Predictor selection for positive autoregressive

processes
Ching-Kang Ing and Chiao-Yi Yang

Abstract

Let observations y, - - - , yn, be generated from a first-order autoregressive (AR) model
with positive errors. In both the stationary and unit root cases, we derive moment bounds
and limiting distributions of an extreme value estimator, p,,, of the AR coefficient. These
results enable us to provide asymptotic expressions for the mean squared error (MSE)
of p, and the mean squared prediction error (MSPE) of the corresponding predictor,
Un+1, Of Yn+1. Based on these expressions, we compare the relative performance of 41
(pn) and the least squares predictor (estimator) from the MSPE (MSE) point of view.
Our comparison reveals that the better predictor (estimator) is determined not only by
whether a unit root exists, but also by the behavior of the underlying error distribu-
tion near the origin, and hence is difficult to identify in practice. To circumvent this
difficulty, we suggest choosing the predictor (estimator) with the smaller accumulated
prediction error and show that the predictor (estimator) chosen in this way is asymp-
totically equivalent to the better one. Both real and simulated data sets are used to

illustrate the proposed method.
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1. INTRODUCTION

Over the past few decades, modeling and estimation for positive-valued time series have
attracted great interest in fields such as reliability theory, economics, finance, hydrology and
meteorology; see, e.g., Gaver and Lewis (1980), Lawrance and Lewis (1985), Bell and Smith
(1986), Sim (1987), Lewis, Mckenzie and Hugus (1989), Hutton (1990), Barndorff-Nielsen
and Shephard (2001), Nielsen and Shephard (2003) and Sarlak (2008). Among the many
positive-valued time series models proposed in the literature, the stationary positive AR(1)

model,
Ye = PYs—1 + &€t (1)

is one of the most popular, where 0 < p < 1 is an unknown constant and &,’s are i.i.d. positive
random disturbances. If = E(g;) < 0o, then model (1) can be expressed as y; = p+py;—1+04,
where §; = ¢, — p. To appreciate the practical relevance of model (1), note first that when
the distribution of €1 is carefully specified, the sequence {y;} has a marginal exponential
distribution (e.g., Gaver and Lewis 1980). By making use of this property, one can easily
simulate queues with correlated service times which are useful for checking for the sensitivity
of standard queuing results to departures from the independence. Model (1) has also found
extensive applications in hydrological studies. For example, Bell and Smith (1986) analyzed
two sets of pollution data from the Willamette River, Oregon, using model (1) with different
positive errors, and Sarlak (2008) analyzed the annual streamflow data from Kizilirmak River,
Turkey, showing that model (1) with a Weibull error distribution is more appropriate than a
Gaussian one. In addition, models similar to (1) have been adopted by Barndorff-Nielsen and
Shephard (2001) as components of their continuous time linear stochastic volatility models for
financial assets.

Having observed yi,...,yn, p can be estimated by the maximum likelihood estimator
(MLE) when the parametric form of the error distribution is known. However, not only is the
error distribution unknown, but the MLE is analytically difficult to work with; see Davis and
McCormick (1989) for a related discussion. On the other hand, the extreme value estimator,

pu= min yi/y, )

1<i<n—



which possesses consistency under rather mild assumptions (e.g., Bell and Smith 1986), is a
good alternative to bypass these difficulties. By making use of point process techniques, Davis
and McCormick (1989) further showed that the limiting distributions of p,, depend only on
the local behaviors of the distribution of €; near the origin. Specifically, if the probability
density function (pdf) of €, f., (-), satisfies

fe ()

lim ~ =1, for some unknown a > 0 and ¢ > 0, (3)

zl0 cx®—

then Corollary 2.4 (or Corollary 2.5) of Davis and McCormick (1989) yields that for 0 < p < 1,

lim P ((cMa/a)l/anl/“(ﬁn —p) >t) = exp(—t), (4)

n—o0

where M, = E[(3°72, p’e1-;)°] (see Section 2 below for more details).

Another commonly used estimator of p is the least squares estimator (LSE), p, [see (9)
below|, which also enjoys consistency under general error distributions. Moreover, as shown
in Hamilton (1994), for 0 < p < 1, n'/?(p, — p) has a limiting normal distribution. This,
together with (4), reveals a special feature of p, that its rate of convergence is faster than
pn if 0 < o < 2, but slower if & > 2. On the other hand, it seems difficult to use (4) to
construct a confidence interval for p due to the unknown index of regular variation «, which
appears in the normalizing constant and in the limit. To rectify this deficiency, Datta and
McCormick (1995) proposed an asymptotically pivotal quantity based on p, and adopted a
bootstrap procedure to consistently estimate the limiting distribution of the proposed pivotal
quantity, thereby leading to a totally nonparametric confidence interval for p.

While Davis and McCormick’s (1989) results are profound, they preclude the unit root
model, i.e., model (1) with p = 1, which is one of the most widely discussed nonstationary
time series models in the case of zero-mean errors. In the case of positive errors, the unit root
model has also found broad applications since it provides a convenient way to describe some
economic, financial and epidemiological data that are always positive and fluctuate around an
upward trend with variance increasing over time. See, for example, the natural logarithm of
quarterly real GDP for the United States from 1947 to 1989 (Hamilton 1994, chap. 17) and
the yearly cancer death rate in Pennsylvania between 1930 and 2000 (Wei 2006, chap. 6). In



fact, when p = 1, the limiting distribution of p,, has been derived by Nielsen and Shephard

(2003) under exponential innovations. More specifically, their Theorem 2 shows that if

fer (@) = A texp(—2/)), (5)
where x > 0 and A > 0 is an unknown scale parameter, then

lim P (27'n%(p, — p) > t) = exp(—t). (6)

n—oo

However, (5) is quite restrictive compared to (3). Moreover, Nielsen and Shephard’s approach,
relying highly on the likelihood function associated with (5), seems difficult to extend to more
general distributions. Therefore, the first goal of this article is to fill this gap by deriving the
limiting distribution of p,, under model (1) with p = 1 and ¢; satisfying (3). By making use

of a somewhat direct approach given in the supplementary document, we obtain for y < oo,
lim P ({e/a(a+ ]} n VD (5, — p) > 1) = exp(—1°). ™)
n—oo

See Section 2 for more details. Since (5) yields g = A, ¢ = A™! and a = 1, (6) becomes an
immediate consequence of (7). In addition, (7) and the fact that n®?2(p, — p) has a limiting
normal distribution if p = 1 [see Chan 1989 or (24) in Section 2] imply that p,, is better than
pn if 0 < a < 2, and worse than p,, if @ > 2, in terms of convergence speeds. This conclusion
is exactly the same as the one drawn from the case of 0 < p < 1.

The second goal of this paper is to provide asymptotic comparisons of the mean squared
errors (MSEs), MSE4 = E(p, — p)? and MSEp = E(p,, — p)?. Such comparisons, allowing us
to choose the more efficient estimator between p, and p, (which are both consistent under
general positive errors), are particularly relevant in situations where the distribution of &; is
unknown. However, since convergence in distribution does not imply convergence of moments,
the intended goal cannot be achieved through comparing second moments of the limiting
distributions of p,, and p,. To overcome this difficulty, we establish moment bounds for p, — p
and p, — p after being multiplied by suitable normalizing constants. These moment bounds
in conjunction with the limiting distributions of p, and p, lead to asymptotic expressions

for MSE4 and MSEg, which in turn form the basis for our comparisons. Corresponding
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comparison results not only support the previous conclusion that p, is better (worse) than
pn if @ < 2 (a > 2) from an alternative perspective, but they also reveal a quite subtle
phenomenon in the critical case a = 2. Whether p,, is better than p, depends on whether c
[the other parameter in (3)] is larger than a threshold value, which varies drastically from the
case of 0 < p < 1 to the case of p = 1. Based on these comparisons, the rules, (R1) to (R4),
for choosing the more efficient estimator between p,, and p,, are established in Section 2.

