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Consider finite parametric time series models. ‘I have n observa-
tions and k models, which model should I choose on the basis of the
data alone?’ is a frequently asked question in many practical situa-
tions. This poses the key problem of selecting a model from a collec-
tion of candidate models, none of which is necessarily the true data
generating process (DGP). Although existing literature on model se-
lection is vast, there is a serious lacuna in that the above problem
does not seem to have received much attention. In fact, existing model
selection criteria have avoided addressing the above problem directly,
either by assuming that the true DGP is included among the candi-
date models and aiming at choosing this DGP, or by assuming that
the true DGP can be asymptotically approximated by an increasing
sequence of candidate models and aiming at choosing the candidate
having the best predictive capability in some asymptotic sense. In
this article, we propose a misspecification-resistant information cri-
terion (MRIC) to address the key problem directly. We first prove
the asymptotic efficiency of MRIC whether the true DGP is among
the candidates or not, within the fixed-dimensional framework. We
then extend this result to the high-dimensional case in which the
number of candidate variables is much larger than the sample size.
In particular, we show that MRIC can be used in conjunction with
a high-dimensional model selection method to select the (asymptoti-
cally) best predictive model across several high-dimensional misspec-
ified time series models.

1. Introduction. Let us consider finite parametric time series models.
In the vast literature of model selection, problems tend to be classified into
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two categories according to whether the true data generating process (DGP)
is included among the collection of candidate models. The first category (re-
ferred to as category I) assumes that the true DGP belongs to a stipulated
collection of candidate models, and the objective of model selection is simply
choosing the true DGP. A model selection criterion is said to be consistent
if it can choose the (most parsimonious) true DGP with probability tending
to 1. In time series models as well as in linear regression, Bayesian informa-
tion criterion (BIC) (Schwarz, 1978) has been shown to have this property;
see, e.g., Nishii (1984), Rao and Wu (1989) and Wei (1992). On the other
hand, Akaike’s information criterion (AIC) (Akaike, 1974) and Mallows’ Cp
(Mallows, 1973), which tend to choose overfitting models, are not consistent
in category I (e.g., Shibata, 1976 and Shao, 1997). The second category (cat-
egory II) assumes that the true DGP is not one of the candidate models.
In this category, choosing the model having the best predictive capabilities
becomes the objective. When the true DGP is a linear regression model
with infinitely many parameters and the number of predictor (explanatory)
variables in the candidate models increases to infinity with the sample size
such that the corresponding approximation error vanishes asymptotically,
Shibata (1981) and Li (1987) showed that AIC and Mallows’ Cp possess
asymptotic efficiency, in the sense that these criteria can choose the model
whose finite-sample mean squared prediction error (MSPE) is asymptoti-
cally equivalent to the smallest one among those of the candidate models.
In contrast, BIC fails to achieve asymptotic efficiency under category II; see
Shibata (1980), Shao (1997) and Ing and Wei (2005). For a survey of the
performance of various model selection criteria in both categories, see Shao
(1997).

It is usually difficult for practitioners to perceive which category applies.
Since, as mentioned in the previous paragraph, most existing criteria can-
not simultaneously enjoy consistency in category I and asymptotic efficiency
in category II, the choice of selection criteria has become a key point of
contention over the past decades. For example, Ing (2007) and Yang (2007)
have proposed similar adaptive procedures. They first compare two models
selected by BIC, one for partial data points and another for full data points.
They adopt AIC if the two selected models are different suggesting the plau-
sibility of category II, and BIC otherwise. By suitably deciding the number
of partial data points in the first step, they have shown that the proposed
two-step procedure possesses consistency and asymptotic efficiency in cat-
egories I and II, respectively. More recently, Liu and Yang (2011) devised
the so called “parametricness index” to determine between categories I and
II, and Zhang and Yang (2015) proposed using cross-validation to select
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between AIC and BIC in the absence of prior information on the underlying
category. For a related result on solving the AIC-BIC dilemma from the
point of view of cumulative risk, see van Erven et al. (2012).

While these recent efforts to resolve the controversy between AIC and
BIC are novel, they mainly contribute to the increasing-dimensional (ID)
framework, which requires that the number of candidate variables to grow
to infinity with the sample size, n. However, in many realistic situations, we
are often faced with the problem of selecting a model from a finite and fixed
collection of candidate models, none of which is necessarily the true DGP. It
was, in fact, this problem that Akaike was originally trying to solve. He said
(1978, p.217), ‘. . . at some stage, we have at hand several models which are
the candidates for our final choice.’ Although existing literature on model
selection is vast, the above problem does not seem to have received much
attention. This motivates us to ask whether there exists a model selection
procedure that can perform well in both categories and within the fixed-
dimensional (FD) framework in which the number of candidate models does
not change with n, thus filling a serious lacuna in the vast literature on
model selection.

In this article, we propose a misspecification-resistant information crite-
rion (MRIC). Specifically, we prove that MRIC, within the FD framework,
possesses asymptotic efficiency in the sense of (3.6) whether the true DGP
belongs to the candidate models or not. The MRIC has additional advan-
tages. First, it is applicable to h-step prediction of time series data with
h ≥ 1. In particular, by changing the prediction lead times in the MRIC
formula, the asymptotic efficiency of MRIC is guaranteed for each h ≥ 1.
Second, unlike the resolutions proposed for the ID case (e.g., Ing (2007),
Yang (2007) and Zhang and Yang (2015)), MRIC can achieve asymptotic
efficiency on its own without the help of additional/auxiliary criteria. Indeed,
there are already several ‘single-step’ model selection procedures proposed
to combat model misspecification, e.g., TIC (Takeuchi , 1976), GIC (Konishi
and Kitagawa, 1996) and GBIC and GBICp (Lv and Liu, 2014). However,
it seems decidedly difficult to justify their asymptotic efficiency within the
FD framework; see Section section S5 of the supplementary material for this
paper (Hsu et al., 2018). We summarize the performance of major model
selection procedures discussed above in the form of the two tables; Table 1
is for the ID framework and Table 2 for the FD framework.

When several high-dimensional and (possibly) misspecified time series
models are entertained, MRIC can also be used in conjunction with high-
dimensional model selection methods to choose good predictive models. Note
that high-dimensional model selection problems have been extensively inves-
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Table 1
Increasing-dimensional case (# of candidates increases with n)

Criteria Case I: Case II: Case III:
The true model is included as a can-
didate.

The true model is NOT included as
a candidate.

No info. on whether the true model
is included.

Goal: Consistency Goal: Asymp. efficiency for predic-
tion.

Goal: Consistency when the true
model is included + asymptotic ef-
ficiency when the true model is not
included.

AIC No Yes No
BIC Yes No No
GAIC No Yes No
GBIC Yes No No
Two-stage IC Yes Yes Yes

Table 2
Fixed-dimensional case (# of candidates is fixed with n)

Criteria Case I: Consistency Case II: Asymp. efficiency Case III: Consistency + Asymp. efficiency

AIC No No No
BIC Yes No No
GAIC No No No
GBIC Yes No No
GBICp Yes No No
MRIC Yes Yes Yes

tigated over the past decade. However, most studies are devoted to the case
where observations are independent over time. Recent papers of Basu and
Michailidis (2015) and Wu and Wu (2016) are among the few dedicated
to high-dimensional time series models. Although some desirable asymp-
totic properties of the Lasso estimates (Tibshirani , 1996) have been es-
tablished by these authors under correct model specification, the question
of how to choose the best predictive model across several different high-
dimensional misspecified time series models still remains untouched. To fill
this gap, we start by introducing a three-step model selection procedure,
OGA+HDICh+Trim (Section 4.1), and apply the procedure to each high-
dimensional model. We then suggest choosing the model that achieves the
lowest MRIC value among those decided by OGA+HDICh+Trim. This ap-
proach is shown to have forecast optimality in the sense of (4.15).

The rest of the paper is organized as follows. In Section 2.1, we provide
an asymptotic expression for the finite-sample MSPE of the least squares
predictor, which is valid regardless of whether the model is correctly or in-
correctly specified. In Section 2.2, we list the technical conditions needed in
Section 2.1 and discuss their suitability. Based on a consistent estimate of
the expression obtained in Section 2.1, we propose our MRIC and prove its
asymptotic efficiency within the FD framework in Section 3. Applications
of MRIC to misspecified ARX models are also given in the same section. In
Section 4, the results in Sections 2 and 3 are extended to high-dimensional
models. We show that MRIC can be used together with OGA+HDICh+Trim
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to achieve asymptotic efficiency in the sense of (4.15) when several high-
dimensional and (possibly) misspecified models are simultaneously taken
into account. We conclude in Section 5. A detailed discussion of model mis-
specification is provided in Appendix A. All proofs and an extension of
MRIC to a class of nonlinear models are relegated to Hsu et al. (2018). The
finite-sample performance of the proposed methods in both low- and high-
dimensional cases is also illustrated via simulated and real data in Hsu et
al. (2018).

2. Mean Squared Prediction Error under Possible Misspecifica-
tion.

2.1. An Asymptotic Expression. Let {yt} and {xt} = {(xt,1, . . . , xt,m)>},
m ≥ 1, be weakly stationary processes on the probability space (Ω,F , P ).
Given observations up to n, we are interested in forecasting yn+h, h ≥ 1,
based on the following model,

(2.1) yt+h = αh + β>h xt + εt,h,

where βh = (β1,h, . . . , βm,h)> = arg minc∈Rm E{yt+h − E(yt+h) − c>[xt −
E(xt)]}2 and αh = E(yt+h) − β>h E(xt). Note that we allow that (i) h ≥ 1,
(ii) xt contains both endogenous and exogenous variables, and (iii) εt,h are
serially correlated and correlated with xk for k 6= t. Thus, model (2.1) actu-
ally represents very general situations beyond the special cases of multistep
prediction in (possibly) misspecified AR models. In addition, we allow xt
to vary with h, but suppress its dependence on h in order to simplify the
notation.

To gain further insights into the effect of model misspecification on the
correlations between {xt} and εt,h, we assume that the data are generated
according to the following DGP,

yt+1 = awt + εt+1,(2.2)

in which a 6= 0, {εt} is a sequence of independent and identically distributed
(i.i.d.) random errors obeying E(ε1) = 0 and E(ε21) > 0, and wt = θ1wt−1 +
θ2wt−2 + δt is a stationary AR(2) process, with θ1θ2 6= 0 and {δt} being a
sequence of zero-mean i.i.d. random errors independent of {εt}. We also let

E(δ21) = 1− θ22 − {θ21(1 + θ2)/(1− θ2)},

yielding γw(0) = 1, where γw(j) = E(wtwt+j). If one is interested in pre-
dicting yn+2, then, in view of (2.2), a correctly specified model for two-step
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prediction is

yt+2 = aθ1wt + aθ2wt−1 + ε
(0)
t,2 ,

where ε
(0)
t,2 = εt+2 + aδt+1. It is easy to see that E(ε

(0)
t,2wt−j) = 0 for j ≥ 0.

On the other hand, if a misspecified two-step prediction model,

yt+2 = βwt + εt,2,

is used, where β = E(yt+2wt) = aθ1 + aθ2θ1/(1 − θ2) and εt,2 = ε
(0)
t,2 −

aθ2[{θ1/(1− θ2)}wt−wt−1], then E(εt,2wt−j) = [−aθ2/(1− θ2)](γw(j + 1)−
γw(j − 1)) 6= 0 for j ≥ 1 although E(εt,2wt) = 0 still follows. For a more
detailed discussion on model misspecification, see Appendix A.

Model (2.1) can be rewritten as yt+h − E(yt+h) = β>h (xt − E(xt)) + εt,h.
Having observed y1, . . . , yn and x1, . . . ,xn, we may replace E(yt+h) by ȳ and
E(xt) by x̄, where ȳ = n−1

∑n
t=1 yt and x̄ = n−1

∑n
t=1 xt. Although yt+h− ȳ

and xt−x̄ constitute triangular arrays, the difference between yt+h−E(yt+h)
and yt+h− ȳ and that between xt−E(xt) and xt− x̄ vanish asymptotically.
In order to simplify the exposition, we assume throughout the paper that
E(yt) = 0 and E(xt) = 0, and hence (2.1) becomes

(2.3) yt+h = β>h xt + εt,h.

Using the least squares estimator (LSE),

β̂n(h) =

(
N∑
t=1

xtx
>
t

)−1 N∑
t=1

xtyt+h = R̂−1
1

N

N∑
t=1

xtyt+h,

of βh, one can predict yn+h by

ŷn+h = β̂>n (h)xn,

where N = n− h and R̂ = N−1
∑N

t=1 xtx
>
t .

In the next theorem, we provide an asymptotic expression for the finite-
sample mean squared prediction error (MSPE) of ŷn+h, E (yn+h − ŷn+h)2,
which is referred to as the MSPE in the sequel. One special feature of our
expression is that it holds in both correctly and misspecified cases, thereby
offering insight into pursuing asymptotically efficient model selection with-
out knowing the category to which the underlying problem belongs.

Theorem 2.1. Assume (2.3) and conditions (C1)–(C6) in Section 2.2.
Then, for any h ≥ 1,

E (yn+h − ŷn+h)2 = E
(
ε2n,h

)
+ n−1(Lh + o(1)),(2.4)
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where Lh = tr
(
R−1Ch,0

)
+ 2

∑h−1
s=1 tr

(
R−1Ch,s

)
, with R = E(x1x

>
1 ) being

nonsingular and Ch,s = E(x1x
>
1+sε1,hε1+s,h).

The first term on the right-hand side of (2.4), referred to as the popula-
tion MSPE, can be viewed as a measure of the goodness fit of model (2.3),
whereas the second term on the right-hand side of (2.4) is related to the es-
timation error of β̂n(h). To appreciate the novelty of Theorem 2.1, assume
that yt is a stationary AR(m) model,

yt+1 =

m∑
i=1

aiyt+1−i + εt+1,(2.5)

where 1−a1z−· · ·−alzm 6= 0 for all |z| ≤ 1 and εt are independent random
disturbances with E(εt) = 0 and E(ε2t ) = σ2 > 0 for all t. In view of (2.5), a
correctly specified model for the h-step, h ≥ 1, prediction is given by

yt+h = β>h xt + εt,h,(2.6)

where xt = (yt, . . . , yt−m+1)
>, εt,h =

∑h−1
j=0 bjεt+h−j , with bj satisfying

(1 − a1z − · · · − amz
m)
∑∞

j=0 bjz
j = 1, and βh = Ah−1(m)a with a =

(a1, . . . , am)> and

A(m) =

a

∣∣∣∣∣∣
Im−1

0>m−1

 ,

noting that Ik and 0k, respectively, denote the k-dimensional identity matrix
and the k-dimensional vector of zeros. Under suitable conditions on εt (see
Section 2.2), it can be shown that (C1)–(C6) hold, and hence by Theorem
2.1 and some algebraic manipulations,
(2.7)

lim
n→∞

n{E (yn+h − ŷn+h)2−E
(
ε2n,h

)
} = Lh = tr

R−1cov

h−1∑
j=0

bjx1+j

σ2,

which is the key conclusion of Theorem 2 of Ing (2003). It is, however,
important to note that when the model is misspecified, εt,h and {xk, k < t}
are generally correlated, and hence the normalized MSPE,

N{E (yn+h − ŷn+h)2 − E(ε2n,h)}

= −2E{εn,hx>n R̂−1
N∑
t=1

xtεt,h}+ E(x>n R̂−1N−1/2
N∑
t=1

xtεt,h)2,
(2.8)
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may have a nonnegligible “cross-product” term,−2E{εn,hx>n R̂−1
∑N

t=1 xtεt,h},
which vanishes in the correctly specified case due to the independence be-
tween εt,h and {xk, k ≤ t}. In fact, it is shown in Ing (2003) that the right-
most term of (2.7) is solely attributed to the second term on the right-hand
side of (2.8). At first sight, it would seem unrealistic to expect that Lh is still
valid under model misspecification, without any correction or adjustment.
To our amazement, we are able to reveal Lh’s generality for both correct
and misspecified cases after discovering some unexpected cancelation be-
tween some components in the first and the second terms on the right-hand
side of (2.8); see (S1.4) and (S1.5) in Section section S1 of Hsu et al. (2018).

Before closing this section, we remark that in the case of independent
observations, a term similar to L1 = tr(R−1E(x1x

>
1 ε

2
1,1)) has been used

by Takeuchi (1976) as a bias correction for the log-likelihood in order to
obtain an asymptotically unbiased estimate of the Kullback-Leibler diver-
gence between the true model and a misspecified working model. For related
discussion, see Stone (1977), Konishi and Kitagawa (1996), Burnham and
Anderson (2002), Bozdogan (2000) and Lv and Liu (2014). All these authors,
however, focus on independent observations, and hence time series data are
regrettably precluded. Although Wei (1992) allowed for dependence among
the data and showed that L1 is the constant associated with the log n term in
an asymptotic expression for the accumulated prediction error (APE) of the
least squares predictor, his approach, focusing exclusively on the APE and
the one-step prediction, is applicable to neither the MSPE nor the multistep
prediction.

2.2. Conditions (C1)–(C6). In order to facilitate exposition, we impose
the following regularity conditions.

(C1) There exist q1 > 5 and 0 < C1 <∞ such that for any 1 ≤ n1 < n2 ≤ n
and any 1 ≤ i, j ≤ m,

(2.9) E

∣∣∣∣(n2 − n1 + 1)−1/2
n2∑
t=n1

xt,ixt,j − E (xt,ixt,j)

∣∣∣∣q1 ≤ C1.

(C2) Ch,s = E(xtx
>
t+sεt,hεt+s,h) is independent of t, and for any 1 ≤ i, j ≤

m,

(2.10) E (x1,ixn,jε1,hεn,h) = o(n−1).

(C3) sup−∞<t<∞ E‖xt‖10 < ∞ and sup−∞<t<∞ E|εt,h|6 < ∞, where for
vector f = (f1, · · · , fm)>, ‖f‖2 =

∑m
t=1 f

2
t .
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(C4) There exists 0 < C2 <∞ such that for 1 ≤ n1 < n2 ≤ n,

(2.11) E

∥∥∥∥(n2 − n1 + 1)−1/2
n2∑
t=n1

xtεt,h

∥∥∥∥5 < C2.

(C5) For any q > 0,

(2.12) E‖R̂−1‖q = O(1),

where for a square matrix A, ‖A‖2 = sup‖w‖=1 ‖Aw‖2.
(C6) There exists an increasing sequence of σ-fields Ft ⊆ F such that xt is

Ft-measurable and

(2.13) sup
−∞<t<∞

E

∥∥∥∥E

(
xtx
>
t

∣∣∣∣Ft−k)−R

∥∥∥∥3 = o(1),

(2.14) sup
−∞<t<∞

E ‖E (xtεt,h|Ft−k) ‖3 = o(1),

as k →∞.
Some comments are in order. Suppose that {xt,i} and {εt,h} admit linear

representations,

xt,i =
∞∑
s=0

a>s,i εt−s,(2.15)

and

εt,h =
∞∑
s=0

b>s εt+h−s,(2.16)

where εt = (εt, ε
(1)
t , . . . , ε

(m)
t )> is a martingale difference sequence with re-

spect to an increasing sequence of σ-fields, say Gt, and as,i and bs are
(m + 1)-dimensional non-random vectors. Define γi(k) = E(xt,ixt+k,i) and
γ(h, k) = E(εt,hεt+k,h). Then, (2.9) and (2.11) hold true, provided

∞∑
k=−∞

(γ21(k) + · · ·+ γ2m(k)) <∞,
∞∑

k=−∞
γ2(h, k) <∞,(2.17)

E(εtε
>
t |Gt−1) = Σ and sup

−∞<t<∞
E(‖εt‖q

∗ |Gt−1) < Cq∗ with probability 1,

(2.18)



10 H.-L. HSU, C.-K. ING AND H. TONG

where Σ is a positive definite non-random matrix, q∗ > 10 and Cq∗ is a
positive finite constant. To see this, note that by the First Moment Bound
Theorem of Findley and Wei (1993) and an argument similar to that used
in Lemma 2 of Ing and Wei (2003), it can be shown that (2.15)–(2.18) lead
to (2.11) and (2.9), with q1 = q∗/2 and C1 and C2 depending on q∗, Cq∗

and Σ. It may be worth pointing out that (2.15)–(2.17) are fulfilled by not
only short-memory autoregressive moving average (ARMA) processes but
also some long-memory processes; see Section 3 for more details. While it is
possible to justify (2.9) and (2.11) under more general time series models,
we leave this work for future exploration.

Condition (C2) leads to an unexpected cancelation associated with the
right-hand side of (2.8) mentioned previously. The first requirement of (C2)
holds when (yt,x

>
t )> is a fourth-order stationary process or a stationary

Gaussian process, whereas the second one essentially says that the depen-
dence between xiεi,h and xjεj,h vanishes sufficiently quickly as |i− j| tends
to infinity.

Condition (C6) requires that the conditional expectations of xtx
>
t and

xtεt,h given Ft−k can be well approximated by their unconditional coun-
terparts as long as k is large enough. Conditions (C5) and (C6) are used
to show that the first and second terms on the right-hand side of (2.8) are
asymptotically equivalent to

−2E{εn,hx>nR−1
N∑
t=1

xtεt,h} and E
{
N−1

N∑
t=1

(x>t εt,h)R−1
N∑
t=1

(xtεt,h)
}
,

respectively, which facilitate mathematical analysis. According to Theorem
2.1 of Chan and Ing (2011), (2.12) in (C5) is ensured by the following dis-
tributional assumption: there exist positive integer D and positive numbers
δ, α and M such that for any t > D, any 0 < s2 − s1 ≤ δ and any ‖v‖ = 1,

P (s1 < v>xt ≤ s2|Ft−D) ≤M (s2 − s1)α almost surely.(2.19)

Equation (2.19) is flexible enough to allow for a variety of time series appli-
cations. For example, Lemma S2.1 in Section S2 of Hsu et al. (2018) shows
that (2.19) holds when xt is the regressor of the ARX model described in
Section 3. Hence (C5) is fulfilled by this type of model. In the special case
of (2.5), (2.19) can be superseded by a simpler condition,

P (s1 < εt ≤ s2) ≤M (s2 − s1)α.(2.20)

It is shown in Ing and Wei (2003) that (2.20) is satisfied when εt are i.i.d.
with bounded density function. Finally, we mention that the moment re-
strictions imposed by (C1)–(C6) are by no means the weakest possible, but
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they allow us to avoid unnecessary technicalities in the derivations of the
key conclusions of this paper.

