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Abstract

In this paper, we assume that observations are generated by a linear regression model with
short- or long-memory dependent errors. We establish inverse moment bounds for kn-dimensional
sample autocovariance matrices based on the least squares residuals (also known as the detrended
time series), where kn � n, kn → ∞ and n is the sample size. These results are then used to
derive the mean-square error bounds for the finite predictor coefficients of the underlying error
process. Based on the detrended time series, we further estimate the inverse of the n-dimensional
autocovariance matrix, R−1

n , of the error process using the banded Cholesky factorization. By
making use of the aforementioned inverse moment bounds, we obtain the convergence of mo-
ments of the difference between the proposed estimator and R−1

n under spectral norm.
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1 INTRODUCTION

Consider a linear regression model with serially correlated errors,

yt = x′tβ + zt =

p∑
i=1

xtiβi + zt, t = 1, · · · , n, (1.1)

where xt’s are p-dimensional nonrandom input vectors, β is a p-dimensional unknown coefficient
vector, and {zt} is an unobserved stationary process with mean zero. Let x̌j = (x1j , · · · , xnj)′,
1 ≤ j ≤ p, and y = (y1, · · · , yn)′. It is natural to estimate z = (z1, · · · , zn)′ via the least squares
residuals

ẑ = (ẑ1, · · · , ẑn)′ = (I −Mp)y = (I −Mp)z, (1.2)

where Mp is the orthogonal projection matrix of sp{x̌1, · · · , x̌p}, the closed span of {x̌1, · · · , x̌p}.
Note that ẑ is also known as the detrended time series; see Chapter 1 of Brockwell and Davis
(1991). Since many time series data are only available after being detrended, investigations for
some commonly used statistics based on ẑ are quite relevant. Let {oi = (o1i, · · · , oni)′, i = 1, · · · , r},
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1 ≤ r ≤ p, be an orthonormal basis of sp{x̌1, · · · , x̌p}. It is well-known that Mp =
∑r

i=1 oio
′
i, and

hence

ẑ = z−
r∑
i=1

νinoi, (1.3)

where νin = o′iz. Denote by λmin(A) the minimum eigenvalue of the symmetric matrix A. The
main objective of this paper is to establish

E
{
λ−qmin

(
R̂(k)

)}
:= E

{
λ−qmin

( 1

n

n∑
t=k

ẑt(k)ẑ′t(k)
)}

= O(1), (1.4)

where q is some positive number, ẑt(k) = (ẑt, · · · , ẑt−k+1)′, {zt} can be a short- or long-memory
process, and k = kn is allowed to tend to ∞ as n→∞. By (1.3),

ẑt(k) = zt(k)−
r∑
i=1

νino
(i)
t (k), (1.5)

where zt(k) = (zt, · · · , zt−k+1)
′

and o
(i)
t (k) = (ot,i, · · · , ot−k+1,i)

′. When the time trend vectors xt
are known to be zero for all 1 ≤ t ≤ n (which yields y = z = ẑ and ẑt(k) = zt(k) for all k ≤ t ≤ n),
(1.4) plays a major role in developing estimation, prediction and model selection theories of {zt}.
For example, assuming that {zt} is a stationary gaussian autoregressive (AR) model of finite order,
Fuller and Hasza (1981) established (1.4) with k being a fixed positive integer. They further applied
this result to analyze the biases and mean squared errors of the least squares estimators of the AR
coefficients, and to provide an asymptotic expression for the mean squared prediction error of the
corresponding least squares predictor. In order to establish some rigorous prediction and model
selection theories, Bhansali and Papangelou (1991), Findley and Wei (2002), and Chan and Ing
(2011), respectively, extended Fuller and Hasza’s (1981) result to non-Gaussian AR models of finite
order, multivariate time series models, and nonlinear stochastic regression models. All these results,
however, require that k is fixed with n. On the other hand, Ing and Wei (2003) allowed that k = kn
approaches∞ at a suitable rate and established (1.4) under a class of short-memory processes. Their
result was then used by a number of authors to deal with prediction and model selection/averaging
problems in some misspecified time series models; see, e.g., Ing and Wei (2005), Zhang, Wan and
Zou (2013) and Greenaway-McGrevy (2013).

If xt are nonzero for some 1 ≤ t ≤ n, then z is in general not observable and ẑ can be used in
place of z to conduct statistical inferences for {zt}. As shown in Section 3, some of these inferences
can also be justified theoretically using (1.4) with ẑt(k) 6= zt(k), whose proof, however, is still lacking
due to technical difficulties. In this article, we shall fill this gap by extending Ing and Wei’s (2003)
argument to the case of ẑt(k) 6= zt(k); see Theorems 1 and 2 of Section 2. Note that one major
step in Ing and Wei’s (2003) proof is to show that for any v ∈ Rk with ‖v‖ = 1, the conditional
distribution of v

′
zt(k) given σ(εs, εs−1, . . .) is sufficiently smooth when t − s is sufficiently large

and the distribution of εt obeys a type of Lipschitz condition, where ‖ · ‖ denotes the Euclidean
norm, {εt} is the white noise process driving {zt} and σ(εs, εs−1, . . .) is the σ-field generated by
{εl,−∞ < l ≤ s}. In view of (1.5), the corresponding property in the present case is that the
conditional distribution of v

′
ẑt(k) given σ(zs, . . . z1, ν1n, . . . νrn) is sufficiently smooth when t − s

is sufficiently large. However, since {ν1n, . . . νrn} are determined by all z1, . . . zn, we need a new
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distributional assumption on {zt}, (C1), to establish this property. In fact, even if (C1) is imposed,

this property may still fail to hold once |v′o(j)
t (k)| or

∑s
i=1 o

2
ij is large for some 1 ≤ j ≤ r; see

Appendix. Fortunately, we argue in the proof of Theorem 1 that the number of such (t, s) pairs
is small, and hence Ing and Wei’s (2003) approach can be carried over to the present case after a
suitable adjustment. Moreover, by making use of Theorem 2.1 of Ing and Wei (2006), we derive
sharp upper bounds for E(ν2

in), 1 ≤ i ≤ r under a mild dependence assumption, (2.1), on {zt}. This
enables us to relax the short-memory assumption made by Ing and Wei (2003).