One major purpose of time-series modeling is to make forecasts. However, unlike estimation
problems under the positive AR(1) model, which have already attracted a lot of attention,
prediction problems under this model are seldom discussed even in the stationary case. This
motivates us to pursue the third goal of this paper: understanding the behaviors of the mean
squared prediction errors (MSPEs) of the extreme value predictor, 9,11, and the least squares
predictor, 7,41, in situations where the data are generated from model (1) with 0 < p < 1.
Note that

yn-i-l = ﬂn + ﬁnym (8)
where i, = (n — 1)~ 320" (ys+1 — puye) is a natural estimate of u based on j,, and
gn—I—l = ﬂn + ﬁnyna (9)

where (fi,, p,)' is the LSE of (u, p)' satisfying (Z;:ll XX, ) (fin, pn) " = Z?;ll X;Yj+1, With
x; = (1, y;) . Moreover, assume that o = var(e;) < co. Then, the MSPEs of 1 and g,

are given by

MSPE4 = E(yns1 = Jnt1)* = 0% + E{(ftn — 1) + (P — p)yn}?, (10)
and

MSPEp = E(yns1 = 1)’ = 0 + E{(jin — 1) + (P — p)yn}’, (11)

respectively. By making use of the moment bounds and limiting distributions established
in Section 2, we obtain asymptotic expressions for MSPE,4 and MSPEg in Section 3. These

expressions reveal that the normalizing constants of MSPE 4 and MSPEg differ markedly from
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those of MSE, and MSEpg, but ordering of MSPE 4 and MSPEp is still asymptotically the
same as for MSE,4 and MSEp. As a result, rules (R1) to (R4) can also be used to determine
the more efficient predictor between ¢, 11 and ¢,11.

Unfortunately, (R1) to (R4), requiring knowledge of p and the behavior of the unknown
error distribution near the origin, are rarely implemented in practice. Therefore, the last but
possibly most important goal of this paper is to develop a data-driven method that can choose
the more efficient predictor (estimator) between ¢,.1 and §,41 (1 and p,41) from the MSPE
(MSE) point of view. To achieve this goal, in Section 4, we define the accumulated prediction
errors (APEs) of 9,41 and ¢,.1, APE4 and APEg, respectively, as

n—1

APE, = Z (Vi1 — Gir1)?, (12)

=M

and
n—1

APEp = Z (Vi1 = Fir1)?, (13)

=My
where M; and M, are prescribed positive integers, and propose choosing the predictor (esti-
mator) with the smaller APE. The whole selection scheme is summarized in three steps: (S1)
to (S3). Instead of estimating p, ¢ and « in (3) directly, (S1) to (S3) take the approach of
letting the predictor’s past performance speak for itself, which seems more closely related to
the intrinsic nature of the underlying problem. In particular, by making use of this feature, we
show in Theorem 7 that the predictor and the estimator selected by (S1) to (S3) are asymp-
totically equivalent to the ones selected by (R1) to (R4), thus ensuring the validity of (S1) to
(S3).

In Section 5, the asymptotic results developed for (S1) to (S3) are illustrated by numerical
simulations. The usefulness of (S1) to (S3) is also demonstrated by analyzing three time series
datasets from studies in quality control, insect behavior and epidemiology. All these series are
positive and exhibit significant AR(1) features. Our analysis shows that regardless of whether
the series is stationary or nonstationary, (S1) to (S3) can always choose the predictor with the
smaller empirical MSPE, which is a suitable surrogate for the unobservable MSPE. The proofs

of the theoretical results presented in Section 4 are deferred to the Appendix, whereas those
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in Sections 2 and 3 are provided in the supplementary document in light of space constraint.
2. ASYMPTOTIC PROPERTIES OF ),

Our aim in this section is to pursue the first and the second goals mentioned in Section
1. To facilitate the exposition, we shall assume throughout the rest of this paper that yy = 0,
which yields y;, = Z;;B ple,_j fort > 1. We first derive the limiting distribution of p,, establish
a bound for the gth moment of n'/*(p, — p) with ¢ > 0, and provide an asymptotic expression
for MSE4 = E(p, — p)? in the case of 0 < p < 1. Note that since p, — p = ming<;<p &/Y;_1,

pn is always positively biased.

Theorem 1. Assume (1) with 0 < p <1 and (3). If

E(e]') < o0, for some ¢ > 0, (14)
then
E{n"*(pn — p)}* = O(1), for any q > 0. (15)
Moreover, if
E(e?) < oo, for some ¢ > «, (16)

then (4) follows, and

« )z/ar(a +2

M ) +O(7”L_2/a), (17)

B, — o)? = -2 (
where T'(+) denoting the gamma function.

Remark 1. Equation (17) is an immediate consequence of (4) and (15). To see this, note
first that (15) implies that E{n'/*(p, — p)}>T® = O(1) for some § > 0, which in turn entails
the uniform integrability of {n*®(p, — p)?}. This latter property together with (4) yields

o afans v Qe [Ty, o @ y2/an 0t 2
Jim n*E(pn = p)* = (Z57) /Oexp(t Jdt = () T (=)
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and hence (17) follows. Similarly, (4) and the uniform integrability of {n'/%(p, — p)} lead to

an asymptotic expression for the bias of p,,,

L)l/aF(OZ‘F 1

AL o )+ o(n~1/). (18)

E(, — p) = ™Y/

Remark 2. Assumption (14) is quite general because it holds even when the first moment of ¢,
does not exist. At first glance, (16) seems to be restrictive when « is large. This assumption,
however, is indispensable in proving (4) and (17). Indeed, we have found that the rate of
convergence of p, can be faster than n'/® when (16) is violated. While investigating the
limiting distribution and the MSE of p,, in situations where (16) fails to hold is of theoretical
interest, these types of problems require a separate treatment and are not pursued in this
paper.

A unit-root counterpart of Theorem 1 is developed in the next theorem.
Theorem 2. Assume (1) with p =1 and (3). If (14) holds, then
E{n"™+ 0/ (5, — )} = O(1), for any q > 0. (19)
Moreover, if
E(e?) < o0, for some ¢z > 1, (20)

then (7) follows, and

_ 1 a 2 _

E(po — p)? = 202 2O F Dyzrap @22y | o200y (21)
c o

Remark 3. In view of the argument given in Remark 1, it is not surprising that (21) can be

obtained directly from (7) and (19). These two equations also yield an asymptotic expression

for the bias of p,,

. —(ta-1y qrola+1) 170, a0+ 1 C(laa-1
B(p, — p) = n (e (A Dy @8 Ly sy (22

C

in the case of p = 1.
Remark 4. Condition (20), precluding only some heavy-tailed distributions, seems flexible

enough to accommodate a wide range of applications. The appearance of p in (7) and (21) also
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suggests that (20) is difficult to be weakened. In fact, when (20) is violated, one can construct
examples showing that the rate of converge of p, to 1 is faster than n'*(/®) . However, the
details are beyond the scope of this paper and will be reported elsewhere.

We now have achieved the first goal of this paper through Theorem 2. To attain the second
goal, we need asymptotic expressions for MSEp = E(p, — p)? in addition to those for MSE 4
given in Theorems 1 and 2. Before proceeding further, it is worthwhile to investigate the

convergence rate of p,. By Chan (1989), it follows that for > 0 and 0 < p < 1,

(02 (fi, — 1), n"* (. — )" = Za, (23)
and for > 0 and p =1,

(02 (fi, — 1), 0* (= )" = Za, (24)

where = denotes convergence in distribution and Z; and Zs are bivariate normal distributions

with mean vectors zero and covariance matrices

-1 -1

1 e 2 15 2

A= . ; 2p 52 o“, and B = v o-,
i () + 3 3

respectively. Unlike the normalizing constants in (4) and (7), those in (23) and (24) are
independent of a. Moreover, (4), (7), (23) and (24) indicate that in both stationary and unit

[

root cases, the convergence rate of p,, is faster than that of p, if 0 < a < 2, and is slower if
a > 2. In the critical case of a = 2, both estimators share the same convergence rate, which
is n=1/2 when 0 < p < 1, and n=%/? when p = 1.