3. Misspecification-resistant Information Criterion. Being the pop-
ulation MSPE of model (2.3), the first term on the right-hand side of (2.4)
is sometimes referred to as the misspecification index (MI) in the sequel.
On the other hand, the dominant constant, Lh, associated with the second
term on the right-hand side of (2.4) is refereed to as variability index (VI)
because it is contributed by the sampling variability of ŷn+h = β̂>n (h)xn. As
revealed by (2.4), selecting the model with the smallest MSPE amounts to
selecting the model with the smallest VI among those with the smallest MI.

More specifically, considerK candidate models for predicting yn+h, having
observations up to n,

yn+h = β>h,lx
(l)
n + ε

(l)
n,h, l = 1, . . . ,K,(3.1)

where {x(l)
t } is a weakly stationary processes with mean zero, β>h,lx

(l)
t is the

best linear predictor of yt+h based on x
(l)
t , and

ε
(l)
t,h = yt+h − β>h,lx

(l)
t .(3.2)

Let

ŷn+h(l) = β̂>n,l(h)x(l)
n(3.3)

be the least squares predictor of yn+h corresponding to model l, where

β̂n,l(h) = (
N∑
t=1

x
(l)
t x

(l)>

t )−1
N∑
t=1

x
(l)
t yt+h.

Throughout this section, we assume R(l) = E(x
(l)
1 x

(l)>

1 ) is nonsingular for

l = 1, . . . ,K. Let Ch,s(l) = E(x
(l)
1 x

(l)>

1+sε
(l)
1,hε

(l)
1+s,h), and define

MIh(l) = E(ε
(l)
1,h)2,(3.4)

and

Lh(l) = tr(R−1(l)Ch,0(l)) +

h−1∑
s=0

tr(R−1(l)Ch,s(l)),(3.5)
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noting that (3.4) and (3.5), respectively, are the MI and the VI for model l.
As mentioned, our goal is to find model l̂ in a data-driven fashion such that

(3.6) lim
n→∞

P
(
l̂ ∈M2

)
= 1,

where

(3.7) M2 = {k : k ∈M1, Lh(k) = min
l∈M1

Lh(l)},

with

M1 = {k : 1 ≤ k ≤ K,MIh(k) = min
1≤l≤K

MIh(l)}.(3.8)

A model selection criterion is said to be asymptotically efficient if (3.6) is
fulfilled. Section S5 of Hsu et al. (2018) provides several interesting exam-
ples showing that to achieve (3.6), one may face the challenging problem of
choosing the best predictive model from those having the same MI (good-
ness of fit) and the same number of parameters. These examples also reveal
that the best predictive model may vary with the prediction lead time h,
raising another subtle issue.

Inspired by (2.4), our strategy to achieve (3.6) is to first construct the
method of moments estimators of MIh(l) and Lh(l),

σ̂2h(l) = N−1
N∑
t=1

(
yt+h − β̂>n,l(h)x

(l)
t

)2
≡ N−1

N∑
t=1

(ε̂
(l)
t,h)2,

and

L̂h(l) = tr
(
R̂−1(l)Ĉh,0(l)

)
+ 2 tr

(
h−1∑
s=1

R̂−1(l)Ĉh,s(l)

)
,

respectively, where R̂(l) = N−1
∑N

t=1 x
(l)
t x

(l)>

t and

Ĉh,s(l) = (N − s)−1
N−s∑
t=1

x
(l)
t x

(l)>

t+s ε̂
(l)
t,hε̂

(l)
t+s,h.

We then use h-step MRIC, MRICh(l), to quantify the performance of model
l, where

(3.9) MRICh(l) = σ̂2h(l) +
Cn
n
L̂h(l),
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with

Cn

n1/2
→∞,(3.10)

and

Cn
n
→ 0.(3.11)

Finally, we choose model l̂h, which satisfies

MRICh(l̂h) = min
1≤l≤K

MRICh(l).

The major difference between MRICh(l) and the natural estimator σ̂2h(l) +

n−1L̂h(l) of E (yn+h − ŷn+h(l))2 (cf.(2.4)) is that MRICh(l) puts an addi-
tional penalty factor Cn on L̂h(l). This factor plays a crucial role in search
of the best predictive model and is particularly relevant in situations where
several competing models share the same MI. To see this, note first that
under (3.17)–(3.21) (described below), we have

σ̂2h(l) = MIh(l) +Op(n
−1/2),(3.12)

and

L̂h(l) = Lh(l) + op(1),(3.13)

yielding

MRICh(l) = MIh(l) +Op(n
−1/2) +

Cn
n
Lh(l) + op

(
Cn
n

)
.(3.14)

In view of (3.11), property (3.14) immediately implies

lim
n→∞

P (l̂h ∈M1) = 1.

Moreover, it follows from (3.14) and (3.10) that for Jl1 , Jl2 ∈ M1 with
Lh(l1) 6= Lh(l2),

lim
n→∞

P (sign(MRICh(l1)−MRICh(l2)) = sign(Lh(l1)− Lh(l2))) = 1,
(3.15)

and hence

lim
n→∞

P (l̂h ∈M2) = 1.(3.16)

The above discussion is summarized in the next theorem.
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Theorem 3.1. Suppose for each 1 ≤ l ≤ K and 0 ≤ s ≤ h− 1,

(3.17) n−1
n∑
t=1

(ε
(l)
t,h)2 = E(ε

(l)
1,h)2 +Op(n

−1/2),

(3.18) n−1
n∑
t=1

x
(l)
t x

(l)>

t+s ε
(l)
t,hε

(l)
t+s,h = Ch,s(l) + op(1),

(3.19) n−1/2
n∑
t=1

x
(l)
t ε

(l)
t,h = Op(1),

(3.20) n−1
n∑
t=1

x
(l)
t x

(l)>

t = R(l) + op(1),

and

(3.21) sup
−∞<t<∞

E(ε
(l)
t,h)4 + sup

−∞<t<∞
E‖x(l)

t ‖4 <∞.

Then, (3.12) and (3.13) hold. As a result, (3.16) follows.

Remark 1. Note that (3.16) (or MIh(l) and Lh(l)) is relevant only when
the asymptotic expression (2.4) holds for each candidate model, which in
turn is ensured by (C1)–(C6). If we assume that (C1)–(C6) hold for each
1 ≤ l ≤ K, then conditions (3.19)–(3.21) can be dropped from Theorem 3.1
because they are weaker than (C4), (C1), and (C3), respectively. Another
two conditions of Theorem 3.1, (3.17) and (3.18), are easily fulfilled when

x
(l)
t and ε

(l)
t,h are linear processes obeying (2.15) and (2.16); see Theorem 3.2

and Section S2 of Hsu et al. (2018). Moreover, if the elements in M1 are
nested, the restriction on Cn in (3.10) can be weakened to

Cn →∞,(3.22)

and hence a weaker penalty on L̂h(l) is allowed. To see this, assume Jl1 , Jl2 ∈
M1 with Jl1 ⊂ Jl2 and Lh(l1) 6= Lh(l2). Then, it can be shown that σ̂2h(l1)−
σ̂2h(l2) = Op(1/n) and MRICh(l1)−MRICh(l2) = (Cn/n)(Lh(l1)−Lh(l2)) +
op(Cn/n) + Op(1/n). This and (3.22) yield (3.15), and hence the desired
conclusion.

Remark 2. It is shown in Sin and White (1996) and Inoue and Kilian
(2006) that BIC has the so-call ‘strong parsimony property’ in the sense
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that it will asymptotically choose the most parsimonious model among those
candidates having the smallest MI. However, when two misspecified models
have the same MI, the one with fewer parameters does not necessarily lead
to a smaller VI; see Findley (1991) for a related discussion. Moreover, two
non-nested misspecified models with the same MI may have different VIs
even if they share the same number of parameters; see Section S5 of Hsu et
al. (2018). In this latter case, both BIC and AIC tend to randomly choose
between the two alternatives instead of selecting the one having the smaller
VI. For more details on the comparison of the finite-sample performance of
MRIC with AIC, BIC, GAIC, GBIC, and GAICp; see Sections S5 and S6 of
Hsu et al. (2018).

Remark 3. Theorem 3.1 is readily extended to deal with multiple lead
times. Assume that for each 1 ≤ h ≤ H, there are Kh candidate models for
forecasting yn+h. Let ŷn+h(1), . . . , ŷn+h(Kh) denote the least squares predic-
tors of yn+h derived from theseKh models. To predict yn+H = (yn+1, . . . , yn+H)>,
we use (ŷn+1(l1), . . . , ŷn+H(lH))>, where (l1, . . . , lH)> ∈ AH = A1 × · · · ×
AH with Ah = {1, . . . ,Kh}. Denote (ŷn+1(l1), . . . , ŷn+H(lH))> by ŷn+H(l),
where l = (l1, . . . , lH)>. The performance of ŷn+H(l) is evaluated by E‖yn+H−
ŷn+H(l)‖2. Under the assumptions of Theorem 2.1, it holds that for each
1 ≤ h ≤ H and 1 ≤ l ≤ Kh, limn→∞ n{E(yn+h−ŷn+h(l))2−MIh(l)} = Lh(l),
and hence

lim
n→∞

n{E‖yn+H − ŷn+H(l)‖2 −MIH(l)} = LH(l),

where MIH(l) =
∑H

h=1 MIh(lh) and LH(l) =
∑H

h=1 Lh(lh). Define

M1 = {k : k ∈ AH ,MIH(k) = min
l∈AH

MIH(l)},

M2 = {k : k ∈M1,LH(k) = min
l∈M1

LH(l)}.

By an argument similar to that used to prove Theorem 3.1, we obtain the
extension

lim
n→∞

P (̂lH ∈M2) = 1,

where l̂H = (l̂1, · · · , l̂H)> with l̂h satisfying MRICh(l̂h) = min1≤l≤Kh
MRICh(l).

In fact, based on a set of conditions similar to (C1)–(C6), extensions of The-
orems 2.1 and 3.1 to a class of nonlinear models have also been obtained;
see Section S4 of Hsu et al. (2018).
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To further illustrate Theorems 2.1 and 3.1, we consider the following
autoregressive exogenous (ARX) model,

φ(B)yt+1 =

p∑
v=1

rv∑
j=0

η
(v)
j s

(v)
t−j + εt+1,(3.23)

where B denotes the back shift operator such that Byt = yt−1, p and rv are
positive integers, εt are independent random disturbances with E(εt) = 0
and E(ε2t ) = σ2 > 0, φ(z) =

∑∞
j=0 φjz

j with φ0 = 1 and
∑∞

j=0 φ
2
j < ∞,

η
(v)
j are real numbers, and s

(v)
t =

∑∞
j=0 ψ

(v)
j δ

(v)
t−j with

∑∞
j=0(ψ

(v)
j )2 < ∞

and δt(p) = (δ
(1)
t , . . . , δ

(p)
t )> being independent random vectors satisfying

E(δt(p)) = 0 and E
(
δt(p)δ

>
t (p)

)
= Σp, a p-dimensional positive definite

matrix independent of t. Moreover, it is assumed that {εt} and {δt(p)} are
independent, for any |z| < 1,

φ−1(z) = θ(z) =
∞∑
j=0

θjz
j , with

∞∑
j=0

θ2j <∞,(3.24)

and

∞∑
j=0

(c
(v)
j )2 <∞, with c

(v)
j =

j∑
k=0

ψ
(v)
k θj−k, 1 ≤ v ≤ p.(3.25)

We are interested in forecasting yn+h, h ≥ 1, using one of model 1, . . . ,modelK,
where the explanatory vector in model l at time t is given by

x
(l)
t = (yt−j , j ∈ J (l)

0 , s
(v)
t−j , j ∈ J

(l)
v , 1 ≤ v ≤ p)>,(3.26)

with J
(l)
v , 0 ≤ v ≤ p, being given finite sets of non-negative integers. We

illustrate that (3.26) can be misspecified via a special case of (3.23),

yt+1 = ayt + s
(1)
t + εt+1,

where 0 < |a| < 1 and s
(1)
t is a stationary MA(1) model satisfying

∑∞
j=0 b

js
(1)
t−j =

δ
(1)
t with 0 < |b| < 1. Straightforward calculations show that the correctly

specified ARX model for two-step prediction is

yt+2 = a2yt + (a− b)s(1)t −
∞∑
j=2

bjs
(1)
t+1−j + vt+2,
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where vt+2 = εt+2 + aεt+1 + δ
(1)
t+1. Since the model involves the infinite past

s
(1)
t , s

(1)
t−1, . . ., any candidate model containing only a finite number of the

lagged variables of s
(1)
t is misspecified.

We aim at finding a data-driven method to choose among the candidate

models such that (3.6) is satisfied. Let ε
(l)
t,h, ŷn+h(l), MIh(l), Lh(l),M2 andM1

be defined as in (3.2)–(3.5), (3.7), and (3.8). The next theorem shows that
MRIC, introduced in (3.9)–(3.11), attains the desired goal under suitable
assumptions on the moments and distributions of vt = (δ>t (p), εt)

> as well

as the decay rates of ψ
(v)
j , θj and c

(v)
j .

Theorem 3.2. Assume that (3.23)–(3.25) hold. Suppose that the fourth
moments of vt are independent of t,

sup
−∞<t<∞

E‖vt‖θ <∞, for some θ > 10,(3.27)

and there exist K1 > 0, δ1 > 0 and ν > 0 such that for all −∞ < t < ∞
and all 0 < w − u ≤ δ1,

(3.28) sup
‖a‖=1

P
(
u < a>vt ≤ w

)
≤ K1(w − u)ν .

Assume also that there exist c1 > 0 and s > 3/4 for which

|θj | ≤ c1(j + 1)−s and |ψ(v)
j |+ |c

(v)
j | ≤ c1(j + 1)−s, 1 ≤ v ≤ p.(3.29)

Then, (C1)–(C6) hold for xt = x
(l)
t , εt,h = ε

(l)
t,h, and Ft = σ(vt,vt−1, . . .),

yielding

lim
n→∞

n
{

E(yn+h − ŷn+h(l))2 −MIh(l)
}

= Lh(l).

Moreover, (3.17)–(3.21) follow, and hence (3.16) holds true.

Remark 4. Assumption (3.29) allows the component of x
(l)
t to not only be

a short-memory ARMA process, but also belong to some important classes
of long-memory processes, e.g., the fractionally integrated I(d) process with
−1/2 < d < 1/4. As is clear from the proof of Theorem 3.2, (3.29) is crucial
for verifying (3.18) and condition (C2), and can hardly be weakened.

Remark 5. Assumption (3.28) is used to prove (2.19), which in turn leads to
condition (C5) according to Chan and Ing (2011). More details can be found
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in Section S2 of Hsu et al. (2018). Note that (C5) has played an increas-
ingly important role in deriving model selection criteria or MSPE formulas
in a rigorous manner; see, for example, Findley and Wei (2002), Ing and
Wei (2003, 2005), Schorfheide (2005), Chan and Ing (2011) and Greenaway-
McGrevy (2013, 2015). However, most of these papers verify (C5) only in
situations where regressors contain no exogenous variables.

4. An Extension to High-dimensional Misspecified Time Series
Models.

4.1. Consisiency of OGA+HDICh+Trim. In this section, we consider
the high-dimensional time series model,

yt+h = β>h xt + εt,h =

p∑
j=1

βj,hxt,j + εt,h,(4.1)

where {yt} and {xt} are weakly stationary processes with mean zero, p is
allowed to be larger than n, βh is the unique minimizer of E(yt+h − c>xt)

2

over c ∈ Rp, and the dependence of εt,h on p is suppressed in the notation.
Like Section 2, this section also assumes that εt,h can be serially correlated
and correlated with xk for k 6= t. In other words, model misspecification
is allowed. It is worth mentioning that although high-dimensional regres-
sions with independent observations have been extensively studied over the
past decade, relatively less efforts have been devoted to the investigation
of high-dimensional time series models. Aiming at bridging this gap, Basu
and Michailidis (2015) and Wu and Wu (2016) have recently studied the
asymptotic behavior of Lasso estimates under the following high-dimensional
model,

yt = β∗
>
xt + εt,(4.2)

where {εt} is a stationary time series, and {xt} is a p-dimensional stationary
time series independent of {εt} (Basu and Michailidis, 2015) or a sequence of
p-dimensional non-random vectors (Wu and Wu, 2016). However, when {xt}
is random, the assumption of independence between {xt} and {εt} not only
precludes autoregressive time series, but is also often violated under model
misspecification. On the other hand, (4.1) is flexible enough to accommodate
these cases.

Define

Nh = {j : 1 ≤ j ≤ p, βj,h 6= 0},
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which is the index set corresponding to all relevant variables. In the sequel,
we call the index set of a subset model of (4.1) a ‘model’ whenever no confu-
sion is possible. Obviously, Nh is the smallest model among those having the
lowest MI, and also the smallest true model when (4.1) is correctly specified.
The goal of this subsection is to consistently estimate Nh.

Since p can be much larger than n, we introduce a recursive proce-
dure, which we call an orthogonal greedy algorithm (OGA), to select vari-
ables one at a time. The procedure goes as follows. First, let f̂ (0) = yh =
(y1+h, . . . , yn)> and Ĵ0 = ∅. For 1 ≤ m ≤ p, f̂ (m), Ĵm, and ĵm ∈ {1, . . . , p}
are given recursively by

ĵm = arg max
1≤j≤p,j /∈Ĵm−1

|µ̂Ĵm−1,j
|,

Ĵm = Ĵm−1
⋃
{ĵm},

f̂ (m) = (IN −HĴm
)yh,

(4.3)

where HJ , J ⊂ {1, . . . , p}, is the orthogonal projection matrix onto the linear
span of {Xi = (x1,i, . . . , xN,i)

>, i ∈ J}, and µ̂J,i = X>i (IN−HJ)yh/(N
1/2‖Xi‖).

When the number of the OGA iterations achieves a prescribed upper bound
1 ≤ Kn ≤ p, the algorithm outputs model ĴKn . As shown in Theorem 4.1
below, ĴKn enjoys the so-called ‘sure screening property’ (meaning that the
event {Nh ⊆ ĴKn} has a probability tending to 1 as n → ∞), provided Kn

is sufficiently large and conditions (F1)–(F6) below hold true.

(F1) For some q1 ≥ 2, max1≤i,j≤p E|n−1/2
∑n

t=1(zt,izt,j − ρi,j)|2q1 = O(1),
where zt,i = xt,i/σi, σ

2
i = E(x2t,i) > 0, and ρi,j = E(zt,izt,j).

(F2) For some q2 ≥ 2, max1≤i≤p E|n−1/2
∑n

t=1 zt,iεt,h|q2 = O(1).
(F3) p is a nondecreasing function of n and obeys p2/q/n = o(1), where

q ≥ 2 is a known lower bound for min{q1, q2}.
(F4) There exists some 0 < G1 <∞ such that

∑p
j=1 |β∗j,h| ≡

∑p
j=1 |σjβj,h| <

G1.
(F5) For any 1 ≤ m ≤ p, there are some c1, c2 > 0, 0 ≤ θ1 < 1, and θ2 ≥ 0

such that

min
](J)≤m

λmin(Γ(J)) ≥ c1m−θ1 ,

max
](J)≤m,1≤i≤p,i/∈J

‖Γ(J)−1gi(J)‖1 ≤ c2mθ2 ,
(4.4)

where λmin(A) denotes the minimum eigenvalue ofA, Γ(J) = E(zt(J)z>t (J))
with zt(J) = (zt,j , j ∈ J)>, gi(J) = E(zt(J)zt,i), and ‖ · ‖1 denotes the
l1 norm of a vector.
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(F6) Nh 6= ∅ and for some small δ > 0,

min
j∈Nh

|β∗j,h| ≥ δ.(4.5)

Remark 6. Some comments are in order. First, (F1) and (F2) are parallel to
(C1) and (C4) in Section 2. As mentioned previously, these two assumptions
are fulfilled when zt,i and εt,h are linear processes with square summable au-
tocovariance functions, and hence allow yt and xt,i to be I(d) processes with
−1/2 < d < 1/4. Note that stationary I(d) processes with d 6= 0 is precluded
by Basu and Michailidis (2015). In addition, (F1) and (F2) are substantially
weaker than sub-Gaussian and sub-exponential assumptions, which are com-
monly adopted in the high-dimensional statistics literature, but may seem
restrictive in practice. On the other hand, since there is a tradeoff between
the moment conditions and the conditions on p, the frequently used condi-
tion, p = O(exp(ξn)), 0 < ξ ≤ 1, under sub-Gaussianity/sub-exponentiality
is now strengthened to (F3). Condition (F5) imposes mild restrictions on
the correlations among regressors. For example, it allows xt to consist of
a stationary I(d) variable and its lagged values. Conditions (F4) and (F6)
together imply that ](Nh) is bounded above by a finite constant. While
δ > 0 in (4.5) can be weakened to δ → 0 at a sufficiently slow rate, such
a generalization is not pursued here. Finally, we mention that our results
do not rely on assumptions like λmax(Γ) < ∞, where Γ = E(ztz

>
t ) with

zt = (zt,1, . . . , zt,p)
> and λmax(A) denotes the maximum eigenvalue of A,

but this type of assumption is needed by Basu and Michailidis (2015) to
derive asymptotic properties of the Lasso estimates under (4.2).