The rest of the paper is organized as follows. In Section 2, we begin with introducing (2.1),
(C1) and the other two conditions, (C2) and (C3), which place mild restrictions on the design
matrix X = (x1, . . . ,xn)

′
and the spectral density of {zt}, respectively. Under these assumptions,

Theorem 1 provides an upper bound for E(λ−qmin(R̂(k))), with k = kn = o(n) and ẑt(k) 6= zt(k).
While this bound still approaches ∞ as kn does, it is a stepping stone on the path to proving
(1.4) when zt is assumed to be a linear process driven by a white noise with finite moments up
to a certain order. For more details, see Theorem 2. In Section 3, we assume that zt admits an
AR(∞) representation and give two interesting applications of Theorem 2. The first application
is devoted to the mean-square error bounds for the finite predictor coefficients obtained from ẑ
and an AR(kn) model; see Theorem 3. It is worth mentioning that although this kind of results
has been pursued by many authors (e.g., Bhansali and Papangelou (1991), Chan and Ing (2011),
Findley and Wei (2002), Masuda (2013), Jeganathan (1989) and Sieders and Dzhaparidze (1987)),
no results have been established for detrended time series so far, even in the short-memory case.
The second application focuses on the problem of estimating the inverse of the covariance matrix of
z, Rn := E(zz

′
). When ẑt(k) = zt(k), Wu and Pourahmadi (2009) established the consistency of the

banded covariance matrix estimators of Rn under short-memory time series. McMurry and Politis
(2010) subsequently generalized their result to the tapered covariance matrix estimators. Based on
these developments, it is easy to construct a consistent estimator of R−1

n by inverting a consistent
banded (or tapered) estimator of Rn; see Corollary 1 of Wu and Pourahmadi (2009). Although these
estimators perform well in the short-memory case, they are not necessarily suitable for long-memory
time series whose autocovariance functions are not absolutely summable. In particular, the banded
and tapered estimators of Rn may incur large truncation errors in the long-memory case, thereby
failing to achieve consistency. To rectify this deficiency, we estimate R−1

n directly using ẑ and the
banded Cholesky decomposition. We further apply Theorem 2 to develop the moment convergence
of the difference between the proposed estimator and R−1

n under spectral norm; see Theorem 4.

2 Inverse moment bounds

Assume that in model (1.1), {zt} is a stationary time series whose autocovariance function, γl =
E(ztzt+l), satisfies

γl = O
(
|l|−1+2d

)
, (2.1)

for some 0 < d < 1/2. As mentioned in Section 1, the main purpose of this section is to establish
(1.4) with ẑt(k) 6= zt(k). To this end, we need the following assumptions. Define

Fn =

{
n∑

m=1

smzm :

n∑
m=1

s2
m = 1

}
.

3



(C1). There exist positive numbers α, δ and M0 such that for any 0 < u−v ≤ δ, any f, f1, · · · , fk1 ∈
Fn and any n ≥ 1,

P
(
v < f/η1/2 ≤ u |f1, · · · , fk1

)
≤M0(u− v)α a.s., (2.2)

provided η = η(f, f1, · · · , fk1) = min
(c1,··· ,ck1 )′∈Rk1

E(f −
k1∑
i=1

cifi)
2 > 0.

(C2). There exist an orthonormal basis, {o1, · · · ,or}, of sp{x̌1, · · · , x̌p}, and constants 0 < δ1 < 1
and 1 < δ2 <∞ such that for all large n,

max
1≤j≤r

bnδ1c∑
i=1

o2
ij <

1

δ2r
, (2.3)

where bac denotes the largest integer ≤ a.

(C3). The spectral density of {zt}, fz(λ), satisfies

fz(λ) 6= 0,−π ≤ λ ≤ π. (2.4)

Remark 1. Conditions (2.1) and (C3) are fulfilled by many short- and long-memory time series
models encountered in general practice. For example, they are satisfied by the linear process,

zt =

∞∑
j=0

bjεt−j , (2.5)

where εt’s are independent random variables with E(εt) = 0 and 0 < E(ε2
t ) = σ2 <∞, and bj ’s are

real numbers obeying

b0 = 1, bl = O
(
l−1+d

)
, for some 0 < d < 1/2, (2.6)

and

σ2

2π

∣∣ ∞∑
j=0

bje
−ijλ∣∣2 6= 0, for any − π ≤ λ ≤ π. (2.7)

A well-known special case of (2.5)-(2.7) is the autoregressive fractionally integrated moving average
(ARFIMA) process,

φ(B)(1−B)szt = θ(B)εt,

where 0 ≤ s ≤ d, B is the backshift operator, φ(z) = 1−φ1z−· · ·−φpzp and θ(z) = 1+θ1z+· · ·+θqzq
are polynomials of orders p and q, respectively, |φ(z)θ(z)| 6= 0 for |z| ≤ 1, and |φ(z)| and |θ(z)|
have no common zeros. In the sequel, the process is denoted by ARFIMA(p, s, q), which has short
memory when s = 0.

Remark 2. In the case of ẑt(k) = zt(k), conditions like (C1) have been frequently used to
establish results similar to (1.4); see, e.g., Bhansali and Papangelou (1991), Papangelou (1994) and
Katayama (2008). In the case of ẑt(k) 6= zt(k), (C1) can be used in conjunction with (C2) and
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(C3) to show that the conditional distribution of v
′
ẑt(k) given σ(zs, . . . z1, ν1n, . . . νrn) is sufficiently

smooth (in the sense of (2.15)), provided t − s is sufficiently large, |v′o(j)
t (k)| is sufficiently small

and s ≤ bnδ1c. As will become clear later, this is a key step toward proving (1.4) in the latter
case. When xt is a linear process, (C1) is usually more restrictive than (55) of Findley and Wei
(2002) and (K.2) of Ing and Wei (2003), which impose Lipschitz-type conditions on the distribution
functions of εt. However, (C1) enables us to handle the conditional distribution of v

′
ẑt(k) given

σ(zs, . . . z1, ν1n, . . . νrn) in a more mathematically tractable way, noting that νin can be arbitrary
linear combinations of z1, . . . , zn. Condition (C1) is easily satisfied by any Gaussian process with
non-degenerate finite-dimensional distributions. While it is possible to verify (C1) under non-
Gaussian processes or linear processes with errors satisfying some smoothness conditions, the details
need to be treated separately and are not pursued here.

Remark 3. Condition (C2) is satisfied by most commonly used design matrices. One typical
example is xt = (1, t, . . . , tp−1)

′
, p ≥ 1, which implies E(ẑsẑt) → 0 as |t − s| → ∞. Condition

(C2) can even accommodate design matrices yielding that E(ẑsẑt) is not negligible for large |t− s|.
To see this, let X = (1, 0, . . . , 0, 1)

′
, and hence r = 1, o1 = (1/

√
2, 0, . . . , 0, 1/

√
2)
′
, and (C2)

is satisfied by any 0 < δ1 < 1 and 1 < δ2 < 2. In addition, since ẑ1 = (z1 − zn)/2 = −ẑn,
limn→∞E(ẑ1ẑn) = −γ0/2 6= 0. This example also points out a fundamental difference between ẑt
and zt because by (2.1), E(zszt) = γt−s always converges 0 as |t− s| → ∞.