In the following, we shall provide moment bounds for n'/?(p, — p) with 0 < p < 1, and
n3/%(p, — p) with p = 1. These bounds can be used in conjunction with (23) and (24) to yield
the desired asymptotic expressions for MSEg. By an argument similar to that used by Yu,
Lin and Cheng (2012), it can be shown that if

E|d1]° < oo, for some s > 10, (25)

and if there exist positive numbers K, 7y, 1, and M such that for all m > M and |z —y| < ny,
the distribution function of m=1/23"" (e, — p), F,.(-), satisfies

[Fn(2) — Fin(y)| < Klz —y[™, (26)
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then

E[n'2(pn — p)[" = O(1), 0< p <1, (27)
and

E[n®*?(p, — p)|* = O(1), p=1, (28)

where 7, is some positive number greater than 2. Combining (27) and (28) with (23) and (24)

gives

lim nE(p, —p)2=1-p% 0<p<1, (29)

n—oo

and

1202
lim n*E(p, — p)? = ’

n—o0 2

, p=1 (30)

It is clear from (17), (21), (29) and (30) that from the MSE point of view, p, is again
better (worse) than p, when 0 < a < 2 (a > 2). Moreover, since (17) and (21) imply that
for a = 2, lim, 0o nE(py — p)? = 2{c[c*(1 — p*) '+ p*(1 —p) 3} 1 if 0 < p < 1, and
lim,, o n3E(p, — p)? = 6/(cu?) if p =1, one gets from these identities and (29) and (30) that
fora=2and 0 < p <1,

2(1—-p)

. ~ 2 . ~ 2 . .
nIEEO nE(p, —p)° < TLango nE(p, — p)° if and only if ¢ > 05t (1= p)o? (31)
and for « =2 and p =1,
lim n*E(p, — p)* < lim n’E(p, — p)? if and only if ¢ > 1/(20?). (32)

n—o0 n—oo

To conclude, the above comparison suggests the following rules for choosing the better

estimator (in terms of MSE) between p,, and p,:
(R1) Choose p,, if 0 < av < 2;
(R2) Choose p, if a > 2;
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(R3) For a =2 and 0 < p < 1, choose p, if ¢ > 2(1 — p){(1 + p)p®> + (1 — p)o?} 7}, ppif c <
2(1=p){(1+p)p>+(1—p)o®} 7", and either py, or py if ¢ = 2(1—p){(1+p)p*+(1—p)o?}

(R4) For o = 2 and p = 1, choose p, if ¢ > 1/(20?), p, if ¢ < 1/(20?), and either p,, or p, if
c=1/(20%).

However, since p, «, ¢, i and 02 are unknown, (R1) to (R4) seem to be practically irrelevant.

In Section 4, we shall resolve this difficulty using a data-driven method based on the APE.

3. MEAN SQUARED PREDICTION ERROR

3.1. The MSPE of ¢,,.1

Throughout this section it will be assumed that 0 < 02 = var(e;) < oo. Recall the definition
of 41 given in (8). In the case of 0 < p < 1, straightforward calculations yield

Yn+1 — ?jn-i-l = 5n+1 - {(ﬁn - P) (yn - :uy) + [(1 - p)gn—l - H] - (ﬁn - p)(gn—l - ,Uy) + Zn}v (33)

where p1, = /(1= p), g =n* > -1 Y; and 2, = (Y, —y1)/(n —1). Since .4, is independent
of s Yn, Yn—1 and z,, it follows from (33) that the MSPE of ¢,,1, MSPE4, obeys,

MSPE4 — 0® = E{(pn — p)(yn — 1) + [(1 = p)Gn-1 — 1] = (n = p)(Gn1 — ) + 203> (34)

Moreover, it is shown in the supplementary materials that (i) the orders of the magnitude of z,
and (p, — p)(n_1 — 1)) are negligible compared to that of (1— p)g,_1 — p, (i) n/DFI/[(1 —
0)n—1 — 1) (pn — p)(Yn — 1) has an asymptotic mean of zero, and (iii) n'/%(p, — p) and y, —
are asymptotically independent. These facts, together with (15) and (34), lead to

MSPE4 — 02 = B(ya — 11,)?E(pn — p)? + El(1 = p)n—1 — > + o(max{n~",n"2/7}).  (35)

Relation (35) points out that to obtain MSPE, — 02 from the MSE of j,,, one needs not only
to multiply the latter by an adjustment factor, E(y, — p1,)?, which converges to o?/(1 — p?) as
n — 0o, but also to add the MSE of (1—p)g,_1, which is a root-n consistent ”semi-population”

estimator of u. Based on (35), the next theorem provides an asymptotic expression for the
MSPE, in the case of 0 < p < 1.
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Theorem 3. Assume (1) with 0 < p <1 and (3). Suppose

E(eT) < 00, for some g > max{«, 2}. (36)

Then,
MSPE, — 02 = n"Y*Lo(a, ¢, p, 0?) + o*n~! + o(max{n~', n=%}), (37)

where
Lo(a, ¢, p,0%) = T((a+2)/a){a/(cMa)}/*{o? /(1 - p*)}. (38)

When p = 1, an alternative decomposition of y,11 — §nr1 is required: y, 11 — Ypr1 =

Ont1 — {(pn — 1)(yn — Un—1) + (2, — p)}, which implies
MSPE, — 0% = E((pn — 1)(Un — Jn-1) + (20 — N))Q- (39)

It is easy to see that lim, o nE(z, — n)? = 0% In addition, we show in the supplementary
materials that E{(pn — 1)(¥n — Un-1)(2n — 1)} = o(max{n=",n=?/°}), and n'+*1/%) (5, — 1) and
(Yn — Yn—1)/n are asymptotically independent. These facts, together with (39) and (19), yield

MSPE, — 02 = E(yn — Un-1)*E(pn — 1)* + E(2,, — ) + o(max{n !, n=2/*}). (40)

The major difference between the right-hand sides of (35) and (40) is that the adjustment
factor associated with the MSE of p,,, E(y, — Un_1)?, of the latter grows at the rate n? whereas
the former is bounded by a finite constant independent of n. In addition, the second terms
on the right-hand sides of (40) and (35) are MSEs of two different consistent ”estimators” of
w, namely, z, and (1 — p)y,_1, respectively. Note however that the MSE of z, in the case of
p =1 and that of (1 — p)y,_1 in the case of 0 < p < 1 are both asymptotically equivalent to
o?/n. With the help of (40), we develop a unit-root counterpart of Theorem 3 in Theorem 4.

Theorem 4. Assume (1) with p =1 and (3). Suppose

E(eP) < o0, for some ¢z > 2. (41)

12



Then,
MSPE, — 02 = n~Y*Ly(a, ¢) + 0°n~ 4 o(max{n~!, n=2/*}), (42)

where
Li(a,¢) = 47T ((a 4 2)/a){af(a + 1) Je} ¥ (43)

Equations (35), (37), (40) and (42) reveal that MSPE4 — o2 is mainly contributed by the
MSE of a root-n consistent ”estimator” of u when 0 < o < 2, by the MSE of p, times an
adjustment factor when « > 2, and by the sum of both MSEs when o = 2. Equations (17),
(21), (37) and (42) further indicate that while p = 1 can improve the convergence rate of the
MSE of p,, there is no corresponding effect on the MSPE of 3,,;. To explain this, we note
that as shown in (35) and (40), the contribution of the MSE of p,, to MSPE4 — ¢ needs to
be adjusted for the variability of y,, viz E(y, — 9,—1)*> when p = 1 and E(y,, — p,)* when
0 < p < 1. Since E(y, — py)* = O(1) in the case of 0 < p < 1 and E(y, — §n—1)*> ~ n* in the
case of p = 1, the gain of the unit root in reducing the MSE of p,, is completely eliminated by
the variability of y,,. Finally, we remark that the moment condition (36) [(41)] in Theorem 3
(Theorem 4) appears to be reasonable because 02 < oo and (16) [(20)] are needed in the proof
of (37) [(42)].

3.2. The MSPE of 1,4
In this section, we investigate the MSPE of ¢,,1 under model (1). Note first that
Yn+1 — gn—H = On41 — XZ(ﬂn - M ﬁn - p>T7 (44)

where x,, is defined after (9). Assume that (26) is true and (25) holds with s > 12. Then, by

an argument similar to that used in Yu, Lin and Cheng (2012), one has for 0 < p < 1,
”UQXI(ﬂn - K, ﬁ'ﬂ - p)T = XTZlv (45>

where x has the same distribution as that of (1,7 o/ e1-;)" and is independent of Z; defined

in Section 2, and for some 1 > 0,
B1n2%] (in — i e — )27 = O(1). (46)
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Combining (44)-(46) yields

lim n(MSPEgp — ¢2) = 202, (47)

n—oo

For p = 1, it can similarly be shown that

nl/QX;zr(ﬂn - M ﬁn - p)T = (17 M)Zg, (48)
where Z, is defined in Section 2, and

lim n(MSPEg — 0%) = E((1, 1)Zy)* = 40°. (49)

n—oo

Equations (47) and (49) indicate that the convergence rate of MSPEp — o and its correspond-
ing limiting value, in sharp contrast to those of MSPE 4 — o2, are independent of the distribu-
tional properties of ;. Indeed, using arguments similar to those presented in Ing (2001) and
Yu, Lin and Cheng (2012), we can link the second-order MSPE of the least squares predictor
to the Fisher information matrix, Z;;l x;x, , and express (47) and (49) in a unified way:

n(MSPEg — 0?) log det (377} x;x])

lim = plim

n—0o0 0'2

: (50)

n—oo

logn

noting that plim,_, (log det(Z;":_l1 x;x;)/logn) = 2if 0 < p < 1, and 4 if p = 1. Since
the right-hand side of (50) corresponds only to the order of growth of the determinant of the
Fisher information matrix, it provides an explanation of why (i) lim, . n(MSPEg — ¢?) is
independent of the distributional properties of £, and (ii) lim,, o, n(MSPEg — ¢?) in the case
of p =1 is always larger than that in the case of 0 < p < 1.