Theorem 4.1. Assume that (F1)–(F6) hold. Then, for Kn = min{p,mn},

lim
n→∞

P (Nh ⊂ ĴKn) = 1,(4.6)

where {mn} is any nondecreasing sequence of positive integers tending to ∞
as n does.

Remark 7. Under correctly specified high-dimensional regression models
with independent observations, the sure screening property has been estab-
lished for the Lasso by Bickel et al. (2009), for the OGA by Ing and Lai
(2011), for the Sure Independence Screening (SIS) by Fan and Lv (2008),
and a forward regression procedure by Wang (2009). Wu and Wu (2016)
focused instead on high-dimensional time series models and developed the
sure screening property of the Clime estimate under (4.2) with {xt} and {εt}
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being stationary, but not necessarily independent. However, they required
that both {xt} and {εt} are short-memory time series.

While ĴKn possesses the sure screening property, it may contain many
irrelevant indices j whose corresponding coefficients βj,h are zero. In the fol-

lowing, we shall choose a subset from ĴKn that is equivalent to Nh asymptot-
ically. To this end, we start by introducing a high-dimensional information
criterion (HDIC), which assigns a real number to a model J as follows:

HDICh(J) =
(
1 +

](J)p2/qωn
n

)
σ̂2h(J),(4.7)

where σ̂2h(J) = N−1y>h (IN −HJ)yh and ωn → ∞ at a rate to be specified

later. We then choose a subset Ĵk̂n of ĴKn that minimizes HDICh(J) along

the OGA path. More precisely, k̂n is defined to be the smallest integer k
satisfying

HDICh(Ĵk) = min
1≤m≤Kn

HDICh(Ĵm).(4.8)

Since Ĵk̂n may still contain redundant indices, we further trim Ĵk̂n by making
use of HDICh to come up with

N̂h =

 {ĵk : 1 ≤ k ≤ k̂n,HDICh(Ĵk̂n) < HDICh(Ĵk̂n − {ĵk})} , k̂n > 1 ,

{ĵ1} , k̂n = 1.

(4.9)

The above model selection procedure is referred to as “OGA+HDICh+Trim”.
The main result of this section is reported in the next theorem.

Theorem 4.2. Assume (F1)–(F6), and

n−1
n∑
t=1

ε2t,h = E(ε21,h) + op(1).(4.10)

Suppose that Kn and ωn satisfy

Kn = min{p,mn}, ωn →∞, ωn = O(n1/2/p1/q),(4.11)

where {mn} is a sequence of positive integers obeying

mn →∞, mθ1+2θ2
n = o(ωn), m1+max{θ1,θ2}

n = o(n1/2/p1/q).(4.12)

Then,

lim
n→∞

P (N̂h = Nh) = 1.(4.13)
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To the best of our knowledge, Theorem 4.2 is the first result showing that
selection consistency is still achievable under high-dimensional misspecified
time series models. It is further shown in Sections S5 and S6 of Hsu et al.
(2018) that OGA+HDICh+Trim has satisfactory finite-sample performance.

4.2. Asymptotically Efficient Model Selection across Several High-dimensional
Time Series Models. In real world situations, prediction is often conducted
by several different forecasters. Some forecasters may live in a variable-rich
environment, where hundreds and thousands of variables are readily acces-
sible, whereas others may rely more on rich domain-specific knowledge, and
hence only require a relatively small set of candidate variables. Specifically,
assume that there are K (high-dimensional) models,

yt+h = β>h,lx
(l)
t + ε

(l)
t,h =

pl∑
j=1

β
(l)
j,hx

(l)
t,j + ε

(l)
t,h, l = 1, . . . ,K,(4.14)

proposed by K different forecasters, where {x(l)t,j , 1 ≤ j ≤ pl} are the candi-
date variables employed by the lth forecaster at time t, with pl, the number
of candidate variables, varying from one model to another. Define

N
(l)
h = {j : 1 ≤ j ≤ pl, β

(l)
j,h 6= 0}.

In addition to identifying N
(l)
h , 1 ≤ l ≤ K, the goal of this section is to

find the best pair among (l, N
(l)
h ), l = 1, . . . ,K, in terms of their prediction

capabilities.

Let J ⊂ {1, . . . , pl} ≡ Pl be a model in the lth candidate family, i.e., the
family of all possible subsets of the lth model in (4.14). In view of (3.4) and

(3.5), the MI and VI of J are given by MIh,l(J) = E(ε
(l)
n,h(J))2 and

Lh,l(J) = tr
(
R(l)−1

(J)C
(l)
h,0(J)

)
+ 2 tr

(
h−1∑
s=1

R(l)−1
(J)C

(l)
h,s(J)

)
,

respectively, where

ε
(l)
t,h(J) = yt+h − β>h,l(J)x

(l)
t (J),

R(l)(J) = E(x
(l)
t (J)x

(l)>

t (J)),

C
(l)
h,s(J) = E(x

(l)
t (J)x

(l)>

t+s (J)ε
(l)
t,h(J)ε

(l)
t+s,h(J)),
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with x
(l)
t (J) = (x

(l)
t,j , j ∈ J)> and βh,l(J) = arg minc∈R](J) E(yt+h−c>x

(l)
t (J))2.

It is clear that MIh,l(Pl) = MIh,l(N
(l)
h ). In addition, (3.8) and (3.7) motivate

us to define

MA,h =

{
l : 1 ≤ l ≤ K,MIh,l(N

(l)
h ) = min

1≤j≤K
MIh,j(N

(j)
h )

}
,

MB,h =

{
l : Lh,l(N

(l)
h ) = min

j∈MA,h

Lh,j(N
(j)
h )

}
,

and
MC,h =

{
(l, N

(l)
h ) : l ∈MB,h

}
,

noting that MC,h is the collection of the (asymptotically) best forecaster-

model pairs for h-step prediction. We aim at proposing a data-driven (l̂, Ĵ),
where 1 ≤ l̂ ≤ K and Ĵ ⊆ {1, . . . , pl̂}, such that

lim
n→∞

P ((l̂, Ĵ) ∈MC,h) = 1.(4.15)

Define (σ
(l)
i )2 = E(x

(l)
t,i )

2, z
(l)
t,i = x

(l)
t,i/σ

(l)
i , β

(l)∗

j,h = β
(l)
j,hσ

(l)
j , β

(l)∗

h = (β
(l)∗

j,h , 1 ≤
j ≤ pl)

>, ρ
(l)
i,j = E(z

(l)
t,i z

(l)
t,j ), z

(l)
t = (z

(l)
t,i , 1 ≤ i ≤ pl)

>, z
(l)
t (J) = (z

(l)
t,i , i ∈ J ⊆

Pl)>, and g
(l)
i (J) = E(z

(l)
t (J)z

(l)
t,i ). We assume that for each 1 ≤ l ≤ K,

there exist 0 ≤ θ1,l < 1, θ2,l ≥ 0, and positive numbers q1,l, q2,l, G1,l, c1,l, c2,l
and δl such that (F1(l))–(F6(l)) hold, where (F1(l))–(F6(l)) are (F1)–(F6)
with zt, ρi,j , εt,h, p, β∗h, Nh, Γ(J), and Γ(J)−1gi(J) therein replaced by

z
(l)
t , ρ

(l)
i,j , ε

(l)
t,h, pl, β

(l)∗

h , N
(l)
h , Γl(J) = E(z

(l)
t (J)z

(l)>

t (J)), and Γ−1l (J)g
(l)
i (J),

and with θ1 θ2, q1, q2, q, G1, c1, c2, and δ replaced by θ1,l θ2,l, q1,l, q2,l, ql =
min{q1,l, q2,l}, G1,l, c1,l, c2,l, and δl. Moreover, define

HDICh,l(J) =
(
1 +

](J)p
2/ql
l ω

(l)
n

n

)
σ̂2h,l(J),(4.16)

where σ̂2h,l(J) = N−1y>h (IN − H
(l)
J )yh, with H

(l)
J denoting the orthogo-

nal projection matrix onto the linear span of the set of vectors {X(l)
j =

(x
(l)
1,j , . . . , x

(l)
n,j)
>, j ∈ J}, and ω

(l)
n →∞ at a suitable rate.

Our strategy is to use OGA+HDICh,l+Trim to determine a model, N̂
(l)
h ,

from the lth candidate family, and then employ MRIC to choose among

N̂
(l)
h , l = 1, . . . ,K. This procedure starts with applying the OGA to each

model in (4.14), yielding

Ĵ
(l)

K
(l)
n

=
{
ĵ
(l)
1 , . . . , ĵ

(l)

K
(l)
n

}
, l = 1, . . . ,K,
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where K
(l)
n is a prescribed upper bound for the number of iterations when

the OGA is applied to the lth model in (4.14). Let k̂
(l)
n be the smallest integer

k such that

HDICh,l(Ĵ
(l)
k ) = min

1≤m≤K(l)
n

HDICh,l(Ĵ
(l)
m ),(4.17)

where Ĵ
(l)
m = {ĵ(l)1 , . . . , ĵ

(l)
m }. Then, N̂

(l)
h is given by

N̂
(l)
h =

{
{ĵ(l)k : 1 ≤ k ≤ k̂(l)n ,HDICh,l(Ĵk̂(l)n

) < HDICh,l(Ĵk̂(l)n
− {ĵ(l)k })}, k̂

(l)
n > 1,

{ĵ(l)1 }, k̂
(l)
n = 1.

(4.18)

The last step of this procedure is to choose N̂
(l̂h)
h from {N̂ (j)

h , 1 ≤ j ≤ K},
where l̂h satisfies

MRICh,l(N̂
(l̂h)
h ) = min

1≤j≤K
MRICh,j(N̂

(j)
h ).

Here for J ⊂ Pl,

MRICh,l(J) = σ̂2h,l(J) +
Cn
n
L̂h,l(J),(4.19)

in which Cn obeys (3.10) and (3.11), and

L̂h,l(J) = tr
(
R̂(l)−1

(J)Ĉ
(l)
h,0(J)

)
+ 2 tr

(
h−1∑
s=1

R̂(l)−1
(J)Ĉ

(l)
h,s(J)

)
,

with

R̂(l) = N−1
N∑
t=1

x
(l)
t (J)x

(l)>

t (J),

Ĉ
(l)
h,s(J) = (N − s)−1

N−s∑
t=1

x
(l)
t (J)x

(l)>

t+s (J)ε̂
(l)
t,h(J)ε̂

(l)
t+s,h(J),

ε̂
(l)
t,h(J) = yt+h − β̂>h,l(J)x

(l)
t (J),

β̂h,l(J) = (
N∑
t=1

x
(l)
t (J)x

(l)>

t (J))−1
N∑
t=1

x
(l)
t (J)yt+h.

The above model selection procedure is referred to as ‘OGA+HDICh,l+Trim+MRIC’.

The next theorem shows that (l̂h, N̂
(l̂h)
h ) satisfies (4.15).
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Theorem 4.3. Assume that for l = 1, . . . ,K, (F1(l))–(F6(l)), (3.17),

n−1
n∑
t=1

x
(l)
t (N

(l)
h )x

(l)>

t+s (N
(l)
h )ε

(l)
t,hε

(l)
t+s,h = C

(l)
h,s(N

(l)
h ) + op(1),(4.20)

and

sup
−∞<t<∞

E(ε
(l)
t,h)4 + sup

−∞<t<∞
E‖x(l)

t (N
(l)
h )‖4 <∞(4.21)

hold true. Moreover, suppose for l = 1, . . . ,K,

K(l)
n = min{pl,m(l)

n }, ω(l)
n →∞, ω(l)

n = O(n1/2/p
1/ql
l ),(4.22)

where m
(l)
n obeys

m(l)
n →∞, (m(l)

n )θ1,l+2θ2,l = o(ω(l)
n ), (m(l)

n )1+max{θ1,l,θ2,l} = o(n1/2/p
1/ql
l ).

(4.23)

Then,

lim
n→∞

P
(

(l̂h, N̂
(l̂h)
h ) ∈MC,h

)
= 1.(4.24)

Remark 8. Because N
(l)
h , l = 1, . . . ,K, are not necessarily nested, the con-

dition on n−1
∑n

t=1(ε
(l)
t,h)2 in Theorem 4.3 is the same as the one in Theorem

3.1, but is more stringent than conditions like (4.10). We also note that (4.20)
and (4.21) are analogous to (3.18) and (3.21) of Theorem 3.1, respectively.

When compared to existing high-dimensional model selection methods,
the most appealing feature of OGA+HDICh,l+Trim+MRIC is that it can
select the (asymptotically) best forecaster-model combination in situations
where predictions are made by several forecasters, using different (possi-
bly misspecified) high-dimensional time series models. The advantage of
OGA+HDICh,l+Trim+MRIC is also demonstrated via simulations in Sec-
tion S5 of Hsu et al. (2018).

5. Conclusions. This paper has addressed a serious lacuna that has
attracted little attention in the vast literature on model selection. We argue
that in many realistic applications, we are faced with the problem of select-
ing a model from a finite and fixed collection of models, without knowing
whether the true DGP is included in it or not, and without recourse to the
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mathematical device of allowing the true DGP to be well approximated by
an increasing sequence of candidate models. If we accept the partially tau-
tological proposition that ‘all models are wrong, but some are useful’, then
we are often faced with precisely the above fundamental issue.

The MRIC gives an explicit expression, namely equation (3.9), which ad-
dresses not only the one-step ahead prediction but also the multi-step case.
We have shown how we can compute the explicit expressions and given de-
tailed theoretical underpinnings. Moreover, with the help of OGA+HDICh+Trim,
MRIC can even be used to identify the best subset across several high-
dimensional misspecified time series models. It is hoped that filling the seri-
ous lacuna paves the way for the beginning of the final phase of the model
selection enterprise started by Akaike, Mallows and others more than forty
years ago.

Finally, in all the model selection criteria discussed in this paper, es-
timation of unknown parameters is rooted in the likelihood function or its
equivalents. For misspecified models, attempts to justify the likelihood-based
approach to estimation are often made by reference to the Kullbeck-Leibler
information, which is well known to be not a distance measure. However,
alternative (i.e., non-likelihood-based) approaches are available and begin-
ning to attract attention; see, e.g., Davies (2008), Xia and Tong (2011) and
others. Therefore, it remains a future challenge to develop a model selection
criterion via a non-likelihood-based approach.

Appendix A: On Model Misspecification. This appendix pro-
vides a definition of ‘model misspecification’ with respect to (w.r.t.) an
increasing sequence of σ-fields, {Gt}, satisfying σ(xj, j ≤ t) ⊆ Gt ⊆ F ,
where xj and F are defined at the beginning of Section 2 and σ(xj, j ≤
t) denotes the σ-field generated by {xj, j ≤ t}. Model (2.3) is said to
be correctly specified w.r.t. {Gt} if for any −∞ < t <∞,

E(yt+h|Gt) = β>h xt almost surely,(A.1)

otherwise it is called misspecified w.r.t. {Gt}.
If (A.1) holds true, then it is easy to see that E(xt−jεt,h) = 0 for

any j ≥ 0, where εt,h = yt+h − β>h xt. To gain a better understanding
of the concept of model misspecification, we assume that the data are
generated by the following model,

yt+1 = axt + bwt + εt+1,(A.2)
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where ab 6= 0, {εt} is a sequence of i.i.d. random errors with E(ε1) = 0
and 0 < E(ε21) < ∞, and {(xt, wt)>} is a sequence of i.i.d. bivariate
normal random vectors with E(x1) = E(w1) = 0, E(x21) = E(w2

1) =
1, and 0 < |σ1,2| = |E(x1w1)| < 1. We also assume that {εt} and
{(xt, wt)>} are independent. Let Gt = σ(xj, j ≤ t). Then,

E(yt+1|Gt) = E(yt+1|xt) = (a+ bσ1,2)xt almost surely,

Therefore, the simple regression model (a+bσ1,2)xt is correctly specified
w.r.t. {Gt}.

Alternatively, assume in (A.2), xt = ξxt−1 + δt and wt = θwt−2 + ηt,
where 0 < |ξ|, |θ| < 1 and {(δt, ηt)>} is a sequence of i.i.d. bivari-
ate normal random vectors independent of {εt}, and satisfies E(δ1) =
E(η1) = 0, E(δ21) = 1− ξ2, E(η21) = 1− θ2, and 0 < ν21,2 = (E(δ1η1))

2 <

(1− ξ2)(1− θ2). Then, it can be shown that

E(yt+1|Gt) = axt +
bν1,2

1− ξ2
∞∑
j=0

θj(xt−2j − ξxt−2j−1) almost surely,

(A.3)

and hence the simple regression model β1,1xt, where

β1,1 = a+
bν1,2

1− θξ2
= arg min

c∈R
E(yt+1 − cxt)2,

is no longer correctly specified w.r.t. {Gt}. Moreover, since

E(yt+1|G
′

t) = axt + bwt almost surely,

where G ′t = σ(xj, wj, j ≤ t), the model on the right-hand side of (A.3)
is correctly specified w.r.t. {Gt}, but misspecified w.r.t. {G ′t}.
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SUPPLEMENTARY MATERIAL

Supplement to “On model selection from a finite family of
possibly misspecified time series models”. The supplementary
material contains the proofs of all theorems, an extension of MRIC
to a class of nonlinear models, and simulation studies and real data
analysis to illustrate the performance of the proposed methods in both
low- and high-dimensional cases.
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Supplement to “On model selection from a finite family
of possibly misspecified time series models”

By Hsiang-Ling Hsu, Ching-Kang Ing, and Howell Tong

National University of Kaohsiung, National Tsing Hua University, and University of
Electronic Science & Technology and London School of Economics

The supplementary material consists of 6 sections. The proofs of the the-
orems in Sections 2–4 of Hsu et al. (2018) are given in Sections S1–S3,
respectively. Section S4 provides an extension of MRIC to a class of nonlin-
ear models. Section S5 compares the performance of MRIC with AIC, BIC,
GAIC, GBIC, and GBICp in both low- and high-dimensional cases based on
simulated data. The performance of these criteria is also compared via two
real datasets in Section S6.

S1. Proof of Theorem 2.1. In view of (2.8), we have

N

{
E
(
yn+h − β̂>n (h)xn

)2

− E
(
ε2
n,h

)}
:= (I) + (II),(S1.1)

where (I) = −2E(εn,hx
>
n R̂−1

N

∑N
t=1 xtεt,h) and (II) = E(x>n R̂−1

N N−1/2
∑N

t=1 xtεt,h)
2.

It is shown in Lemma S1.1 below that

(I) = −2E

(
εn,hx

>
nR−1

N∑
t=1

xtεt,h

)
+ o(1) := (III) + o(1),(S1.2)

and

(II) = E


(

1√
N

N∑
t=1

xtεt,h

)>
R−1

(
1√
N

N∑
t=1

xtεt,h

)+ o(1) := (IV) + o(1).

(S1.3)
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By (C2), it follows that

(IV) =
1

N
E

(
N∑
t=1

x>t R−1xtε
2
t,h

)
+

2

N

N−1∑
j=1

N∑
k=j+1

E
(
x>j R−1xkεj,hεk,h

)
= tr

{
R−1E

(
x1x

>
1 ε

2
1,h

)}
+

2

N

{
N−1∑
j=1

(N − j)E
(
x>1 R−1xj+1ε1,hεj+1,h

)}

= tr
{
R−1E

(
x1x

>
1 ε

2
1,h

)}
+ 2

h−1∑
s=1

tr
{
R−1E

(
x1x

>
1+sε1,hε1+s,h

)}
+ 2

N−1∑
j=h

E
(
x>1 R−1xj+1ε1,hεj+1,h

)
− 2

N

N−1∑
j=1

j E
(
x>1 R−1xj+1ε1,hεj+1,h

)
= tr

(
R−1E

(
x1x

>
1 ε

2
1,h

))
+ 2

h−1∑
s=1

tr
(
R−1E

(
x1x

>
1+sε1,hε1+s,h

))
+ 2

N−1∑
j=h

E
(
x>1 R−1xj+1ε1,hεj+1,h

)
+ o(1),

(S1.4)

and

(III) = −2
n−1∑
j=h

E
(
x>1 R−1xj+1ε1,hεj+1,h

)
= −2

N−1∑
j=h

E
(
x>1 R−1xj+1ε1,hεj+1,h

)
+ o(1).

(S1.5)

Since the third term on the right-hand side of (S1.4) and the first term
on the right-hand side of (S1.5) cancel out each other, it follows from
(S1.1)–(S1.5) that

N

{
E
(
yn+h − β̂>n (h)xn

)2

− E
(
ε2
n,h

)}
= tr

(
R−1E

(
x1x

>
1 ε

2
1,h

))
+ 2

h−1∑
s=1

tr
(
R−1E

(
x1x

>
1+sε1,hε1+s,h

))
+ o(1),

yielding the desired conclusion.
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Lemma S1.1. Under the assumptions of Theorem 2.1, (S1.2) and
(S1.3) follow.

Proof. Let {ln} be a sequence of positive integers satisfying ln →∞
and ln/n

1/2 = o(1). By (2.14) in (C6), we have

E
(
‖E (xnεn,h|Fn−ln) ‖3

)
≤ sup
−∞<t<∞

E
(
‖E (xtεt,h|Ft−ln) ‖3

)
= o(1).

(S1.6)

Similarly, (2.13) in (C6) implies

E

∥∥∥∥E
(
xnx

>
n |Fn−ln

)
−R

∥∥∥∥3

= o(1).(S1.7)

It suffices for (S1.2) to prove that

(S1.8) E

(
εn,hx

>
n

(
R̂−1 −R−1

) N∑
t=1

xtεt,h

)
= o(1).

