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Abstract

We propose an adaptively weighted group Lasso procedure for simultaneous
variable selection and structure identification for varying coefficient quantile re-
gression models and additive quantile regression models with ultra-high dimen-
sional covariates. Under a strong sparsity condition, we establish selection con-
sistency of the proposed Lasso procedure when the weights therein satisfy a set
of general conditions. This consistency result, however, is reliant on a suitable
choice of the tuning parameter for the Lasso penalty, which can be hard to make in
practice. To alleviate this difficulty, we suggest a BIC-type criterion, which we call
high-dimensional information criterion (HDIC), and show that the proposed Lasso
procedure with the tuning parameter determined by HDIC still achieves selection

consistency. Our simulation studies support strongly our theoretical findings.

Keywords: Additive models; B-spline; high-dimensional information criteria; Lasso;

structure identification; varying coefficient models.

1 Introduction

We propose adaptively weighted group Lasso (AWG-Lasso) procedures for simultaneous
variable selection and structure identification for varying coefficient quantile regression
models and additive quantile regression models with ultra-high dimension covariates.
Let the number of covariates be denoted by p. Throughout this paper, we assume
p = O(exp(n')), where n is the sample size and ¢ is a positive constant specified later in
Assumption A4 and A4’ of Section 5. Under a strong sparsity condition, we establish
selection consistency of AWG-Lasso when its weights, determined by some initial esti-

mates, e.g., Lasso and group Lasso, obey a set of general conditions. This consistency
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result, however, is reliant on a suitable choice for the tuning parameter for the Lasso
penalty, which can be hard to make in practice. To alleviate this difficulty, we sug-
gest a BIC-type criterion, which we call high-dimensional information criterion (HDIC),
and show that AWG-Lasso with the penalty determined by HDIC (denoted by AWG-
Lasso+HDIC hereafter) still achieves selection consistency. This latter result improves
previous ones in [21] and the BIC results in [38] since the former does not deal with semi-
parametric models and the latter concentrates on linear models. See also [5] and [19]
for recent developments in BIC-type model selection criteria. With the selected model,
one can conduct final statistical inference by appealing to the results as in [34], [4], [28].
Moreover, our approach can be implemented at several different quantiles, thereby lead-
ing to a deeper understanding of the data in hand. There are some other approaches to
quantile estimation from ours. For example, [13] deals with quantile estimation based
on the transnormal model.

High dimensional covariate issues have been important and intractable ones. How-
ever, some useful procedures have been proposed, for example, the SCAD in [9], the
Lasso in [30], and the group Lasso in [36] and [26]. The properties of the Lasso were
studied in [40] and [2]. The adaptive Lasso was proposed by [40] and it has the selec-
tion consistency property. The SCAD cannot deal with too many covariates and needs
some screening procedures such as the SIS procedure in [11]. [15] proposed a quantile
based screening procedure. There are some papers on screening procedures for varying
coefficient and additive models, for example, [8], [10], and [20]. Forward type selection
procedures are considered in e.g. [33] and [17]. We name [3], [14], and [32] as general
references on high-dimensional issues.

Because parsimonious modelling is crucial for statistical analysis, simultaneous vari-
able selection and structure identification in semiparametric regression models has been
studied by many authors, see, among others, [37], [22], [35], [6], [23], and [16]. Another
important reason to attain this purpose is that in some high-dimensional situations, there
may be a lack of priori knowledge on how to decide which covariates to be included in
the parametric part and which covariates to be included in the nonparametric part. On
the other hand, to the best of our knowledge, no theoretical sound procedure has been
proposed to achieve the aforementioned goal in the high-dimensional quantile regression
setups. Note that [22] and [23] proposed using the estimated derivatives of coefficient
functions to identify the structures of additive models. These estimated derivatives,

however, usually have slow convergence rates. Moreover, as shown in Section S.3 of the



supplementary document, the conditions imposed on the B-spline basis functions in [22]
and [23] seem too stringent to be satisfied in practice. Instead of relying on the estimated
derivatives of coefficient functions, we appeal to the orthogonal decomposition method
through introducing an orthonormal spline basis with desirable properties as in [16],
which is devoted to the study of Cox regression models. Our approach not only can be
justified theoretically under a set of reasonable assumptions, but also enables a unified
analysis of varying coefficient models and additive models. The single index model is
another important semiparametric quantile regression model. However. we don’t deal
with the model because the theoretical treatment is completely different from that of
the varying coefficient and additive model. We just refer to [39] and [25] here.

The Lasso for quantile linear regression is considered in [1] and the adaptively
weighted Lasso for quantile linear regression are considered in [7] and [38]. Some authors
such as [18] and [29] deal with group Lasso procedures for additive models and varying
coefficient models, respectively. [24] applied a reproducing kernel Hilbert space approach
to additive models. [28] deals with SCAD type variable selection for parametric part.
In [28], the authors applied the adaptively weighted Lasso iteratively to obtain their
SCAD estimate starting from the Lasso estimate. However, in the quantile regression
setup, there doesn’t seem to exist any theoretical or numerical result for simultaneous
variable selection and structure identification based on the adaptively weighted group
Lasso, in particular when its penalty is determined by a data-driven fashion. To fill
this gap, we establish selection consistency of AWG-Lasso and AWG-Lasso+HDIC in
Section 3, and illustrate the finite sample performance of AWG-Lasso+HDIC through
a simulation study in Section 4. Our simulation study reveals that AWG-Lasso+HDIC
performs satisfactorily in terms of true positive and true negative rates.

This paper is organized as follows: We describe our procedures in Section 2. We
present our theoretical results in Section 3. The results of numerical studies are given in
Section 4. We state assumptions and prove our main results in Section 5 and describe
some important properties of B-spline bases in the supplementary document, which also
contains a real application of the proposed methods and more technical details.

We end this section with some notation used throughout the paper. A and |A| stand
for the complement and the number of the elements of a set A, respectively. For a vector
a, |a| and a” are the Euclidean norm and the transpose, respectively. For a function g
on the unit interval, ||g|| and ||g||o stand for the Ly and sup norms, respectively. We

denote the maximum and minimum eigenvalues of a matrix A by Apax(A) and Apin(A4),



respectively. Besides, C', C'y, Cs, ..., are generic positive constants and their values may
change from line to line. Note that a, ~ b, means C < a, /b, < Cy and that a VV b and
a A b stand for the maximum and the minimum of a and b, respectively. Convergence in

probability is denoted by .

2 Simultaneous variable selection and structure iden-

tification

We consider varying coefficient models and additive models in this paper. We can deal
with both models in the same way and we concentrate on varying coefficient models in
sections 2 and 3 to save space. We present the specific procedure for additive models in
the supplement.

Suppose that we have n i.i.d. observations {(Y;, X, Z;)}",, where X; = (X1, X, ..., X;p)T
is a p-dimensional covariate vector and Z; is a scalar index covariate. Then we assume a
quantile varying coefficient model holds for these observations. First we define the 7-th

quantile check function p,(u) and its derivative p/ (u) by
pr(u) =u(r — [{u <0}) and p.(u) =7— I{u <0}

Then our varying coefficient model is
p
Y; = ZXz‘jgj(Zi) + €, (1)
j=1

where Z; € [0,1] and E{p.(¢;) | X;, Z;} = 0. Usually we take X;; = 1 for varying
coefficient models.
To deal with partially linear varying coefficient models, we decompose g;(z) as g;(z) =

Gej + 9v;(2), where

1
gy = [ 9@ and g(:) = 05(2) g
0
We define the index set, S = (S8Y,8?), for the true model, where
S = {jlg; #0} and S, = {7 19c(z) # 0}

The index set for a candidate model can be similarly given by & = (S.,S,). In
the following, we refer to S° and S as the true model and the candidate model, re-

spectively whenever confusion is unlikely. When some j’s satisfy both j € 8% and
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j & SY simultaneously, our true model is a partially linear varying coefficient model,
for example, S° = ({1,2,3},{1,2}) with 8 = {1,2,3} and S? = {1,2}. Moreover,
S1 D S means S D S and Sy1 D Syo, where S; = (8.5, Sy5), J = 1,2. In addition,
S1USs = (Se1 USe2,Sp1 US,2).

We use the regression spline method to estimate coefficient functions and the covari-

ates for regression spline are defined by
W = X; ® B(Z;), (2)

where B(z) = (By(2), Ba(2),...,Br(2))T is an orthonormal basis constructed from the
equispaced B-spline basis By(z) = (Bo1(2), ..., Bor(2))T on [0, 1] and ® is the Kronecker
product. We can represent B(z) as B(z) = AgBy(z) and we calculate the L x L matrix
Ay numerically. As in [16], let B(z) satisfy By(2) = 1/VL, By(z) = 1/12/L(z — 1/2),
and

/ B(2)(B(2)'dz = LI}, (3)

We denote the L x L identity matrix by . Note that B;(z) is for g.; (the j-th con-
stant component) and B_1(z) = (Ba(z), ..., Br(z))" is for g,;(z) (the j-th non-constant
component). More details are given in Section S.3 of the supplement.

To carry out simultaneous variable selection and structure identification, we apply
AWG-Lasso to

Y= Wiyt d, ()
where v = (v, ... ,’yg ). For a given A\ > 0, the corresponding objective function is
given by

1 ¢ a
Qu(md) =~ D (Vi = W) + A (wijlyg| + wogslv-y)), (5)
i=1 =

where { (w1, w_1;)};_, is obtained from some initial estimates such as Lasso and group
Lasso, and (vi5,v",;)" = ;, noting that ~y; is for By(z) and ~y_y; is for B_;(z). Mini-
mizing Qv (7vy;A) w.r.t. 7, one gets
' = argmin Qv (v; ).
~yERPL

Denote 4* by (33,9, --..77,,¥*1,)". Then, the model selected by AWG-Lasso is

S = (8,8}, where S» = {j |77, # 0} and Sh={j |3 1; 7 0}, and this enables us to

identify variables and structures simultaneously.



