 0.994 1.600 1.000 1.000 1.000 1.000 1.340
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Figure 1: Plots of the data used in Section 5.2 and their sample ACFs and PACFs
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PREDICTOR SELECTION FOR POSITIVE AUTOREGRESSIVE

PROCESSES

SUPPLEMENTARY MATERIALS

1 PROOFS OF THEOREMS 1 and 2

Since (4) can be directly deduced from Corollary 2.5 of Davis and McCormick (1989) and

since the proofs of (17) and (21) have been given in Remarks 1 and 3, respectively, we only

need to show that (7), (15) and (19) hold true. We start by proving (19), which is ensured by

E(n1+(1/α) min
⌊nδ0⌋+1≤i≤n

εi/yi−1)
q = O(1), for any q > 0, (1.1)

where 0 < δ0 < 1. Because yt’s are monotonically non-decreasing and y⌊nδ0⌋ is independent of

εi, i ≥ ⌊nδ0⌋+ 1, the left-hand side of (1.1) is bounded by

E(n1/α min
⌊nδ0⌋+1≤i≤n

εi)
qE(y⌊nδ0⌋/n)

−q := (I)× (II). (1.2)

Let m be any positive integer greater than q/α and un = ⌊n/m⌋ − 1. Then, it follows that

yn =
∑n

j=1 εj ≥
∑un

i=0

∑m
j=1 εim+j. This and the convexity of x−q, x ≥ 0, yield

E(yn/n)
−q ≤ Cmqu−1

n

un∑
i=0

E(

m∑
j=1

εim+j)
−q, (1.3)

where here and hereafter C denotes a generic positive constant whose value is independent of

n and may vary at different occurrences. By (3), there is a sufficiently large constant K such

that

E(

m∑
j=1

εj)
−q =

∫ ∞

0

P (

m∑
j=1

εj < t−1/q)dt

≤ K +

∫ ∞

K

Pm(ε1 < t−1/q)dt ≤ K + C(c/α)m
∫ ∞

K

t−αm/qdt ≤ C, (1.4)

1



where the second relation is ensured by the independence between εt’s and the third and

last ones are due to (3) and m > q/α. Equation (1.4) and an i.i.d. assumption on εt’s

imply that for each 0 ≤ i ≤ un, E(
∑m

j=1 εim+j)
−q ≤ C, which in conjunction with (1.3) gives

E(yn/n)
−q = O(1). Thus we obtain

(II) = O(1). (1.5)

It follows from (3) that there exist δ > 0 and 0 < c ≤ c < c̄ such that

cxα−1 ≤ fε1(x) ≤ c̄xα−1, for all 0 < x < δ1/q. (1.6)

Let q∗ > max{1, q/q1} and l > qq∗q1/α(q1q
∗ − q). Then, (3), (1.6), (14) and Chebyshev’s

inequality yield

(I) ≤

∫ δnq/α

0

P (n1/α min
⌊nδ0⌋+1≤i≤n

εi > t1/q)dt+

∫ nl

δnq/α

P (n1/α min
⌊nδ0⌋+1≤i≤n

εi > t1/q)dt

+

∫ ∞

nl

P (n1/α min
⌊nδ0⌋+1≤i≤n

εi > t1/q)dt ≤

∫ δnq/α

0

P n(1−δ0)(ε1 > t1/qn−1/α)dt

+

∫ nl

δnq/α

P n(1−δ0)(ε1 > δ1/q)dt+

∫ ∞

nl

P q∗(nq1/αεq11 > tq1/q)dt

≤

∫ ∞

0

exp{−(c/α)tα/q(1− δ0)}dt+

∫ nl

δnq/α

exp{−(c/α)δα/qn(1− δ0)}dt

+ (E(εq11 ))
q∗nq1q∗/α

∫ ∞

nl

t−q∗q1/qdt = O(1). (1.7)

Combining (1.7), (1.5) and (1.2) gives the desired conclusion (19).