According to (47), (49), (37) and (42), the ordering of MSPE 4 and MSPEg is asymptot-
ically the same as for MSE4 and MSEg. Therefore, with p, and p, replaced by ¢,.1 and
Un+1, respectively, (R1) to (R4) can also be used to determine the more efficient predictor
between 9,41 and J,4+1. [In the sequel, these predictor selection rules are still called “(R1) to
(R4)”.] Unfortunately, as noted at the end of Section 2, (R1) to (R4) cannot be implemented

in practice unless p, a, ¢, 1 and o are available.

4. PREDICTOR SELECTION BASED ON THE APE
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The goal of this section is to choose the asymptotically more efficient predictor (estimator)
between 9,41 and ¥n41 (P, and p,) in a data-driven fashion. Instead of estimating the un-
known parameters in (R1) to (R4) and then implementing these rules based on the estimated
parameters, we suggest calculating APE4 and APEg (defined in Section 1) and then choosing
the predictor (estimator) with the smaller APE value. Through investigation of the asymp-
totic behaviors of APE4 and APEg, we show in Theorems 5 and 6 below that the ordering of
APE,4 and APEp is asymptotically equivalent to that of MSPE 4 and MSPEg, which provides
the theoretical underpinning for the proposed predictor (estimator) selection method. Note
that the asymptotic properties of APE based on least squares predictors have been extensively
studied; see, among many others, Wei (1987, 1992), Hemerly and Davis (1989), Speed and Yu
(1993), and Ing (2004, 2007). The major technical tools used in these papers are some recur-
sive formulas developed for least squares estimates; see, for example, (2.8) of Wei (1987) and
(3.10) of Ing (2004). While these formulas can be directly applied to APEg, their extensions
to APE 4 seem difficult to obtain because, unlike p,, p, has no obvious recursive nature. We
therefore take a quite different approach to dealing with the asymptotic properties of APE 4,
as detailed in the Appendix. Let

L(fm(‘)a a, P) = 02[{0<a§2,0§p§1} + LO(Oéa ¢, p, 02)[{a22,0§p<1} + Ll(Oé, C)I{a22,p=1}a (51)
where Lo(a, ¢, p,0?) and L;(a, ¢) are given in (38) and (43), respectively, and define
L(0®, p) = 20 Ijo<pery + 407 [pmny. (52)

Theorem 5. Assume (1) with 0 < p <1, (8) and (36). Let My in APE4 be any integer > 2

and remain fixed as n increases. Then, for 0 < a < 2,

APE, = Z 071+ L(f, (), @, p) log . + op(log n), (53)

t=M;

where Lo(a, ¢, p,0?) and Ly(a, c) are defined in (38) and (43), respectively, and for a > 2,

n—1

APEL = Y 6%y + Ch, (54)

t=NM-

where C,, satisfies lim,,_,o P(C,/logn > K) =1 for any K < .
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Theorem 6. Assume (1) with 0 < p <1, (3) and (41). Let My in APEg be the first integer
j such that the LSE (ji;, p;)" is uniquely defined. Then,

n—1
APEp = Z 67,1+ L(0?, p)logn + o,(logn). (55)
t=M,

It is worth pointing out that the coefficient associated with the logn term in (53) is
exactly the same as the one associated with the n=! term in (37) if 0 < p < 1, and (42)
if p = 1. The same correspondence emerges between (55) and (47) when 0 < p < 1, and
(55) and (49) when p = 1. These coincidences, together with (54), yield (i) for o > 2,
lim, o P(APEg < APE,4) =1, (ii) for 0 < a < 2, lim,,,« P(APE4 < APEg) = 1, (iii) for
a=20<p<landc<2(1—p){(1+p)p*+(1—p)o?}~1, lim, o P(APEp < APE,4) =1, (iv)
fora =2,0<p<landc>2(1—p){(14+p)p*+(1—p)o?}~! lim, .. P(APE4 < APEp) =1,
(v) for a =2, p=1and ¢ < 1/(20?), lim,, o, P(APEg < APE4) = 1, and (vi) for a = 2,
p=1and c > 1/(20?), lim,_,.,, P(APE4 < APEg) = 1. Combining (i) to (vi) leads to the
following sample counterpart of (R1) to (R4):

(S1) Choose yn+1 (pn) if APE4 < APEg.
(S2) Choose 9,41 (pn) if APE4 > APEg.
(S3) Choose either ,,1 or g,.1 (either p, or p,) if APE4 = APEp.

(The issue of determining M; and M, for APE4 and APEg from a finite-sample point of view
will be addressed in the next section.)

The following theorem, which is an immediate consequence of Theorems 5 and 6, confirms
the validity of (S1) to (S3). Let 9n+1(S) and §n+1(R) [pn(S) and p,(R)] denote the predictors
(estimators) selected by (S1) to (S3) and (R1) to (R4), respectively.

Theorem 7. Assume that the assumptions of Theorems 5 and 6 hold. Then,

lim P(§os1(S) = Gos1(R) = 1 and lim P(5,(S) = pu(R)) = 1.

n—oo n—o0
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Some remarks regarding Theorem 7 are in order.

Remark 5. Theorem 7 reveals that (S1) to (S3) can ultimately choose the more efficient
predictor (estimator) between ¢,.1 and 9,1 (p, and p,) regardless of whether 0 < p < 1
or p = 1. However, this goal is not directly relevant to unit root tests because, as shown in
Section 3 (Section 2), the relative performance of ¢,y and §,.1 (9, and p,) is determined
not only by p, but also by a and ¢. Moreover, while it is possible to estimate ¢ and « from
some kernel density estimators of f., (z) based on the AR residuals, asymptotic behaviors of
the resultant estimators of ¢ and « are usually difficult to derive, particularly when a € (0, 1]

(which yields that f., (z) is nonzero or has a pole at the origin).

Remark 6. Consider a trend stationary model,

Y = PYs—1 + B+ vt + 0y, (56)

where 0 < p < 1, v > 0 and S is large enough such that y;’s are always positive. Model (56)

can be expressed as

ye =B+t + Z e, (57)
5=0

where 8* = (8 — pn)/(1 — p) —vp/(1 — p)? and v* = v/(1 — p). Unlike the variance of model
(1) with p = 1, which grows to infinity as ¢ does, the variance of model (57) does not vary
with ¢. On the other hand, a linear time trend is a dominant feature shared by both models.
As a result, when data are truly generated from model (56), p,, and p,, [defined in (2) and (9)]
become upwardly biased estimators of p. Moreover, the unit root tests (like those of Dickey
and Fuller 1981) for p =1 and v = 0 in (56) tend to be biased towards accepting p = 1 even if
p < 1. Fortunately, this dilemma is not an issue of overriding concern from a prediction point
of view. More specifically, if it is unknown whether the data are generated from model (1)
with 0 < p < 1 or model (56) and the goal is to choose the best predictor among 11, Jnt1
and y;, ; in terms of MSPE, where y . ; is the least squares predictor of y,41 based on (56) and
Y1, ... Yn, then one only needs to compute APE,4, APEg and APEq = Z?;Ai,g (Yis1 — Ui1)?,
and choose the predictor with the smallest APE value, where Mj is the first integer j such
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that the LSE associated with y7,, is uniquely defined. In fact, by an argument similar to that
used to prove Theorems 5 and 6, it can be shown that the predictor chosen in this manner is

asymptotically equivalent to the best one among ¢,41, ¥,+1 and y;, ;.

Remark 7. It is also possible to improve prediction performance of (S1) to (S3) through the
following modified procedure: (i) (S1) to (S3) are used to choose the better predictor between
Uns1 and g,,1 and the better estimator between p,, and p,, (ii) the residuals produced by the
better estimator are approximated by a parametric family of distributions and with this family
of distributions, a new estimator of p and a new predictor of y,,1, denoted by p,, and ¥,1,
respectively, are derived, (iii) the APE associated with 9,1, say APEp, is computed and the
final predictor is 9,11 if APEp < min{APE 4, APEg}, and is the one chosen in (i) otherwise.
An investigation of the extent to which this modified procedure performs satisfactorily would

be interesting future work.
5. NUMERICAL STUDIES

We now present some simulations in support of the theoretical results established for (S1)
o0 (S3). The usefulness of (S1) to (S3) is also illustrated by analyzing three time series data

sets.