Theorem 1 in Section 3 establishes the selection consistency of S* under a set of
general conditions on {(wy;, w_1;)}_; and a strong sparsity condition on the regression
coefficients that |S?| and |S?| are bounded. Theorem 1, however, also requires that A
falls into a suitable interval, which can sometimes be hard to decide in practice. We
therefore introduce a BIC-type criterion, HDIC, to choose a A in a data-driven fashion.
)T

Express W; as (vi1i, 075, -+ Uipi, 7 ,;) ", where (vy55,v7,;;)" is the regressor vector

corresponding to 7;. For a given model S = (S,,S,), define Ry (vs) and s by

s € RISl +(L=1)[Sy]

1 < - :
Ry(vs) = > p(Yi-Wiys) and Fs=  argmin - Ry(vs), (6)
=1

where Wjs € RISIHE=DIS] consists of {vy;]|j € S.} and {v_1;;|j € S,}. The corre-
sponding coefficient vector s consists of {1, |7 € S.} and {v_15; | j € S,} as well. The
elements of these vectors are suitably arranged. In this paper, we sometimes take two
index sets &1 and S, satisfying S; C S; and compare ~ys, and ~s, by enlarging s, with 0
elements or something, for example, (v&,07)". Then (% ,07)" and ~s, have the same

dimension and the elements of these vectors are assumed to be conformably rearranged.
The HDIC value for model S is stipulated by

- n 10g Dy,
HDIC(S) = log Ry (¥s) + (S| + (L = DIS,) T2, (7)

where p, = pV n and ¢, — oo at a slow rate described in Section 5. We consider a set
of models {g)‘} chosen by AWG-Lasso, where A € A with A being a prescribed set of

positive numbers, and select S* among {S*}, where

A= _argmin HDIC(SY),
XEA,|SM <M |8 < My
with M, and M, being known upper bounds for |S?| and |S?|, respectively. Under some
regularity conditions, the consistency of S is established in Corollary 1.

Note that in the case of high-dimensional sparse linear models, it is shown in [17]
that (7) with p,(-) replaced by the squared loss (-)? can be used in conjunction with the
orthogonal greedy algorithm (OGA) to yield selection consistency. The major difference
between (7) and the BIC-type criteria considered in [21] is that we deal with semipara-
metric models in this paper. It seems difficult to derive the consistency of SN in any

high-dimensional regression setups without the additional penalty term g, in (7).



3 Consistency results

We prove the consistency of AWG-Lasso and AWG-Lasso+HDIC separately in Subsec-
tion 3.1 and 3.2. It is worth pointing out that due to the similarity between (4)-(7) and
(S.2)-(S.5) in the supplement, the theoretical treatment is almost the same for the two
types of models considered in this paper. Therefore, this section concentrates only on
the varying coefficient model. On the other hand, our numerical studies are conducted

for both types of models, see Section 4.

3.1 Adaptively weighted group Lasso

The consistency of AWG-Lasso for suitably chosen A and weights is stated in Theorem
1. The proof of Theorem 1 is reliant on the methods of [7], [38], and [28] subject to non-
trivial modifications. The details are deferred to Section 5. For clarity of presentation,
all the technical assumptions of Theorem 1 are also given in Section 5. Roughly speaking,
we assume that the coefficient functions have second order derivatives and we put L =
crn'/®. More smoothness is necessary for Theorem 2. If X;; is uniformly bounded, the
Holder continuity of the second order derivatives with exponent o = 1/2 is sufficient for
Theorem 2.

Define dy (S) = |S.| + (L — 1)|S,| and let wso denote a weight vector consisting of
{wy;|j € 8%} and {w_y;|j € S'}. For an index set S, we define 43 by

ﬁé = argmin Qy(vs; ).
fyseRdV(S)

Then 42, is an oracle estimator on R with the knowledge of S°. Assumption A2
assumes that the relevant coefficients and the coefficient functions are large enough to

be detected.

Theorem 1 Assume that Assumptions A1, A3-5 and B1-/ in Section 5 hold. Moreover,

assume

max wij V Max w1 = Op(1), (8)

and for some sufficiently large 0 < ay,as < 00,

%L%wlj > (a1|wso|) V1 and Jr{é‘igrgw,lj > (ag|wso]) V 1, (9)



with probability tending to 1. We enlarge Yso by adding 0 elements for the S° part so
that (Y31 ,07)" € RPE and define SX from this (a7, 00T Then for any X satisfying

1/2 1/2

(log py)
nl/2

(log pn)

L R < A < (logn)”

(10)

asymptotically, where az 1s a sufficiently large constant and k is any positive constant,
(va, 0T (= §’\) is actually an optimal solution to minimizing Qv (v; \) w.r.t. v € RPE
with probability tending to 1. If Assumption A2 also holds, we have for SA defined here
that

lim P(8* = 8% =1.

n—oo

The order of LY/2) from (10) is the standard one in the literature since (logp,)"/? is

1/2 is the standard rate for regression

due to the large number of covariates and (L/n)
spline estimation. Recall that our normalization factor of the orthonormal basis is 1/L.
The upper bound of A in Theorem 1 is a technical one since we approximate Ry (v) by
a quadratic function in 4 on a suitable bounded region.

We will further discuss the convergence rate of the AWG-Lasso estimators and present
two examples of data-driven weights.

First we discuss the convergence rate of the AWG-Lasso estimators by referring to

Proposition 1 in Section 5. We have derived the consistency of S* in Theorem 1. Then

if we apply Proposition 1 with & = S8°, we have from Remark 1 there that

P(|75 =5 = m) = 0,

where 7, ~ L{(n"tlogp,)"? + Awso|}. We state the proposition for the proofs of
Theorems 1 and 2 to take care of uniformity with respect to the indices of covariates
and we can improve the rate sightly and replace log p,, with logn for this one index set
S°. Hence the convergence rate of the oracle AWG-Lasso estimators of g.;, j € S?, and
Guj» J € SV, is LV {(n"tlogn)/2 4+ \wl|} in the setup of Remark 1.

Next we present two examples of data-driven weights here. A simple sufficient con-
dition for (9) is that with probability tending to 1,

MmN jgso Wy; /A MINjgs0 W1

— 00. 11
1v Hlanegg Wi \ maneSS W—1; ( )

Example 1(Adaptive Lasso type weights). We need an initial estimator denoted by

¥ = (a1, V1ps ¥ iqp) ' from the group Lasso as in [29] and [18]. Note that



L='25,, and L™Y2[7_y;| from [29] and [18] are consistent estimates of |g.;| and ||g.;]],
respectively. Actually they have the convergence rates smaller than C'LY2\ for some

sufficiently large C' and A in Theorem 1. Hence
Wi; = (L_1/2|71j|>_77 and w_y; = (L—1/2|771j|)—n (12)

satisfy the conditions (8) and (9) for any positive fixed n if we have for some posi-
tive C' that minjcgso |ge;| A minjeso ||gy;]] > C. On the other hand, if minjcgso |ge;| A
minjeso ||gyj|| — 0 slowly as in Assumption A2 in Section 5, we can cope with this
situation theoretically by making a suitable adjustment to the order of A\. Note that
Mwy; = ()& wyy) and Mw_y; = (§M0)(E, 'w_q;) for a suitable &, and that &\,
&, twy;, and &, 'w_q; have only to meet the assumptions in Theorem 1. However, we
usually have no knowledge of the order of min;eso [ge;| A minjeso [|gy;]| in advance and
this kind of adjustment to A may be practically difficult. Or then we should try a very
wide range of .

Example 2 (SCAD-based weights). With the initial estimator 7 obtained from the
Lasso penalty estimators such as in [29] and [18], we apply one-step LLA (local linear
approximation) to the SCAD penalty as in [12] to obtain {(w;;, w_1;)}. More specifically,

we set
Awij|v5] = Pl (L2 ) (L72,])  and (13)

Aw_yjly_1;] = Phpae (L2 D (L2 yoyg), (14)

where p,(+) is the SCAD penalty function. Some authors as [28] applied this kind of
AGW-Lasso iteratively to calculate their SCAD estimates.

Because of the properties of the SCAD penalty function, there are positive constants
C1, Cy, and C3 such that if with probability tending to 1,

minje 50 L_1/2le| A minjeso L‘l/z\iul

L2 > (] and (15)
maxigso L™Y2[7, .| V max;qq L Y2 7 ..
J¢SQ |71]’)\L1/2 jQSS ‘Py 1j| < 02’ (16)

then we have with probability tending to 1,
wij = 0(] S 82) and W-1j = O(j € SS) and wi; > Cg(j ¢ SB) and W-15 > Cg(j ¢ SS)

Thus the weights given in (13) and (14) obey (8) and (9). If necessary, we multiply A
and the weights by 1/Cy and Cy, respectively, where Cj is a sufficiently large constant



and this adjustment does not essentially affect the condition (10). If

minjesy |gej| A minjess || go; |
)\Ll/Q — OQ,

we will have (15) and (16). Note that these weights don’t meet (11).

3.2 Consistency of AWG-Lasso+HDIC

To state the main result of this subsection, we need to introduce Assumption Al, which
assumes that |SY| < C, and |8?| < C, for some fixed C, and C,. Let M, and M, be
known positive integers fixed with n such that C,. < M, and C, < M,. Define
S = argmin HDIC(S).
[Sc|<M. and |Sy|<M,
Under certain regularity conditions, the next theorem and corollary show that both S
and S* are consistent estimates of S°. We need to replace Assumptions A2-5 and B1-4
with Assumptions A2'-A5" and B1-B4’ to carry out subtle evaluations of Ry (vs) in

the proof since we deal with high-dimensional semiparametric models. All the technical

assumptions of Theorem 2 are also given in Section 5.