Next, we prove (7), which is ensured by

(n1+(1/α) min
νn≤i≤n

εi/yi−1)− (n1+1/α min
2≤i≤n

εi/yi−1) = op(1), (1.8)

and for any t > 0,

lim
n→∞

P (n1+(1/α) min
νn≤i≤n

εi/yi−1 > t) = exp(−µαtαc/{α(α+ 1)}), (1.9)

where νn = nθ for some 1/2 < θ < 1. It is easy to see that

the left-hand side of (1.8) ≤ n1+(1/α)( min
νn≤i≤n

εi/yi−1)IAn, (1.10)
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where An = {minνn≤i≤n εi/yi−1 > min2≤i<νn εi/yi−1}. Let gn satisfy gnν
1+(1/α)
n /n1+(1/α) = o(1)

and gn → ∞. Then, by (3), (19), (20), the weak law of large number, Chebyshev’s inequality

and independence between εt’s, one has for any ǫ > 0,

P (n1+(1/α)( min
νn≤i≤n

εi/yi−1)IAn > ǫ) ≤ P (An)

≤ P ( min
νn≤i≤n

εi/yi−1 > g−1
n ν−1−(1/α)

n ) + P ( max
2≤i≤νn

yi−1 ≥ g1/2n νn) + P ( min
2≤i≤νn

εi < g−1/2
n ν−1/α

n )

= O(gnν
1+(1/α)
n /n1+(1/α)) + o(1) + 1− {1− C/(νng

α/2
n )}νn = o(1). (1.11)

In view of (1.10) and (1.11), (1.8) follows. Let Zn = minνn≤i≤n nεi/{(i − 1)µ − bn}, Z
∗
n =

minνn≤i≤n nεi/{(i − 1)µ + bn} and Bn = {maxνn≤i≤n |yi−1 − (i − 1)µ| ≤ bn}, where bn = nθ′

with 1/2 < θ′ < θ (noting that (i− 1)µ− bn > 0 for all νn ≤ i ≤ n and all large n). According

to Corollary 11.2.1 of Chow and Teicher (1997) and (20),

P (Bc
n) = o(1). (1.12)

Since on the set Bn, εi/{(i − 1)µ + bn} ≤ εi/yi−1 ≤ εi/{(i − 1)µ − bn} for all νn ≤ i ≤ n, it

holds that

n1/αZ∗
nIBn ≤ n1+(1/α)( min

νn≤i≤n
εi/yi−1)IBn ≤ n1/αZnIBn . (1.13)

Moreover, by (3) and a straightforward calculation, one has for any t > 0,

lim
n→∞

P (n1/αZn > t) = lim
n→∞

P (n1/αZ∗
n > t) = exp(−µαtαc/{α(α+ 1)}). (1.14)

Consequently, (1.9) follows from (1.12)-(1.14). Thus, the proof of (7) is complete.

While the proof of (15) is similar in spirit to that of (19), a nontrivial modification is needed

because yt is no longer monotonically non-decreasing when 0 ≤ ρ < 1. Let δ be defined as in

(1.6), 0 < θ < 1, q∗ > max{q/(q1(1− θ)), q/(θα), 1} and l > q1q
∗q/{α[(1− θ)q1q

∗− q]}. Then,

for 0 ≤ ρ < 1,

E{n1/α(ρ̂n − ρ)}q ≤ (III)+(IV)+(V), (1.15)

where (III) =
∫ δnq/α

0
P (n1/αmin2≤i≤n εi/yi−1 > t1/q)dt, (IV) =

∫ nl

δnq/α P (n1/αmin2≤i≤n εi/yi−1 >

t1/q)dt and (V) =
∫∞

nl P (n1/α min2≤i≤n εi/yi−1 > t1/q)dt. Let 0 < η < 1 satisfy P (ε1 ≥ η) >

3



0. Then, it follows from (1.6) and min2≤i≤n εi/yi−1 ≤ min1≤i≤⌊n/2⌋ ε2i/ε2i−1 that (III) ≤∫ δnq/α

0
P ⌊n/2⌋(ε2/ε1 > n−1/αt1/q)dt ≤

∫ δnq/α

0
{1 − P (ε1 ≥ η)P (ε2 ≤ n−1/αt1/qη)}⌊n/2⌋dt = O(1).