The next theorem generalizes Lemma 1 of Ing and Wei (2003) to situations where ẑt(kn) 6= zt(kn)
and

∑∞
j=0 |γj | is allowed to be unbounded.

Theorem 1. Assume (1.1), (2.1) and (C1)-(C3). Suppose kn � nθ1 with 0 < θ1 < 1. Then for any
q, ι > 0,

E
(
λ−qmin

(
R̂(kn)

))
= O

(
kq+ιn

)
.

Proof. Let wt = ẑt(kn)ẑ′t(kn), M be a sufficiently large constant whose value will be specified
later, and gn = bn−kn+1

Mkn
c. Some algebraic manipulations imply

λ−qmin

(
R̂(kn)

)
≤ nqλ−qmin

gn−1∑
j=0

Mkn−1∑
l=0

wgnl+j+kn


≤ Ckqn

1

gn

gn−1∑
j=0

λ−qmin

(
Mkn−1∑
l=0

wgnl+j+kn

)
, (2.8)

where C, here and hereafter, denotes a generic positive constant independent of n. Let ι > 0 be
arbitrarily chosen. If for all j = 1, · · · , gn − 1 and all large n,

E

(
λ−qmin

(
Mkn−1∑
l=0

wgnl+kn+j

))
≤ Ckιn (2.9)

holds true, then this, in conjunction with (2.8), yields the desired conclusion.
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The rest of proof is only devoted to proving (2.9) with j = 0 since (2.9) with j > 0 can be proved
similarly. Let b∗n = kιn and ξ > max{[(3/ι) + 1]q/2, [(2d/θ1) + 1](q/2ι) + q/2}. Then, it follows that,

E

(
λ−qmin

(
Mkn−1∑
l=0

wgnl+kn

))
≤ b∗n +

∫ ∞
b∗n

P

(
Mkn−1∑
l=0

‖ẑgnl+kn(kn)‖2 > µ2ξ/q/kn

)
dµ

+

∫ ∞
b∗n

P (Gn(µ)) dµ := b∗n +D1n +D2n, (2.10)

where

Gn(µ) =

{
inf
‖v‖=1

Mkn−1∑
l=0

(
v′ẑgnl+kn(kn)

)2
< µ−1/q,

Mkn−1∑
l=0

‖ẑgnl+kn(kn)‖2 ≤ µ2ξ/q/kn

}
.

By (2.1), Theorem 2.1 of Ing and Wei (2006), Hölder’s inequality and ‖oi‖2 = 1, 1 ≤ i ≤ r,

E(ν2
in) ≤ C

 n∑
j=1

|oji|
2

1+2d

1+2d

≤ Cn2d
n∑
j=1

o2
ji ≤ Cn2d, 1 ≤ i ≤ r. (2.11)

In view of (2.11), Chebyshev’s inequality and the definition of ξ, we get

D1n ≤ C
k3
n + knn

2d

k
(2ξ−q)ι/q
n

= o(1). (2.12)

We next give a bound for D2n. Following the argument given in page 137 of Ing and Wei (2003),
it can be shown that for any µ > 1, there exists a set of kn-dimensional unit vectors v1, · · · ,vm∗ ,
with m∗ = m∗(µ) ≤ (bµ(ξ+1/2)/qc+ 1)kn such that

P (Gn(µ)) ≤
m∗∑
j=1

P

(
Mkn−1⋂
l=0

∣∣v′j ẑgnl+kn(kn)
∣∣ ≤ 3µ−1/2q

)

=
m∗∑
j=1

E

{
Mkn−1∏
l=0

IEj,l(µ)

}
, (2.13)

where Ej,l(µ) = {|v′j ẑgnl+kn(kn)| ≤ 3µ−1/2q} and the dependence of vj on µ is suppressed for
simplicity.

In what follows, we shall show that for any 1 ≤ j ≤ m∗ and µ > 1, there exist positive integers
rj < Mkn − 1 and l1,j < · · · < lrj ,j < Mkn − 1 such that the mean-square error of the best linear
predictor of v′jzgnlp+1,j+kn(kn) based on ν1n, . . . , νrn and z1, . . . zgnlp,j+kn is bounded away from 0
for all large n and all 1 ≤ p ≤ rj − 1, 1 ≤ j ≤ m∗ and µ > 1. To achieve this goal, first express
vj as (vj,1, · · · , vj,kn)′. For 1 ≤ j ≤ m∗ and 0 ≤ l ≤ Mkn − 1, define vj(l) = (w1, · · · , wn)′, where
wi = vj,s if i = gnl + kn − s+ 1 for some 1 ≤ s ≤ kn, and 0 otherwise. Let 0 < θ2 < 1,

Lh(j) =

{
l :
∣∣v′j(l)oh∣∣ = |v′jo

(h)
gnl+kn

(kn)| ≥ θ2(δ2 − 1)

2r1/2δ2
, 0 ≤ l ≤Mkn − 1

}
, and L(j) =

r⋃
h=1

Lh(j),
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noting that δ2 is defined in (C2). Since ‖oh‖2 = 1, 1 ≤ h ≤ r, it holds that for all 1 ≤ j ≤ m∗ and
µ > 1, ]L(j) ≤ r{(2r1/2δ2)/[θ2(δ2 − 1)]}2 := D. Choose 0 < δ′1 < δ1 and set

L̄(j) =
{
l : 0 ≤ l ≤ bδ′1Mknc − 1, l \∈ L(j)

}
.

Now define {l1,j , · · · , lrj ,j} = L̄(j), where ls,j < lt,j if s < t. It is readily seen that for all 1 ≤ j ≤ m∗
and µ > 1, rj ≥ bδ′1Mknc −D. By making use of (C2) and (C3), we show in Appendix that for all
large n and all 1 ≤ p ≤ rj − 1, 1 ≤ j ≤ m∗ and µ > 1,

min
(c1,··· ,cr)∈Rr,

(d1,··· ,dgnlp,j+kn )∈Rgnlp,j+kn

E

v′j(lp+1,j)z−
r∑
i=1

cjνin −
gnlp,j+kn∑

j=1

djzj

2

≥ η, (2.14)

where η is some positive number independent of n, p, j and µ. Therefore, the property mentioned
at the beginning of this paragraph holds true.