Theorem 2 Assume that Assumptions A1,A2’-A5°, B1’-B4’ and B5 in Section 5 hold.
Then,

lim P(S =8 =1.

n—oo

Corollary 1 We assume the same assumptions as in Theorem 2 and that (8) and (9)

hold true. Then for A satisfying A C [c, \/1og pn/n, cur/1og pu/n] and {c,\/logp,/n} €
A, where ¢, — 0o and ¢, /(logn)® — 0 for some k> 0, we have

~3

lim P(8* =8% = 1.

n—o0

Some comments are in order. While S can achieve selection consistency without
the help of AWG-Lasso, it seems difficult to obtain S directly when p is large and M,
and M, are not very small. On the other hand, SN is applicable in most practical
situations. We also note that Theorem 2 extends the result in [21] and can be viewed
as a generalization of the BIC result in [38] to the semiparametric setup, which is of
fundamental interest from both theoretical and practical perspectives. Like [38], [19]

also confines its attention to linear quantile models. Moreover, it seems difficult to
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extend the proof in [19] to situations where the dimension of the true model tends to

infinity. Finally, we mention that there is another version of HDIC,
-  log py,
HDICu(S) = Ry (3s) + (18] + (L = IS T2, (17)

which becomes

qn log py,

HDICu(S) = Bv(3s) + (IS + (L = 2)ISal) = -

(18)

in the case of additive models. It can be shown that HDIC;; and HDIC share the same
asymptotic properties and their finite sample performance will be compared in the next

section.

4 Numerical studies

In this section, we evaluate the performance of AWG-Lasso+HDIC and AWG-Lasso+HDICy;
using one varying coefficient model and two additive models in the case of pL > n. We
set ¢, = 1 in these numerical studies since the optimal choice of ¢, in finite sample
remains unsettled and is worth further investigation. Moreover, {(wy;,w_1;)} in (5)
are assigned according to (13) and (14), and {(wsj, w_9;)} in (S.3) are determined in a
similar fashion.

In our simulation study, we consider one varying coefficient model (Example 1) and
two additive models (Examples 2 and 3). In these examples, we set (n,p) = (500, 400),
L=6,7=05 M.=M,=M,=M, =20 and

A= {cglx/logp/n—i—kdn,k = 1,...,50},
where ¢, = 2logn and d,, = {(c, — ¢,;')+/logp/n}/50.

Based on a A € A and the weights described above, we employ the alternating
direction method of multipliers (ADMM) to minimize (5) ((S.3)) over v (v-1), and
then choose the A minimizing HDIC(S*) defined in (7) ((S.5)) over A € A, and the
A minimizing HDICy; (S*) defined in (17) ((18)) over the same set. We conduct 50
simulations and the performance of AWG-Lasso+HDIC and AWG-Lasso+HDICy; in
Examples 1-3 is documented in Tables 1-3, respectively. For the purpose of comparison,
we also use the Rqpen package in R (see cv.rq.group.pen) to implement the group Lasso
method in Example 1-3. In addition, the adaptive group Lasso method introduced in

[29] for varying coefficient models (referred to as the T-method), and the group Lasso
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method introduced in [18] for additive models (referred to as the K-method) are included.
Note that since our goal is to identify structures in addition to selecting variables, these
three methods are conducted based on the orthonormal basis functions proposed in this
paper, which enable one to distinguish between constant and non-constant components
for varying coefficient models (or liner and non-linear components for additive models).
On the other hand, we use their original penalties, not the divided ones like ours. The
performance of these three methods is also presented in Tables 1-3. In the the Rqpen
package, the L; norm is used instead of the L, norm inside the penalty functions. See
the document for the details. This may be the cause of different performances from the

other methods.

Example 1. We generate the output variables Y7, ..., Y, using the varying coefficient

model,
p
Y, = ZXijgj(Zi> + €,
j=1

where €, Z; and {Xj;}}_, are independently generated from N(0,0.5%), U(0,1) and
U(0,100) distributions, respectively. Following [16], the coefficient functions g;(z) are

set to

01(2) = g2(2) = 1, 93(2) = 42, 94(2) = 42%,9;(2) =0, 5< j < p.

Therefore, X;; and X;, are relevant covariates with constant coefficients, X3 and X, are
relevant covariates with non-constant coefficients, whereas X;5,..., X, ,, are irrelevant
variables. Since our goal is to identify both relevant variables and the structures of

relevant coefficients, define

CSj =1 {g; (") is identified as a constant function at the sth replication}»
NCS]’ =1 {g;(-) is identified as a non-constant function at the sth replication}»
NSSj =1 {g;() is identified as a zero function at the sth replication}-

It is clear that Cy; + NC,; + NS;; = 1 for each 1 < 57 < p. We further define the true
negative rate (TNR) and the strictly true positive rate (STPR),

2 4
and STPR, — 2= 11Cu=1 T2y Tove, -1
p—4 3 4 ’

noting that STPR, = 1 if at the sth replication, X;; and X;, are identified as relevant

variables with constant coefficients and X;3 and X4 are identified as relevant variables
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with non-constant coefficients. Therefore, STPR; can be viewed as a stringent version
of the conventional true positive rate, which treats constant and non-constant coeffi-
cient functions indifferently. Now, the performance measures of a selection method are

specified as follows:
Tl L T
C, = %;csj, NC; = %;Ncsj,st == ;Nssj,
& Tl
TNR = — TNR,, STPR = — STPR..
502 50 2

The performance of AWG-Lasso+HDIC, AWG-Lasso+HDICyy, Rgpen, and T-method on
(C;, NC;,NS;),j =1,...,4, STPR and TNR is demonstrated in Table 1. Table 1 shows
that AWG-Lasso+HDIC and AWG-Lasso+HDICy; have high capability in identifying
the true variables and true structures in the sense that C;=Cy=NC3=NC,;=STPR=1
hold for the two methods. Table 1 also reveals that both methods perform satisfactorily
in identifying irrelevant variables since their TNR values are quite close to 1. Because
Rqgpen encounters singularity problems in many replications, its performance measures
are set to missing in Table 1. The T-method performs quite well in identifying irrelevant
variables and non-constant functions because its TNR, NC3, and NC, are equal to 1. The

method, however, erroneously treats constant functions as non-constant ones, leading to
a low STPR value of 0.5.

Example 2. We generate Y7, ...,Y,, from the following additive model,

p
Yi=pn+ ) g;(Xy) + e, (19)

j=1
where p = 0, ¢; and {Xj;}7_, follow N(0,0.5%) and U(0,1), respectively. Following [16]

again, we set

g1(x) = ga(w) = 2'2(x = 1/2), gs(x) =272 cos(2mz) + (x — 1/2), 20)
ga(x) = sin(2rz), gi(x) =0, 5 <i <p,
noting that X;; and X, are relevant through the linear functions ¢ (-) and go(-), whereas
Xis and X4 are relevant through the nonlinear functions gs(-) and g4(-). Let NS,; and

TNRj be defined as in Example 1, and define

LSj =1 {g;(-) is identified as a linear function at the sth replication}s
NLSj =1 {g;() is identified as a non-linear function at the sth replication}>
2 4
D i L=y 22 INwy =1
STPRS — j=1 { J } 4 j=3 { J }
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Then, the performance measures of AWG-Lasso+HDIC, AWG-Lasso+HDICy, Rgpen,
and K-method are given by

150

50 50
1 1
L, = — Ly, NL,=— > NL,;,NS, = — ) NS,,
1 50 1 50
TNR = — > TNR,, STPR=—Y STPR,,
70 2 50 2

and summarized in Tables 2. Table 2 shows that L; = Ly = 1 hold for AWG-Lasso+HDIC,
AWG-Lasso+HDICyy, and Rgpen, implying that these three methods can easily iden-

tify relevant linear functions. In addition, the NL3 and NL, of these three methods

are equal (or close) to 1, leading to very high STRP values. While the TNR values of
AWG-Lasso+HDIC and AWG-Lasso+HDICy; are still very close to 1, Rqpen has a low

TNR value of 0.67, revealing that the method may suffer from overfitting. On the other

hand, the K-method can avoid overfitting and has the highest possible TNR value of 1.

Moreover, its NL3 and NL, are equal to 1, showing a good ability to identify non-linear

functions. Unfortunately, the method fails to identify linear functions, resulting a low

STPR value of 0.5.

Example 3. Suppose that Y7, ..., Y, are still generated from model (19), but with
(20) replaced by

3sin(2mx)
— 0.4641016 =6z(l—2)—1 =2r—1
9 _ Sin(Qﬂ'JZ')) )y 92 (I’) ZL’( ._'L') ) 93(1‘) T ’ (21)

gl(x) = (

which are suggested in [22]. As observed in (21), X;; and X;» are relevant through
the nonlinear functions ¢;(-) and go(+), and X;3 ~ X5 are relevant through the linear

functions gs(-) ~ g5(-). With

2 5
TNR. — > 76 Iins,=1) nd STPR. — Do lnn=1y + 0055 L=

| p—5 : 5 !
the performance measures of the methods considered in Example 2 are given by

1 1 X 1
Ly = £50 Ly NLj= 5 > NLy,NS; = .- 3 NSy,
s=1 s=1

s=1

50 50
1 1
TNR = — E TN TPR = — g TP
R 50 2= Rs, STPR 50 2= STPRs,
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and summarized in Table 3. Table 3 shows that NL; = NL, = L3 = L, = Ly =
STPR = 1 hold for AWG-Lasso+HDIC and AWG-Lasso+HDICyy, suggesting that the
two methods can perfectly identify the relevant variables as well as the corresponding
functional structures. The two methods are also good at identifying irrelevant variables
in terms of TNR values. The performance of the K-method in this example resembles
that in Example 2. Rqpen still encounters overfitting as in Example 2. Moreover, it has
a limited ability to identify linear functions although it can perfectly identify non-linear
ones.