Similarly, (IV) = O(1). In addition, (V) ≤
∫∞

nl {P (ε2/ε1 > n−1/αt1/q, ε1 > t−θ/q) + P (ε1 ≤

t−θ/q)}q
∗

dt ≤ C
∫∞

nl {P (εq12 > n−q1/αt(1−θ)q1/q) + P (ε1 ≤ t−θ/q)}q
∗

dt = O(1). The bounds for

(III), (IV) and (V) in conjunction with (1.15) lead to the desired conclusion (15).

2 PROOFS OF THEOREMS 3 and 4

We begin by proving Theorem 3. It is easy to see that

lim
n→∞

nE[(1− ρ)ȳn−1 − µ]2 = σ2. (2.1)

Making use of (15), (36) and Hölder’s inequality, it follows that

E{(ρ̂n − ρ)2(ȳn−1 − µy)
2} = O(n−1−(2/α)), (2.2)

and

E(z2n) = O(n−2). (2.3)

In view of (34) and (2.1)-(2.3), it remains to show that

lim
n→∞

n2/αE{(ρ̂n − ρ)2(yn − µy)
2} = L0(α, c, ρ, σ

3), (2.4)

and

E{n(1/2)+(1/α)(ρ̂n − ρ)(yn − µy)[(1− ρ)ȳn−1 − µ]} = o(1). (2.5)

To prove (2.4), note first that a standard truncation argument (see, e.g., Section 7.3 of Brock-

well and Davis, 1987), together with Theorem 4.2 of Billingsley (1968) and (4), yields

n1/α(ρ̂n − ρ)(yn − µy) ⇒ S1S2, (2.6)

where S1 has the same distribution as the limiting distribution of n1/α(ρ̂n − ρ), which is given

in (4), S2 is distributed as that of
∑∞

j=0 ρ
jδ1−j , and S1 and S2 are independent. By (2.6), the

4



continuous mapping theorem, and E|n1/α(ρ̂n − ρ)(yn − µy)|
ξ = O(1) for some ξ > 2 (which is

ensured by (15), (36) and Hölder’s inequality), the desired conclusion (2.4) follows. Finally,

applying a similar truncation argument, we get E{n(1/2)+(1/α)(ρ̂n − ρ)(yn − µy)[(1 − ρ)ȳn−1 −

µ]} = E{n(1/2)+(1/α)(ρ̂n − ρ)[(1− ρ)ȳn−1 − µ]}E(yn − µy) + o(1) = o(1). Thus, (2.5) holds and

the proof is complete.

Next, we prove Theorem 4. It is easy to see that

lim
n→∞

nE(zn − µ)2 = σ2. (2.7)

Since (yn − ȳn−1)/n = µ/2 + op(1), n
1+(1/α)(ρ̂n − 1) and (yn − ȳn−1)/n are asymptotically

independent. This, together with Theorem 2, the continuous mapping theorem, Hölder’s

inequality and (41), yields

E(n2/α(ρ̂n − 1)2(yn − ȳn−1)
2) = L1(α, c). (2.8)

According to (39), (2.7) and (2.8), (42) follows if

E((ρ̂n − 1)(yn − ȳn−1)(zn − µ)) = o(max{n−1, n−2/α}). (2.9)

By applying (41), (19) and Hölder’s inequality, it is readily seen that (2.9) holds for 0 < α < 2

and α > 2. The proof of (2.9) in the critical case α = 2, however, is nontrivial and may be of

independent interest.