To show (S1.8), first observe that

E

(
εn,hx

>
n

(
R̂−1 −R−1

) N∑
t=1

xtεt,h

)

= E

(
εn,hx

>
n

(
R̂−1 − R̃−1

) N∑
t=1

xtεt,h

)
+ E

(
εn,hx

>
n

(
R̃−1 −R−1

) N∑
t=n−ln−h+1

xtεt,h

)

+ E

(
εn,hx

>
n

(
R̃−1 −R−1

) n−ln−h∑
t=1

xtεt,h

)
:= (I) + (II) + (III),

(S1.9)

where R̃ = (n− ln)−1
∑n−ln

t=1 xtx
>
t . Since for large n,

‖R̂−1 − R̃−1‖ ≤ ‖R̂−1‖‖R̃−1‖

(∥∥∥∥ 1

N

N∑
t=n−ln+1

xtx
>
t

∥∥∥∥+

∥∥∥∥( 1

N
− 1

n− ln

) n−ln∑
t=1

xtx
>
t

∥∥∥∥
)
.

This, together with (2.12), (2.9), and Hölder’s inequality, yields for any
0 < γ ≤ 5,

(S1.10) E‖R̂−1 − R̃−1‖γ = O ((ln/n)γ) .
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Applying Hölder’s inequality again, we have

(I) ≤
(
E|εn,h|6

)1/6 (‖xn‖6
)1/6

(
E‖R̂−1 − R̃−1‖3

)1/3
(

E

∥∥∥∥ N∑
t=1

xtεt,h

∥∥∥∥3
)1/3

.

(S1.11)

By (S1.10), (S1.11), (C3) and (C4), it holds that

(S1.12) (I) = o(ln/n
1/2) = o(1).

An argument similar to that used to prove (S1.10) yields for any 0 <
γ ≤ 5,

(S1.13) E‖R̂−1 −R−1‖γ = O(n−γ/2), E‖R̃−1 −R−1‖γ = O(n−γ/2).

By making use of (S1.13), Hölder’s inequality, (C3), (C4) and (S1.6),
we obtain

(S1.14) (II) = O
(
(ln/n)1/2

)
= o(1),

and

(III) ≤
(

E‖R̃−1 −R−1‖3
)1/3

(
E

∥∥∥∥ n−ln−h∑
t=1

xtεn,h

∥∥∥∥3
)1/3

×
(
E
(
‖E (xnεn,h|Fn−ln) ‖3

))1/3
= o(1).

(S1.15)

Consequently, (S1.8) follows from (S1.9), (S1.12), (S1.14) and (S1.15).
To show (S1.3), let

M1 = x>n

(
R̂−1 −R−1

)
N−1/2

N∑
t=1

xtεt,h, M2 = x>nR−1N−1/2

N∑
t=1

xtεt,h,

M3 =

(
N−1/2

N∑
t=1

xtεt,h

)>
R−1

(
N−1/2

N∑
t=1

xtεn,h

)
, un = N−1/2

n−ln−h∑
t=1

xtεt,h.

It follows that

(S1.16) E(x>n R̂−1N−1/2

N∑
t=1

xnεt,h)
2 = E(M2

1) + E(M2
2) + 2E(M1M2).
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Moreover, by (C3), (C4), (S1.13), (S1.7) and Hölder’s inequality, we
have
(S1.17)

E(M2
1) ≤ (E‖xn‖10)1/5(E‖R̂−1−R−1‖5)2/5(E‖N−1/2

N∑
t=1

xtεt,h‖5)2/5 = O(n−1),

and

E(M2
2) = E (M3) + E

{
u>nR−1

(
E
(
xnx

>
n |Fn−ln

)
−R

)
R−1un

}
+O((ln/n)1/2)

= E(M3) +O

{E‖un‖3
}2/3

{
E

∥∥∥∥E
(
xnx

>
n |Fn−ln

)
−R

∥∥∥∥3
}1/3

+O((ln/n)1/2)

= E(M3) + o(1).

(S1.18)

Consequently, (S1.3) follows from (S1.16)–(S1.18).

S2. Proof of Theorems 3.1 and 3.2. Proof of Theorem 3.1.
It suffices to show (3.12) and (3.13). To show (3.12), first note that

σ̂2
h(l) = N−1

N∑
t=1

(ε
(l)
t,h)

2 −N−2

(
N∑
t=1

x
(l)
t ε

(l)
t,h

)
R̂−1(l)

(
N∑
t=1

x
(l)
t ε

(l)
t,h

)

= E
(

(ε
(l)
1,h)

2
)

+N−1

N∑
t=1

{
(ε

(l)
t,h)

2 − E(ε
(l)
1,h)

2
}

−N−2

(
N∑
t=1

x
(l)>

t ε
(l)
t,h

)
R̂−1(l)

(
N∑
t=1

x
(l)
t ε

(l)
t,h

)
.

(S2.1)

In addition, by (3.20) and the non-singularity of R(l),

‖R̂−1(l)‖ = Op(1),(S2.2)

which, together with (3.19), yieldsN−2(
∑N

t=1 x
(l)>

t ε
(l)
t,h)R̂

−1(l)(
∑N

t=1 x
(l)
t ε

(l)
t,h) =

Op(n
−1). Thus, (S2.1) and (3.17) in turn imply (3.12).
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To show (3.13), we first dissect Ĉh,s(l) as

Ĉh,s(l) = N−1

N∑
t=1

x
(l)
t x

(l)>

t+s ε
(l)
t,hε

(l)
t+s,h

−N−1

N∑
t=1

x
(l)
t x

(l)>

t+s

(
β̂n,l(h)− βh,l

)>
x

(l)
t ε

(l)
t+s,h

−N−1

N∑
t=1

x
(l)
t x

(l)>

t+s

(
β̂n,l(h)− βh,l

)>
x

(l)
t+sε

(l)
t,h

+N−1

N∑
t=1

x
(l)
t x

(l)>

t+s

(
β̂n,l(h)− βh,l

)>
x

(l)
t x

(l)>

t+s

(
β̂n,l(h)− βh,l

)
.

(S2.3)

By (S2.2) and (3.19)–(3.21), it can be shown that the last three terms
on the right-hand side of (S2.3) are of order op(1). Combining this with
(3.18) leads to the desired conclusion (3.13). �

Proof of Theorem 3.2. For notational simplicity, we shall sup-

press (l) in x
(l)
t , ε

(l)
t,h, J

(l)
v and Ch,s(l). It follows from (3.23)–(3.25) and

(3.29) that

yt =
∞∑
j=0

w>j,yvt−j, s
(v)
t =

∞∑
j=0

w>j,vvt−j, εt,h =
∞∑
j=0

w>j,0vt+h−j,(S2.4)

where wj,y and wj,v are some non-random vectors satisfying

(S2.5) ‖wj,y‖ ≤ c∗(j + 1)−s, ‖wj,v‖ ≤ c∗(j + 1)−s,

for some 0 < c∗ <∞ and all j ≥ 0 and 1 ≤ v ≤ p. Moreover, since

(S2.6) E(εt,hyt−j) = 0, j ∈ J0 and E(εt,hs
(v)
t−j) = 0, j ∈ Jv, 1 ≤ v ≤ p,

it holds that

∞∑
k=0

w>k,yΛwk+h+j,0 = 0, j ∈ J0,

∞∑
k=0

w>k,vΛwk+h+j,0 = 0, j ∈ Jv, 1 ≤ v ≤ p,

(S2.7)
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where Λ = E(vtv
>
t ).

By (3.27) and (S2.4)–(S2.6), it is not difficult to show that condi-
tions (C3) and (C6) follow. Moreover, since (S2.5) ensures that the

autocovariance functions of yt, s
(v)
t and εt,h are square summable, by

(3.27), (S2.4), (S2.6) and the First Moment Bound Theorem of Findley
and Wei (1993), it can be shown that conditions (C1) and (C4) also
hold true. The proof of condition (C5) is complicated and deferred to
Lemma S2.1 below. The first statement of condition (C2) is obviously
guaranteed by (S2.4) and the hypothesis that the fourth moments of
{vt} are independent of t, whereas the second one holds if

each component of nE(x1x
>
n ε1,hεn,h) converges to 0,(S2.8)

noting that xt = (yt−j, j ∈ J0, s
(v)
t−j, j ∈ Jv, 1 ≤ v ≤ p)>.

In the following, we shall prove

E(ε1,hy1εn,hyn) = o(n−1)(S2.9)

instead of (S2.8) because their proofs are exactly the same. Dissect
yn and εn,h as yn = y∗n + ỹn and εn,h = ε∗n,h + ε̃n,h, where y∗n =∑n−2−h

j=0 w>j,yvn−j and ε∗n,h =
∑n−2

j=0 w>j,0vn+h−j. Since (y∗n, ε
∗
n,h) is in-

dependent of (y1, ε1,h), we have

E(ε1,hy1εn,hyn) = E(ε1,hy1ε̃n,hỹn)

= E
{ 1+h∑
j1=−∞

1+h∑
j2=−∞

1+h∑
j3=−∞

1+h∑
j4=−∞

w>1−j1,yvj1w
>
1+h−j2,0vj2w

>
n−j3,yvj3w

>
n+h−j4,0vj4

}
= E

{ 1+h∑
j=−∞

w>1−j,yvjw
>
1+h−j,0vjw

>
n−j,yvjw

>
n+h−j,0vj

}
+ E

{ ∑
−∞<m,k≤1+h

m6=k

w>1−m,yvmv>mw1+h−m,0w
>
n−k,yvkv

>
k wn+h−k,0

}
+ E

{ ∑
−∞<m,k≤1+h

m6=k

w>1−m,yvmv>mwn−m,yw
>
1+h−k,0vkv

>
k wn+h−k,0

}
+ E

{ ∑
−∞<m,k≤1+h

m6=k

w>1−m,yvmv>mwn+h−m,0w
>
1+h−k,0vkv

>
k wn−k,y

}
= (I) + (II) + (III) + (IV),

(S2.10)
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where ws,y is set to 0 when s < 0. By (3.27) and (S2.5), it holds that

|(I)| ≤
1+h∑
j=−∞

E‖vj‖4(‖w1−j,y‖‖w1+h−j,0‖‖wn−j,y‖‖wn+h−j,0‖) = O(n−2s) = o(n−1).

(S2.11)

Using the first relation of (S2.7) with j = 0, we obtain

(II) =
1+h∑
k=−∞

w>n−k,yΛwn+h−k,0(
1+h∑

m=−∞,m 6=k

w>1−m,yΛw1+h−m,0)

= −
1+h∑
k=−∞

w>n−k,yΛwn+h−k,0w
>
1−k,yΛw1+h−k,0.

Therefore,

|(II)| ≤ ‖Λ‖2

1+h∑
k=−∞

‖wn−k,y‖‖wn+h−k,0‖‖w1−k,y‖‖w1+h−k,0‖ = O(n−2s) = o(n−1).

(S2.12)

Straightforward calculations and (S2.5) yield

|(III)| = O

(
1+h∑
k=−∞

‖w1+h−k,0‖‖wn+h−k,0‖(
1+h∑

m=−∞,m 6=k

‖w1−m,y‖‖wn−m,y‖)

)
= O(n−4s+2) = o(n−1).

(S2.13)

Similarly,

|(IV)| = O(n−4s+2) = o(n−1).(S2.14)

The desired conclusion (S2.9) (and hence (S2.8)) now follows from
(S2.10)–(S2.14).

It remains to show that (3.17)–(3.21) hold true. Note first that (3.17)
is an immediate consequence of (S2.4), (S2.5), and the First Moment
Bound Theorem of Findley and Wei (1993). To prove (3.18), define

C
(t)
h,s = [c

(t)
h,s(i, j)] = xtx

>
t+sεt,hεt+s,h. Express Ch,s as [ch,s(i, j)] and let
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D
(t)
h,s(i, j) = c

(t)
h,s(i, j) − ch,s(i, j). By (3.27), (S2.4), (S2.5) and tedious

algebraic manipulations, we obtain for each 1 ≤ i, j ≤ Sp ≡
∑p

v=0 ](Jv),

sup
|m−k|=r

|E(D
(m)
h,s (i, j)D

(k)
h,s(i, j))| → 0, as r →∞,(S2.15)

yielding n−1
∑n

t=1 D
(t)
h,s(i, j) = op(1), which in turn implies (3.18). Con-

ditions (3.19), (3.20) and (3.21) are ensured by (C4), (C1) and (C3),
which have been proved previously.

Lemma S2.1. Assume (3.23)–(3.25) and (3.28). Then condition
(C5) follows.

Proof. In view of Theorem 2.1 of Chan and Ing (2011), it suffices for
(C5) to show that (2.19) holds true. By (S2.4), there exist Sp× (p+ 1)
matrices Hj, j ≥ 0, with ‖Hj‖ ≤ c̄(j + 1)−s for some 0 < c̄ < ∞,
such that xt =

∑∞
j=0Hjvt−j. Moreover, by (S2.4), the independence

between {δt(p)} and {εt}, and the positive definiteness of Σp, it can be
shown that λmin(E(xtx

>
t )) > δ0 for some positive constant δ0. These

facts yield that for a given δ∗1 < δ0, there exists a positive integer D
such that for all t ≥ D,

(S2.16) λmin

(
E(xt,Dx>t,D)

)
> δ∗1,

where xt,D =
∑D−1

j=0 Hjvt−j. Since (S2.16) ensures that E(s>xt,D)2 =∑D−1
j=0 s

>HjΛH
>
j s ≥ δ∗1 for any ‖s‖ = 1, there is an integer 0 ≤ j(s) ≤

D − 1 such that

(S2.17) s>Hj(s)ΛH
>
j(s)s ≥ δ∗1/D.

Define Ft,j(s) =
{
vt, . . . ,vt−j(s)+1,vt−j(s)−1, . . .

}
and ηj(s) = s>Hj(s)H

>
j(s)s.

Then, by (3.28) and (S2.17), it follows that for any ‖s‖ = 1, any t ≥ D,
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and any 0 < s2− s1 ≤ δ1

√
δ∗1/Dλ

−1/2
max (Λ), where δ1 is defined in (3.28),

P
(
s1 < s

>xt ≤ s2|Ft−D
)

=E
{
P
(
s1 < s

>xt ≤ s2

∣∣Ft,j(s)) ∣∣Ft−D}

=E


P


s1 −

∞∑
j=0
j 6=j(s)

s>Hjvt−j

√
ηj(s)

<
s>Hj(s)vt−j(s)
√
ηj(s)

≤

s2 −
∞∑
j=0
j 6=j(s)

s>Hjvt−j

√
ηj(s)

∣∣∣∣∣Ft,j(s)

∣∣∣∣∣Ft−D


≤K1

(√
Dλmax(Λ)

δ∗1
(s2 − s1)

)v

almost surely,

recalling that Ft = σ(vt,vt−1, . . .). Consequently, (2.19) holds with

Ft = σ(vt,vt−1, . . .), α = v, δ = δ1

√
δ∗1/Dλ

−1/2
max (Λ),M = K1(Dλmax(Λ)/δ∗1)v/2,

and D given above.

S3. Proofs of Theorems 4.1–4.3. We first define a ‘noiseless’ OGA
with parameter 0 < ξ ≤ 1. The algorithm is initialized by setting

J̃0,ξ = ∅ and f
(0)
ξ ≡ uh = (β>h xt, t = 1, . . . , N)>. For 1 ≤ m ≤ p, the

algorithm updates J̃m,ξ and f
(m)
ξ recursively as follows:

J̃m,ξ = J̃m−1,ξ

⋃
{j̃m,ξ},

f
(m)
ξ = (IN −HJ̃m,ξ

)uh,

where j̃m,ξ is any l ∈ {1, . . . , p} − J̃m−1,ξ such that

|νJ̃m−1,ξ,l
| ≥ ξ max

1≤j≤p,j /∈J̃m−1,ξ

|νJ̃m−1,ξ,j
|,(S3.1)

with νJ,i = X>i (IN −HJ)uh/(N
1/2‖Xi‖). Although the noiseless OGA

cannot be implemented in practice, the rate of convergence ofN−1‖f (m)
ξ ‖2

plays an important role in our theoretical analysis. The next lemma

provides a uniform bound for N−1‖f (m)
ξ ‖2.

Lemma S3.1. Assume (F4). Then,

max
1≤m≤p

N−1‖f (m)
ξ ‖2

1
1+mξ2

= Op(1).(S3.2)
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proof. Note that

N−1‖(IN −HJ̃m,ξ
)uh‖2

≤ N−1
∥∥(IN −HJ̃m−1,ξ

)uh −
X>
j̃m,ξ

(IN −HJ̃m−1,ξ
)uh

‖Xj̃m,ξ
‖2

Xj̃m,ξ

∥∥2

= N−1‖(IN −HJ̃m−1,ξ
)uh‖2 − ν2

J̃m−1,ξ,j̃m,ξ

≤ N−1‖(IN −HJ̃m−1,ξ
)uh‖2 − ξ2 max

1≤j≤p,j /∈J̃m−1,ξ

ν2
J̃m−1,ξ,j

.

(S3.3)

We also have

N−1‖(IN −HJ̃m−1,ξ
)uh‖2 =

p∑
j=1,j /∈J̃m−1,ξ

β∗j,hρ̂
1/2
j,j νJ̃m−1,ξ,j

≤ max
1≤j≤p,j /∈J̃m−1,ξ

|νJ̃m−1,ξ,j
|

p∑
j=1

|β∗j,h|ρ̂
1/2
j,j ,

(S3.4)

where ρ̂i,j = N−1
∑N

t=1 zt,izt,j. Let Sn = (
∑p

j=1 |β∗j,h|ρ̂
1/2
j,j )2. By (S3.3),

(S3.4), and some algebraic manipulations, one obtains

N−1‖(IN −HJ̃0,ξ
)uh‖2 = N−1‖uh‖2 ≤ Sn,

N−1‖(IN −HJ̃m,ξ
)uh‖2

≤ N−1‖(IN −HJ̃m−1,ξ
)uh‖2

{
1−

ξ2N−1‖(IN −HJ̃m−1,ξ
)uh‖2

Sn

}
,

(S3.5)

for each 1 ≤ m ≤ p. By (S3.5) and Lemma 3.1 of Temlyakov (2000),
it holds that

max
1≤m≤p

N−1‖(IN −HJ̃m,ξ
)uh‖2

1
1+mξ2

≤ Sn.(S3.6)

Moreover, since (F4) and Minkowski’s inequality yield

E(Sn) ≤ [

p∑
j=1

|β∗j,h|{E(ρ̂j,j)}1/2]2 ≤ G2
1,(S3.7)

the desired conclusion (S3.2) follows from (S3.7) and (S3.6).
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The following lemma shows that when the HJ̃m,ξ
in f

(m)
ξ is replaced

by HĴm
, a similar uniform bound can be obtained over a narrower range

of m.

Lemma S3.2. Assume (F1)–(F5). Suppose Kn = min{p, ln}, where

ln →∞ and l
1+max{θ1,θ2}
n = o(n1/2/p1/q).(S3.8)

Then,

max
1≤m≤Kn

N−1‖(IN −HĴm
)uh‖2

m−1
= Op(1).(S3.9)

proof. By (F1) and (F2), it is not difficult to see that

max
1≤i≤p

|N−1

N∑
t=1

zt,iεt,h| = Op(p
1/q2/n1/2),(S3.10)

max
](J)≤Kn

‖N−1

N∑
t=1

zt(J)εt,h‖ = Op(K
1/2
n p1/q2/n1/2),(S3.11)

max
1≤i,j≤p

|ρ̂i,j − ρi,j| = Op(p
1/q1/n1/2),(S3.12)

and

max
1≤i≤p

(N−1

N∑
t=1

z2
t,i)
−1 = Op(1).(S3.13)

Equation (S3.12), the first relation of (F5), and

K1+max{θ1,θ2}
n = o

(n1/2

p1/q

)
(which is ensured by (S3.8))(S3.14)

further imply

max
](J)≤Kn

‖Γ̂−1(J)− Γ−1(J)‖ = op(K
θ1
n ), max

](J)≤Kn
‖Γ̂−1(J)‖ = Op(K

θ1
n ),

(S3.15)
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where Γ̂(J) = (ρ̂i,j)i,j∈J . Recall the definition of µ̂J,i in Section 4.1. In
the following, we shall prove

max
](J)≤Kn−1,i/∈J

|µ̂J,i − νJ,i| = Op

(Kθ2
n p

1/q2

n1/2

)
.(S3.16)

First observe that

max
](J)≤Kn−1,i/∈J

|µ̂J,i − νJ,i| ≤ max
1≤i≤p

(N−1

N∑
t=1

z2
t,i)
−1/2

{
max
1≤i≤p

|N−1

N∑
t=1

zt,iεt,h|

+ max
](J)≤Kn−1,i/∈J

‖N−1

N∑
t=1

zt(J)z⊥t,i;J‖‖Γ̂−1(J)‖‖N−1

N∑
t=1

zt(J)εt,h‖

+ max
](J)≤Kn−1,i/∈J

|N−1

N∑
t=1

g>i (J)Γ−1(J)zt(J)εt,h|

}
,

(S3.17)

where z⊥t,i;J = zt,i − g>i (J)Γ−1(J)zt(J). It follows from (S3.10) and the
second relation of (F5) that

max
](J)≤Kn−1,i/∈J

|N−1

N∑
t=1

g>i (J)Γ−1(J)zt(J)εt,h|

≤ max
1≤i≤p

|N−1

N∑
t=1

zt,iεt,h| max
](J)≤Kn−1,i/∈J

‖Γ−1(J)gi(J)‖1 = Op

(
Kθ2
n p

1/q2

n1/2

)
.

(S3.18)

In addition, (S3.12) and the second relation of (F5) imply

max
](J)≤Kn−1,i/∈J

‖N−1

N∑
t=1

zt(J)z⊥t,i;J‖

≤ K1/2
n max

1≤i,j≤p
|ρ̂i,j − ρi,j|

(
1 + max

](J)≤Kn−1,i/∈J
‖Γ−1(J)gi(J)‖1

)
= Op

(
K
θ2+(1/2)
n p1/q1

n1/2

)
.

(S3.19)
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Combining (S3.10), (S3.11), (S3.13)–(S3.15), and (S3.17)–(S3.19) yields

max
](J)≤Kn−1,i/∈J

|µ̂J,i − νJ,i| = Op

(
p1/q2

n1/2
+
K1+θ1+θ2
n p1/q1+1/q2

n
+
Kθ2
n p

1/q2

n1/2

)
= Op

(
Kθ2
n p

1/q2

n1/2

)
and hence (S3.16) follows.