In conclusion, we note that the results of this section, together with those obtained
in the previous sections, demonstrate that AWG-Lasso-+HDIC and AWG-Lasso+HDICyy
have a strong ability to simultaneously identify the relevant (or irrelevant) variables and
their corresponding structures in the high-dimensional quantile regression setup, a fea-
ture rarely reported in the literature. While the T- and K-methods also perform well
in identifying relevant (or irrelevant) variables, they are not very successful in structure
identification. This is mainly because the two methods don’t penalize constant/linear
and non-constant /non-linear terms separately. Rqpen can encounter numerical difficul-
ties in high-dimensional varying coefficient models as demonstrated in Example 1. The
performance of Rgpen in structure identification is as good as our method in Example
2, and slightly better than the K-method in Example 3. The method, however, often

suffers from overfitting.

Table 1: (C;,NC;,NS;),i=1,...,4, STPR, and TNR in Example 1

(n,p) = (500,400)
(Ci,NCy,NS; ) (Cy,NCs,NSy)  (C3,NC3,NS3 ) (C4,NCy, NS, ) STPR TNR
AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.963
AWG-Lasso+HDICy; (1.0, 0.0,0.0) (1.0,0.0,0.0) (0.0, 1.0,0.0)  (0.0,1.0,0.0) 1.0 0.963
) ) ) )
0) ) 0) 0)

quen (77 ( (77 (71 - -

T-method (0.0, 1.0, 0 (0.0,1.0,0.0)  (0.0,1.0,0 (0.0, 1.0, 0 05 1.0

Table 2: (L;,NL;,NS;),i = 1,...,4, STPR, and TNR in Example 2

(n,p) = (500,400)

(Li,NLi,NS; ) (Ly,NLy,NS,) (L3, NL3,NS3 )  (Ly,NL;,NS; ) STPR TNR

AWG-Lasso+HDIC  (1.0,0.0,0.0) (1.0, 0.0, 0.0) (0.0,0.96,0.04) (0.0, 1.0, 0.0) 1.0 0.997
AWG-Lasso+HDIC;; (1.0, 0.0, 0.0) (1.0, 0.0,0.0) (0.0,0.98,0.02) (0.02,0.98,0.0)  0.99 0.998
Rgpen  (1.0,0.0,0.0) (1.0,0.0,0.0)  (0.0,1.0,0.0) (0.0, 1.0, 0.0) 1.0 0.674

K-method (0.0, 1.0, 0.0) (0.0, 1.0,0.0)  (0.0,1.0,0.0)  (0.0,1.0,0.0) 05 1.0
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Table 3: (L;,NL;,NS;),i = 1,...,5, STPR, and TNR in Example 3

(n,p) = (500, 400)

(Li,NL{,NS; ) (L,NLy,NS;) (Ls,NLs, NS5 )  (Ly,NLy,NS; ) (L;,NL;,NS; ) STPR TNR

AWG-Lasso+HDIC (0.0, 1.0,0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (10 0.0, 0.0) 1.0 0.997
AWG-Lasso+HDIC;; (0.0, 1.0, 0.0) (0.0, 1.0,0.0)  (1.0,0.0,0.0) (1.0, 0.0,0.0) (1.0, 0.0, 0.0) 1.0 0.997
Rgpen (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.48, 0.52, 0.0) (0.40, 0.60, 0.0) (0.42, 0.58,0.0)  0.66 0.406

K-method ~ (0.0,1.0,0.0) (0.0,1.0,0.0)  (0.0,1.0,00)  (0.0,1.0,0.0)  (0.0,1.0,00) 06 1.0

5 Proofs of the main theorems

First we introduce notation and assumptions. Then we prove Theorems 1 and 2. All
the technical proofs are given in the supplement. We denote the conditional probability
and expectation on {(X;, Z;)}, by P.(-) and E.(-), respectively.

Assumption Al is about |S?| and |S?|.
Assumption A1: There are bounded constants C,, C,, M., and M, such that |S?| <
C. < M, and |8°| < C, < M,. Besides, we know M, and M, in advance.

This assumption looks restrictive and we may be able to relax this assumption
slightly. However, there are still many assumptions and parameters and we decided
not to introduce more complications to relax Assumption Al. Note that we can easily
relax the conditions on C. only for Theorem 1if 3~ wi; = Oy(1).

Assumptions A2 and A2’ are about the relevant non-zero coefficients and coefficient
functions. We need to assume that they are large enough to be detected for our con-
sistency results. Recall that L is the dimension of the spline basis and referred to in
Assumption A3 and that g, appeared in (7).

Assumption A2: We have in probability
minjesp [gej| A mingesy g
L'2{(n"'log p,)V/? + Mwso|}
Assumption A2’: We have

Minjeso |gej| A minjeso [|go;l]
g/ (n1L1og p,)V/2

— 0

Next we consider the smoothness of relevant non-zero coefficient functions and spline
approximation.
Assumption A3: We take L = c;n'/® and use linear or smoother splines. Besides, we

have for some positive Cy,

Y (lgslloo + 1195 lloe + 1197 1) < Cs.

JESIUSY
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When Assumption A3 holds, there exists v} = (v5;, v1;)" € R for every j € S{US)
such that

> g =Bl < C1L72, 5 = L'?ge;, and Y [lguy — ¥ 1B ]lee < CoL72,

7eSUSY JjeSY
where C; and Cy depend only on C, and the order of the spline basis. Let 5, consist
of 7f;, j € 8, and v*,;, j € §). For S including the true S§°, 4% means a vector
of coefficients for our spline basis to approximate g; up to the order of L=2. When
je€S8S.NS%orjeS,NSY, the corresponding elements are put to 0. The other elements
are vy, J € 8?2, and QARTTINVAS SV, See Section S.3 in the supplement for more details on
the above approximations.

We define some notation related to spline approximation, d;, d;;, €;, and 7;, by 6;; =
9;(Z;) — ;" B(Z),
6= > Xylgi(Z)-v"B(Z) = > Xy,
JESIUSY JESIUSY

€. =¢+06;, and T, =P <0). (22)
Under Assumptions A3 and A4 below, we have uniformly in 7 and j,
|5U| = O(L_Q) and |5z| < ClXML_2 —0

for some positive Cy, where let X, be a constant satisfying max; ; |X;;| < Xy. We

allow X, to diverge as in Assumptions A4 and A4’. Note that

ey (X )V (T ) e
i=1 =1 jeSUS? =1 jeSoUS)

When we examine the properties of our BIC type criteria, we need more smoothness
of the coefficient functions to evaluate the approximation bias. We replace Assumption
A3 with Assumption A3’ for simplicity of presentation. In fact, the Holder continuity
of g} with exponent a > 1/2 is sufficient if X3, L7** = O(L™"). If X is bounced, the
proof of Theorem 2 will work for @ = 1/2. See Lemma 4 in Subsection S.2.2 of the
supplement. When we assume Assumption A3’, we can replace L2 with L~2 in the
above approximations.

Assumption A3’: We take L = ¢;n'/® and use quadratic or smoother splines. Besides,

we have for some positive C,,

3
Y (llgslloo + 11} lloc + 1197 lloo + 1957 1) < Co.

FESOUSO
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Next we state assumptions on X,;, p, and ¢,. When we consider additive models,
we can take X, = 1. Assumptions A4 and A4’ imply that ¢ in p = O(exp(n*)) is less

than 1/5.
Assumption A4: For any positive k,

X (log p)Y?n~Y1%(ogn)* — 0. (24)

Besides, E{B§(Z1)X?;} = O(L™") and E{By/(Z1)|X1;} = O(L™") uniformly in [ and j.
Recall that By/(z) is the [-th element of the B-spline basis.
Assumption A4’: In Assumption A4, (24) is replaced with

Xar(log p)'/2g2/*n =1 (log n)* — 0.

Next we state assumptions on the conditional distribution of ¢; on (X;, Z;). We

denote the conditional distribution function by F;(€) and the conditional density function

by fi(e).
Assumption A5: There exist positive Ct1, Ce, and Cps such that uniformly in 7,

|Fi(u+6) — F;(0) —uf;(0)] < Cf1u2 and f;(9) < Cpy when 0| + |u] < Cys.

Assumption A5’: In addition to Assumption A5, E{|¢;|} < oo and when |a| — 0, we

have uniformly in i,
2
Ef(a—€—06)I[{0<¢+0; <a}] = %fi(—&) +O(la]*) for a >0,
and
a2
Ef(e; +06; —a)l{a <€+ 0; <0} = Efl(_51> +O(la)*) for a < 0.
Actually, when a > 0 and a — 0, we have under some regularity conditions that

a—d; CL2
/ (a—¢e — ;) fi(e)de = 5}2(—51) + O(a®).
—5;

We introduce some more notation and another kind of assumptions to describe prop-
erties of the adaptively weighted Lasso estimators.
We define two index sets Sy, and Se. . These index sets are defined for Theorem

2 and they are related to Assumption Al.
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Sy =1{8|8°cS, |S| < M., and |S,| < M,} and (25)
Scim ={S|8°C S, |S.| <C.+ M., and |S,| < C, + M,} (26)

We define some random variables related to W5 and describe assumptions on those
random variables. The assumptions on those random variables follow from similar as-
sumptions on their population versions and standard technical arguments. We omit the
assumptions on the population versions and standard technical arguments here since

they are just standard ones in the literature.
We define ©,(S) by

01(8) = oWl = L 3 L7 Sl + DDA T Il

JES. JESy

For technical and notational convenience, we redefine ©(S) by ©1(S) V 1.
Assumption B1: For some positive Cg;, we have ©,(S°) < Cp; with probability
tending to 1,

Assumption B1 follows from some mild moment conditions under Assumption Al.