By (2.14), (C1) and v′j ẑgnlp+1,j+kn(kn) = v′j(lp+1,j)z −
∑r

i=1 νinv
′
j(lp+1,j)oi, it follows that the

conditional distribution of v′j ẑgnlp+1,j+kn(kn) given Dj(p) = σ(ν1n, · · · , νrn, z1, · · · , zgnlp,j+kn) is uni-
formly smooth in the sense that for all large n and all 1 ≤ p ≤ rj−1, 1 ≤ j ≤ m∗, and µ > 1,

P
(∣∣v′j ẑgnlp+1,j+kn(kn)

∣∣ < 3µ−1/2q
∣∣∣Dj(p))

= P

(
−3µ−1/2q +

r∑
i=1

νinv
′
j(lp+1,j)oi < v′j(lp+1,j)z < 3µ−1/2q +

r∑
i=1

νinv
′
j(lp+1,j)oi

∣∣∣∣∣Dj(p)
)

≤ M0

(
6η−1/2µ−1/2q

)α
a.s. (2.15)

Equipped with (2.15), we are now ready to provide an upper bound for E(
∏Mkn−1
l=0 IEj,l(µ)),

which further leads to an upper bound for D2n. Let L̄(p)(j) = {l1,j , · · · , lp,j}, 1 ≤ p ≤ rj . By (2.15)
and rj ≥ bδ′1Mknc −D, one has for all large n and all 1 ≤ j ≤ m∗ and µ > 1,

E

(
Mkn−1∏
l=0

IEj,l(µ)

)
≤ E

 ∏
l∈L̄(j)

IEj,l(µ)


≤ E

 ∏
l∈L̄(rj−1)(j)

IEj,l(µ)E

(
IEj,lrj ,j

(µ)

∣∣∣∣Dj(rj − 1)

)
≤ M0

(
6η−1/2µ−1/2q

)α
E

 ∏
l∈L̄(rj−1)(j)

IEj,l(µ)


≤

{
M0

(
6η−1/2µ−1/2q

)α}bδ′1Mknc−D
. (2.16)

Choose M > (2ξ + 1)/(αδ′1). Combining (2.16) and (2.13) yields that for all large n, there is a
positive constant, M̄ , independent of n such that

D2n ≤ M̄kn

∫ ∞
b∗n

µ
−
αδ′1Mkn − αD − (2ξ + 1)kn

2q dµ ≤ C. (2.17)
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Consequently, (2.9) with j = 0 follows from (2.10), (2.12) and (2.17). 2

Remark 4. When 1 ≤ kn = k < ∞ is fixed with n, Theorem 2.1 of Chan and Ing (2011)
generalizes Lemma 1 of Ing and Wei (2003) in another direction. In particular, their theorem shows
that for any q > 1,

E

{
sup
θ∈Θ

λ−qmin

(
n−1

n∑
t=k

zt(k,θ)z
′
t(k,θ)

)}
= O(1), (2.18)

where z
′
t(k,θ) = (zt(θ), . . . , zt−k+1(θ)) and {zt(θ)} is a stationary time series indexed by θ ∈ Θ

with Θ being a compact set in Rs for some 1 ≤ s < ∞. Equation (2.18) can be used to establish
moment bounds for the conditional sum of squares estimators in ARMA models; see Theorem 3.3
of Chan and Ing (2011). Clearly, (2.18) reduces to (1.4) with ẑt(k) = zt(k) if Θ only contains
one point. On the other hand, since zt(θ), like zt, depends only on the information up to time t,
the proof of (2.18) is more closely related to that of Lemma 1 of Ing and Wei (2003) (or Property
A of Findley and Wei (2002)) than Theorem 1. Indeed, the proof of Theorem 1 follows similar
arguments put forth in Findley and Wei (2002) and Ing and Wei (2003) up until equation (2.13),
and the arguments between (2.13) and (2.17), focusing exclusively on ẑt, are new to the literature.

For an n × m matrix A, define its spectral norm ‖A‖2 = (sup‖x‖=1,x∈Rm x′A′Ax)1/2. Then,
Theorem 1 implies that for any q, ι > 0,

E
∥∥∥R̂−1(kn)

∥∥∥q
2

= O(kq+ιn ). (2.19)

This result serves as a stepping stone to proving (1.4), or equivalently, for some q > 0,

E
∥∥∥R̂−1(kn)

∥∥∥q
2

= O(1), (2.20)

under additional assumptions. To introduce the details, set R(k) = E(zk(k)z′k(k)). According to
(2.1) and Proposition 5.1.1 of Brockwell and Davis (1991), R−1(k) exists for any k ≥ 1.

Theorem 2. Assume (1.1), (2.5)-(2.7), (C1) and (C2). Suppose

sup
−∞<t<∞

E
(
|εt|2q1

)
<∞, for some q1 ≥ 2, (2.21)

and

kn � nθ1 ,where 0 < θ1 <
1

4
if 0 < d ≤ 1

4
, and 0 < θ1 <

1

2
− d if

1

4
< d <

1

2
. (2.22)

Then, for 0 < q < q1,

E
∥∥∥R̂−1(kn)−R−1(kn)

∥∥∥q
2

= o(1), (2.23)

and (2.20) follows. Moreover, if (2.21) and (2.22) are replaced by

sup
−∞<t<∞

E (|εt|q) <∞, for any q > 0, (2.24)

and

kn � nθ1 ,where 0 < θ1 <
1

2
if 0 < d ≤ 1

4
, and 0 < θ1 < 1− 2d if

1

4
< d <

1

2
, (2.25)

respectively, then, (2.20) and (2.23) hold for any q > 0.
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Proof. We first assume that (2.21) and (2.22) hold true. By∥∥∥R̂−1(kn)−R−1(kn)
∥∥∥q

2
≤
∥∥∥R̂−1(kn)

∥∥∥q
2

∥∥∥R̂(kn)−R(kn)
∥∥∥q

2

∥∥R−1(kn)
∥∥q

2
, (2.26)

(2.1) (which is implied by (2.5) and (2.6)), (2.21) and an argument used in Lemma 2 of Ing and
Wei (2003), it follows that

E
∥∥∥R̂(kn)−R(kn)

∥∥∥q1
2
≤



C
kq1n

nq1/2
, if 0 < d <

1

4
,

C

(
log n

n

)q1/2
kq1n , if d =

1

4
,

C

(
kn

n1−2d

)q1
, if

1

4
< d <

1

2
.