5.1 Finite sample performance of (S1) to (S3)

We generate n € {200, 500, 1000, 2000} observations from model (1), where p € {0.2,0.5,0.8,1}
and g,’s are i.i.d. Gamma(«, 6) or Beta(«, 6) distributions, with « € {1,2,4} and 6 € {1,2,6}.
The pdfs of Gamma(c, ) and Beta(a, §) distributions are given by I' ! (a)z* 10~ “exp(—z/60)
and I'(a+0)T 1 ()0~ 1(0) 2 1 (1—x)?~1, respectively. For each combination of p’s and distribu-

tions, we ran 500 simulations and recorded the ratios, F\""") = (1/500) 329 1 (0, (8)=gmir (R)}?

in Tables 1 to 3, where yfm +1(S) denotes the predictor selected by (S1) to (83) in the Ith

simulation run. Obviously, a larger [P0

500)

means a better performance of (S1) to (S3). In
is an empirical estimate of P(9,41(S) = ¥n+1(R)), Theorem 7 suggests that
Ff’ﬂo) will be close to 1 when n is large. The M; and M, in APE4 and APEg are both set

fact, since Jas
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to 20. As will be seen later, these specifications can lead to quite satisfactory performances
except in some difficult cases. To help illustrate the finite-sample performance of (S1) to (S3),
the empirical estimates of n®®(MSPE, — ¢?), denoted by S An, are also obtained for each
coefficient /distribution combination, where b(a) = 1if 0 < a < 2 and 2/« if & > 2. The

closeness of S, to its limiting value, namely L(f.,(-), , p) given in (51), is measured by the

ratio R4, = SAm/L(fal(-), a, p).
Tables 1 and 2 summarize F™™ for a = 1 and o = 2, respectively. The performance of

(S1) to (S3) under these settings is affected mainly by

maX{L(fel(')a a, p)? L<U27 p>}
min{L(fsl(')a Q, p)? L(U27 p)} ’

and Ra 200, where L(c?, p) is defined in (52). Note that P(f.,(:), @, p) measures the ”degree

P(fm(')vaap) -

of distinguishability” between the prediction capabilities of ¢,,+1 and ¢,1, and a large (small)
value of P(f.,(+),q, p) represents that it is easy (difficult) to tell the difference between the
two predictors. On the other hand, R4 20 is related to the convergence rate of n{E(y,4+1 —
Un+1)? — 0%} A large |Rag00 — 1| suggests that the behaviors of the squared prediction
errors, (yir1 — Jir1)?, are relatively difficult to control for small or even moderate i. These
uncontrollable early errors can actually dominate APE 4 if the sample size n is not large enough
(see Section 5 of Wei (1992) for a related discussion), and make the ordering of APE, and
APEp different from that of L(f.,(+), a, p) and L(c?, p), thereby deteriorating the performance
of (S1) to (S3).

To get a better understanding of the role played by R4 900 and P(f,(-), @, p) in affecting
the finite sample performance of (S1) to (S3), we classify the pairs, (R4200, P(fs, (), @, p)),
into six categories: (G, S), (G, M), (G, L), (B, S), (B, M) and (B, L), where R4 € G if
|Ras200 — 1| < 0.1, Ras00 € B if |[Ras00 — 1| > 0.1, P(f:, (), 0, p) € Sif P(f, (), . p) < 1.4,
P(fo(),a,p) e Mif 1.4 < P(f.,(-),,p) < 1.9, and P(f.,(-),a, p) € Lif P(f.,(-),, p) > 1.9.
Each coefficient /distribution combination belongs to one category, which is also recorded in
Tables 1 and 2. According to the above discussion, (S1) to (S3) should perform well in category
(G, L) or (G, M), but poorly in category (B, S) or (B, M). Our simulation results confirm
this conjecture. Specifically, when n = 200 and (R4 200, P(f:,(+),a, p)) € (G, L), (S1) to (S3)
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choose 7,+1(R) about 76%-92% of the time for 0 < p < 1, and over 93% of the time for p = 1.
This ratio exceeds 93% in both stationary and unit root cases as n increases to 2000. In
the (G, M) category, (S1) to (S3) perform slightly worse, but they can still identify ¢,.1(R)
between 81%—93% of the time based on 2000 observations. On the other hand, (S1) to (S3) in
the (B, M) category only select ¢,,1(R) for 30%-80% of the simulations even when n = 2000
(noting that there is no coefficient/distribution combination falling into the (B, S) category).
The performance of (S1) to (S3) in the (G, S) category is also poor since the corresponding
ratio for identifying 9,1 (R) falls between 47% and 67% when n = 200, and between 53% and
67% when n = 2000. In contrast, (S1) to (S3) give quite satisfactory results in the (B, L)
category. In particular, when n = 2000, they choose ,.1(R) about 81%-92% of the time in
the stationary case, with the percentage exceeding 96% in the unit root case.

It is worth mentioning that a low percentage of identifying ¢,.1(R) in the (G, S) category
does not necessarily lead to serious repercussions because the prediction capabilities of ¢,11
and ¢,.1 are very similar in this category. On the other hand, improving the performance
of (S1) to (S3) in the (B, M) category seems to be a valid goal to pursue. One natural
way to tackle this problem is to pick a larger M; for APE, such that the effects of “early
uncontrollable errors” (which are reflected by a large value of |R4 200 — 1|) are diminished,
thereby turning “B” into “G”. Indeed, our (unreported) simulation results show that under
p=0.8and g ~ ((2,0), F2(§88), with 6 = 1, increases from 0.3 to 0.7 as M; and M, increase
to 200; Fgggg), with # = 2, increases from 0.546 to 0.78 as M; and M, increase to 80; and
Fz(ggg), with 6 = 6, increases from 0.732 to 0.866 as M; and M, also increase to 80. These
findings suggest that in the (B, M) category, the choice of M; and M, is quite relevant from
a finite sample point of view.

Table 3 summarizes the values of Fi\'"” for a = 4. Note that the ratio P(f,(1),c, p) is
no longer meaningful because MSPE 4 — 02 and MSPEp — 02 have different convergence rates
when o > 2. On the other hand, R4 200 still has an important impact on the finite sample
performance of (S1) to (S3), and hence the values of R0 are included in Table 3. The
performance of (S1) to (S3) is satisfactory under Beta(4, #) errors. For example, in the case of
0 < p < 1, they can identify g,.1(R) between 60%-99% of the time when n = 200, and 81%-
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100% of the time when n = 2000. (S1) to (S3) deliver particularly good results under the unit
root model with Beta(4, ) errors since they choose ¥,.1(R) in all simulations from n = 200
to n = 2000. The performance of (S1) to (S3) under Gamma(4,0) errors, however, depends
on the value of R4 900, and becomes worse as R4 209 becomes larger. More specifically, in the
case of Ry 200 < 2.11, (S1) to (S3) identify ¢,41(R) between 67% and 99% of the simulations
when n = 500, and between 81% and 100% of the simulations when n = 2000. In contrast, if
R4200 > 2.4, (S1) to (S3) only select §,+1(R) between 51% and 66% of the time even when
n = 2000. Since under Gamma(4, #) errors, not only R4 200’s but also R 2000’s are significantly
larger than 1, it seems difficult to enhance the performance of (S1) to (S3) through choosing
a larger My or M,. Nevertheless, we have found that the frequency of correct identification of
(S1) to (S3) in the case of R4 200 > 2.4 can improve to 75%, provided n increases to 20000.

5.2 Data Analysis

We analyze three positive-valued time series with sample sizes of n = 45, 82 and 71 to demon-
strate the usefulness of our predictor selection method. The first series, reported on page 134
of Burr (1976), consists of 45 daily average number of defects per truck found in the final
inspection at the end of the assembly line of a truck manufacturing plant. Example 6.1 of Wei
(2006) indicates that a stationary AR(1) model may be suitable for this series. The second
series is a laboratory series of blowfly data taken from Nicholson (1950). A fixed number of
adult blowflies with balanced sex ratios were kept in a cage and given a fixed amount of food
daily. The blowfly population was then enumerated every other day for approximately two
years, giving a total of 364 observations. Following Example 6.3 of Wei (2006), we only use
the latest 82 data points in our analysis. It is shown in this example that a stationary AR(1)
model also fits these data quite well. The third series is the yearly cancer death rate (per
100,000 population) of Pennsylvania between 1930 and 2000 published in the 2000 Pennsylva-
nia Vital Statistics Annual Reports by the Pennsylvania Department of Health. Example 6.5
of Wei (2006) shows that while this series is clearly nonstationary with an increasing trend,
it still exhibits first-order autoregressive behavior. Plots of the data and the sample autocor-

relation and the partial autocorrelation functions (ACFs and PACFs) given in Figure 1 also
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demonstrate the appropriateness of AR(1) models for each series. Note that these ACFs and
PACFs are computed in terms of correlations rather than covariances because, as shown in
Nielsen (2006), the latter may be inappropriate for non-stationary time series. In view of the
features of these series, it would be interesting to ask whether (S1) to (S3) can choose the
better predictor between g,,1 and ¢, for each series.