Equation (S3.16) ensures that for any small ε > 0, there exists a
large constant Vε for which

P
(

max
](J)≤Kn−1,i/∈J

|µ̂J,i − νJ,i| > VεK
θ2
n p

1/q2/n1/2
)
≤ ε.(S3.20)

For 1 ≤ m ≤ Kn, define

Am = { max
](J)≤m−1,i/∈J

|µ̂J,i − νJ,i| ≤ VεK
θ2
n p

1/q2/n1/2},

Bm = { min
0≤l≤m−1

max
1≤i≤p,i/∈Ĵl

|νĴl,i| > {2/(1− ξ)}VεK
θ2
n p

1/q2/n1/2},

where 0 < ξ < 1. Then, on the setAm
⋂
Bm, we have for any 1 ≤ l ≤ m,

|νĴl−1,ĵl
| ≥ − max

](J)≤m−1,i/∈J
|µ̂J,i − νJ,i|+ max

1≤i≤p,i/∈Ĵl−1

|µ̂Ĵl−1,i
|

≥ −2 max
](J)≤m−1,i/∈J

|µ̂J,i − νJ,i|+ max
1≤i≤p,i/∈Ĵl−1

|νĴl−1,i
| ≥ ξ max

1≤i≤p,i/∈Ĵl−1

|νĴl−1,i
|.

(S3.21)

Equation (S3.21) indicates that on the set Am
⋂
Bm, the update rule

of OGA obeys (S3.1), and hence by (S3.6),

N−1‖(IN −HĴm
)uh‖2

1
1+mξ2

≤ Sn on Am
⋂
Bm.(S3.22)

Moreover, we have

N−1‖(IN −HĴm
)uh‖2 ≤ min

0≤i≤m−1
N−1‖(IN −HĴi

)uh‖2

≤ min
0≤i≤m−1

p∑
j=1,j /∈Ĵi

|β∗j,h||νĴi,j|ρ̂
1/2
j,j

≤ min
0≤i≤m−1

max
1≤j≤p,j /∈Ĵi

|νĴi,j|S
1/2
n ≤ 2VεK

θ2
n p

1/q2

(1− ξ)n1/2
S1/2
n on Bcm.

(S3.23)



15

It follows from (S3.14), (S3.22), (S3.23), and AKn ⊆ Am for 1 ≤ m ≤
Kn that

max
1≤m≤Kn

N−1‖(IN −HĴm
)uh‖2

m−1
≤ V ∗(Sn + S1/2

n ) on AKn ,(S3.24)

where V ∗ is some positive constant depending only on Vε and ξ. Now
(S3.9) is an immediate consequence of (S3.24), (S3.20) and (S3.7).

We are now in a position to prove Theorems 4.1–4.3.

proof of Theorem 4.1. When p is bounded above by a finite con-
stant, the proof of Theorem 4.1 is obvious because Kn = p for all
large n. Therefore, we only focus on the case where p → ∞. Let
Kn = min{p, m̄n, l̄n}, where l̄n is given in (S3.8). It follows from (S3.8),
(4.5), (F4), 0 ≤ θ1 < 1, and Kn →∞ that

(Kn + ](Nh))p
1/q1/n1/2 = o

(
(Kn + ](Nh))

−θ1
)

and K−1
n = o

(
(Kn + ](Nh))

−θ1
)
.

(S3.25)

By Lemma S3.2,

N−1‖(IN −HĴKn
)uh‖2 = Op(K

−1
n ).(S3.26)

Straightforward calculations yield that on Zn = {Nh − ĴKn
6= ∅},

N−1‖(IN −HĴKn
)uh‖2

≥ { min
](J)≤Kn+](Nh)

λmin(Γ(J))− max
](J)≤Kn+](Nh)

‖Γ̂(J)− Γ(J)‖}δ2.

(S3.27)

Moreover, (F1) implies

max
](J)≤Kn+](Nh)

‖Γ̂(J)− Γ(J)‖ = Op

(
(Kn + ](Nh))p

1/q1/n1/2
)
.(S3.28)

Set S1n = {max](J)≤Kn+](Nh) ‖Γ̂(J) − Γ(J)‖ ≥ c1(Kn + ](Nh))
−θ1/2}.

Then, it follows from (S3.25)–(S3.28) and the first relation of (F5) that

P (Zn) ≤ P
(
N−1‖(IN −HĴKn

)uh‖2 ≥ c1(Kn + ](Nh))
−θ1δ2/2

)
+ P (S1n) = o(1),

yielding 1 + o(1) = P (Zc
n) ≤ P (Nh ⊆ ĴKn

) ≤ P (Nh ⊆ ĴKn).



16

proof of Theorem 4.2. Define k̃n = min{1 ≤ k ≤ Kn : Nh ⊆ Ĵk}
and Kn + 1 if Nh − ĴKn 6= ∅. In the following, we shall show that

lim
n→∞

P (k̂n = k̃n) = 1.(S3.29)

Let En = {Nh ⊆ ĴKn}. In view of Theorem 4.1,

lim
n→∞

P (En) = 1,(S3.30)

and hence (S3.29) is guaranteed by

P (k̂n < k̃n, En) = o(1),

P (k̂n > k̃n, En) = o(1).
(S3.31)

To show the first identity of (S3.31), we note that

ẑn(Ĵk̃n) ≤ σ̂2
h(Ĵk̃n−1)− σ̂2

h(Ĵk̃n) ≤ (k̃n − k̂n)p2/qωn
n

σ̂2
h(Ĵk̃n) on {k̂n < k̃n}

⋂
En,

(S3.32)

where

ẑn(Ĵk̃n) = δ2λmin(Γ̂(Ĵk̃n))− 2G1

{
|N−1

N∑
t=1

zt,ĵk̃n
εt,h|+ ‖Γ̂(Ĵk̃n−1)‖‖N−1

N∑
t=1

zt(Ĵk̃n−1)εt,h‖

‖N−1

N∑
t=1

zt(Ĵk̃n−1)z⊥
t,ĵk̃n ;Ĵk̃n−1

‖+ |N−1

N∑
t=1

g>
ĵk̃n

(Ĵk̃n−1)Γ−1(Ĵk̃n−1)zt(Ĵk̃n−1)εt,h|

}
.

By an argument similar to that used to prove Lemma S3.2, it can be
shown that there exists c3 > 0 such that

lim
n→∞

P (ẑn(Ĵk̃n) > c3K
−θ1
n ) = 1 and

(k̃n − k̂n)p2/qωn
n

σ̂2
Ĵk̃n

= Op

(
Knp

2/qωn
n

)
.

(S3.33)

It follows from (4.11), (4.12), (S3.32), and (S3.33) that

P (k̂n < k̃n, En) ≤ P
(
ẑn(Ĵk̃n) ≤ (k̃n − k̂n)p2/qωnσ̂

2
Ĵk̃n
/n
)

= o(1),

and hence the first identity of (S3.31) holds true.
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Next we prove the second identity of (S3.31). To this end, note that

(1 +
k̂nωnp

2/q

n
)(σ̂2

h(Ĵk̃n)− σ̂2
h(Ĵk̂n)) ≥ (k̂n − k̃n)ωnp

2/q

n
σ̂2
h(Ĵk̃n) on {k̃n < k̂n}

⋂
En.

(S3.34)

Since k̂nωnp
2/q/n ≤ Knωnp

2/q/n = o(1),

P (E∗n) ≡ P (k̂nωnp
2/q/n < 1/2) = 1 + o(1),(S3.35)

which, together with (S3.34), yields

P (k̂n > k̃n, En, E
∗
n) ≤ P

(
3

2
(σ̂2

h(Ĵk̃n)− σ̂2
h(Ĵk̂n)) ≥ (k̂n − k̃n)ωnp

2/q

n
σ̂2
Ĵk̃n

)
.

(S3.36)

Straightforward calculations imply

σ̂2
h(Ĵk̃n)− σ̂2

h(Ĵk̂n) ≤ 2(k̂n − k̃n)(γ̂1n + γ̂2n),(S3.37)

where γ̂1n = ‖Γ̂−1(ĴKn)‖max1≤j≤p(N
−1
∑N

t=1 zt,jεt,h)
2 and

γ̂2n = ‖Γ̂−1(ĴKn)‖

{
max

](J)≤k̃n,i/∈J
‖Γ̂−1(J)‖‖N−1

N∑
t=1

zt(J)εt,h‖

‖N−1

N∑
t=1

zt(J)z⊥t,i;J‖+ max
](J)≤k̃n,i/∈J

|N−1

N∑
t=1

g>i (J)Γ−1(J)zt(J)εt,h|

}2

.

By (4.10) and an argument similar to that used to prove Lemma S3.2,
we obtain

γ̂1n = Op

(
Kθ1
n p

2/q

n

)
,

γ̂2n = Op

(
Kθ1
n

(K1+θ1+θ2
n p1/q1+1/q2

n
+
Kθ2
n p

1/q2

n1/2

)2
)

= Op

(
Kθ1+2θ2
n p2/q

n

)
,

(k̂n − k̃n)ωnp
2/q

n
σ̂2
Ĵk̃n

=
(k̂n − k̃n)ωnp

2/q

n
(E(ε2

1,h) + op(1)).

(S3.38)

Now, the second identity of (S3.31) follows from (4.12) and (S3.34)–
(S3.38). This completes the proof of (S3.29).



18

With the help of (S3.29) and (S3.30), we have

P (N̂h 6= Nh) ≤ P (N̂h 6= Nh, k̂n > 1, Nh ⊆ Ĵk̂n) + P (N̂h 6= Nh, k̂n = 1) + P (Nh * Ĵk̂n)

≤ P (HDIC(Ĵk̃n − {ĵl}) > HDIC(Ĵk̃n) and βĵl,h = 0 for some 1 ≤ l ≤ k̃n, k̃n > 1, Nh ⊆ Ĵk̃n)

+ P (HDIC(Ĵk̃n − {ĵl}) < HDIC(Ĵk̃n) and βĵl,h 6= 0 for some 1 ≤ l ≤ k̃n, k̃n > 1, Nh ⊆ Ĵk̃n)

+ P (k̂n 6= k̃n) + P (N̂h 6= Nh, k̂n = 1) + P (Nh * Ĵk̂n)

= (I) + (II) + (III) + (IV) + (V) = (I) + (II) + o(1).

(S3.39)

In the same way as in the proof of (S3.29), we obtain

(I) = o(1) and (II) = o(1).

Combining this with (S3.39) gives the desired conclusion (4.13).

proof of Theorem 4.3. By an argument similar to that used to
prove (3.14), it holds that

MRICh,l(N
(l)
h ) = MIh,l(N

(l)
h ) +Op(n

−1/2) +
Cn
n
Lh,l(N

(l)
h ) + op

(
Cn
n

)
.

(S3.40)

It follows from Theorem 4.2 that for each l = 1, . . . , K,

lim
n→∞

P (N̂
(l)
h = N

(l)
h ) = 1.(S3.41)

Let l1 ∈ MA,h, l2 ∈ {1, . . . , K} − MA,h 6= ∅, l3 ∈ MB,h, and l4 ∈
MA,h −MB,h 6= ∅. Then (S3.40) and (S3.41) imply

P (MRICh,l(N̂
(l1)
h ) ≥ MRICh,l(N̂

(l2)
h )) ≤ P (MRICh,l(N

(l1)
h ) ≥ MRICh,l(N

(l2)
h ))

+ P (N̂
(l1)
h 6= N

(l1)
h or N̂

(l2)
h 6= N

(l2)
h ) = o(1),

(S3.42)

and

P (MRICh,l(N̂
(l3)
h ) ≥ MRICh,l(N̂

(l4)
h )) ≤ P (MRICh,l(N

(l3)
h ) ≥ MRICh,l(N

(l4)
h ))

+ P (N̂
(l3)
h 6= N

(l3)
h or N̂

(l4)
h 6= N

(l4)
h ) = o(1).

(S3.43)
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Equations (S3.42) and (S3.43) yield

lim
n→∞

P (l̂h ∈MB,h) = 1.(S3.44)

Now, by (S3.41) and (S3.44), one obtains

P ((l̂h, N̂
(l̂h)
h ) /∈MC,h) ≤ P ((l̂h, N

(l̂h)
h ) /∈MC,h) + o(1)

≤ P ((l̂h, N
(l̂h)
h ) /∈MC,h, l̂h ∈MB,h) + o(1) = o(1),

yielding the desired conclusion (4.24).

S4. A Nonlinear Extension.

S4.1. A Nonlinear Extension of MRIC and Its Asymptotic Efficiency. In
this section, we generalize the results obtained in Sections 2 and 3 of
Hsu et al. (2018) to nonlinear cases. Let {Ft} be an increasing sequence
of sub-σ-fields of F . We consider an h-step predictive model, gt,h(θ), of
yt+h, where gt,h(θ) is specified up to the parameter θ = (θ1, . . . , θm)>

and is Ft-measurable for each θ ∈ Θ, with Θ denoting a compact
parameter space in Rm. Assume that V (θ) ≡ E(yt+h − gt,h(θ))2 is
independent of t and continuous on Θ. Let θ∗ denote the unique min-
imizer of V (θ) over Θ. On estimating θ∗ by θ̂n = arg minθ∈Θ Sn(θ),

where Sn(θ) =
∑n−h

t=1 (yt+h − gt,h(θ))2 ≡
∑N

t=1 ε
2
t,h(θ), the following

theorem provides an asymptotic expression for E(yn+h − gn,h(θ̂n))2,
taking a form similar to the right-hand side of (2.4). Define D1gt,h(θ) =
(∂gt,h(θ)/∂θ1 . . . ∂gt,h(θ)/∂θm)> andD2gt,h(θ) = (∂2gt,h(θ)/∂θi∂θj)1≤i,j≤m.

Theorem S4.1. Suppose that gt,h(θ) is continuous on Θ and there
is a δ > 0 such that D1gt,h(θ) is continuously differentiable on Bδ(θ

∗) =
{θ : ‖θ − θ∗‖ < δ} ⊂ Θ, and each component of D2gt,h(θ) is differ-
entiable on Bδ(θ

∗). Assume that conditions (E1)–(E7) in Section S4.2
hold. Then, for h ≥ 1,

E(yn+h − gn,h(θ̂n))2 = V (θ∗) + n−1(L∗h + o(1)),(S4.1)

where L∗h = tr((R∗ − A∗)−1C∗h,0) + 2
∑h−1

s=1 tr((R∗ − A∗)−1C∗h,s), with

R∗ = E{D1g1,h(θ
∗)D>1 g1,h(θ

∗)}, C∗h,s = E{D1g1,h(θ
∗)D>1 g1+s,h(θ

∗)ε1,h(θ
∗)ε1+s,h(θ

∗)},
A∗ = E{D2g1,h(θ

∗)ε1,h(θ
∗)}, and R∗ and R∗ −A∗ being nonsingular.
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Remark S1. There is a striking resemblance between (S4.1) and (2.4).
In particular, (S4.1) reduces to (2.4) when gt,h(θ) is linear in θ. Com-
pared to the Lh in (2.4), L∗h contains an additional matrix A∗ reflecting
the joint effect of nonlinearity and model misspecification. This matrix
vanishes either when gt,h(θ) is linear in θ or is correct up to an indepen-
dent error. See White (1981) for the definition of the latter property. In
addition to its indispensable role in model selection, Theorem S4.1 is
also of independent interest because it provides the first result revealing
that the simple MSPE formula (2.7) obtained in correctly specified AR
models carries over (after a mild modification) to misspecified nonlin-
ear regressions with dependent observations in which previous research
effort has mainly focused on the asymptotic properties of nonlinear
least squares estimates; see, e.g., White (1984). The similarities and
dissimilarities between (E1)–(E7) and (C1)–(C6) will be discussed in
Section S4.2.

Consider K candidate models g
(l)
t,h(θ), l = 1, . . . , K, for predicting

yt+h, where g
(l)
t,h(θ) is Ft-measurable for each θ ∈ Θl, with Θl denoting

a compact parameter space whose dimension may vary with l. Assume

that for each 1 ≤ l ≤ K, Vl(θ) ≡ E(yt+h − g(l)
t,h(θ))2 is independent of t

and continuous on Θl. Let θ∗l denote the unique minimizer of Vl(θ) over

Θl. To estimate θ∗l , we use θ̂nl = arg minθ∈Θl S
(l)
n (θ), where S

(l)
n (θ) =∑n−h

t=1 (yt,h − g(l)
t,h(θ))2 ≡

∑N
t=1(ε

(l)
t,h(θ))2.

Define
R∗(l) = E

(
D1g

(l)
1,h(θ

∗
l )D

>
1 g

(l)
1,h(θ

∗
l )
)
,

A∗(l) = E
(
D2g

(l)
1,h(θ

∗
l )ε

(l)
1,h(θ

∗
l )
)
,

C∗h,s(l) = E
(
D1g

(l)
1,h(θ

∗
l )D

>
1 g

(l)
1+s,h(θ

∗
l )ε

(l)
1,h(θ

∗
l )ε

(l)
1+s,h(θ

∗
l )
)
,

and assume R∗(l) and R∗(l)−A∗(l) are nonsingular. In view of Theo-
rem S4.1, the nonlinear counterparts of M1 and M2 (defined in Section
3) are given by

D1 = {k : 1 ≤ k ≤ K, Vl(θ
∗
k) = min

1≤l≤K
Vl(θ

∗
l )} and D2 = {k : L∗h(k) = min

l∈D1

L∗h(l)},

respectively, where

L∗h(l) = tr
(
(R∗(l)−A∗(l))−1C∗h,0(l)

)
+ 2 tr

( h−1∑
s=1

(R∗(l)−A∗(l))−1C∗h,s(l)
)
.
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To find a model whose index falls with D2, we suggest using a nonlinear
extension of (3.9),

(S4.2) MRIC∗h(l) =
S

(l)
n (θ̂nl)

N
+
Cn
n
L̂∗h(l),

where Cn satisfies (3.10) and (3.11),

L̂∗h(l) = tr

((
R̂∗(l)− Â∗(l)

)−1

Ĉ∗h,0(l)

)
+2 tr

(
h−1∑
s=1

(
R̂∗(l)− Â∗(l)

)−1

Ĉ∗h,s(l)

)
with

R̂∗(l) =
1

N

N∑
t=1

D1g
(l)
t,h(θ̂nl)D

>
1 g

(l)
t,h(θ̂nl),

Â∗(l) =
1

N

N∑
t=1

D2g
(l)
t,h(θ̂nl)ε

(l)
t,h(θ̂nl),

Ĉ∗h,s(l) =
1

N − s

N−s∑
t=1

D1g
(l)
t,h(θ̂nl)D

>
1 g

(l)
t+s,h(θ̂nl)ε

(l)
t,h(θ̂nl)ε

(l)
t+s,h(θ̂nl).

The next theorem shows that

lim
n→∞

P (l̂∗h ∈ D2) = 1,(S4.3)

where l̂∗h = arg min1≤l≤K MRIC∗h(l).

Theorem S4.2. Suppose that for each 1 ≤ l ≤ K, g
(l)
t,h(θ) is contin-

uous on Θl and there is δ̄l > 0 such that D1g
(l)
t,h(θ) is continuously dif-

ferentiable on Bδ̄l(θ
∗
l ) ⊂ Θl and each component of D2g

(l)
t,h(θ) is differ-

entiable on Bδ̄l(θ
∗
l ). Assume also that conditions (E1)–(E7) in Section

S4.2 hold for each candidate model. Then, for h ≥ 1 and 1 ≤ l ≤ K,

E(yn+h − g(l)
n,h(θ̂nl))

2 = Vl(θ
∗
l ) + n−1(L∗h(l) + o(1)).(S4.4)

Moreover, assume for each 1 ≤ l ≤ K,

1

n

n∑
t=1

(ε
(l)
t,h(θ

∗
l ))

2 = Vl(θ
∗
l ) +Op(n

−1/2),(S4.5)
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1

n

n∑
t=1

D2g
(l)
t,h(θ

∗
l )ε

(l)
t,h(θ

∗
l ) = A∗(l) + op(1),(S4.6)

and

1

n

n∑
t=1

D1g
(l)
t,h(θ

∗
l )D

>
1 g

(l)
t+s,h(θ

∗
l )ε

(l)
t,h(θ

∗
l )ε

(l)
t+s,h(θ

∗
l ) = C∗h,s(l) + op(1).

(S4.7)

Then, (S4.3) follows.

Remark S2. Whereas (S4.6) is exclusive to nonlinear regressions,
(S4.5) and (S4.7) parallel (3.17) and (3.18) used in the linear case.

When ε
(l)
t,h(θ

∗
l ) and the components of D2g

(l)
t,h(θ

∗
l ) and D1g

(l)
t,h(θ

∗
l ) are

linear processes, a discussion about how assumptions like (S4.5)–(S4.7)
are verified has been given in Sections 2, 3 and S2. It is worth men-
tioning that although model selection criteria, such as GAIC, BIC,
GBIC and GBICp, have been proposed to combat model misspecifica-
tion under various nonlinear models, none of them has been proven to
possess properties like (S4.3) when the FD framework is entertained.
Based on the discrepancy between the least squares and weighted least
squares estimates when models are misspecified, White (1981) proposed
a testing-based approach to conduct model selection for misspecified
nonlinear regressions. However, it still seems tricky to justify its asymp-
totic efficiency within the FD framework.

S4.2. Conditions (E1)–(E7). We start by listing (E1)–(E7) as follows.

(E1) E
∥∥n−1/2

∑n
t=1

(
D1gt,h(θ

∗)D>1 gt,h(θ
∗)−R∗

)∥∥3
= O(1).

(E2) E{D1gt,h(θ
∗)D>1 gt+s,h(θ

∗)εt,h(θ
∗)εt+s,h(θ

∗)} = C∗h,s for all t, and

E
(
D1g1,h(θ

∗)D>1 gn,h(θ
∗)ε1,h(θ

∗)εn,h(θ
∗)
)

= o(n−1).