(2.27)

Moreover, (2.7) yields

sup
k≥1

∥∥R−1(k)
∥∥

2
<∞. (2.28)

Consequently, (2.20) and (2.23) follow from (2.19), (2.22), (2.26)-(2.28) and Hölder’s inequality.
If in place (2.21), we assume (2.24), then the q1 in (2.27) can be replaced by any q > 0. This

modification, together with (2.19), (2.25), (2.26), (2.28) and an argument similar to that used in
the proof of Theorem 2 of Ing and Wei (2003), yields that (2.20) and (2.23) hold for any q > 0,
which leads to the second conclusion of the theorem.

Remark 5. When (2.25) is restricted to 0 < d < 1/4 and kn � nθ1 for some 0 < θ1 < 1/2,
the second conclusion of Theorem 2 can be modified as follows: (2.20) and

E
∥∥∥R̂−1(kn)−R−1(kn)

∥∥∥q
2

= O

(
kqn

nq/2

)
(2.29)

hold for any q > 0. Equation (2.29) is a strengthened version of (2.21) of Ing and Wei (2003), which
gives the same rate of convergence of E‖R̂−1(kn)−R−1(kn)‖q2 in the case that ẑt(kn) = zt(kn) and
{zt} is a short-memory process.

3 Applications

Throughout this section, we assume that zt admits the following AR(∞) representation:

zt+1 +
∞∑
i=1

aizt+1−i = εt+1, (3.1)

where
ai = O(i−1−d), with 0 < d < 1/2. (3.2)

Note that (3.1) and (3.2) include the ARFIMA(p, s, q) model, with 0 ≤ s ≤ d, as a special case.
Denote the coefficient vector (a1, a2, . . .)

′
by a. This section aims at estimating a and R−1

n = R−1(n)
based on the detrended series ẑ1, . . . ẑn, and providing the corresponding mean convergence results
using Theorem 2.
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3.1 Estimation of a

We first consider a finite-order approximation model corresponding to (3.1),

zt+1 +
k∑
i=1

ai(k)zt+1−i = εt+1,k,

where a(k) = (a1(k), · · · , ak(k))′ minimizes E(zt+1 + c1zt + · · ·+ ckzt+1−k)
2 over (c1, · · · , ck)′ ∈ Rk.

The least squares estimator of a(k) based on ẑ1, · · · , ẑn is given by

â(k) = arg min
(c1,··· ,ck)′∈Rk

n−1∑
t=k

(ẑt+1 + c1ẑt + · · ·+ ckẑt+1−k)
2.

Estimating a by the finite predictor coefficients â∗(k) = (â′(k), 0, · · · )′, the objective of Section 3.1
is to establish the moment convergence of ‖â∗(k)− a‖ to zero. As shown in the next theorem, this
goal is achievable if k = kn approaches ∞ at a suitable rate.

Theorem 3. Assume (1.1), (2.5)-(2.7), (C1), (C2), (3.1), (3.2) and (2.24). Suppose kn satisfies
(2.25). Then for any q > 0,

E ‖â∗(kn)− a‖q = o(1). (3.3)

Proof. Clearly,

‖â∗(kn)− a‖q ≤ C {‖â(kn)− a(kn)‖q + ‖a∗(kn)− a‖q} , (3.4)

where a∗(k) = (a′(k), 0, · · · )′. It follows from (C3) that

‖a∗(kn)− a‖q ≤ C

E
 ∞∑
i=kn+1

aizt+1−i

2
q/2

≤ C

E
 bk1/dn c∑
i=kn+1

aizt+1−i

2

+ E

 ∞∑
bk1/dn c+1

aizt+1−i


2

q/2

. (3.5)

By Theorem 2.1 of Ing and Wei (2006),

E

 bk1/dn c∑
i=kn+1

aizt+1−i

2

≤ Ck−1
n ,

and by (3.2) and Minkowski’s inequality,

E

 ∞∑
bk1/dn c+1

aizt+1−i


2

≤ Ck−1
n ,
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The above two equations, together with (3.5), give

‖a∗(kn)− a‖q ≤ Ck−q/2n . (3.6)

On the other hand, by Theorem 2 and some algebraic manipulations, one gets

E ‖â(kn)− a(kn)‖q ≤ CE

∥∥∥R̂−1(kn)
∥∥∥q

2

∥∥∥∥∥∥ 1

n

n−1∑
t=kn

ẑt(kn)
(
ẑt+1 + ẑ′t(kn)a(kn)

)∥∥∥∥∥∥
q

≤ C

E
∥∥∥∥∥∥ 1

n

n−1∑
t=kn

ẑt(kn)
(
ẑt+1 + ẑ′t(kn)a(kn)

)∥∥∥∥∥∥
2q

1/2

. (3.7)

Moreover, it follows from (3.4) and the proof of Lemma 4.2 of Ing, Chiou, and Guo (2013) that

E

∥∥∥∥∥∥ 1

n

n−1∑
t=kn

ẑt(kn)
(
ẑt+1 + ẑ′t(kn)a(kn)

)∥∥∥∥∥∥
2q

≤ C
{(

kn
n

)q
+

(
1

n1−2d

)q
+

(
kn

n2−4d

)q}
. (3.8)

Consequently, (3.3) is ensured by (3.4), (3.6), (3.7), (3.8) and (2.25).

Remark 6. In many applications, trend estimation can also be performed by first estimating
the coefficients, ξ = (τ

′
, φ1, . . . , φk)

′
, in an AR model around a deterministic time trend,

yt = x′tτ +
k∑
s=1

φsyt−s + εt, (3.9)

and then plugging the estimated coefficients into the formula, ut = E(yt) = φ−1(B)wt, where
φ(z) = 1 − φ1z − · · · − φkzk 6= 0 for all |z| ≤ 1 and wt = x′tτ . Here we assume |ut| < ∞ for any
−∞ < t <∞. Denote by ξ̂ the least squares estimator of ξ, where ξ̂ satisfies

(
n∑

t=k+1

wtw
′
t)ξ̂ =

n∑
t=k+1

wtyt,

with wt = (x′t,y
′
t−1(k))

′
and yt(k) = (yt, . . . , yt−k+1)

′
. In the following, we shall illustrate the

moment convergence of ‖ξ̂− ξ‖ via an approach somewhat different from the one used in Theorem
3. To simplify the exposition, we only consider the case where (3.9) is correctly specified and
1 ≤ k <∞ is fixed with n. Assume also that there is a k× p matrix T (independent of t) such that