To investigate this question, we split each series, {y1,--- ,y,}, into two parts. The first
part contains the first 90% of the data points, {y1,---,yr,}, which are used for deriving
APEL(T,) = Z;‘F:LJ\Z (Yis1 — Gis1)? and APER(T),) = ZZT:LA_/;Q (Yi41 — Tir1)?, and implementing
(S1) to (S3) based on APE,4(T,,) and APEg(T,,), where T,, = |[n x 0.9 with |x] denoting
the largest integer < x. The second part contains n — T,, data points, which are reserved
for calculating empirical MSPEs (EMSPEs), EMSPE, = (n — T;,) ™" Z’::_%n (Yiv1 — Uir1)? and
EMSPEg = (n—T,)™! Z?:_%n(yiﬂ — §i+1)% In light of the simulation results given in Section
5.1, both M; and M, in APE4(T,,) and APEg(T),) are set to 20 for all three datasets. If the
sign of APEA(T,,)—APEg(T,,) is consistent with that of EMSPE,—EMSPEg, then (S1) to
(S3) will choose the predictor with the smaller EMSPE. Since EMSPE,4 and EMSPEg are
suitable surrogates for the unobservable MSPE,4 and MSPEg and since these types of errors
are frequently used in practice to make forecast evaluations (Clark and West 2004), (S1) to
(S3) are considered satisfactory if the “sign consistency” phenomenon mentioned above is
observed in each time series.

Our calculations show that in the first series APE4(T),) = 4.852 < APER(7,,) = 5.062 and
EMSPE, = 0.0145 < EMSPEp = 0.0148, in the second series APE4(T},) = 4.901 x 107 >
APER(T,) = 4.894 x 10" and EMSPE 4 = 386349.8 > EMSPEp = 360928.1, and in the third
series APE4(T),) = 334.3 < APEg(T,,) = 348.7 and EMSPE 4 = 12.986 < EMSPEp = 17.023.
Therefore, the sign consistency phenomenon appears in each series, in spite of the sign being
negative in the first and third series and positive in the second. In summary, our data analysis
reveals that (S1) to (S3) can successfully combine the strengths of ¢,.1 and ¢,.1, thereby

producing better prediction results.

APPENDIX: PROOFS OF THEOREMS 5 and 6

To prove Theorem 5, we need the following lemma, whose proof is given in the supplemen-
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tary document. This lemma provides sufficient conditions for a sequence of random variables
{d,} to satisfy

n

plim, . (logn)™ Z d; =5, (A.1)

i=1
where plim denotes the probability limit and S is some constant.

Lemma 1. Let {d,} be a sequence of random variables. Assume (i) there exist a posi-
tive integer M and a positive number U such that for all n > M, E(n?d?) < U; (ii)
lim, o E(nd,) = S; and (iii) there exist 0 < n < 1 and a sequence of positive numbers {a,},
with limy, o a, = 00 and loga,/logn = o(1), such that maxyr<i<n/a,, inan<j<n |E(QiQ;) | =

o(1), where Q; = {id; — E(id;)}. Then (A.1) follows.

We are now ready to prove Theorem 5. We first focus on the case of p = 1. By Chow
(1965) and straightforward calculations, S0 (yiv1 — 9iv1)? = Sory 021+ on s (Vi1 — Giv1 —
0i11)*(1 4 0(1)) + O(1) as., and 315 (i1 — i1 — 6:41)? = 2oimy (2 — )* + 20y (1 —
1)2(yi — 9i-1)> + 2320 (p1 — 1) (4 — Gi—1) (2 — ). In addition, Theorem 2 of Wei (1987) (with
x; = 1,b; = z; and B = p) implies 77} (z; — 1) = 0%logn + o,(logn). In view of these

identities, Theorem 5 follows if one can show that for a = 2,

Gin+ Gon = 3(2¢) M logn + oy(logn), (A.2)

for 0 < a < 2,
G+ Gopn = 0p(logn), (A.3)

and for a > 2,
plim, ., (Gi,+ Ga,)/logn = oo, (A.4)

where G, = Y0 (pi — 1D)2(yi — 7i-1)? and Gy, = 250 (5 — 1)y — Gim1) (25 — ).
We start by proving the most challenging result (A.2). Let M be the smallest positive
integer such that for all i > M, E(4*?(p; — 1))* < oo [noting that the existence of such an M

23



is guaranteed by (19)]. It is not difficult to see that (A.2) is ensured by

A : (pi — 1)*(yi — i—1)? = 3(2¢) " logn + 0, (log n), (A.5)
and
i(ﬁi — 1)(yi — Yi-1)(zi — 1) = op(logn). (A.6)

Applying (19), (36), Holder’s inequality and Chebyshev’s inequality, one has

-1

D (= 0P = Gie0)* = (/4) D425 = DY+ 0,105 ). (A7)

Y

3

=

that E(n?d2) = O(1) and lim,,_,, S, = 6/(cp?). Hence conditions (i) and (ii) of Lemma 1 are

satisfied. If we can further show that condition (iii) of Lemma 1 holds, then

n—1
S~ DY /i = p 2 Slogn + oy(log ), (A8)
=M

which, together with (A.7), leads to (A.5).

Let lim,, o a, = 00,loga,/logn = o(1) and 0 < n < 1. Also choose a sequence of positive
numbers {g,} satisfying lim, . g, = oo and g,/a, = o(1). Define @Q);, = jd;; — S; and
Qi = jd;; — S;, where d;; = mingy, <o<;(jes/ys—1)? and dj; = mingg, <s<;(jes/Ys—14)?, With
Yii = Zf;io_l ei—r. By (19), (36), Holder’s inequality and some algebraic manipulations, one
obtains

Msen X [BE{Qi(Q; — Qji)}| = o(1),
and

max |E{Qi<Qj,i - Qyz)” =o(1).

M<i<n/an, nian<j<n

In addition, maxar<i<n/an, nian<j<n |E(QiQ;:)| = o(1) follows from E(Q;) = 0 and independence

between @); and Qﬂ As a result, condition (iii) of Lemma 1 holds true. This completes the
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proof of (A.8) and therefore of (A.5). To deal with (A.6), let d; = (p;—1)(vi—¥i—1)(zi—p). Itis
shown in the supplementary document that E(nd,,) = o(1). Using this equation in conjunction
with (19), (36), Holder’s inequality and an argument similar to that used to prove (A.8), one
obtains (A.1) with S = 0, which results in (A.6). Consequently, (A.2) is proved.

By making use of (19), it is not difficult to verify (A.3). We therefore skip the details. To
show (A.4), note first that G, > (5, — 1) 3272, (i — 7i—1)? This inequality and Theorem 2
together imply that for any 0 < ¢; < 1, there exists e > 0 such that

lim inf P(Gy,/n'~ %Y > ) > 1 — €. (A.9)

n—oo
In addition, Gy, = 0,(n'=3/%)) follows from (36), (19) and Holder’s inequality. Combining
this with (A.9) leads to (A.4). As a result, the proof of Theorem 5 for p = 1 is complete. The
proof of Theorem 5 for 0 < p < 1 is similar to that for p = 1, and is thus omitted. Finally, we

note that Theorem 6 is an immediate consequence of Theorem 2 of Wei (1987).
SUPPLEMENTARY MATERIALS
Supplementary materials contain the proofs of Theorems 1-4 and Lemma 1.
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Table 1: £ and the categories of (R4, 200, P(fe; (-), @, p)) under model (1) with Gamma(1,0) or Beta(1,6) errors