(E3) There exists q1 > 6 such that for j = 1, 2, 3,

sup
−∞<t<∞

E( sup
θ∈Bδ(θ∗)

ε2q1
t,h (θ)) <∞,

sup
−∞<t<∞

E

(
sup

θ∈Bδ(θ∗)
‖Djgt,h(θ)‖2q1

F

)
<∞,
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where D3gt,h(θ) = (∂3gt,h(θ)/∂θi∂θj∂θk)1≤i,j,k≤m and ‖G‖F de-
notes the Frobenius norm of the matrix G. Moreover,

sup
−∞<t<∞

E(sup
θ∈Θ

εq1t,h(θ)) <∞.

(E4) E
∥∥n−1/2

∑n
t=1D1gt,h(θ

∗)εt,h(θ
∗)
∥∥3

= O(1).

(E5) E‖
√
n(θ̂n−θ∗)‖3 = O(1), and there exists a sequence of positive

integers, {ln}, with ln →∞ and ln = o(n1/2) such that E‖
√
n(θ̂n−

θ̂n−ln)‖3 = o(1).
(E6)

sup
−∞<t<∞

E

∥∥∥∥E
(
D1gt,h(θ

∗)D>1 gt,h(θ
∗)
∣∣∣Ft−k)−R∗

∥∥∥∥3

= o(1), as k →∞,

sup
−∞<t<∞

E

∥∥∥∥E
(
D1gt,h(θ

∗)εt,h(θ
∗)
∣∣∣Ft−k)∥∥∥∥6

= o(1), as k →∞.

(E7)

sup
−∞<t<∞

E

∥∥∥∥E
(
D2gt,h(θ

∗)εt,h(θ
∗)
∣∣∣Ft−k)−A∗

∥∥∥∥3

= o(1), as k →∞,

E

∥∥∥∥∥n−1/2

n∑
t=1

(D2gt,h(θ
∗)εt,h(θ

∗)−A∗)

∥∥∥∥∥
3

= O(1).

Some comments are in order. Conditions (E1)–(E4) and (E6) not
only look like (C1)–(C4) and (C6), respectively, but also play a sim-
ilar role in the proof of Theorem S4.1 to the latter conditions in the
proof of Theorem 2.1. (E3) imposes a moment bound on the third-
order derivative of gt,h(θ). This type of condition seems quite natural
in a rigorous derivation of information criteria under misspecified non-
linear models; see, for example, Lv and Liu (2014). Actually, (E5) and
(C5) also parallel each other in their roles in the aforementioned proofs,
although they do not take similar forms. To see this, note that (C5),

together with (C1) and (C4), yields E‖
√
n(β̂n(h)− βh)‖q = O(1) and

E‖
√
n(β̂n(h)− β̂n−ln(h))‖q = o(1) for some positive constant q, which

are linear counterparts of the identities in (E5). On the other hand,
we mention that (E5) is a high-level assumption and its justification is
nontrivial and of independent interest; see Section S4.4. Condition (E7)
can be understood as a ‘nonlinear amendment’ of (C1)–(C6), which
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vanishes automatically when gt,h(θ) is linear. Finally, we remark that
Theorems S4.1 and S4.2 remain valid in the so-call ‘asymptotic station-
ary’ case, in which E(yt+h − gt,h(θ))2 may vary with t, but converges
to V (θ) uniformly over Θ as t → ∞. In this case, R∗, C∗h,s and A∗

become

lim
t→∞

E{D1gt,h(θ
∗)D>1 gt,h(θ

∗)},

lim
t→∞

E{D1gt,h(θ
∗)D>1 gt+s,h(θ

∗)εt,h(θ
∗)εt+s,h(θ

∗)},

lim
t→∞

E{D2gt,h(θ
∗)εt,h(θ

∗)},

respectively, where all limits are assumed to be finite. We also need to
make some minor changes to (E2), (E6) and (E7), namely, deleting the
first statement of (E2) and changing the second one to

E
(
D1gk,h(θ

∗)D>1 gk+n,h(θ
∗)εk,h(θ

∗)εk+n,h(θ
∗)
)

= o(n−1)

for sufficiently large k, and replacing the sup−∞<t<∞ in (E6) and (E7)
by supt≥H1

, where H1 is some large integer.

S4.3. Proofs of Theorems S4.1 and S4.2. Proof of Theorem S4.1.
Note first that

n

{
E
(
yn+h − gn,h(θ̂n)

)2

− E(ε2
n,h(θ

∗))

}
= E

{
n
(
εn,h(θ̂n)− εn,h(θ∗)

)2
}

+ 2E
{
n(εn,h(θ̂n)− εn,h(θ∗))εn,h(θ∗)

}
≡ E(I) + 2E(II).

(S4.8)

Let Bn = {‖θ̂n − θ∗‖ < δ and ‖θ̂n−`n − θ∗‖ < δ}, and define wn =
D1gn,h(θ

∗)εn,h(θ
∗). By Taylor’s theorem for multivariable functions, we

obtain

(II) = −nw>n (θ̂n − θ∗)1Bn −
n

2
(θ̂n − θ∗)>

(
D2gn,h(θ̆n)εn,h(θ

∗)
)

(θ̂n − θ∗)1Bn

+ n
(
εn,h(θ̂n)− εn,h(θ∗)

)
εn,h(θ

∗)1Bcn ≡ (III) + (IV) + (V),

(S4.9)

where ‖θ̆n − θ∗‖ ≤ ‖θ̂n − θ∗‖. We first show that

E(III) = −
n−h∑
j=h

E

(
D>1 g1,h(θ

∗)(R∗ −A∗)−1D1g1+j,h(θ
∗)ε1,h(θ

∗)ε1+j,h(θ
∗)

)
+ o(1).

(S4.10)



25

Let R̃n = n−1
∑n−h

t=1 D1gt,h(θ
∗)D>1 gt,h(θ

∗) and Ãn = n−1
∑n−h

t=1 D2gt,h(θ
∗)εt,h(θ

∗).
Then, by the mean value theorem for vector-valued functions, we have
on Bn,

0 = D1Sn(θ̂n) = D1Sn(θ∗) +

{∫ 1

0

D2Sn(θ∗ + r(θ̂n − θ∗))dr
}

(θ̂n − θ∗),

yielding

(III) = −w>n (R∗ −A∗)−1

n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗)1Bn

+w>n (R∗ −A∗)−1
{√

n(R̃n −R∗)−
√
n(Ãn −A∗)

}√
n(θ̂n − θ∗)1Bn

+
1

2
w>n (R∗ −A∗)−1

∫ 1

0

[
D2Sn(θ∗ + r(θ̂n − θ∗))−D2Sn(θ∗)

]
dr(θ̂n − θ∗)1Bn

≡ (VI)+(VII)+(VIII).

(S4.11)

Define R∗n−ln = n−1
∑n−ln

t=1 D1gt,h(θ
∗)D>1 gt,h(θ

∗) and A∗n−ln = n−1
∑n−ln

t=1 D2gt,h(θ
∗)εt,h(θ

∗).
Then, it follows that

|E(VII)| ≤ ‖(R∗ −A∗)−1‖ ×{
E
(
‖wn‖

{
‖
√
n(R̃n −R∗n−ln)‖+ ‖

√
n(Ãn −A∗n−ln)‖

}
‖
√
n(θ̂n − θ∗)‖

)
+ E

(
‖wn‖

{
‖
√
n(R∗n−ln −R∗)‖+ ‖

√
n(A∗n−ln −A∗)‖

}
‖
√
n(θ̂n − θ̂n−ln)‖

)
+ E

[
‖E(wn

∣∣Fn−ln)‖
{
‖
√
n(R∗n−ln −R∗)‖+ ‖

√
n(A∗n−ln −A∗)‖

}
‖
√
n(θ̂n−ln − θ∗)‖

]}
.

This, (E1), (E3), (E5), (E6), (E7), and Hölder’s inequality imply

(S4.12) |E(VII)| = o(1).

We next show that

|E(VIII)| = o(1),(S4.13)
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whose proof is somewhat tricky. Express (VIII) as

1

2
w>n (R∗ −A∗)−1

∫ 1

0

D2Sn

(
θ∗ + r(θ̂n − θ∗)

)
−D2Sn

(
θ∗ + r(θ̂n−ln − θ∗)

)
dr(θ̂n − θ∗)1Bn

+
1

2
w>n (R∗ −A∗)−1

∫ 1

0

D2Sn

(
θ∗ + r(θ̂n−ln − θ∗)

)
−D2Sn(θ∗)dr(θ̂n − θ∗)1Bn

≡ (IX)+(X).

(S4.14)

By making use of

(1/2) (D3Sn(θ))ijk =
n−h∑
t=1

{
(D2gt,h(θ))ij (D1gt,h(θ))k + (D2gt,h(θ))ik (D1gt,h(θ))j

+ (D2gt,h(θ))jk (D1gt,h(θ))i

}
−

n−h∑
t=1

(D3gt,h(θ))ijk εt,h(θ)

and Taylor’s theorem for multivariable functions, we have for some
C∗ > 0,

|(IX)| ≤ C∗‖wn‖

(
max

j∈{1,...,3}
sup

θ∈Bδ(θ∗)
n−1

n−h∑
t=1

∥∥∥Djgt,h(θ)
∥∥∥2

F

+ sup
θ∈Bδ(θ∗)

n−1

n−h∑
t=1

ε2
t,h(θ)

)
‖
√
n(θ̂n − θ∗)‖‖

√
n(θ̂n − θ̂n−ln)‖,

which, together with Hölder’s inequality, Jensen’s inequality, (E3) and
(E5), yields

E|(IX)| = o(1).(S4.15)

Assumptions (E3) and (E5) also imply

E(X) = E

{
1

2
w>n (R∗ −A∗)−1

∫ 1

0

D2Sn−ln

(
θ∗ + r(θ̂n−ln − θ∗)

)
−D2Sn−ln(θ∗)dr(θ̂n−ln − θ∗)

}
+ o(1).

(S4.16)
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Using (S4.16), (E6) and an argument similar to that used to prove
(S4.12) and (S4.15), we obtain |E(X)| = o(1). In view of this, (S4.14)
and (S4.15), (S4.13) follows.

To deal with (VI), note that

(VI) = −w>n (R∗ −A∗)−1

n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗)

+w>n (R∗ −A∗)−1

n−h∑
t=1

D1gt,h(θ
∗)εn,h(θ

∗)1Bcn ≡ (XI)+(XII).

(S4.17)

It follows from (E2) that

E(XI) = −
n−1∑
j=h

E
(
D>1 g1,h(θ

∗)(R∗ −A∗)−1D1g1+j,h(θ
∗)ε1,h(θ

∗)ε1+j,h(θ
∗)
)
.

(S4.18)

Assumptions (E3) and (E5) further yield

(S4.19) |E(XII)| = o(1).

Consequently, (S4.10) is guaranteed by (S4.11)–(S4.13) and (S4.17)–
(S4.19).

Next, we calculate E(-2(IV)). Straightforward algebraic manipula-
tions yield

(S4.20) E(-2(IV)) = E
(
n(θ̂n − θ∗)>A∗(θ̂n − θ∗)1Bn

)
+ Gn,

where

|Gn| ≤ E

(
n sup
θ∈Bδ(θ∗)

‖D3gn,h(θ)‖F‖θ̂n − θ∗‖3|εn,h(θ∗)|1Bn

)
+ E

{
‖
√
n(θ̂n − θ̂n−ln)‖

(
‖
√
n(θ̂n − θ∗)‖+ ‖

√
n(θ̂n−ln − θ∗)‖

)
‖D2gn,h(θ

∗)εn,h(θ
∗)−A∗‖

}
+ E

(
‖E
(
D2gn,h(θ

∗)εn,h(θ
∗)
∣∣Fn−ln)−A∗‖‖

√
n(θ̂n−ln − θ∗)‖2

)
+ E

(∥∥∥√n(θ̂n − θ∗)
∥∥∥2

‖D2gn,h(θ
∗)εn,h(θ

∗)−A∗‖1Bcn

)
.

(S4.21)
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Let ξ be an arbitrarily small positive number. It is not difficult to see
that the first term on the right-hand side of (S4.21) is bounded above

by δ1−ξE(n supθ∈Bδ(θ∗) ‖D3gn,h(θ)‖F‖θ̂n − θ∗‖2+ξ|εn,h(θ∗)|), which in
turn converges to 0 in view of (E3) and (E5). Moreover, by (E3), (E5)
and (E7), the other three terms on the right-hand side of (S4.21) also
vanish asymptotically. As a result,

(S4.22) |Gn| = o(1).

On the other hand, we get from (E3), (E4), (E5) and some algebraic
manipulations that

E(n(θ̂n − θ∗)A∗(θ̂n − θ∗)1Bn)

= E{n−1(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))V ∗(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))}+ o(1),

where V ∗ = (R∗ −A∗)−1A∗(R∗ −A∗)−1. Combining this with (S4.22)
and (S4.20) gives

E((IV)) =
−1

2
E{n−1(

n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))V ∗(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))}+ o(1).

(S4.23)

It follows from (E3), (E5) and Hölder’s inequality that |E(V)| = o(1).
With this result and (S4.9), (S4.10) and (S4.23), we obtain

2E(II) = −2
n−h∑
j=h

E(D>1 g1,h(θ
∗)(R∗ −A∗)−1D1g1+j,h(θ

∗)ε1,h(θ
∗)ε1+j,h(θ

∗))

− E{n−1(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))V ∗(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))}+ o(1).

(S4.24)

Applying Taylor’s theorem for multivariable functions again, we have

(I) = [
√
n(D1gn,h(θ

∗)(θ̂n − θ∗))1Bn +

√
n

2
(θ̂n − θ∗)D2gn,h(θ̆n)(θ̂n − θ∗)1Bn

+
√
n(gn,h(θ̂n)− gn,h(θ∗))1Bcn ]2 ≡ [(XIII)+(XIV)+(XV)]2,
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where ‖θ̆n − θ∗‖ ≤ ‖θ̂n − θ∗‖. An argument similar to that used to
prove (S4.24) yields

E(XIII)2 = E{n−1(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))Q∗(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))}+ o(1),

E(XIV)2 = o(1),

E(XV)2 = o(1),

where Q∗ = (R∗ −A∗)−1R∗(R∗ −A∗)−1, and hence

E(I) = E{n−1(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))Q∗(
n−h∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗))}+ o(1).

(S4.25)

Finally, the desired conclusion is ensured by (S4.8), (S4.24), (S4.25)
and (E2).

Remark S3. We have obtained a preliminary result, extending The-
orem S4.1 to the threshold autoregressive (TAR) model,

yt =

{
a11yt−1 + · · ·+ a1pyt−p + et = a>1 yt−1 + et, yt−d ≤ r,

a21yt−1 + · · ·+ a2pyt−p + et = a>2 yt−1 + et, yt−d > r,
(S4.26)

where yt = (yt, . . . , yt−p+1)>, r is an unknown threshold parameter,
1 ≤ d ≤ p is an unknown integer, a1 6= a2 are unknown p-dimensional
vectors, and et are i.i.d. random errors with E(e1) = 0 and Ee2

1 = σ2.
Note that model (S4.26) is driven by nonlinear dynamics in that it is
nonlinear in both parameters and lagged variables. We propose using

ŷn+1 =

{
â>1 yn, yn+1−d̂ ≤ r̂

â>2 yn, yn+1−d̂ > r̂

to predict yn+1, where (â>1 , â
>
2 , r̂, d̂)>, modified slightly from the CLSE

of Chan (1993), is a consistent estimate of (a>1 , a
>
2 , r, d)> and shares

the same asymptotic distribution as the latter estimate. Let π(·) be
the density function of yt, and [M−,M+) denote the random interval
on which the process {L̃(1)(−z)I(z≤0) + L̃(2)(z)I(z>0), z ∈ R} attains

its global minimum, where {L̃(1)(z), z ≥ 0} and {L̃(2)(z), z ≥ 0} are
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two independent compound Poisson processes, with common rate π(r),
L̃(1)(0) = L̃(2)(0) = 0 almost surely, and the distributions of jump
being given by the conditional distribution of [(a1 − a2)>yp]

2 + 2(a1 −
a2)>ypep+1 given yp+1−d = r− and the conditional distribution of [(a2−
a1)>yp]

2 + 2(a2− a1)>ypep+1 given yp+1−d = r+, respectively. We show
that under correct model specification and some regularity conditions,

n
[
E(yn+1 − ŷn+1)2 − σ2

]
= E

[{
(a2 − a1)>yp

}2 |yp+1−d = r
]
π(r)E|M−|+ 2pσ2.

(S4.27)

To the best of our knowledge, (S4.27) is the first result that provides an
asymptotic expression for the MSPE of TAR models. Whereas the sec-
ond term on the right-hand side of (S4.27) is expected in the sense that
it is proportional to the number of AR coefficients and contributed by
the estimation error of â1 and â2, the first term appears to be unfore-
seeable because it is essentially due to the estimation error of r̂, whose
rate of convergence is much faster than those of â1 and â2. Owing to
the non-differentiability of the TAR model at the true parameter, most
conditions described in (E1)–(E7) are violated. Therefore, (S4.27) and
(S4.1) of Theorem S4.1 not only don’t resemble each other in statement,
but also have very different proofs; see Chi et al. (2017).

The above discussion reminds us of the fact that when regularity
conditions like those in Section S4.2 fail to hold, a separate investigation
on model selection (based on MSPE) needs to be conducted case by
case, that is, for each different nonlinear time series. This task, however,
is beyond the scope of the current paper.

Proof of Theorem S4.2. Equation (S4.4) is an immediate conse-
quence of Theorem S4.1. Equation (S4.3) is ensured by

S
(l)
n (θ̂nl)

N
= Vl(θ

∗
l ) +Op(

1√
n

),

Ĉ∗h,s(l) = C∗h,s(l) + op(1),

R̂∗(l) = R∗(l) + op(1),

Â∗(l) = A∗(l) + op(1),

(S4.28)

which follow from (S4.5)–(S4.7) and an argument similar to that used
to prove Theorem S4.1.
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S4.4. Moment bounds for ‖
√
n(θ̂n − θ∗)‖ and ‖

√
n(θ̂n − θ̂n−ln)‖. Let

q ≥ 1 and ln = o(n1/2). In this section, we provide sufficient conditions
under which

E‖
√
n(θ̂n − θ∗)‖q = O(1),(S4.29)

and

E‖
√
n(θ̂n − θ̂n−ln)‖q = o(1).(S4.30)

Define ft,h = E(yt+h|Ft) and ηt,h = yt+h − ft,h. It is easy to show that
ηt,h is uncorrelated with gt,h(θ) and V (θ) = Vo(θ) + E(η2

t,h), where

Vo(θ) = E(ft,h− gt,h(θ))2 is independent of t. In view of the continuity

of V (θ) on Θ, it is not difficulty to see that θ̂n − θ∗ = op(1) is ensured
by

sup
θ∈Θ
|n−1

n∑
t=1

(gt,h(θ
∗)− gt,h(θ))ηt,h| = op(1),

sup
θ∈Θ
|n−1

n∑
t=1

(ft,h − gt,h(θ))2 − Vo(θ)| = op(1).

(S4.31)

However, to prove (S4.29) and (S4.30), we need a strengthened version
of (S4.31) among other conditions.

Theorem S4.3. Suppose that gt,h(θ) is continuous on Θ and there
is δ > 0 such that D1gt,h(θ) is continuously differentiable on Bδ(θ

∗)
and each component of D2gt,h(θ) is differentiable on Bδ(θ

∗). Assume
that (E1), (E4) and the second relation of (E7) hold with 3 replaced by
q,

sup
−∞<t<∞

3∑
j=1

E

(
sup

θ∈Bδ(θ∗)

∥∥∥Djgt,h(θ)
∥∥∥4q

F

)
+ sup
−∞<t<∞

E

(
sup

θ∈Bδ(θ∗)
ε4q
t,h(θ)

)
<∞,

(S4.32)

nq/2P

(
sup
θ∈Θ
|n−1

n∑
t=1

(gt,h(θ
∗)− gt,h(θ))ηt,h| > ε

)
= o(1),

nq/2P

(
sup
θ∈Θ
|n−1

n∑
t=1

(ft,h − gt,h(θ))2 − Vo(θ)| > ε

)
= o(1), for any ε > 0,

(S4.33)
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and there is M̄ > 0 such that

nqP

(
sup

θ∈Bδ(θ∗)
n−1

n∑
t=1

ε2
t,h(θ) > M̄

)
= O(1),

nqP

(
sup

θ∈Bδ(θ∗)
n−1

n∑
t=1

‖Djgt,h(θ)‖2
F > M̄

)
= O(1), j = 1, 2, 3.

(S4.34)

Then, (S4.29) and (S4.30) hold true.

proof. We begin by proving (S4.29). There is C∗ > 0 such that on

the set {θ̂n ∈ Bδ(θ
∗)},∥∥∥∥(2n)−1

∫ 1

0

D2Sn(θ∗ + r(θ̂n − θ∗))−D2Sn(θ∗)dr

∥∥∥∥
≤ C∗‖θ̂n − θ∗‖Λn,

(S4.35)

where

Λn = max
j∈{1,...,3}

sup
θ∈Bδ(θ∗)

n−1

n−h∑
t=1

‖Djgt,h(θ)‖2
F + sup

θ∈Bδ(θ∗)
n−1

n−h∑
t=1

ε2
t,h(θ).