Txt = −(ut−1, . . . , ut−k)
′
. (3.10)

Note that the T obeying (3.10) in the case of xt = (1, t, . . . , tp−1), p ≥ 1 is given in Appendix B of
Ing (2003). Equation (3.10) yields w∗t = Hwt = (x′t, z

′
t−1(k))

′
, where with Im and 0m1×m2 denoting

the m-dimensional identity matrix and the m1 ×m2 zero matrix, respectively,

H =

(
Ip 0p×k
T Ik

)
,
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and z
′
t(k) = (zt, . . . , zt−k+1) with zt = yt − ut = φ−1(B)εt. Let x̃i = (xk+1,i, . . . , xni)

′
and define

E = diag(‖x̃1‖, . . . , ‖x̃p‖),

V =

(
E−1 0p×k
0k×p n−1/2Ik

)
,

and R̃(p+ k) = V(
∑n

t=k+1 w∗tw
∗′
t )V

′
. When X̃ = (x̃1, · · · , x̃p) is nonsingular and the distribution

functions of εt satisfy some smoothness conditions, it can be shown that for any q > 0,

E‖R̃−1(p+ k)‖q2 = O(1), (3.11)

provided sup−∞<t<∞E(|εt|cq) < ∞ for cq large enough (depending on q). Moreover, Lemma 4 of
Ing and Wei (2003) implies

E‖
n∑

t=k+1

Vw∗t εt‖q = O(1), (3.12)

under sup−∞<t<∞E(|εt|s1) <∞ for s1 ≥ max{2, q}. Now, the intended moment bound,

E‖ξ̂ − ξ‖q = o(1), (3.13)

follows from (3.11), (3.12), ‖ξ̂− ξ‖ ≤ ‖V‖2‖H‖2‖R̃−1(p+ k)‖2‖
∑n

t=k+1 Vw∗t εt‖, Höler’s inequality

and an additional assumption, min1≤i≤p ‖x̃i‖ → ∞ as n→∞. For xt = (1, t, . . . , tp−1)
′
, (3.11) has

been reported in Lemma B.1 of Ing (2003), which is also closely related to Lemma 1 of Yu, Lin
and Cheng (2012). In fact, because w∗t contains deterministic components and is σ(εt, εt−1, . . .)-
measurable, the proof of (3.11) is different from that of (2.20) (or (1.4)) not only in the case of
ẑt(k) 6= zt(k), but also in the case of ẑt(k) = zt(k) (see Remark 3 of Yu, Lin and Cheng (2012)
for some discussion). Another important difference between (2.20) with ẑt(k) 6= zt(k) and (3.11)
is that whereas the latter is obtained under the non-singularity of X̃ and min1≤i≤p ‖x̃i‖ → ∞ as
n → ∞, these restrictions are not necessary for the former. Finally, we remark that the proof of
(3.13) is more involved when (3.10) fails to hold. It is expected that an argument used in the proof
of Lemma 2 of Yu, Lin and Cheng (2012) can be generalized to establish the desired property. The
details, however, are beyond the scope of the present article.

Remark 7. When xt = 0 for all t and {zt} is a short-memory process, several research stud-
ies related to Theorem 3 have been conducted and reported in the literature. For example, it is
shown in Corollary 2 of Wu and Pourahmadi (2009) that

‖ân,l − a(n)‖ = op(1), (3.14)

where l → ∞ at a rate much slower than n and ân,l = Σ̂−1
n,l γ̃n, with Σ̂n,l = (γ̌i−jI|i−j|≤l)1≤i,j≤n,

γ̌k = n−1
∑n−|k|

i=1 zizi+|k|, k = 0,±1, . . . ,±(n − 1), γ̃n = (γ̃1, . . . , γ̃n)
′

and γ̃i = γ̌iI|i|≤l. In addition,
Corollary 1 of Bickel and Gel (2011) shows that

‖τ̂ bp,n − a(p)‖ = op(1), (3.15)

where p/n→ 0 as p→∞ and n→∞ and τ̂ bp,n = Bk(R̂p,n)−1γ̌p, withBk(R̂p,n) = (γ̌i−jI|i−j|≤k)1≤i,j≤p,

γ̌p = (γ̌1, . . . , γ̌p)
′
, and k � (n/p)δ2 for some 0 < δ2 < 1. Note first that since (3.14) and (3.15) focus
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on convergence in probability instead of convergence of moments, assumptions like (C1) (or (K.2)
of Ing and wei (2003)) are not needed for these two equations. In addition, the moment conditions
used to derive (3.14) and (3.15) are much weaker than that of Theorem 3. On the other hand, the
proofs of (3.14) and (3.15), depending heavily on

∑∞
j=−∞ |γj | < ∞, are difficult to be extended to

long-memory time series. Moreover, while Theorem 3 leads immediately to ‖â∗(kn) − a‖ = op(1),
(3.14) and (3.15) cannot guarantee the moment convergence of ‖ân,l − a(n)‖ and ‖τ̂ bp,n − a(p)‖. In

fact, the latter results are remain unestablished because of the lack of moment bounds for ‖Σ̂−1
n,l‖2

and ‖Bk(R̂p,n)−1‖2.

3.2 Estimation of R−1
n

Since Rn is symmetric and positive definite, it has a modified Cholesky decomposition (see, for
example, Wu and Pourahmadi (2003)),

TnRnT
′
n = Dn, (3.16)

where Tn = (tij)1≤i,j≤n is a unit lower triangular matrix with

tij =


0, if i < j;
1, if i = j;
ai−j(i− 1), if 2 ≤ i ≤ n and 1 ≤ j ≤ i− 1,

and
Dn = diag(γ0, σ

2(1), · · · , σ2(n− 1)),

with σ2(k) = E(zt+1 + a
′
t(k)zt(k))2. In view of (3.16), R−1

n can be expressed as

R−1
n = T ′nD

−1
n Tn. (3.17)

We further assume that ai(m)’s obey (C4) and (C5):

(C4) There exists C1 > 0 such that for 1 ≤ i ≤ m and all m ≥ 1,

|ai(m)| ≤ C1|ai|
(

m

m− i+ 1

)d
.

(C5) There exist 0 < δ < 1 and C2 > 0 such that for 1 ≤ i ≤ δm and all m ≥ 1,

|ai(m)− ai| ≤ C2
i|ai|
m

.