Gamma(1, 0) errors B(1,0) errors
p 6 n =200 n =500 n =1000 n =2000 Category n =200 n =500 n =1000 n =2000 Category
02 1 0.904 0.948  0.960 0.954 (G,L) 0.906 0.944  0.954 0.982 (G,L)
2 0.916 0.922 0.954 0.970 (G,L) 0.912 0.934  0.968 0.966 (G,L)
6 0.906 0.932  0.958 0.988 (G,L) 0.896 0.934  0.968 0.970 (G L)
05 1 0.916 0.948 0.968 0.986 (G,L) 0.880  0.936 0.960 0.976 (G,L)
2 0.900 0.938  0.964 0.976 (G,L) 0.882 0.942  0.950 0.984 (G,L)
6 0.898 0.946  0.972 0.978 (G,L) 0.892 0.956  0.968 0.966 (G, L)
0.8 1 0.764 0.846  0.914 0.938 (G,L) 0.626 0.662  0.778 0.812 (B,L)
2 0.818 0.858  0.912 0.956 (G,L) 0.668 0.772  0.854 0.866 (B,L)
6 0.816 0.854  0.912 0.938 (G,L) 0.740 0.840  0.870 0.920 (B,L)
1.0 1 0.986  1.000 1.000 1.000 (G,L) 0.932 0.974  0.988 0.998 (B,L)
2 0.988  0.998 1.000 1.000 (G,L) 0.972  0.998 0.998 1.000 (G,L)
6 0.996 0.996  0.998 1.000 (G,L) 0.984 0.998 1.000 1.000 (G,L)

Table 2: F,<L500> and the categories of (R4 200, P(fe; (+), &, p)) under model (1) with Gamma(2,6) or Beta(2, §) errors

Gamma(2, 0) errors B(2,0) errors
p 0 n =200 n =500 n=1000 n =2000 Category n =200 n =500 n =1000 n =2000 Category
02 1 0.752  0.824 0.850 0.882 (G,M) 0.472  0.534 0.526 0.530 (G,9)
2 0.790  0.840 0.850 0.880 (G,M) 0.670  0.636 0.648 0.666 (G,S)
6 0.816  0.818 0.828 0.850 (G,M) 0.758  0.776 0.812 0.816 (G,M)
05 1 0.836  0.888 0.906 0.932 (G,M) 0.594 0.636 0.658 0.652 (G,9)
2 0.832 0.884 0.882 0.914 (G,M) 0.738  0.750 0.752 0.814 (G,M)
6 0.824  0.886 0.902 0.930 (G,M) 0.782  0.820 0.858 0.884 (G,M)
0.8 1 0.706  0.754 0.786 0.812 (B,L) 0.210 0.244 0.258 0.300 (B,M)
2 0.666  0.694 0.812 0.818 (B,L) 0.358  0.454 0.504 0.546 (B,M)
6 0.668  0.730 0.798 0.820 (B,L) 0.542  0.628 0.664 0.732 (B,M)
1.0 1 0.892  0.938 0.954 0.960 (B,L) 0.938  0.964 0.976 0.994 (G,L)
2 0.888  0.936 0.950 0.966 (B,L) 0.730  0.766 0.772 0.798 (B,M)
6 0.874  0.930 0.968 0.972 (B,L) 0.652  0.668 0.714 0.724 (B,M)
Table 3: F°? and R4 200 under model (1) with Gamma(4,0) or Beta(4,0) errors
Gamma(4, 0) errors B(4,0) errors
p 0 n =200 n =500 n=1000 n =2000 R4 200 n =200 n =500 n =1000 n =2000 R4 200
02 1 0.564 0.676 0.760 0.840 2.090 0.950 0.976 0.994 0.998 1.070
2 0.578 0.672 0.752 0.850 2.050 0.890  0.976 0.982 1.000 1.210
6 0.578  0.710 0.750 0.810 2.110 0.764 0.838 0.922 0.962 1.510
05 1 0.452  0.494 0.572 0.660 2.410 0.900 0.912 0.964 0.992 1.190
2 0.438  0.462 0.586 0.620 2.450 0.784  0.888 0.932 0.958 1.380
6 0.428  0.486 0.524 0.624 2.430 0.604  0.726 0.778 0.854 1.750
0.8 1 0.600 0.578 0.512 0.574 4.800 0.992  0.986 0.992 0.994 2.530
2 0.572  0.566 0.538 0.514 4.850 0.942 0.944 0.950 0.968 2.740
6 0.598  0.558 0.534 0.524  4.870 0.780  0.792 0.778 0.810 3.640
1.0 1 0.922  0.986 0.996 1.000 1.600 1.000  1.000 1.000 1.000 1.030
2 0.908 0.976 0.994 1.000 1.600 1.000  1.000 1.000 1.000 1.150
6 0.914 0.972 1.000 0.994 1.600 1.000  1.000 1.000 1.000 1.340
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Number of blowflies

Figure 1: Plots of the data used in Section 5.2 and their sample ACFs and PACFs
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PREDICTOR SELECTION FOR POSITIVE AUTOREGRESSIVE
PROCESSES

SUPPLEMENTARY MATERIALS

1 PROOFS OF THEOREMS 1 and 2

Since (4) can be directly deduced from Corollary 2.5 of Davis and McCormick (1989) and
since the proofs of (17) and (21) have been given in Remarks 1 and 3, respectively, we only
need to show that (7), (15) and (19) hold true. We start by proving (19), which is ensured by

E(n1+(1/a) min  &;/y;_1)? = O(1), for any ¢ > 0, (1.1)

[ndo |+1<i<n

where 0 < dp < 1. Because y,’s are monotonically non-decreasing and y|,s,| is independent of
€iy1 > |ndp | + 1, the left-hand side of (1.1) is bounded by

E(nY*  min €)' E(Ynso) /m) "1 = (I) x (II). (1.2)

[ndo]+1<i<n

Let m be any positive integer greater than ¢/a and w, = [n/m| — 1. Then, it follows that
Yn = D516 = D "0 D Eim+j- This and the convexity of 279,z > 0, yield

E(y,/n)~? < Cmiu, ZE Zszmﬂ -4, (1.3)

where here and hereafter C' denotes a generic positive constant whose value is independent of
n and may vary at different occurrences. By (3), there is a sufficiently large constant K such
that

E(Z Ej)iq = /0 P(Z €j < til/q)dt
j=1 =1

K +/ P(e; <t7V/dt < K + (J(c/a)m/ tomide < C, (1.4)
K K
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where the second relation is ensured by the independence between ¢,’s and the third and
last ones are due to (3) and m > ¢/a. Equation (1.4) and an ii.d. assumption on &;’s
imply that for each 0 < i < u,, E(3 7L, €imy;)~? < O, which in conjunction with (1.3) gives
E(yn/n)~? = O(1). Thus we obtain

(IT) = O(1). (1.5)

It follows from (3) that there exist § > 0 and 0 < ¢ < ¢ < ¢ such that
cx® V< fo(z) <@t forall 0 <z < 69, (1.6)

Let ¢* > max{l,q/q:} and | > qq*q1/a(q:1¢* — q). Then, (3), (1.6), (14) and Chebyshev’s
inequality yield

nt

snd/«
(I)S/ P min €i>t1/q>dt+/ P('*  min &> t"Y9)dt
0

[ndo | +1<i<n snala [ndo | +1<i<n

& Snd/e
nt |ndp | +1<i<n 0
l

4 / P80 (2, > §Y/)dy + / PO (00020 > /0y
dna/« n!

nl

< Awmm—@mwwu—%»m+l exp{— (/)5 n(1 - &) }dt

nd/o

@)l [ e = o), (1.7)

nt
Combining (1.7), (1.5) and (1.2) gives the desired conclusion (19).

Next, we prove (7), which is ensured by

H(1/a) 13 i) — (A min ey ) =
(n Jain ei/yi-1) — (0700 min ei/yio1) = 0p(1), (1.8)
and for any ¢ > 0,
lim P(n't0/e) min i/yi—1 > t) = exp(—utc/{a(a+1)}), (1.9)
n—00 vn<i<n

where v,, = n? for some 1/2 < § < 1. It is easy to see that

the left-hand side of (1.8) < n™* WY min &;/y;_1)14,, (1.10)

vn<i<n



where A,, = {min,, <;<,, €;/yi—1 > Mina<;<,, €;/yi—1}. Let g, satisfy g,vn /O‘)/npr /) = o(1)
and g, — oo. Then, by (3), (19), (20), the weak law of large number, Chebyshev’s inequality

and independence between €;’s, one has for any € > 0,

P(nH(l/O‘)( min &;/y;_1)Ia, >€) < P(A,)

vn<i<n
< P(min si/yia > gp v, YY) 4 P(max g > g, %) + P(min & < g0t
= O(gnot W) i+ /oy L 6(1) +1 — {1 — C/(rg2*)} = 0(1). (1.11)