DefineQn = {Λn ≤ 2M̄}. Let 0 < δ∗ < min{δ, (C∗‖(R∗−A∗)−1‖6M̄)−1}
and Hn = {θ̂n ∈ Bδ∗(θ

∗)}. Then, it follows from the mean value theo-
rem for vector-valued functions that

‖
√
n(θ̂n − θ∗)‖q1Hn

≤ 3q‖(R∗ −A∗)−1‖q
[ ∥∥∥∥∥ 1√

n

N∑
t=1

D1gt,h(θ
∗)εt,h(θ

∗)

∥∥∥∥∥
q

+
(
‖
√
n(R̃∗n −R∗)‖+ ‖

√
n(Ã∗n −A∗)‖

)q
‖θ̂n − θ∗‖q1Hn

+

∥∥∥∥(2n)−1

∫ 1

0

D2Sn(θ∗ + r(θ̂n − θ∗))−D2Sn(θ∗)dr

∥∥∥∥q ‖√n(θ̂n − θ∗)‖q1Hn
]
.

(S4.36)
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By (S4.35), (S4.36) and the hypotheses associated with (E1), (E4) and
(E7), we obtain

E‖
√
n(θ̂n − θ∗)‖q1Hn ≤ O(1) + 3q‖(R∗ −A∗)−1‖q(2M̄C∗δ∗)q‖

√
n(θ̂n − θ∗)‖q1Hn

+ 3q‖(R∗ −A∗)−1‖q(C∗)q(δ∗)2qE(nq/2Λq
n1Qn).

(S4.37)

Note that 3q‖(R∗ −A∗)−1‖q(2M̄C∗δ∗)q < 1 and E(nq/2Λq
n1Qn) = O(1)

is ensured by (S4.32) and (S4.34). Combining these with (S4.37) gives

E‖
√
n(θ̂n − θ∗)‖q1Hn = O(1).

Moreover, it follows from (S4.33), the compactness of Θ and the conti-
nuity of V (θ) that

E‖
√
n(θ̂n − θ∗)‖q1Hc

n
= O(nq/2P(Hc

n)) = o(1).

This completes the proof of (S4.29). Expressing D1Sn(θ̂n) as the sum
of

D1Sn(θ̂n−ln) = D1Sn(θ̂n−ln)−D1Sn−ln(θ̂n−ln)

= −2
n−h∑

t=n−h−ln+1

D1gt,h(θ̂n−ln)εt,h(θ̂n−ln)

and a remainder term using the mean value theorem for vector-valued
functions, we can prove (S4.30) in a fashion similar to the proof of
(S4.29). The details are omitted.

Remark S4. Being an extension of Theorem 2.2 of Chan and Ing
(2011), Theorem S4.3 establishes the first result on moment conver-
gence of the least squares estimates in misspecified nonlinear regressions
with dependent observations. Its applications to prediction and model
selection have been illustrated via Theorems S4.1 and S4.2. Note that in
the special case of q = 3, (S4.32) is weaker than condition (E3). (S4.33)
is a strengthened version of (S4.31), and the role of (S4.34) in the proof
of Theorem S4.3 is similar to that of (2.13) and (2.14) in the proof of
Theorem 2.2 of Chan and Ing (2011). When ft,h, gt,h(θ), εt,h(θ) and
Djgh,t(θ) are linear processes and the coefficient functions in the latter
three satisfy certain smoothness conditions, (S4.33) and (S4.34) can be
justified via an argument similar to that used in Lemma B.1 of Chan
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and Ing (2011), which is a ‘uniform version’ of the First Moment Bound
Theorem of Findley and Wei (1993). It is worth mentioning that while
Theorem 2.2 of Chan and Ing (2011) is proved without imposing as-
sumptions on the third-order derivative of the regression function, some
extra distributional assumptions like (2.19) on the regression function
are needed. Therefore, there exists a trade-off between the smoothness
of the regression function and the smoothness of its distribution, which
is a subject of further investigation.

S5. Numerical Studies. In this section, the performance of MRIC
is illustrated via five simulated examples. The first and second examples
focus on linear and nonliner models, respectively, the third and fourth
examples address high-dimensional models, and the last one provides
a further investigation of Example 2. Throughout this section, the Cn
in MRIC is set to nαm for some αm > 0.5.

Example 1. Let the data be generated according to the following
DGPs.

yt+1 = β1zt + β2wt + εt+1,(S5.1)

in which εt ∼ NID(0, 1), zt = φzt−1 + ηt is a stationary AR(1) pro-
cess, and wt = θ1wt−1 + θ2wt−2 + δt is a stationary AR(2) process, with
ηt ∼ NID(0, σ2

η), δt ∼ NID(0, σ2
δ ), and {ηt}, {δt} and {εt} independent.

Here and hereafter NID(0, σ2) means normally and independently dis-
tributed with mean 0 and variance σ2. We also let

σ2
η = 1− φ2, σ2

δ = 1− θ2
2 − {θ2

1(1 + θ2)/(1− θ2)},

β1 = β2 = 1, and φ = θ1/(1 − θ2), noting that (S5.1) leads to γz(0) =
1 = γw(0), where γz(j) = E(ztzt+j) and γw(j) = E(wtwt+j). In this
study, we consider four different (θ1, θ2)’s: (0.15, 0.5), (-0.10, 0.65),
(-0.40, -0.60), (0.10, -0.95), which are denoted by DGPs I-IV. With
observations up to time n, we are interested in performing h-step pre-
diction, with h = 2 and 3, using two candidate models,

J1 : yn+h = αzn + ε
(1)
n,h,

J2 : yn+h = βwn + ε
(2)
n,h,

which are misspecified. The MI and VI of candidate Jl are denoted by
MIh(l) and Lh(l) with l = 1, 2. It is shown in Table S1 that MI2(1) =
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MI2(2) in all four DGPs, but L2(1) < L2(2) in DGPs I and II and
L2(1) > L2(2) in DGPs III and IV. Therefore, for the two-step pre-
diction, the better predictive model is J1 (J2) under DGP I or II (III
or IV). On the other hand, Table S1 reveals that MI3(1) > MI3(2) in
all DGPs, yielding that the better predictive model is always J2 when
h = 3. The percentage of MRIC, with αm = 0.6, choosing the bet-
ter candidate is obtained by using 1,000 simulations for sample sizes
n = 200, 500, 1000, 2000, 3000; see Table S2 (h = 2) and Table S3
(h = 3). A data-driven method for choosing αm is suggested in Section
S6. For the sake of comparison, the corresponding percentages of AIC,
BIC, GAIC (Konishi and Kitagawa, 1996), GBIC (Lv and Liu, 2014)
and GBICp (Lv and Liu, 2014) are also reported in Tables S2 and S3,
where for candidate Jl,

AIC(l) = log σ̂2
h(l) +

2](Jl)

n
,

BIC(l) = log σ̂2
h(l) +

](Jl) log n

n
,

GAIC(l) = log σ̂2
h(l) +

2tr(Ĥh(l))

n
,

GBIC(l) = log σ̂2
h(l) +

](Jl) log n

n
− log det(Ĥh(l))

n
,

GBICp(l) = log σ̂2
h(l) +

](Jl) log n

n
+

tr(Ĥh(l))

n
− log det(Ĥh(l))

n
,

with
Ĥh(l) = σ̂−2

h (l)R̂−1(l)Ĉh,0(l),

which is a consistent estimator of σ−2
h (l)R−1(l)Ch,0(l). Note first that

MRIC(l) is asymptotically equivalent to

log σ̂2
h(l) +

Cnσ̂
−2
h (l)L̂h(l)

n
,

which shares a common first term with these five criteria. On the other
hand, by featuring a consistent estimator of VI, L̂h(l), and a suitable
penalty term, Cn, the second term of MRIC readily paves the way for
a consistent selection of the better predictive model, whether the MIs
of candidate models are equal or not. We also mention that this latter
property is, in general, not enjoyed by these five criteria because (i)
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Table S1
The values of MIh(1)−MIh(2) and Lh(1)− Lh(2) in Example 1, and the corresponding

better predictive models

DGP
I II III IV

h = 2
MIh(1)−MIh(2) 0.000 0.000 0.000 0.000
Lh(1)− Lh(2) -0.746 -0.999 0.984 1.890

The better predictive model J1 J1 J2 J2
h = 3

MIh(1)−MIh(2) 0.289 0.454 0.246 0.893
Lh(1)− Lh(2) * * * *

The better predictive model J2 J2 J2 J2
*: Lh(1)− Lh(2) can be neglected.

the trace of R̂−1(l)Ĉh,0(l) in Ĥh(l) is a consistent estimator of VI only
when h = 1 or observations are independent over time, and (ii) the
penalty term log n used in BIC, GBIC and GBICp is too weak when
misspecified candidates are non-nested (see Sin and White (1996) and
Inoue and Kilian (2006) for related discussion). In fact, the criterion
values of GAIC (AIC, BIC, GBIC, GBICp) for J1 and J2 are expected
to be close to each other because MIh(1) = MIh(2), ](J1) = ](J2)
and tr(R−1(l)Ch,0(l)) = ](Jl)MIh(l) (under normality). As shown in
Table S2, these five criteria behave like a fair coin to choose between
two alternatives, and can only select the better candidate about 50%
of the time. In contrast, MRIC has a much higher chance of identifying
the better model in this difficult situation. Its percentage falls between
67% and 100%, and tends to increase with the sample size and the
value of |L2(1)− L2(2)|.

When h = 3, the two competing candidates have different MIs, and
hence it becomes much easier to identify the better one. As shown in
Table S3, all criteria perform satisfactorily for all sample sizes n ≥ 200.
While in DGPs I and III, MRIC seems slightly worse than the other
criteria for n = 200, the corresponding percentages are still over 93%.

Example 2. In this example, we consider the following DGP,

yt+2 =
1

1− aB
xt +

1

1− bB
zt + εt+2,(S5.2)

in which |a| < 1, |b| < 1, εt ∼ NID(0, σ2
ε), xt ∼ NID(0, σ2

x), zt ∼
NID(0, σ2

z), and {εt}, {xt} and {zt} are independent. Note that model
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Table S2
Percentage of times, across 1,000 simulations, that the better predictive model between J1

and J2 of Example 1 is chosen in the case of h = 2

DGPs
n Criteria I II III IV

200

AIC/BIC 51.50 54.50 48.50 46.30
GAIC 51.40 54.30 49.00 46.70
GBIC 51.60 54.40 48.50 45.40

GBICp 51.60 54.40 48.40 46.00
MRIC 66.80 73.20 76.70 95.80

500

AIC/BIC 51.10 50.70 47.60 49.00
GAIC 50.80 50.50 47.30 50.90
GBIC 51.10 50.50 47.60 47.30

GBICp 51.10 50.70 47.60 49.10
MRIC 69.80 74.20 85.30 99.70

1000

AIC/BIC 48.10 53.60 53.00 49.40
GAIC 48.00 53.00 52.40 50.00
GBIC 48.10 53.50 52.80 49.20

GBICp 48.10 53.50 53.00 49.40
MRIC 74.90 80.80 88.70 100.00

2000

AIC/BIC 50.10 49.70 50.80 49.60
GAIC 50.10 49.50 50.90 49.20
GBIC 50.30 49.70 50.90 49.30

GBICp 50.10 49.70 50.80 49.60
MRIC 78.20 83.90 92.20 100.00

3000

AIC/BIC 51.40 51.20 49.00 50.40
GAIC 51.40 51.10 48.90 50.60
GBIC 51.30 51.20 49.00 50.70

GBICp 51.40 51.20 49.00 50.40
MRIC 79.80 84.90 93.40 100.00
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Table S3
Percentage of times, across 1,000 simulations, that the better predictive model between J1

and J2 of Example 1 is chosen in the case of h = 3

DGPs
n Criteria I II III IV

200

AIC/BIC 99.30 100.00 99.30 100.00
GAIC 99.30 100.00 99.10 100.00
GBIC 99.30 100.00 99.30 100.00

GBICp 99.20 100.00 99.30 100.00
MRIC 93.20 97.90 94.70 100.00

500

AIC/BIC 100.00 100.00 100.00 100.00
GAIC 100.00 100.00 100.00 100.00
GBIC 100.00 100.00 100.00 100.00

GBICp 100.00 100.00 100.00 100.00
MRIC 99.90 100.00 100.00 100.00

1000

AIC/BIC 100.00 100.00 100.00 100.00
GAIC 100.00 100.00 100.00 100.00
GBIC 100.00 100.00 100.00 100.00

GBICp 100.00 100.00 100.00 100.00
MRIC 100.00 100.00 100.00 100.00

2000

AIC/BIC 100.00 100.00 100.00 100.00
GAIC 100.00 100.00 100.00 100.00
GBIC 100.00 100.00 100.00 100.00

GBICp 100.00 100.00 100.00 100.00
MRIC 100.00 100.00 100.00 100.00

3000

AIC/BIC 100.00 100.00 100.00 100.00
GAIC 100.00 100.00 100.00 100.00
GBIC 100.00 100.00 100.00 100.00

GBICp 100.00 100.00 100.00 100.00
MRIC 100.00 100.00 100.00 100.00
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(S5.2) is nonlinear in the parameters. With observations up to time n,
we are interested in predicting yn+2 using a model chosen from

J1 : yn+2 =
1

1− αB
xn + ε

(1)
n,2(α) ≡ g

(1)
n,2(α) + ε

(1)
n,2(α),

J2 : yn+2 =
1

1− βB
zn + ε

(2)
n,2(β) ≡ g

(2)
n,2(β) + ε

(2)
n,2(β),

both being misspecified. Since g
(1)
n,2(α) is independent of ε

(1)
n,2(α) and

g
(2)
n,2(β) is independent of ε

(2)
n,2(β), J1 and J2 are said to be correct up to

an independent additive error. In addition, since the initial conditions
are set to xt = zt = 0 for t < 0, this example is classified as an
asymptotic stationary case discussed at the end of Section S4.2. The
parameters in (S5.2) are set to:

DGP I: (a, b, σε, σx, σz) = (0.5,NA, 1, 1, 1),
DGP II: (a, b, σε, σx, σz) = (0.95, 0.65, 1, 0.4109, 1.000),
DGP III: (a, b, σε, σx, σz) = (0.4,−0.95, 0.25, 1.4676, 0.5),
DGP IV: (a, b, σε, σx, σz) = (0.8,−0.4, 1, 1.3093, 2).

In DGP I, b = NA represents that the true model depends on {xt}
only. Let MI2(l) and L2(l) denote the MI and VI of Jl, l = 1, 2. It
is shown in Table S4 that while MI2(1) < MI2(2) under DGP I, the
two candidates have the same MI for other DGPs, which is caused by
σ2
x/(1 − a2) = σ2

z/(1 − b2). Moreover, L2(1) < L2(2) for DGPs II and
III, but the opposite holds true for DGP IV. Consequently, J2 is better
than J1 only under DGP IV. In Table S5, we present the performances,
based on 1,000 simulations, of MRIC (with αm = 0.8) and the other
five criteria described in Example 1. It is worth mentioning that since

J1 and J2 are correct up to an independent additive error, the Â∗(l) in
the nonlinear version of MRIC defined in (S4.2) can be dropped from

the formula. In addition, the Ĥh(l) in GAIC(l), GBIC(l) and GBICp(l)

is defined as in Example 1, except that R̂(l) and Ĉh,0(l) are replaced

by R̂∗(l) and Ĉ∗h,0(l), respectively. The sample size n is again set to
200, 500, 1000, 2000 and 3000. Note first that since under DGP I, J1

and J2 have a substantial difference in MI, all six criteria work well
for all sample sizes. However, the performance of these criteria notably
deteriorates under DGPs II-IV, in which J1 and J2 have the same MI.
In particular, all criteria, except for MRIC, can only select the better
candidate between 42% and 58% of the time when n ≥ 500, and the
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Table S4
The values of MI2(1)−MI2(2) and L2(1)− L2(2) in Example 2, and the corresponding

better predictive models

DGPs
I II III IV

MI2(1)−MI2(2) -2.333 0.000 0.000 0.000
L2(1)− L2(2) ∗ -0.759 -1.311 1.538

The better predictive model J1 J1 J1 J2
*: L2(1)− L2(2) can be neglected.

percentage seems to be indifferent to the sample size. On the other
hand, MRIC tends to perform better with increasing number of data
points. More specifically, under DGP II (III, IV), MRIC’s percentage
of identifying the better candidate increases from 46% (74%, 66%) to
64% (84%, 83%) as n rises from 200 to 3000. The αm in MRIC is set
to 0.8 instead of 0.6. This is because in the nonlinear case, a larger
αm is usually needed to secure a better selection result. For a further
investigation on this example, see Example 5.

Example 3. In this example, we evaluate the performance of the
high-dimensional model selection method, OGA+HDICh+Trim, devel-
oped in Section 4 using the following one-step predictive model,

yt+1 = x>t β + xt,p+1 + εt+1.(S5.3)

Here {xt = (xt1, . . . , xtp)
>} is a sequence of p-dimensional i.i.d. stan-

dard normal random variates, p is allowed to be larger than n, xt,p+1 =
xt1xt2 is the product of the first two regressor variables, β is a p-
dimensional regression coefficient vector, and εt = φ1εt−1 + ηt is an
AR(1) process in which |φ1| < 1 and {ηt}, independent of {xt}, is a
sequence i.i.d. random errors with mean 0. Although the data are gen-
erated from model (S5.3), we fit a linear regression model without the
interaction term xt,p+1,

yt+1 = x>t β
∗ + ε∗t+1,(S5.4)

which is misspecified in view of (S5.3). In the special case that φ1 = 0
and 4ηt is N(0, 1) distributed, (S5.3) and (S5.4) have been used in Ex-
ample 5.1.2 of Lv and Liu (2014) to illustrate the advantage of GBICp

with respect to AIC, BIC, GAIC and GBIC when p ≥ n. Follow-
ing Lv and Liu (2014), we let β = (1,−1.25, 0.75,−0.95, 1.5,0>p−5)>.
On the other hand, to demonstrate the broad range of application of
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Table S5
Percentage of times, across 1,000 simulations, that the better two-step (h = 2) predictive

model between J1 and J2 of Example 2 is chosen

DGPs
n Criteria I II III IV

200

AIC/BIC 100.00 39.40 60.20 52.50
GAIC 100.00 39.30 60.80 52.80
GBIC 100.00 39.20 60.30 51.90

GBICp 100.00 39.30 60.50 51.90
MRIC 100.00 46.20 73.50 65.90

500

AIC/BIC 100.00 42.20 58.00 53.10
GAIC 100.00 42.50 58.30 53.60
GBIC 100.00 42.10 58.20 52.80

GBICp 100.00 42.20 58.40 52.90
MRIC 100.00 51.70 75.10 72.90

1000

AIC/BIC 100.00 45.70 52.00 53.10
GAIC 100.00 46.10 52.30 53.50
GBIC 100.00 45.70 52.00 52.20

GBICp 100.00 45.80 52.20 52.40
MRIC 100.00 56.10 76.70 78.60

2000

AIC/BIC 100.00 48.50 54.50 51.90
GAIC 100.00 48.60 54.60 52.20
GBIC 100.00 48.50 54.50 51.50

GBICp 100.00 48.60 54.60 51.50
MRIC 100.00 61.90 81.50 81.20

3000

AIC/BIC 100.00 48.10 54.70 50.70
GAIC 100.00 48.20 54.80 50.90
GBIC 100.00 48.10 54.70 50.70

GBICp 100.00 48.10 54.80 50.70
MRIC 100.00 63.90 83.50 82.60
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OGA+HDICh+Trim, we set φ1 = 0.8 and let 4ηt follow a t-distribution
with 8 degrees of freedom (denoted as t8) in addition to the N(0, 1)
distribution. Moreover, the (n, p) combinations considered in this ex-
ample are {200, 1000} × {100, 200, 1000}, which include both the low-
dimensional case (p ≤ n) and the high-dimensional case (p > n).

Due to min{q1, q2} < 8 in the case of 4ηt ∼ t8 (noting that q1 and q2

are defined in (F1) and (F2) of Section 4, respectively), 2/q in HDICh

is set to 0.3 (denoted by HDICh(0.3)) or 0.4 (denoted by HDICh(0.4))
in our simulation study. In addition, we let ωn = log n and Kn, the
maximum number of the OGA iterations, equal min{p,mn}, where
mn = 5n1/2/p1/4. (Note that our (unreported) simulation studies indi-
cate that varying 5 in mn from 3 to 10 leads to similar conclusions.)
Since in this example θ1 = θ2 = 0, where θ1, θ2 are defined in (F5)
of Section 4, it is not difficult to see that the above specifications on
OGA and HDICh fulfill (4.11) and (4.12), which are required to estab-
lish the selection consistency of OGA+HDICh+Trim; see Theorem 4.2.
A data-driven method for determining 2/q is provided in Section S6.

For the purpose of comparison, we also evaluate the performance of
GBICp, AIC, BIC, GAIC and GBIC in the same simulation setting.
Since it is unrealistic to implement best subset regression due to p ≥
100, these five criteria are used to select models along the OGA path,
which can substantially relieve computational burden. Note that Theo-
rem 4.1 ensures that OGA can asymptotically include J∗ = {1, . . . , 5},
the most parsimonious model among those having the lowest MI value.

We evaluate the performance of a model selection criterion (which

selects variable set Ĵ (i) ⊂ {1, . . . , p} in the ith simulation) using three
different measures,

expected number of true positives (ENTP) :
1

1000

1000∑
i=1

](Ĵ (i)
⋂

J∗),

expected number of false positives (ENFP) :
1

1000

1000∑
i=1

](Ĵ (i)
⋂

J∗
c

),

selection probability (SP) :

∑1000
i=1 I{Ĵ(i)=J∗}

1000
,

where J∗
c

= {1, . . . , p} − J∗. We summarize in Table S6 the perfor-
mance of the seven criteria mentioned in previous paragraphs in Ta-
ble S6. As observed, all criteria have ENTP values equal to 5 = ](J∗),
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except for the case of (n, p) = (200, 1000) in which the ENTP values of
OGA+HDICh(0.4)+Trim fall between 4.998 and 4.999. This result not
only suggests that OGA is a very powerful tool for including relevant
variables in finite samples, but also reveals that all criteria, in conjunc-
tion with OGA, enjoy high true positive rates. In addition, all ENFP
and SP values of OGA+HDICh(r)+Trim, with r = 0.3 and 0.4, are
close to 0 and 1, respectively. These findings indicate that the model
selection method proposed in Section 4 is not only reliable in both low-
and high-dimensional cases, but also robust to the tail behavior of the
error distribution. On the other hand, while the overfitting problem as-
sociated with OGA+BIC-type criteria (OGA+BIC, OGA+GBIC and
OGA+GBICp) is not severe in terms of ENFP when p ≤ 200, their SP
values are substantially smaller than 1. Moreover, suffering from consid-
erable overfitting, OGA+BIC-type criteria in the case of p = 1000 and
OGA+AIC-type criteria (OGA+AIC and OGA+GAIC) in all cases
have SP values very close to 0.