Conditions (C4) and (C5) assert that the finite-past predictor coefficients ai(m), i = 1, . . . ,m ap-
proach the corresponding infinite-past predictor coefficients a1, a2, . . . in a nonuniform way. More
specifically, they require that |ai(m)/ai| is very close to 1 when i = o(m), but has order of magni-
tude m(1−θ)d when m− i � mθ with 0 ≤ θ < 1. This does not seem to be counterintuitive because
for a long-memory process, the finite order truncation tends to create severer upward distortions in
those ai’s with i near the truncation lag m+ 1. When {zt} is an I(d) process, (C4) and (C5) follow
directly from the proof of Theorem 13.2.1 of Brockwell and Davis (1991). Moreover, it is shown in
Theorem 2.1 of Ing, Chiou and Guo (2013) that (C4) and (C5) are also satisfied by ARFIMA(p, d, q)

13



model. For a more detailed discussion on these two conditions, see Section 2 of Ing, Chiou and Guo
(2013).

To consistently estimate R−1
n based on ẑ, we begin with a truncated version of (3.17),

T
′
n(k)D−1

n (k)Tn(k), k ≥ 1, (3.18)

where Tn(k) = (tij(k))1≤i,j≤n, with

tij(k) =


0, if i < j, or k + 1 < i ≤ n and 1 ≤ j ≤ i− k − 1;
1, if i = j;
ai−j(i− 1), if 2 ≤ i ≤ k and 1 ≤ j ≤ i− 1;
ai−j(k), if k + 1 ≤ i ≤ n and i− k ≤ j < i− 1,

and
Dn(k) = diag(γ0, σ

2(1), · · · , σ2(k), · · · , σ2(k)).

We then estimate R−1
n using a sample counterpart of (3.18),

Ĉ(k)
n := T̂

′
n(k)D̂−1

n (k)T̂n(k), (3.19)

where T̂n(k) is Tn(k) with a(l) replaced by â(l) for 1 ≤ l ≤ k and D̂n(k) is Dn(k) with γ0 replaced
by γ̂0 = n−1

∑n
t=1 ẑ

2
t and σ2(l) replaced by σ̂2(l) = (n− l)−1

∑n−1
t=l (ẑt+1 + â

′
t(l)ẑt(l))

2 for 1 ≤ l ≤ k.

To obtain moment convergence results for ‖Ĉ(k)
n −R−1

n ‖2, we need some auxiliary lemmas.

Lemma 1. Assume (2.5)-(2.7), (3.1), (3.2), (C4) and (C5). Then for 2 ≤ k ≤ n <∞,∥∥R−1
n − T ′n(k)D−1

n (k)Tn(k)
∥∥

2
≤ C∗

(
log n log k

kd

)1/2

, (3.20)

where C∗ > 0 is independent of n and k.

Proof. See Theorem 2.2 of Ing, Chiou and Guo (2013).

Lemma 2. Under the assumptions of Theorem 3, we have for any q > 0,

E

{
(kn log kn)q/2 max

1≤k≤kn
‖â(k)− a(k)‖q

}
= o(1). (3.21)

Proof. By Theorem 2, it holds that

max
1≤k≤kn

E
∥∥∥R̂−1(k)

∥∥∥q
2
≤ E

∥∥∥R̂−1(kn)
∥∥∥q

2
= O(1). (3.22)

Using (3.22) and the same argument as in (3.7) and (3.8), we obtain for 1 ≤ k ≤ kn,

E‖â(k)− a(k)‖q ≤ C

{(
k

n

)q/2
+

(
1

n1−2d

)q/2
+

(
k1/2

n1−2d

)q}
,

which in conjunction with (2.24) yields that for any ξ > 0

(kn log kn)q/2E max
1≤k≤kn

‖â(k)− a(k)‖q

≤ C


(

(log kn)k2+ξ
n

n

)q/2
+

(
(log kn)k1+ξ

n

n1−2d

)q/2
+

(
(log kn)1/2k1+ξ

n

n1−2d

)q . (3.23)

Now, the desired conclusion (3.21) follows immediately from (2.25) and (3.23).
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Lemma 3. Under the assumptions of Theorem 2, we have for any q > 0,

E
∥∥∥D̂−1

n (kn)
∥∥∥q

2
= O(1). (3.24)

Proof. Note first that∥∥∥D̂−1
n (kn)

∥∥∥
2

= max{γ̂−1
0 , σ̂−2(1), · · · , σ̂−2(kn)}. (3.25)

It is straightforward to see that

γ̂−1
0 ≤ λ−1

min(R̂(kn + 1))

and for 1 ≤ k ≤ kn,

σ̂−2(k) ≤ λ−1
min(R̂(k + 1)) ≤ λ−1

min(R̂(kn + 1)).

These equations, together with (3.25) and Theorem 2, yield (3.24).

Lemma 4. Under the assumptions of Theorem 3, we have for any q > 0,

(log kn)qE
∥∥∥D̂−1

n (kn)−D−1(kn)
∥∥∥q

2
= o(1). (3.26)

Proof. By Lemma 3 and Hölder’s inequality,

E
(∥∥∥D̂−1

n (kn)−D−1(kn)
∥∥∥q

2

)
≤ E

{∥∥∥D̂−1
n (kn)

∥∥∥q
2

∥∥∥D̂n(kn)−Dn(kn)
∥∥∥q

2

∥∥D−1(kn)
∥∥q

2

}
≤ C

(
E
∥∥∥D̂n(kn)−Dn(kn)

∥∥∥3q

2

)1/3

. (3.27)

It is easy to see that∥∥∥D̂n(kn)−D(kn)
∥∥∥

2
≤ max

{
|γ̂0 − γ0|, max

1≤k≤kn
|σ̂2(k)− σ2(k)|

}
. (3.28)

By (2.1), Lemma 2 of Ing and Wei (2003), Theorem 2.1 of Ing and Wei (2006) and some algebraic
manipulations, it can be shown that

(log kn)qE|γ̂0 − γ0|q = O

((
(log kn)2 log n

n

)q/2
+

(
log kn
n1−2d

)q)
= o(1). (3.29)

An argument similar to that used to prove (3.23) further yields that for any ξ > 0,

E

{
(log kn)q max

1≤k≤kn
|σ̂2(k)− σ2(k)|q

}
≤

{(
(log kn)k1+ξ

n

n

)q

+

(
(log kn)kξn
n1−2d

)q
+

(
(log kn)k1+ξ

n

n2−4d

)q
+

(
(log kn)(log n)1/2kξn

n1/2

)q}
= o(1), (3.30)

where the last inequality is ensured by (2.25). In view of (3.27)-(3.30), the desired conclusion (3.26)
follows.