In view of (1.10) and (1.11), (1.8) follows. Let Z, = min,, <<, ne;/{(i — D)y — bp}, ZF =
min,, <<, ne;/{(i — D)p + b,} and B,, = {max,, <;<n |vi-1 — (¢ — 1)p| < by}, where b, = n?
with 1/2 < ¢ < 0 (noting that (i — 1) —b,, > 0 for all v, <7 < n and all large n). According
to Corollary 11.2.1 of Chow and Teicher (1997) and (20),

P(B%) = o(1). (1.12)

Since on the set By, ;/{(i — Dp+b,} < e&i/yi1 < &/{(i — D) —b,} for all v, <i < mn, it
holds that
nteZ I, <n't( min e /y; 1), <0V Z,15,. (1.13)

vn<i<n
Moreover, by (3) and a straightforward calculation, one has for any ¢ > 0,

lim P(n'*Z, >t) = lim P(n'*Z* > t) = exp(—p“t®c/{ala+1)}). (1.14)

n—oo n—oQ

Consequently, (1.9) follows from (1.12)-(1.14). Thus, the proof of (7) is complete.
While the proof of (15) is similar in spirit to that of (19), a nontrivial modification is needed
because 3, is no longer monotonically non-decreasing when 0 < p < 1. Let ¢ be defined as in

(1.6), 0 <0 <1, ¢ > max{q/(q:(1 = 0)),q/(0cr), 1} and I > q1¢"q/{a[(1 — 0)q1¢" — q]}. Then,
for 0 < p <1,

E{n"*(pn — p)}* < (HD)+(IV)+(V), (1.15)
where (HI) énq/ P(n'*mingc;cp, &;/yi1 > tY/9)dt, (IV) fénq/a ' ming<icp € /Y1 >
tY/4)dt and (V) = fnl P(nY* ming<;c,, &;/yi1 > tYa)dt. Let 0 < n < 1 satisfy P(ey > n) >

3



0. Then, it follows from (1.6) and mins<i<p&;/¥i-1 < Mili<i<|nj2) €2i/€2:-1 that (III) <
[ sl (ey /ey > potettaydr < [ (1 = P(ey > m)P(ey < n-Yattap)n/2gr = O(1).
Similarly, (IV) = O(1). In addition, (V) < [T{P(es/e1 > n=Vt1 gy > t70/9) + P(g; <
toayrdt < C [T{P(ef > nn/o=0a/a) 4 P(e; < t7%/9)}4°dt = O(1). The bounds for
(III), (IV) and (V) in conjunction with (1.15) lead to the desired conclusion (15).

2 PROOFS OF THEOREMS 3 and 4

We begin by proving Theorem 3. It is easy to see that

lim nE[(1 — p)Jn_1 — pu* = o°. (2.1)

n—oo

Making use of (15), (36) and Holder’s inequality, it follows that
E{(pn = p)*(Fn-1 — 1y)*} = O(n~ " #/), (2.2)
and
E(z2) = O(n?). (2.3)

In view of (34) and (2.1)-(2.3), it remains to show that

V}LH;o HQ/QE{(ﬁn - p)2(yn - :U'y)2} = Lo(a’ G P, 03)’ (24)
and
E{n2+ 0 (5, — p)(yn — 1) [(1 = p)n1 — 1]} = o(1). (2.5)

To prove (2.4), note first that a standard truncation argument (see, e.g., Section 7.3 of Brock-
well and Davis, 1987), together with Theorem 4.2 of Billingsley (1968) and (4), yields

nl/a(ﬁn - IO) (yn - Ny) = 51S27 (26)

where S; has the same distribution as the limiting distribution of n'/®(p, — p), which is given

in (4), Sy is distributed as that of Z;’io P01, and Sy and Sy are independent. By (2.6), the

4



continuous mapping theorem, and E[n'/*(p, — p)(yn — p,)|* = O(1) for some ¢ > 2 (which is
ensured by (15), (36) and Hélder’s inequality), the desired conclusion (2.4) follows. Finally,
applying a similar truncation argument, we get E{n/2*1/) (5 — 0)(y, — 11,)[(1 — p)Fn_1 —
]} = B{n/250/9) (5, — )[(1 = ) s — ]} E (o — py) + o(1) = o(1). Thus, (2.5) holds and
the proof is complete.

Next, we prove Theorem 4. It is easy to see that

lim nE(z, — p)* = o (2.7)

n—oo
Since (3, — Yn_1)/n = /2 + 0,(1), n*TW/9 (5, — 1) and (y, — n_1)/n are asymptotically
independent. This, together with Theorem 2, the continuous mapping theorem, Holder’s

inequality and (41), yields
E(nQ/a(lan - 1)2(yn - gnfl)Q) = Ll(aa C)' (28)
According to (39), (2.7) and (2.8), (42) follows if

E((pn = 1) (¥ — Jn1)(za — 1)) = o(max{n ™", n"*}). (2.9)

By applying (41), (19) and Hélder’s inequality, it is readily seen that (2.9) holds for 0 < a < 2
and a > 2. The proof of (2.9) in the critical case o = 2, however, is nontrivial and may be of

independent interest.
Let vy, By, by, Z, and Z be defined as in Section 1. Equations (1.2), (1.5) and (1.7) yield

E(n3/2 min ¢;/y;_1)? = O(1) for any ¢ > 0. (2.10)

vn<i<n

In addition, (41) implies E[{(yn — Jn-1)/n} — (11/2)|? = o(1). According to this, (19), (1.8),
(1.12), (41), (2.10) and Holder’s inequality, (2.9) with a = 2 follows from

vp<i<n

E(I) := E{(n*? min ¢;/y;_)(n""/? Z(Sj)[Bn} =o(1). (2.11)

Note that (I) is bounded below and above by n'/2Z,, (n="/2 > =20 B, — In=1/2 > 520 In/?(Z,—
Zy) and 02 Zx(n=2 N0 651, + [nTV2 Y0, 6502 (Z, — Z7), respectively. Therefore,

n

b}



(2.11) holds if

E{jn™"2 ) 8;n' (2, — 2;)} = o(1), (2.12)
j=2
E{n'2Z*(n 1/225 Iz} =o(1), (2.13)
and
E{n*?Z,( *1/225 I} = o(1). (2.14)

By an argument similar to that used to prove (19), it can be shown that for any ¢ > 0,

E(n*?Z,)? = O(1) and E(n'/?Z*)? = O(1). (2.15)

Using (2.15), 0 < n'/2(Z, — Z¥) < Cn*?Z,b,/(uvy), (41) and the Cauchy-Schwarz inequal-

ity, one obtains E{|n~1/2 PR NV Z, — 7)) < C(by/vn)E(In~Y? > i §;n2Z,) = o(1),
which gives (2.12). To show (2.13), note that

|E{n'/2Z5(n~1/? 25 Ip} < |B{n'?Z(n""/? Za M+ |BE{n'/2Z: (n~Y? 25 Ipe}

7j=2

[E{n'2Z; (072 " 8;)} + o(1),

Jj=2

where the identity is ensured by (2.15), (41), (1.12) and Hélder’s inequality. Moreover, some
tedious calculations yield that for all v, < j < n and some 6 > 1/2, |E(n'/22%6;)| < Cn~",
and hence E{n'/2Z(n""/237"_, ;)} = o(1). Consequently, (2.13) follows. The proof of (2.14)
is similar to that of (2.13). We omit the details.

3 PROOF OF LEMMA 1

Since by (ii),

(logn)™! 3 ] Sy @ Y E(zdz) =



where V,, = (logn)~' >, Q;/i, it suffices for Lemma 1 to show that
E(V?) — 0as n — oo. (3.1)

It is clearly no loss of generality to assume that n/a, and nia, are positive integers. Hence

V: = (logn)~ ZQ2 2(log n) 222 QZQ]

i=M j=i+1

n/an nian—1

= (logn)zicf—2 +2(logn) 22 Z QZQ]
i=M

i=M j=i+1
n/an n—1
Qi Q; QZQ
+2(logn)~ Z Z =2 4 2(logn) 2 Z Z e
=M j=nian j i=(n/an)+1 j=i+1
;= T+1II+II+IV. (3.2)

By making use of (i), the Cauchy-Schwarz inequality and loga,,/logn — 0, it holds that

E(I) = C(1/logn)* = o(1), (3.3)
|E(IT)] < C(logay/logn) = o(1), (3.4)

and
IE(IV)| < C(log a,/logn)* = o(1). (3.5)

Moreover, (iii) and some algebraic manipulations yield

[E(IN] <C max [E(QiQ;) | = o(1). (3.6)

M<i<n/an, inan<j<n

Now, (3.1) follows directly from (3.2)-(3.6). Thus, the proof is complete.
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