We define ©,(S) and O3(S) by

~

05(S) = LAuin(Ss) and  O5(S) = LAnax(Ss),

where ig =ntY " fi(—0;)WisWk. The following assumptions are about their eigen-
values. Recall that our normalization factor of the basis is L.

Assumption B2: For some positive Cps, we have ©5(S°) > Cp, with probability
tending to 1.

Assumption B2’: For some positive C',, we have O(S) > (', uniformly in S € Soy

with probability tending to 1.

Assumption B3: For some positive Cg3, we have with probability tending to 1

03(S° U ({j},#)) < Cps uniformly in j €S9 and
03(S° U (¢, {j})) < Cps uniformly in j € SY.

Assumption B3’: For some positive 54, we have with probability tending to 1

O3(S) < O3 uniformly in S € Scy .
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We define ©, by ©4 =n~" 370 37 o0 X7
Assumption B4: For some positive Cgy, we have O, < Cgy with probability tending
to 1.

Assumption B4’: In addition to Assumption B4, we have for some positive Cg,,

nt Z ( Z ) < C}%, with probability tending to 1.
=1 ;eS9uSY
Assumption B4’ is used to control (23). Assumptions B4 and B4’ follow from mild
moment conditions under Assumption Al.
We define ©5(S) by O5(S) = max;<;<, |W;s|?>. Notice that there are positive con-
stants C; and Cy such that

(Wisl> =LY X2+ |Bi(Z)P Y X5 < CiX3 (LS +1S,]) < CoX3, (27)
JES: JESy
for any S € S¢y under Assumption Al.

We define Qg by Qg = n! Sor o Ti(1—7)WisWXE. The last assumption is about its
eigenvalues. Recall that 7; is defined in (22).

Assumption B5: There is a positive constant C'gs such that uniformly in S € S¢yay,
%5 < Lmin(Qs) < LAmax(Qs) < Cps  with probability tending to 1.

We state Proposition 1 before we prove Theorem 1. The proposition gives the con-
vergence rate of the AWG-Lasso estimator. We prove this proposition by following that
of Theorem 1 in [7] in the supplement.

We use the proposition with S = S® or with S € Scyy and A = 0. Let ws be a

vector consisting of {ws;|j € S.} and {w_q;|j € S,}. Then we define |ws| and K, by

lws|* = Zwlj - Z w?y; and K, (S) = Vn101(S) log p,, + Aws|.

JES. JESy

Tentatively we assume the weights are constants, not random variables.

Proposition 1 Suppose that S° C S and Assumptions Al and A3-5 hold. Besides we

assume Os(SI\
5 12 12 1/2) -
L 2
(ous) (02 (S) Ve KASIL 0 (28)
and we define 0, by n, = Cyy LK, (S), where Cyy satisfies
1 O, \1/2
>b 2
Om 2 1{@2(5) v <@2(5)> } (29)
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for sufficiently large by depending on by in (30). Then we have for any fixed positive by
that

P(|73 — 75| > mn) < exp(—bylogpy). (30)

Later we use Assumptions B1-4 to control random variables in (28) and (29) in

Proposition 1. Here some remarks on Proposition 1 are in order.

Remark 1 When wg is a random vector and A > 0, “— 0” in (28) should be replaced

with “% 0. Besides, when for some positive C, Cs5, and Cj,
P(C1 < 04(S), ©1(S) <y, ©4 < C3) — 1,

the RHS of (29) is bounded from above in probability and ©,(S) in K,(S) can be
replaced with a constant. Thus we have P(|52 —~%| > 7,) — 0 under (28) in probability
with a fixed O);. Especially when S = S°,

M~ L{(n"" og pa)'"? + Aweol}.

Remark 2 Since O5(S°) < (4 X3, for some positive Cy under Assumption A1, (28)
reduces to Xy L{(n "logp,)"? + Mwso|} 2 0 in the setup of Remark 1 with S = S°

and this is not a restrictive condition.

Remark 3 When \ = 0 and the assumptions in Theorem 2 hold, we have for 43 = s
that

73 — v5| = [As — 75| < CsL(n " logp,)*/?

uniformly in § € S¢,; with probability tending to 1 for some positive C5. We use this

result in the proof of Theorem 2.
We provide the proof of Theorem 1. We define I's(M) by

Ls(M) = {vs € R"® | |ys — 5| < M} (31)

Proof of Theorem 1) First we prove (J%,0%)" € RPY is a global minimizer of (5)
by checking the following conditions (32) and (33). These conditions follow from the
standard optimization theory as in [38] and [28]. In addition to (32) as in [38] and [28],
we should deal with (33) since we are employing group penalties. Hereafter in this proof,

we omit the superscript A and write Jso for 43
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With probability tending to 1, we have

‘_ZL VX350, (Y; = WisoAso)

< \wy; for any j € SO and (32)

’— ZB )X (Vi — WhiAso)| < Mw_y; for any j € SP. (33)

We verify only (33) since (32) is easier.
Proposition 1, Remark 1, and the conditions of this theorem imply that

[Fso =50 < CiL{(n™" logp,) /2 + Mwsol) < CoL(n~'logp,)'*(log )™ (34)

with probability tending to 1 for some positive C; and Cy. We define V;(ys0) by

Vilrs) = ZB 2 Xis{ (Vi = Wkovso) = o1 (Vi = Wikivia) }

[*123 2) X, { 0-(Ys = Whiyse) = LY = W) |

By considering the upper bounds given in (34), we can take a positive constant Cg¢

for any small positive £ such that with probability larger than 1 — &,

\—ZB Z) X3 (Vi = W) (35)
1 n
B~ " Boi(Z) Xiplol, (Vi = Wiovs) = (Vi = Whavin)l|
nizl Ys0=7s0
\—ZB Z)X b (Yi = Wihoyso)| + max [V (vs0).

v50 €T 50(Ce L(n=1log pn)/2(logn)*x)

We use the following two lemmas to evaluate (35). These lemmas are to be proved

in the supplement.

Lemma 1 For some positive C', we have
‘_ Z B z szr(Y WSO’YSO) S C(1 (n_l logpn)l/Q

uniformly in j € 8_8 with probability tending to 1
Lemma 2 Take any fixed positive C' and k and fix them. Then we have
max Vi(vso)| = 0p(A
'7so€Fso(CL(n‘1logpn)l/Q(logn)’“)| i) oY)

uniformly in j € 8_8.

22



Finally we evaluate

[ZB Z) XY = Whiyer) = o (Vi - Whva)}| . (36)

Ys0=7s0

= _ZB z z]{F( ) ( (5 +WSO(7SO 7;‘0))}‘
Setting A0 — Aso —

%o and recalling Assumption A5, we find that (36) is rewritten as

——ZB 2) X fi(~6) WA + 0,((n " logp,) /) = —D;A° + 0,((n ™ logp,)?)

(37)
uniformly in j € S_S, where D; is clearly defined in the above equation.
Assumption B3 implies that for some positive (',
Amax(D] D) < C1 L2 (38)

uniformly in j € SY with probability tending to 1. This is because D; is part of
ESOU(d) ii1)- Thus (34) and (38) yield that for some positive Cs,

DA < Co{(n" log p,)/* + Mwso} (39)

uniformly in j € S_S with probability tending to 1.
By combining (35), Lemmas 1 and 2, (37), and (39), we obtain

‘—ZB Zi)Xijpr (Y — WisoeAso) | < Aw_yj

uniformly in j € SO with probability tending to 1. Hence (33) is established.
As for the latter part of the theorem, Assumption A2 implies that v;;, j € S?. and
Y1, J € Sy, are large enough to be detected due to Proposition 1 with § = S°.

Hence the proof of the theorem is complete.

Now we state the proof of Theorem 2

Proof of Theorem 2) We give the details of the overfitting case here. We can deal
with the underfitting case by following the standard arguments and we give the proof of
the underfitting case in the supplement.

Let S satisfy S € Sy and S # S°. See (25) for the definition of Sy;. “Uniformly
in &7 means “uniformly in S satisfying S € Sy and S # S°. We have replaced
Assumption A3 with Assumption A3’. We use Assumption A3’ only once in the proof
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(Lemma 4) and we use Assumption A3 in the other part. Assumption A3’ can be relaxed
in some cases. See Lemma 4 in Subsection S.2.2 of the supplement for more details.
If we have established

. 1 & _ 1<

Ry (vs0) = > pele) + O(XuL7?) = - > E{pr(e)} +0,(1), (40)
=1 =1

Ry (ys0) = Ry (%) + 0,(1), and uniformly in S, (41)

Ry (Js0) — Ry (Fs) = (dv(S) = dv(S°)O,(n{(log pu) V (gn log pn)'/*}), (42)

then we have for some positive Cf,

Ry (¥s) — Rv(Yso0) }

0 <log Ry (7s0) —log Ry (7s) = — log {1 + R ()

< 01 {RV(’)’SO) Ry (vs)}

uniformly in S with probability tending to 1. By (42) and (43), we obtain
log Ry (Ys0) — log Ry (Ys) = (dv(S) — dv(8°))Op(n™ {log pa V (4 log pa)'/*})

< (dy(8) — dy(89) L,

uniformly in & with probability tending to 1. Hence the proof for the overfitting case is

complete.

Thus we have only to prove (40)-(42). We prove only (42) since (40) and (41) are
easy to deal with.