Example 4. In this example, we demonstrate the performance of
OGA+HDICh,l+Trim+MRIC under high-dimensional misspecified mod-
els. We first generate (yi, zi, wi), i = 1, . . . , n, according to model (S5.1),
with β1 = β2 = 6, (θ1, θ2) = (0.8,−0.95), φ = θ1/(1− θ2), and εt being
i.i.d. random variables from a t8 distribution. Suppose that there are
two forecasters, F1 and F2, who are interested in predicting yn+h, with
h = 2, 3, using the following high-dimensional models,

F1 : yn+h =

p1∑
j=1

β
(1)
j,hx

(1)
n,j + ε

(1)
n,h = β

(1)
1,hx

(1)
n,1 + x>t,−1β−1 + ε

(1)
n,h,

F2 : yn+h =

p2∑
j=1

β
(2)
j,hx

(2)
n,j + ε

(2)
n,h = β

(2)
1,hx

(2)
n,1 + x>t,−2β−2 + ε

(2)
n,h,

where p1 > n, p2 > n, x
(1)
t,1 = zt, x

(2)
t,1 = wt, xt,−l ∼ N(0, 0.25Ipl−1), l =

1, 2, and {xt,−1}, {xt,−2}, {zt}, {wt}, and {εt} are independent. Re-

call the definitions of N
(l)
h , MIh,l(N

(l)
h ), Lh,l(N

(l)
h ), MA,h, MB,h, and

MC,h given in Section 4. Since {xt,−l, l = 1, 2}, are independent of

{zt, wt, εt}, it is easy to see that for h = 2 and 3, N
(1)
h = {1} and

N
(2)
h = {1}. Straightforward calculations give MI2,1(N

(1)
2 )=MI2,2(N

(2)
2 )

and L2,1(N
(1)
2 )−L2,2(N

(2)
2 ) = 37.8, yielding MA,2 = {1, 2}, MB,2 = {2},
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Table S6
Expected numbers of true positives (ENTP), expected numbers of false positives (ENFP),
and selection probabilities (SP), across 1,000 simulations, of the model selection criteria

in Example 3 under the misspecified model (S5.4)

True Model: (S5.3) with εt = 0.8εt−1 + ηt and 4ηt following a N(0, 1) distribution

ENTP ENFP SP ENTP ENFP SP ENTP ENFP SP

n Criteria p=100 p=200 p=1000

200

OGA+AIC 5.000 17.425 0.000 5.000 14.000 0.000 5.000 8.000 0.000
OGA+BIC 5.000 2.903 0.074 5.000 8.014 0.004 5.000 8.000 0.000
OGA+GAIC 5.000 17.454 0.000 5.000 13.999 0.000 5.000 8.000 0.000
OGA+GBIC 5.000 2.632 0.093 5.000 6.947 0.009 5.000 8.000 0.000
OGA+GBICp 5.000 1.563 0.246 5.000 3.715 0.051 5.000 8.000 0.000
OGA+HDICh(0.3)+Trim 5.000 0.043 0.958 5.000 0.032 0.970 5.000 0.016 0.986
OGA+HDICh(0.4)+Trim 5.000 0.006 0.994 5.000 0.002 0.999 4.998 0.002 0.996

1000

OGA+AIC 5.000 16.262 0.000 5.000 34.460 0.000 5.000 24.000 0.000
OGA+BIC 5.000 0.863 0.437 5.000 1.830 0.166 5.000 12.116 0.000
OGA+GAIC 5.000 16.524 0.000 5.000 34.454 0.000 5.000 24.000 0.000
OGA+GBIC 5.000 0.857 0.439 5.000 1.799 0.163 5.000 11.483 0.000
OGA+GBICp 5.000 0.517 0.604 5.000 1.024 0.361 5.000 6.164 0.006
OGA+HDICh(0.3)+Trim 5.000 0.000 1.000 5.000 0.000 1.000 5.000 0.000 1.000
OGA+HDICh(0.4)+Trim 5.000 0.000 1.000 5.000 0.000 1.000 5.000 0.000 1.000

True Model: (S5.3) with εt = 0.8εt−1 + ηt and 4ηt following a t8 distribution

ENTP ENFP SP ENTP ENFP SP ENTP ENFP SP

n Criteria p=100 p=200 p=1000

200

OGA+AIC 5.000 17.486 0.000 5.000 14.000 0.000 5.000 8.000 0.000
OGA+BIC 5.000 3.041 0.084 5.000 7.920 0.000 5.000 8.000 0.000
OGA+GAIC 5.000 17.478 0.000 5.000 14.000 0.000 5.000 8.000 0.000
OGA+GBIC 5.000 2.729 0.115 5.000 6.977 0.005 5.000 8.000 0.000
OGA+GBICp 5.000 1.630 0.259 5.000 3.886 0.051 5.000 7.997 0.000
OGA+HDICh(0.3)+Trim 5.000 0.037 0.965 5.000 0.033 0.968 5.000 0.014 0.987
OGA+HDICh(0.4)+Trim 5.000 0.005 0.995 5.000 0.003 0.997 4.999 0.001 0.998

1000

OGA+AIC 5.000 16.062 0.000 5.000 34.207 0.000 5.000 24.000 0.000
OGA+BIC 5.000 0.791 0.461 5.000 1.747 0.192 5.000 12.106 0.000
OGA+GAIC 5.000 16.298 0.000 5.000 34.356 0.000 5.000 24.000 0.000
OGA+GBIC 5.000 0.782 0.464 5.000 1.715 0.198 5.000 11.535 0.000
OGA+GBICp 5.000 0.457 0.629 5.000 0.969 0.387 5.000 6.080 0.006
OGA+HDICh(0.3)+Trim 5.000 0.000 1.000 5.000 0.000 1.000 5.000 0.000 1.000
OGA+HDICh(0.4)+Trim 5.000 0.000 1.000 5.000 0.000 1.000 5.000 0.000 1.000

Note: all values are rounded off to the nearest thousandths.
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Table S7
Percentage of times, across 1,000 simulations, that MC,h in Example 4 is chosen

Criteria h=2 h=3

n = 200 n = 500 n = 200 n = 500

OGA+HDICh(0.3)+Trim+AIC 47.90 48.40 99.30 100.00
OGA+HDICh(0.3)+Trim+BIC 47.90 48.40 99.30 100.00
OGA+HDICh(0.3)+Trim+GAIC 48.30 48.40 99.30 100.00
OGA+HDICh(0.3)+Trim+GBIC 47.60 48.20 99.30 100.00
OGA+HDICh(0.3)+Trim+GBICp 47.80 48.40 99.30 100.00
OGA+HDICh(0.3)+Trim+MRIC 66.60 76.60 98.50 100.00

and MC,2 = {(2, N (2)
2 )}. Moreover, MI3,1(N

(1)
3 )−MI3,2(N

(2)
3 ) = 12.899,

implying MA,3 = {2}, MB,3 = {2}, and MC,3 = {(2, N (2)
3 )}. In other

words, the subset of model F2, which contains one variable x
(2)
n,1 only,

is the asymptotically best model for predicting yn+2 and yn+3. In Ta-
ble S7, the percentage of OGA+HDICh,l+Trim+MRIC choosing MC,h,
with h = 2, 3, is reported by using 1,000 simulations for n = 200, 500
and p1 = p2 = p = 1001. In view of Example 3, the tuning param-

eters in OGA and HDICh,l are given by K
(l)
n = min{p, 5n1/2/p1/4},

ω
(l)
n = log n, and 2/ql = 0.3 for l = 1, 2. Following Example 1, the αm

in MRICh,l is set to 0.6 for l = 1, 2. We also evaluate the performance of
OGA+HDICh,l+Trim+AIC (BIC, GAIC, GBIC, or GBICp) in choos-
ing MC,h, with h = 2, 3, and record the results in Table S7. As shown
in the table, all criteria perform satisfactorily in the case of h = 3 even
when n = 200. This is not only because OGA+HDIC3,l+Trim can con-

sistently select N
(l)
3 , l = 1, 2, but because the notable difference between

MI3,1(N
(1)
3 ) and MI3,2(N

(2)
3 ) makes all criteria easy to identify the bet-

ter predictive model. On the other hand, while in the case of h = 2, the

percentage of OGA+HDIC2,l+Trim selecting N
(l)
2 , l = 1, 2, is still very

high, all criteria except for OGA+HDIC2,l+Trim+MRIC have only

about a 50% chance of choosing MC,2 due to MI2,1(N
(1)
2 )=MI2,2(N

(2)
2 )

and ](N
(1)
2 ) = ](N

(2)
2 ) = 1. In contrast, OGA+HDIC2,l+Trim+MRIC

has a 66% percent chance of choosing MC,2 when n = 200, and the
percentage grows to 76% when n increases to 500.

Example 5. Suppose that data are generated from model (S5.2)
and the candidate models used for predicting yn+2 are J1 and

J
′

2 : yn+2 =
r2

1− βB
zn + ε

(2)
n,2(r2, β).

Unlike J2 in Example 2, J
′
2 does not assume that prior information

about r2 is available, and hence the parameter needs to be estimated
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from the data. It can be show that

MI2(1) = σ2
z/(1− b2) + σ2

ε and MI∗2(2) = σ2
x/(1− a2) + σ2

ε = MI2(2),

(S5.5)

where MI∗2(2) is the MI for J
′
2. Moreover, we have

L2(1) =
σ2
z

1− b2
+ σ2

ε +
4abσ2

z

(1 + a2)(1− b2)
,

and

L∗2(2) = 2
( σ2

x

1− a2
+ σ2

ε

)
+

4abσ2
x

1− a2
.(S5.6)

Therefore, when MI2(1)=MI∗2(2) (i.e., σ2
z/(1− b2) = σ2

x/(1−a2)), L2(1)
is always smaller than L∗2(2). This is in sharp contrast to the situation
described in Example 2, where L2(1) can sometimes be greater than

L2(2) =
σ2
x

1− a2
+ σ2

ε +
4abσ2

x

(1 + b2)(1− a2)

under σ2
z/(1− b2) = σ2

x/(1− a2).
On the other hand, if J1 is replaced by

J
′

1 : yn+2 =
r1

1− αB
xn + ε

(1)
n,2(r1, α),

where both r1 and α are unknown, then

MI∗2(1) = σ2
z/(1− b2) + σ2

ε(S5.7)

and

L∗2(1) = 2
( σ2

z

1− b2
+ σ2

ε

)
+

4abσ2
z

1− b2
,(S5.8)

where MI∗2(1) and L∗2(1) are the MI and VI for J
′
1. In view of (S5.5)–

(S5.8), J
′
1 and J

′
2 share the same VI value, provided their MI values are

the same.
In Table S8, we present the performances, based on 1,000 simulations,

of the six criteria described in Example 2 when they are used to choose
between J1 and J

′
2 and between J

′
1 and J

′
2 under

DGP V: (a, b, σε, σx, σz)=(-0.2,0.7,0.25, 1.372,1),
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yielding MI2(1)=MI∗2(1)=MI∗2(2) = 2.0233, L2(1) − L∗2(2) = −1.9811,
and L∗2(1) − L∗2(2) = 0. It is shown in the upper panel of Table S8
that MRIC can successfully identify the better model, J1, between J1

and J
′
2, and its finite sample performance under DGP V is even better

than under DGPs III and IV. On the other hand, all other criteria do
not possess this advantage due to MI2(1)=MI∗2(2). The lower panel of
Table S8 reveals that all six criteria tend to randomly choose between
J
′
1 and J

′
2. This result, however, should not be an overriding concern

because J
′
1 and J

′
2 are indistinguishable in terms of both MI and VI.

Table S8
Percentage of times, across 1,000 simulations, that the better two-step (h = 2) predictive

model between J1 and J
′
2 (or between J

′
1 and J

′
2) is chosen under DGP V in Example 5

J1 vs. J
′
2

h n AIC BIC GAIC GBIC GBICp MRIC

2 200 52.20 55.60 52.20 55.60 56.90 89.80
2 500 52.90 55.30 53.00 55.40 55.70 95.10
2 1000 48.80 50.50 48.70 50.50 51.00 98.60
2 2000 50.80 52.90 50.70 52.90 53.10 99.60
2 3000 49.70 51.30 49.70 51.30 51.80 99.90

J
′
1 vs. J

′
2

h n AIC BIC GAIC GBIC GBICp MRIC

2 200 52.40 52.40 52.50 52.50 52.40 51.90
2 500 51.40 51.40 51.60 51.50 51.40 50.50
2 1000 49.30 49.30 49.30 49.30 49.30 49.10
2 2000 50.50 50.50 50.50 50.50 50.50 50.60
2 3000 49.20 49.20 49.20 49.20 49.20 49.50

S6. Real Data Analysis: Two Cases. In this section, we compare
the performance of the criteria discussed in Section S5 using two real
datasets. The first dataset is the monthly life insurance data recording
the net number of new personal life insurances for a large insurance
company from January 1964 to December 1980; see Claeskens et al.
(2007) for more details. Following Claeskens et al. (2007), we took
the first and the seasonal differences of the log-transformed data to
get a (possibly) stationary series; see Figure S1 for the time plot as
well as the sample ACF/PACF plot of the resultant series, denoted by
{St}, 1 ≤ t ≤ 191. The goal of this study is to investigate the prediction
performance of the criteria considered in Example 1 of Section S5 when
they are applied to {St}. For the sake of completeness, our assessment
also includes FIC (Claeskens et al., 2007), whose performance on {St}
has been explored in the same paper. Specifying the candidate models
as AR(1), . . . ,AR(15) and retaining the latest bndc observations in {St}
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for performance evaluation, we measure the prediction capability of a
criterion by the empirical MSPE (EMSPE),

EMSPE =
1

bndc

n−h∑
t=n−h−bndc+1

(St+h − Ŝt+h)2,(S6.1)

where d = 0.3, Ŝt+h is the predictor of St+h whose order is selected by
the criteria and parameters estimated by least squares using observa-
tions up to time t. In this connection, we also compute

EMSPE0 = min
1≤k≤15

1

bndc

n−h∑
t=n−h−bndc+1

(St+h − Ŝt+h(k))2,(S6.2)

where Ŝt+h(k) is the least squares predictor of St+h whose order is fixed
at k and parameters are estimated by least squares using observations
up to time t. Note that EMSPE0 serves as a convenient benchmark
for comparing the EMSPEs derived from different criteria. Note also
that the αm in the Cn = nαm of MRIC is chosen by minimizing the
in-sample counterpart of (S6.1),

1

bndc

n−bndc−h∑
t=n−2bndc−h+1

(St+h − Ŝ(αm)
t+h )2,(S6.3)

over αm ∈ {0.1, . . . , 0.8}, where Ŝ
(αm)
t+h is Ŝt+h with order selected by

MRIC using penalty of Cn = nαm . Since the candidate models are
nested, any αm ∈ {0.1, . . . , 0.8} leads to an asymptotically efficient
MRIC, in view of Remark 2. For the sake of convenience, once an αm is
determined by (S6.3), it will be used throughout the period for forecast
evaluation.

The values obtained from (S6.1) and (S6.2), with h = 1, . . . , 5, are
summarized in Table S9. As shown in Table S9, MRIC appears to per-
form favorably compared to all other criteria. In particular, its EMSPE
values are almost identical to the values of EMSPE0 for all h = 1, . . . , 5.
The performance of FIC, AIC and GAIC is also reasonably good. The
EMSPE of FIC is even a little bit smaller than EMSPE0 in the case
of h = 2 and 3. However, FIC may seem inferior to MRIC, AIC and
GAIC when h = 4 and 5. AIC and GAIC have performance close to
that of MRIC, but their EMSPE values are either equal or greater than
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MRIC’s. All BIC-type criteria, BIC, GBIC and GBICp, suffer from rel-
atively large EMSPE values, and hence are surpassed by the former
four criteria. Finally, we remark that our conclusion on FIC, AIC and
BIC is not necessarily coincident with the one provided by Claeskens
et al. (2007). This may be due to fact that the performance measure
used by the latter paper is EMSPE with d close to 0.5 instead of 0.3.

The second dataset contains three weakly time series of length n =
508 for cardiovascular mortality (Mt), temperature (Tt) and partic-
ulate pollution (Pt) in Los Angeles County over the 10 year period
1970-1979; see Shumway et al. (1988) or Example 2.2 of Shumway and
Stoffer (2011) for details. The time series plots shown in Figure S2
of Shumway and Stoffer (2011) reveal that there are strong contem-
poraneous co-movements between these series. These authors therefore
built the following model to describe the effects of Tt and Pt on Mt,

Mt = β0 + β1t+ β2(Tt − T̄ ) + β3(Tt − T̄ )2 + β4Pt + wt,(S6.4)

where {wt} is a stationary AR(2) model and T̄ is the sample mean of
{Tt}. However, it seems difficult to use (S6.4) to predict Mt+h when its
contemporaneous explanatory variables, Tt+h and Pt+h, are not avail-
able. To bypass this dilemma, we devise a (purely) predictive model,

Mt+h = β0 + β1(t+ h) +
L∑
i=1

β3,iMt+1−i

+
L∑
i=1

β4,iTt+1−i +
L∑
i=1

β5,iT
2
t+1−i +

L∑
i=1

β6,iPt+1−i +
L∑
i=1

β7,i logPt+1−i

+ εt,h, t = L, . . . , n− h,

(S6.5)

where εt,h denotes the error term. In this study, L is set to 156, namely,
all dependent variables lagged up to three years are included. The rea-
son why we adopt so many lagged variables is that the sample ACFs of
{Mt}, {Tt} and {Pt} are still significantly bounded away from 0 even
after lag 150; see Figure S2. We also include logPt and its lagged values
because logPt has been used by Shumway et al. (1988) as an explana-
tory variable for Mt. Due to the inclusion of the lagged variables and
the retention of the latest O1 = 35 observations for forecast evaluation,
the sample size for model selection is reduced to N1 = n−h−L+1−O1.
On the other hand, the number of candidate variables in model (S6.5)
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is p1 = 5L + 1 = 781, noting that the intercept β0 is always included
in our study. Because p1 is much greater than N1, following Example 3

of Section S5, we first use OGA to sequentially select Kn = 5N
1/2
1 /p

1/4
1

variables, and then choose models along the OGA path using the cri-
teria considered in the same example. Their performance is evaluated
by

ẼMSPE =
1

O1

n−h∑
t=n−h−O1+1

(Mt+h − M̂t+h)
2,(S6.6)

where M̂t+h is the least squares predictor of Mt+h based on the model
selected at time n− h−O1 + 1 and the parameters estimated at time
t. Although the estimates of the unknown parameters are continuously
updated throughout the period of forecast evaluation, we choose not to
update the model once it is determined at time n−h−O1 + 1 because
O1 is relatively small compared to n. For HDICh, ωn is still given by
log n as in Example 3 of Section S5. On the other hand, instead of
setting 2/q = 0.3 or 0.4, we choose 2/q to minimize

1

O1

n−h−O1∑
t=n−h−2O1+1

(Mt+h − M̂ (2/q)
t+h )2,

over 2/q ∈ {0.3, 0.4, . . . , 0.9}, where M̂
(2/q)
t+h is the predictor of Mt+h

based on the model selected by OGA+HDICh(2/q)+Trim at time n−
h− 2O1 + 1 and the parameters estimated least squares at time t. The

values of ẼMSPE, with 1 ≤ h ≤ 5, are documented in Table S10. For
the purpose of comparison, we also compute the following benchmark
value,

ẼMSPE0 = min
1≤k≤Kn

1

O1

n−h∑
t=n−h−O1+1

(Mt+h − M̂t+h(k))2,(S6.7)

where M̂t+h(k) is the h-step least squares predictor of Mt+h based on
the model determined by the first k OGA iterations at time n−h−O1+1
and the parameters estimated at time t.

As shown in Table S10, the performance of OGA+AIC, OGA+GAIC,

and OGA+BIC is exactly the same in terms of ẼMSPE. In addition,

the ẼMSPE value of OGA+GBIC is smaller than (the same as) that
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Table S9
The values of EMSPE and EMSPE0 derived from series {St}.

EMSPE EMSPE0

h AIC BIC FIC MRIC GAIC GBIC GBICp
1 0.0409 0.0533 0.0395 0.0393 0.0393 0.0533 0.0533 0.0393
2 0.0609 0.0756 0.0577 0.0594 0.0598 0.0756 0.0756 0.0593
3 0.0586 0.0764 0.0569 0.0575 0.0580 0.0763 0.0763 0.0574
4 0.0599 0.0817 0.0623 0.0589 0.0589 0.0817 0.0817 0.0589
5 0.0583 0.0815 0.0654 0.0583 0.0595 0.0815 0.0815 0.0583

of OGA+AIC when h = 1 (h > 1). Except for the case of h = 1,
OGA+HDICh+Trim obviously outperforms the other criteria, and the

difference between its ẼMSPE and the corresponding benchmark value,

ẼMSPE0, does not seem to be sizeable. When h = 1, OGA+GBICp

performs best among all criteria. For 1 < h ≤ 5, its performance gener-
ally lies between OGA+HDICh+Trim and the other four non-HDICh

criteria.

The time plot of {St}
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Fig S1. Plots of series {St} and its sample ACF and PACF
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Fig S2. Sample ACFs of weakly time series for cardiovascular mortality (top), temperature
(middle) and particulate pollution (bottom) in Los Angeles County from 1970-1979.
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