Let νn, Bn, bn, Zn and Z∗
n be defined as in Section 1. Equations (1.2), (1.5) and (1.7) yield

E(n3/2 min
νn≤i≤n

εi/yi−1)
q = O(1) for any q > 0. (2.10)

In addition, (41) implies E|{(yn − ȳn−1)/n} − (µ/2)|q2 = o(1). According to this, (19), (1.8),

(1.12), (41), (2.10) and Hölder’s inequality, (2.9) with α = 2 follows from

E(I) := E{(n3/2 min
νn≤i≤n

εi/yi−1)(n
−1/2

n∑
j=2

δj)IBn} = o(1). (2.11)

Note that (I) is bounded below and above by n1/2Zn(n
−1/2

∑n
j=2 δj)IBn−|n−1/2

∑n
j=2 δj |n

1/2(Zn−

Z∗
n) and n1/2Z∗

n(n
−1/2

∑n
j=2 δj)IBn + |n−1/2

∑n
j=2 δj |n

1/2(Zn − Z∗
n), respectively. Therefore,

5



(2.11) holds if

E{|n−1/2

n∑
j=2

δj |n
1/2(Zn − Z∗

n)} = o(1), (2.12)

E{n1/2Z∗
n(n

−1/2

n∑
j=2

δj)IBn} = o(1), (2.13)

and

E{n1/2Zn(n
−1/2

n∑
j=2

δj)IBn} = o(1). (2.14)

By an argument similar to that used to prove (19), it can be shown that for any q > 0,

E(n1/2Zn)
q = O(1) and E(n1/2Z∗

n)
q = O(1). (2.15)

Using (2.15), 0 ≤ n1/2(Zn − Z∗
n) ≤ Cn1/2Znbn/(µνn), (41) and the Cauchy-Schwarz inequal-

ity, one obtains E{|n−1/2
∑n

j=2 δj|n
1/2(Zn − Z∗

n)} ≤ C(bn/νn)E(|n
−1/2

∑n
j=2 δj |n

1/2Zn) = o(1),

which gives (2.12). To show (2.13), note that

|E{n1/2Z∗
n(n

−1/2

n∑
j=2

δj)IBn}| ≤ |E{n1/2Z∗
n(n

−1/2

n∑
j=2

δj)}|+ |E{n1/2Z∗
n(n

−1/2

n∑
j=2

δj)IBc
n
}|

= |E{n1/2Z∗
n(n

−1/2
n∑

j=2

δj)}|+ o(1),

where the identity is ensured by (2.15), (41), (1.12) and Hölder’s inequality. Moreover, some

tedious calculations yield that for all νn ≤ j ≤ n and some θ > 1/2, |E(n1/2Z∗
nδj)| ≤ Cn−θ,

and hence E{n1/2Z∗
n(n

−1/2
∑n

j=2 δj)} = o(1). Consequently, (2.13) follows. The proof of (2.14)

is similar to that of (2.13). We omit the details.

3 PROOF OF LEMMA 1

Since by (ii),

(logn)−1
n∑

i=M

di = (logn)−1
n∑

i=M

Qi

i
+ (log n)−1

n∑
i=M

E(idi)

i
= Vn + S + o(1),
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where Vn = (logn)−1
∑n

i=M Qi/i, it suffices for Lemma 1 to show that

E(V 2
n ) → 0 as n → ∞. (3.1)

It is clearly no loss of generality to assume that n/an and ηian are positive integers. Hence

V 2
n = (logn)−2

n∑
i=M

Q2
i

i2
+ 2(log n)−2

n−1∑
i=M

n∑
j=i+1

Qi Qj

ij

= (logn)−2

n∑
i=M

Q2
i

i2
+ 2(log n)−2

n/an∑
i=M

ηian−1∑
j=i+1

Qi Qj

i j

+2(logn)−2

n/an∑
i=M

n∑
j=ηian

Qi Qj

i j
+ 2(logn)−2

n−1∑
i=(n/an)+1

n∑
j=i+1

Qi Qj

i j

:= I + II + III + IV. (3.2)

By making use of (i), the Cauchy-Schwarz inequality and log an/ logn → 0, it holds that

E(I) = C(1/ logn)2 = o(1), (3.3)

|E(II)| ≤ C(log an/ logn) = o(1), (3.4)

and

|E(IV)| ≤ C(log an/ logn)
2 = o(1). (3.5)

Moreover, (iii) and some algebraic manipulations yield

|E(III)| ≤ C max
M≤i≤n/an, iηan≤j≤n

|E (QiQj) | = o(1). (3.6)

Now, (3.1) follows directly from (3.2)-(3.6). Thus, the proof is complete.
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