(49), (50), and (53), which will be defined later, are important when we prove (42).
To verify (49), first we will prove in the supplement that

Ru(vs) — Ru(vs) = —(vs — 45" st I < 0)) + £ (s —73) " Sis(vs —3)

(vs —s)" Z Wis(ri — 1)+ O <%) (44)

uniformly in vs € I's(M;L(g,n " logp,)'/?) and S for any fixed M.

We use (44) to derive a useful expression of Ry (7¥s). Put

1 — 1 — ~
==Y Wis(ri—I{, <0}), bs==> Wis(ri—7), and J5 —v5 = L5'as. (45
n 2 s(ri —I{e; <0}), bs " s(ri—7), and Fg — 5 as. (45)

i=1
According to (S.19) in Lemma 4 in Subsection S.2.2 of the supplement,

(¢n log pn) /2

n

(vs —v8)" Z Wis(T = (15 —75)"bs =0 ( > (46)
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and this term in (44) is negligible uniformly in vs € T's(M; L(g,n " logp,)'/?) and S for
any fixed M;.
By applying Bernstein’s inequality conditionally on {(X;, Z;)}7, first and using As-

sumption B5, we have

jas]? = 0, (2E12) (47)

n

uniformly in §. Thus we have from Assumption B2’ that uniformly in S,

Fs — 75 = Op(L(n ' logp,)'?). (48)

We take some 85 € RV, If g + 85 € ['s(M;L(g,n ' logp,)'/?), we have from
(44) and (46) that uniformly in ds and S,

_ . 1 ra JJJUNS ¢n log )" log p,
RV(7S+(5$)—RV(’)’8):—§a§281a5+§5§2865+0p<( B ) >+Op<n(10gn)2>

(49)
Because of the optimality of Ry (vs) and (49), we should have

)+ op(%) (50)

uniformly in 8. The above arguments show that this expression also holds for S°. By

~ * 1 S— An logpn 1/2
Ry(is) — Ry (7) = —alSs'as + 0, (128

combining (49) and (50) and setting ds = s — 75, we also obtain

S L(gnlog pn)"/? Llogp,
—_— 2 f—
s =5l = 0p(ZH =1 ) + 0 (1) (51)

uniformly in §. Note again that these expressions also hold for S°. This equation is
used later in the underfitting case.

We evaluate the difference between Ry (7s) and Ry (Yso). Now write

. S 5
ES = | ~ s° ,\812 and as = ase (52)
Ysa1 2§22 as:

and notice that Ry (v$) = Rv(v%). Thus due to (50), we have only to consider the

difference

T$—1 T 5i—1 T -1 o3yl
asYs As — AgoXgoAs0 = AgoYigy Ls12F 50 5013 50 aso (53)

raie A oA
—2a50Y 50 Yis12Fs2a52 + agyFsaass,

where ﬁgg = (iggg - f]ggligolisn)*l, when we evaluate Ry (¥s) — Ry (7so).
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We will demonstrate that the RHS of (53) has the stochastic order of (dy(S) —
dy(8°))0,(n"'log p,) uniformly in S.

From Assumptions B2’ and B3’, we have for some positive C;, Cs, and Cj,
CiL < )\min(ﬁSQ) < >\max<ﬁ52) < CyL and )\max(§321§812) < C3L7? (54)

uniformly in & with probability tending to 1.
By applying Bernstein’s inequality conditionally on {(X;, Z;)}7, first and using As-

sumption B5, we have that uniformly in S,

log pn,
2 _ _ 0
assl? = (dy (8) = dy(8))0, (). (55)
Hence (54) and (55) imply that the third term on the RHS of (53) satisfies
agzﬁggagg = (dy(S) — dy(S8°))O,(n ' logp,) uniformly in S. (56)

To evaluate the first and second terms on the RHS of (53),

(agoigéisu)ﬁsg(ismig&am) and (agoigolisu)ﬁsﬂsm (57)
we consider
~ - PO
N1 g0 @0 = ZSQIzggﬁ > Wiso(ri — I{e, < 0}) (58)
i=1

to obtain (62) below. And write
Ss12 = (81, s 84y (5)—dy (59))
and note that (54) implies
578 = 0,(L7?) and Apax(Ss21 551 Q50 S50 Bs12) = Op(L7Y) (59)

uniformly in j and S with probability tending to 1. Besides, we have for some positive
04 and 05,

max |87 S5 Wiso| < CuLls;||Wiso| < C5Lls;|Xar = Op(Xar) (60)

uniformly in ¢ and § with probability tending to 1.
Hence by applying Bernstein’s inequality conditionally together with (59) and (60),

we obtain

1l e . B
- Z 8135 Wiso(ri — I{€; < 0}) = O,({(nL)~" log p,, }*/?) (61)
=1
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uniformly in j and S. Therefore (61) yields that uniformly in S,
[Ssn g asol* = (dv(S) — dv(S)O,((nL) " log py). (62)

Thus (54), (55), (57), and (62) imply that the first and second terms on the RHS of
(53) have the stochastic order of (dy(S) — dy(S"))O,(n"'logp,) uniformly in S as in
(56). We have demonstrated that the RHS of (53) has the stochastic order of (dy(S) —
dv(8°))O,(n'log p,) uniformly in S.

Hence (42) follows from (50) and this evaluation of (53) and the proof of the over-
fitting case is complete. The proof of the underfitting case is given in the supplement.

Hence the proof is complete.
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Supplement to “Adaptively weighted group Lasso for
semiparametric quantile regression model”

by Toshio Honda, Ching-Kang Ing, and Wei-Ying Wu

S.1 Additive models

We can deal with additive models in the same way because of the similarity between (4)
and (S.2). We describe the specific procedure for additive models in this section. Recall
we assume some initial estimates are available here, too.
We have no index variable and assume the additivity and X;; € [0,1] for j =1,...,p.
Hence our model is »
Y= u—i—Zgj(Xl-j) + €, (S.1)
j=1
where X;; € [0,1], [ gj(z)dz = 0, and E{p'(;)| X;} = 0. To deal with partially
linear additive coefficient models, we decompose g;(z) as g;(z) = gij() + gaj(z), where
gij(z) = ¢;jBa(x) (the j-th linear component) and gqj(x) (the j-th nonlinear component)

satisfies .
/0 91 (%) gaj(x)dx = 0.
Our regression spline model is given by
Yi=p+ Wiy + ¢, (S.2)
where v_1 = (y%};,...,7%,)" and W; = (BT, (Xa),..., BT (X;))", with y_; and

B_(z) defined as in Section 2. Denote the true model by S° = (8P, 8?), where

S’ ={jlgi(x) #0} and 8 ={jga;(z) # 0}.

When some j’s satisfy both j € S and j ¢ S simultaneously, our true model is a
partially linear additive model.

We describe the details of our simultaneous variable selection and structure identifica-
tion procedure for additive models. First express v_1; as v_1; = (725, 7T2j)T, noting that
o7 is for By(Xy;) = 1/12/L(X;;—1/2) and v_y; is for B_5(Xi;) = (Bs(Xy), .- ., Br(Xi))T.
For a given A\, the AWG-Lasso objective function is

1 — -
Qa(y-1A) =~ D (Vi = = W) + A (waslyag] + wogily-o)), (5.3)
i=1 =1

1



where {(wg;, w_9;)}}_, are obtained from some initial estimates. Minimizing Qa(v-1;\)

w.r.t. 7y_;, one gets

~\ .
A% = argmin Qa(v-_1;\),
771€RP<L71)

where %, = (35,925, ... ¥2,, ¥5,)" - Then, the model selected by AWG-Lasso is
S* = (S8}, S)), where §} = {j|75; # 0} and S} = {j|5,; # 0}. Like Section 2,
this section also considers using HDIC to choose a suitable A\ from a prescribed set A of
positive numbers. Denote W in (S.2) by (va1s, v gy, -, Vaps, ¥79,) ", Where (vy;6, v75,)"

is the regressor vector corresponds to «v_1;. For a given model S = (§;,S,), define

s ERISIHL=2)ISal

1 _ _
Ralys) = > o (Yi—p—Wiys) and Fs=  argmin  Ra(ys),  (S4)
=1

where Wis € RISUFE=2ISel consists of {vq); |7 € S} and {v_o;; | j € S,} and the corre-

ISt|+(L=2)[Sa

sponding coefficient vs € R |is conformably defined as in (6).

The HDIC value for model S is stipulated by
~ » log pn
HDIC(S) = log Ra(s) + (18] + (L — 2)|Su) =22, (S.5)

where p, and ¢, are defined as in Section 2. Let M; and M, be some known upper

bounds for |S?| and |S?|, respectively. We suggest choosing model S*, where

A= argmin HDIC(S).

XEA,|SH<My,|S) <M,
S.2 Technical results for Theorems

S.2.1 Technical results for Theorem 1

We provide the proofs of Proposition 1 and Lemmas 1 and 2 here. We omit A of 43 for
notational simplicity.

First we state Lemma 3 for Proposition 1 and the notation for the lemma. Then we
prove Proposition 1 by following Lemma 1 and Theorem 1 in Fan et al. (2014). Next
we present the proofs of Lemmas 3, 1, and 2.

Before we state Lemma 3, we define

Gs(M)= sup [{Rv(vs) — Rv(vs)} — E{Rv(vs) — Rv(v5)}

vs€l's(M)

where I's(M) is defined in (31).



Lemma 3 Assume that Assumption A3 holds. For any fized M, t, and S, we have

P€<GS(M) > 4M\/w +t> < exp{ - #ﬁ)w}'

When t = KoM {n~'0,(S) log p, }'/2, we have from Lemma 3 that

@1 (S) lOg Dn

P(Gs(M) > (4+ Ko)M :

) < exp(— K log p,/8).