The main result of this section is given as follows.
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Theorem 4. Under the assumptions of Theorem 3, one has for any q > 0,

E
∥∥∥Ĉ(k)

n −R−1
n

∥∥∥q
2

= o(1). (3.31)

Proof. Clearly, ∥∥∥Ĉ(k)
n −R−1

n

∥∥∥
2
≤ C

{∥∥R−1
n − T ′n(kn)D−1

n (kn)Tn(kn)
∥∥

2

+
∥∥∥Ĉ(k)

n − T ′n(kn)D−1
n (kn)Tn(kn)

∥∥∥
2

}
. (3.32)

Note first that Lemma 1 and (2.25) implies∥∥R−1
n − T ′n(kn)D−1

n (kn)Tn(kn)
∥∥

2
= o(1). (3.33)

In addition, by Proposition 2.1 of Ing, Chiou and Guo (2013), ‖Tn(kn)‖2 = O((log kn)1/2). Moreover,
an argument similar to that used in the proof of Proposition 3.1 of Ing, Chiou and Guo (2013) yields
‖T̂n(kn) − Tn(kn)‖22 ≤ Ckn max1≤k≤kn ‖â(k) − a(k)‖22. These latter two inequalities, together with
Lemmas 2-4 and ∥∥∥Ĉ(k)

n − T ′n(kn)D−1
n (kn)Tn(kn)

∥∥∥
2

≤ ‖T̂n(kn)− Tn(kn)‖2‖D̂−1
n (kn)‖2(‖T̂n(kn)− Tn(kn)‖2 + ‖Tn(kn)‖2)

+‖Tn(kn)‖2‖D̂−1
n (kn)−D−1

n (kn)‖2(‖T̂n(kn)− Tn(kn)‖2 + ‖Tn(kn)‖2)

+‖Tn(kn)‖2‖D−1
n (kn)‖2‖T̂n(kn)− Tn(kn)‖2,

imply E‖Ĉ(k)
n − T ′n(kn)D−1

n (kn)Tn(kn)‖q2 = o(1) for any q > 0. Combining this with (3.32) and
(3.33) leads to (3.31).

APPENDIX

Proof of (2.14). Note first that for any 1 ≤ j ≤ m∗(µ) and 1 ≤ k ≤ rj − 1, the left-hand side of
(2.14) is bounded below by λmin(E(w(j, k + 1)w′(j, k + 1))), where

w(j, k + 1) = (v′j(lk+1,j)z, ν1n, · · · , νrn, zs(j,k), zs(j,k)−1, · · · , z1)′

with s(j, k) = gnlk,j + kn. Moreover, we have

λmin

(
E(w(j, k + 1)w′(j, k + 1))

)
≥ λmin(Rn)λmin(G(j, k + 1))

≥ λmin(Rn)λmin

(
B′(j, k + 1)B(j, k + 1)

)
λmin(F (j, k + 1)), (A.1)

where

G(j, k + 1) =

(
G∗(j, k + 1) A′(j, k + 1)

A(j, k + 1) Is(j,k)

)

=



1 o′1vj(lk+1,j) · · · o′rvj(lk+1,j) 0 · · · 0
o′1vj(lk+1,j) 1 · · · 0 os(j,k),1 · · · o11

...
...

. . .
...

...
. . .

...
o′rvj(lk+1,j) 0 · · · 1 os(j,k),r · · · o1r

0 os(j,k),1 · · · os(j,k),r
...

...
. . .

... Is(j,k)

0 o11 · · · o1r


,
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B(j, k + 1) =

(
Ir+1 0(r+1)×s(j,k)

A(j, k + 1) Is(j,k)

)
,

and

F (j, k + 1) = (B−1(j, k + 1))′G(j, k + 1)B−1(j, k + 1)

=

(
G∗(j, k + 1)−A′(j, k + 1)A(j, k + 1) 0(r+1)×s(j,k)

0s(j,k)×(r+1) Is(j,k)

)
.

By (2.28), it holds that for any n ≥ 1, there exists l1 > 0 such that

λmin(Rn) > l1 > 0. (A.2)

Since

B′(j, k + 1)B(j, k + 1) =

(
Ir+1 0(r+1)×s(j,k)

0s(j,k)×(r+1) 0s(j,k)×s(j,k)

)
+ (A(j, k + 1), Is(j,k))

′
(A(j, k + 1), Is(j,k)),

one obtains from straightforward calculations that for any υ
′

= (υ
′
1,υ

′
2) ∈ Rr+1+s(j,k) with ‖υ‖ = 1,

υ1 ∈ Rr+1 and υ2 ∈ Rs(j,k),

υ
′
B′(j, k + 1)B(j, k + 1)υ

= ‖υ1‖2 + ‖υ2‖2 + υ
′
1A
′
(j, k + 1)A(j, k + 1)υ1 + 2υ

′
2A(j, k + 1)υ1

≥
{
‖υ1‖2, if ‖υ1‖ ≥ 1/2,
1− 2‖υ2‖‖A(j, k + 1)‖2‖υ1‖, if ‖υ1‖ < 1/2.

In addition, (C2) implies that for all large n and all 1 ≤ k ≤ rj − 1 and 1 ≤ j ≤ m∗(µ),

‖A(j, k + 1)‖22 ≤ tr(A
′
(j, k + 1)A(j, k + 1)) ≤ rmax

1≤t≤r

bnδ1c∑
i=1

o2
it ≤ δ−1

2 ,

which, together with the above equation, yields that for all large n and all 1 ≤ k ≤ rj − 1 and
1 ≤ j ≤ m∗(µ),

λmin(B′(j, k + 1)B(j, k + 1)) ≥ min{1/4, 1− δ−1/2
2 }. (A.3)

Moreover, it follows from (C2) and the definition of lk,j that for all large n and all 1 ≤ k ≤ rj − 1
and 1 ≤ j ≤ m∗(µ),

λmin(F (j, k + 1)) ≥ min{1, λmin(G∗(j, k + 1)−A′(j, k + 1)A(j, k + 1))}
≥ min{1, λmin(G∗(j, k + 1))− ‖A(j, k + 1)‖22}

≥ 1− 2r1/2 max
1≤j≤m∗(µ)

max
1≤k≤rj−1

max
1≤t≤r

∣∣o′tvj(lk+1,j)
∣∣− rmax

1≤t≤r

bnδ1c∑
i=1

o2
it

≥ 1− θ2(δ2 − 1)

δ2
− 1

δ2
> 0. (A.4)

The desired conclusion (2.14) now is ensured by (A.1)-(A.4).
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