A remark is in place: A lower limit of the probability, 1 —exp(—KZ log p,/8), appears
in the proof. But it is only related to evaluating Gs(M ) and this Gs(M) does not contain

the weights. Hence we can also deal with stochastic weights by using this proposition.

Proof of Proposition 1) We follow that of Theorem 1 in Fan et al. (2014). The
following arguments do not depend on S.

Taking M = Cy LK, (S), we evaluate the following expression on I's(M).

B{ Ry (s) ~ Rv(4)} = B[ Z{pfe—al ~ e}, (.6)

where we use the notation defined in (22) after Assumption A3 such as €, = ¢; + J; and
a; = Wk(vys —~%). Note that

7

la;| < |[Wis|M < 02(S)M — 0

due to the assumption of this proposition.

If a; > 0, we have from the definition of p,(-) that
prlé =) = pele) = [ 10 < € < shas + a1 < 0} 7).
Then from Assumption A5, we obtain
EE[/OM I{0 < €; < s}ds + a;(I{e; <0} — 1)
- /ai(Fi(s —6) — Fi(—8))ds + ai(r; — 7)
0
= %fi(—@)a? +o(a?) + O(a?(logn)™") + O(|7 — 7i|*logn).

uniformly in i. Note that |7 — 7;|*> < C1d;]* for some positive C; and that we can deal

with the case of a; < 0 in the same way.



Hence the expression in (S.6) can be represented as
Zfz )a; —1—0( 1Za?>+0<n’1logn25i2). (S.7)
i=1 i=1

The first term of (S.7) is written as

}_;

Zfz i ’73 _78 Zfl z 'LSWS(73 _75) (88>

S
> 2( )|'78 — ')’3|2

®

As for the third term of (S.7), we have from Assumption A3 that

loin iff logn Z ( Z XU%>2 . logn Z ( Z >(Z 52) 59)

i=1 i=1 ;eS80 i=1 ;eS8 JESY
Cllogn Cllogn
< Clopn sy g < ke, (510
=1 jeS0

for some positive C;. We defined O, just before Assumption B4.
By combining (S.7), (S.8), and (S.9), we have

. (S . Oylogn
B Ry (1)~ Br(48)) = 22014 o(1) s - il + 0(ZHE0). (s
We define ¢ by
¥s = a¥s + (L —a)vs (5.12)
for
0< M <1
o= — < 1.
- MA+As -
Then
vs € T's(M).

Since the convexity of Qv (vs) implies that

Qv(vs) < aQv(As) + (1 — )Qv(vs) < Qv(7s),



we have with probability larger than or equal to 1 — exp(—KZlogp,/8) that
Ec[Ry(vs) — RV('VE)]'VS?V% (S.13)
< % > por(78) - E{% > 08} - % > re(18) + Ed [% > pels)]
i=1 i=1 i=1 i=1
+Qv(7§) — Qv(s)
A S wie = A wo v A D wili A wogly

Ys=75

JESe JESy JESe JESy
< Gs(M) + Mwsl|vs — sl
6.(S) log pn
< 4+ KO)M{ % + )\|w5|} — (44 Ko)MKn(S).

By (S.11) and (S.13), we have

2(4 + Ko)L —4
~ 65y MEL(S) +0(OuL ogn)}

< %{CMKEL(S)L + O(@4L_4 logn)}

lve —vi* <

with probability larger than or equal to 1 — exp(— K3 log p,,/8). Hence

{2(4 + Ko)
0,”*(8)
1 1

1/2
) {CIPK,(S)L + O(©y*L™3/*(logn)/?)} (S.14)

*

7§ — sl <

with probability larger than or equal to 1 — exp(—KZ log p,,/8).
(S.12), (S.14), and simple algebra yield

Vs —vs| < M = Cy LK, (S)

with probability larger than or equal to 1 — exp(—KZ log p,,/8).

Hence the proof of the proposition is complete.

Proof of Lemma 3) We follow that of Lemma 1 in Fan et al. (2014).
Due to the Lipschitz continuity of p,(u) and application of the concentration inequal-
ities (Theorems 14.3 and 14.4 in Biithlmann and van de Geer (2011)), we have

Ee{GS(M)} S QEe[ sup ‘% Zfl{pTO/; - VVZ‘?;’VS) - pT(Y;' - m§7;>}‘:|
=1

vs€ls(M)

1 n
< 4E6[ sup ‘— @VVE (s —5)
ys€ls(M) ' T 1221:




where {¢;}7_; is a Rademacher sequence of and independent of {(Y}, X, Z;)}}_,. Since
‘ D EW (s —5)

i=1
= ‘Z(Zé@X N 1/) 71] ’yl] +Z{Z§1X BT 7 17 — 'Yilj)}‘

JjES: =1 jES, i=1
i 12 2 n 24 1/2
< ‘73_75|{Z‘Z§iXijL + ’ZfiX B_ } ;
JES: i=1 jES, i=1
we have
E{Gs(M)} (S.15)
12 2 1 n 24 1/2
< B[ty yex e Iy ex )]
jES,  i=1 jeS, =1
NP | n 2y71/2
= n1/2[ { Z‘Z&XWL 1/2‘ +EZ‘Z&X B H
jese  i=1 jeS, =1

S 1/2{ Z‘msl <4M\/

Next we apply Massart’s inequality (Theorem 14.2 in Biithlmann and van de Geer
(2011)) to evaluate the stochastic part Gs(M) — E{Gs(M)}. Then noticing

(Wis(vs = v9))? < [Wisl|lvs — vil? < [Wis|*M?
and
1 g 2 2 2
=~ IWis|PM? < 0y(S)M?,
=1

we have as in Lemma 1 in Fan et al. (2014)

(GS ) 2 4M 86, (S)M2}

We used (S.15) to evaluate E.{Gs(M)} in the conditional probability.

Hence the proof of the lemma is complete.

Proof of Lemma 1) Recall that B(z) = AyBy(z) and note (S.48) in Section S.3. Thus

we have only to demonstrate

’_ZBOZ szr €; +5) S Cl{(nL)_l logpn}1/2 (816)



uniformly in [ and j with probability tending to 1 for some positive C. Recall By (z) is
the [-th element of the B-spline basis.
Note that

{ Z BOZ ”pT €+ 5 } Z BOZXU 7— - TZ)

and |17 — ;| = O(L™?) uniformly in i.

Since Assumption A4 implies

E{% i Bo(Z:) X5 (1 — n)} = O(L™?)

and

Var{% é Bo(Z;) X (1 — TZ)} = O(n L7,

uniformly in [ and j, we apply Bernstein’s inequality unconditionally and obtain

{ ZBOZ Xyph(e+8) }| < Col ()M ogpa} /2 + O(L ) (S.17)

uniformly in [ and j with probability tending to 1 for some positive Cs.
Noticing that

—ZB Z)XE < L7

uniformly in [ and j with probablhty tending to 1 for some positive C5, we apply Bern-

stein’s inequality conditionally and obtain

‘_ Z BOl sz»r €; + 5 { Z BOl zypq— € + 0; )}‘ S C4{(ﬂL)_1 lngn}1/2
(S.18)

uniformly in [ and j with probability tending to 1 for some positive Cj.
Hence (S.16) follows from (S.17) and (S.18) and the proof of the lemma is complete.

Proof of Lemma 2) We can prove this lemma almost in the same way as Lemma B.5
in Sherwood and Wang (2016) and the detailed proof is very lengthy. We just outline
the proof.

First we define dj;(vs0) by

dl] 730 = ZBOl Z] pT Y WSO’YSO) pT(Y W80780>

— EA{p,(Yi - WSO’YSO) pr(Yi = WSO'YSO)}]



and take and fix any positive Cy. Then as in the proof of Lemma 1, we have only to

prove that
i (ys0)| < Ci{(nLlogn)~" log p,}'/3

uniformly in [, j € 89, and o € T'so(CoL(n~"log p,)'/?(logn)*) with probability tend-
ing to 1 for some positive C'; depending on Cj.

Note that the conditional variance of dj;(7yso) is uniformly bounded by

CQXM

L (0 og pa) /2 (10g 1) < CyXar{n~*(logn)* log p,}2
n

with probability tending to 1 for some positive Cy and C3. They depend on Cj. Besides,
we can cover I'so(CoL(n~'log p,)*/?(logn)*) by N open balls with radius

[{CoL(n" 1og p,) 2 (log n)*}yn=2m)1/2
for any large fixed m and this N satisfies
N = O(n™ Sy,

See Lemma 2.5 in van de Geer (2000) for this upper bound of N. We denote the centers
of the covering open balls by 1, ...,vy. Note that

pLN = O(exp{log p, + mdy (S°) logn}).

For any =, among the centers, we have by employing Bernstein’s inequality condi-
tionally that

log pn (log py)"/n?/1°
Pe(|dij(,)| = Cay 22 ) <exp{ - }
o5 (ys)l = Ci nLlogn = &P SXM(logn)’fJrl

uniformly in ~, with probability tending to 1 for some positive Cy and C5 and we also

have from Assumption A4 that

1/2,,3/10 1/2,,3/10

(log pn)
X (logn)k+t

1
} = exp [Cﬁ{bg P+ mdy (8% log n} — (5128 Pn)

LN { —C
L s Xy (logn)k+t

—0

for some positive Cy. Therefore we successfully evaluated d;;(7yso) at all the centers.
We can evaluate d;;(7yso) inside the open balls exactly as in the proof of Lemma B.5
in Sherwood and Wang (2016) since we can take any large m. Hence the proof of the

lemma is complete.



S.2.2 Technical results for Theorem 2

In this subsection, we state Lemma 4 and then give the proofs of the underfitting case,
(44), and Lemma 4.

First we state Lemma 4, which is used to evaluate the bias from (7; — 7) in the proof
of Theorem 2. Note that the Holder continuity of g7 with exponent « is almost sufficient
for 7, — 7 = O, (X L~ 3+9).

Recall the definition of bs in (45) and bgs is defined as ass in (52). By using the
properties of bs and bssy in this lemma and replacing as with as + bs in (45), we can
prove Theorem 2 in the same way if X3,L72* = O(L™!). Recall that L = c¢;n'/® in this
paper. Both of |bs|* and |bsy|* have Op<%> and these are not typos.

Lemma 4 In the setup of Theorem 2, we have

(¢n log p,)'/?

n

) (S.19)

uniformly in vs € Ds(ML(g,n""1logp,)*?) and S for any fized M,. Let Assumption

(vs —v5) bs = 0p<

A8’ be replaced with Assumption AS3. If 7, — 7 = Op(XML_(2+")) uniformly in 1 for some

nonnegative o, we have

X1/ logn Xjlogn
= 0, (SH5) o, (k)

uniformly in S.

Since dy(S) = |S| + (L — 1)|S,|, we have uniformly in S,

log pr log pn
bsl? = 0, (=22 and [ f? = (d(8) — dv ()0 (1)

as in (47) and (55) if X3;L72* = O(L™'). Then we can prove Theorem 2 in the same

way.

Proof of the undefitting case) Next we consider the underfitting case. For & =
(S.,S,) that does not include S° and satisfies

’Sc‘ S Mc and ‘Sv’ < Mva

we put

StT=5us’. (S.20)

Then St € Scyy in (26). Note that uniform results proved in the overfitting case still
hold for 8T in (S.20).



Since

log Ry (¥s) — log Ry (Fs0) = log {1+ RV('N’;"QV;??)(’NYS” }

and

n

Ry(Gsr) = =3 prle) + 0,(1) = Bl (e} + 0,(1), (s.21)

i=1
we have only to demonstrate

log py,

Ry (vs) — Rv(qs0) > ClLC’?L on

(S.22)

uniformly in & with probability tending to 1 for some C} and ¢, such that ¢,/ q}/ = Ce.
Note that we should be able to take and fix any sufficiently large C¢ and that C has to
be independent of C¢ when C¢ is large. Then Assumption Al and (S.21) assure (S.22)
dominates the penalty terms. Since (S.21) follows from the argument for the overfitting
case and Assumption A5’ we consider only (S.22).

From Assumption A2’, we have uniformly in S,

|'7§0_5‘
L(n=1g, log p,)'/?

— OQ,

where %, g is obtained by removing all the j-th elements satisfying j € S N S° from
Ys0-
Since ST includes S° and S does not include SY, Proposition 1 with no penalty
implies that
(35, 07)" = As+| > Léu(n " logpa)'? (5.23)

uniformly in & with probability tending to 1 for ¢, = C’gqi/ ®. Note that we can take and
fix any large C¢ here. This also holds with s+ replaced by Fg:+ due to (51).
Let us follow the standard arguments for general underfitting cases. There is an

0 < a < 1 such that

(35, 07)" =Fs+)l = Léu(n ™' logpa)

and set
As = a((75,07)" —7s4).
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The arguments from (44) to (50) imply that

Llog p,, (¢n log )/ log pr,
o Op( n ) + Op(n(log n)Q)
(5.24)

Ry(F¥s+ + As) > Ry (Fs+) + Ol

Llogp,
4n

Llogp,
4n

> Ry (Ys+) + Ca(l > Ry (Fs+) + Col?

uniformly in & with probability tending to 1 for some positive Cy independent of C;.
We used the optimality of 45+ and Assumption B5 here.
Because of (S.24), the convexity of Ry (vs+), and the definition of Ag, we have

Ry(¥s) > Rv(Ys+ + As) > Ry(¥s+) > Ry (¥s+) (S.25)

uniformly in S with probability tending to 1. From (S.24) and (S.25), we obtain

Llog pn

Ry (¥s) > Rv(Ys+) + Cal} in

(S.26)

uniformly in § with probability tending to 1. Recalling the results for the overfitting
case such as (50) and the evaluation of (53), we have

Ry (s+) > Ry (Gse) + (dy (8°) — d(§+) 2282 (521)

uniformly in & with probability tending to 1.
By combining (S.26) and (S.27), we get

~ ~ Llogpn n 108 pn
Ry (3s) 2 Ry (o) + Co2 == 4 (dy (S8°) = d(S ™) =0 (3.28)

uniformly in S with probability tending to 1. Since dy(S°) — d(S*) = O(L) from
Assumption Al and ¢, = C’gq}/ ? we have from (S.28) that

Llog py

Ry (3s) > Rv(As0) + Cs5¢, o

(S.29)

for any sufficiently large fixed C, uniformly in S with probability tending to 1. Note that
(3 is independent of C¢ when C¢ is larger than some value depending on the assumptions.

Hence we have established (S.22) and the proof of the underfitting case is complete.
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Proof of (44)) We take a positive M; and consider

Ry (vs) — Rv(7s) (S.30)

+ _st —v5) (1 — I{e; < 0}) — E{Ry(vs) — Rv(vs)}
- L3 W -

= = Z Di(vs),

where D;(~s) is clearly defined in the above equation, 7; = P.(¢; < 0), and |vs — v%| <
M, L(g,n""log p,)"/2.
We show that

=D = 0 () (3.31)

uniformly in vs € T's(M;L(g,n ' logp,)/?) and S for any fixed M;. To verify (S.31),
we should note that
Di(vs) = Di(vs) — E{D:(7s)}, (S.32)

where
Di(vs) = p-(Yi — Wisvs) — p-(Wisvs) + Wis(vs — v5) (1 — I{e; <0})
and that
pr(€; — a;) — pr(€;) = —ai(T — I{e; < 0}) — (¢ — a;)[[{e; < a;} — I{e; <0}, (S.33)

where a; = Wis(vs — 73)-
By using (S.33), we can obtain the following three facts (S.34)-(S.36) uniformly in
~s € I's(MyL(g,n""log p,)*/?) and S. Note that C, ..., C; are some positive constants.
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max |Wis| <CoXa (MM2L7Y2 4 MY?) < C5X )y (S.34)

1<i<n

lrgag( |D (7S>| < max |VVZS|M1 (an_l 1ngn>1/2 S C'4)(M]\41L(Q'nn_1 1ngn>1/2

(S.35)

ZE {Di(vs)} Z! is(vs =)l (S.36)

< % s [WisH{M: L™ 108 )2} A (0~ 2 WisW)
< %Iﬁ)@vj(qnnllogpn)?’/2
if . y
-1 . My
Amax (n ;ms ) <~ (S.37)

By using (S.34)-(S.36) and Bernstein’s inequality, we have
1 N C 1/10 1 " 1/2
( ZD 73‘_0‘(;—p>§086><p{— on ! _(log pn) ) } (S.38)

(logn)? M3Myg X (log n)*
for any fixed vs € T's(M;L(g,n " logp,)'/?) and S if (S.37) holds. Note that Cg and Cy

are some positive constants.

By appealing to the standard argument based on the Lipschitz continuity and (S.38)
and using Assumptions A4’ and B5, we obtain (S.31) uniformly in vs € T's(M;L(g,n " log p,)"/?)
and S for any fixed M.

We evaluate E{Ry (vs) — Rv(~%)} in (S.30) by using (S.33) and Assumption A5’
Since

Ec{p-(6; — ai) — p-(€)} = %fi(—di)a? +ai(1; = ) + O(lai*),

where a; = Wk(~s —~%), we have

2

E{Rv(vs) — Bv(v5)} Zfz ia; + ;Zaz(z—r +O( Zyaz) (S.39)

1=

uniformly in vs € T's(M,L(g,n ' logp,)'/?) and S. Assumption A4’ implies that uni-
formly in vs € T's(M1L(g,n""logp,)*/?) and S for any fixed M,

1 3 _ maxp |a;l . 2 log pn,
il P < =] |2 =0 (—) S.40
22l < BERELS o = 0, (L2 (5.40)
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By (S.39) and (S.40), we obtain

BBy (1s) — Rv (1)} = 51 —43)" Ssts — 72) (5.41)
1 & log p,,
#2007+ 0 )

uniformly in vs € ['s(M;L(g,n "' logp,)'/?) and S for any fixed M.
By combining (S.30), (S.31), and (S.41), we obtain (44),

Ry (vs) — Ry (78) = —(vs — 75)" st 16 < 01) + s — ) Sslrs —73)

log p
S Wt o ()
(vs =5)" Z s(7 )+ n(logn)?
uniformly in vs € T's(M;L(g,n""log p,)/?) and S for any fixed M;. Hence the proof of
(44) is complete.

Proof of Lemma 4) We prove the former half by using Assumption A3’. By exploiting
(23) and Assumptions A3’ and B4’, we have

n Z la;(r; — 7)| < ( -1 iilalz)l/z <n_1 ii(n - 7)2)1/2 = Op(_(q" loipn)w_).

uniformly in s € I's(M;L(g,n " logp,)'/?) and S since

1
_ 1 1 , 2 —6
- E a Lg,logp,) and - E (1, = 7)* = O,(L™°)

uniformly as well.

Before we consider the latter, we should recall that B(z) = AgBy(z), where By(z) =
(Bo1(2), ..., Bor(2))T is the equispaced B-spline basis on [0, 1], and that the first element,
of B(z) is L™/2. Therefore we should deal with

nymE:h (S.42)

and

}:BO ) — 7. (S.43)
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As for (S.42), we have

L1/2 Z i — 7| = <L2+1/2+a> (5-44)

from the assumption on (7; — 7).

Since we have E{Boj(Zi)} = O(L™') uniformly in j, we have

Xir(logn)t/?
n Z BO] |T7, - T| p(T) (845)

uniformly in j from the standard argument based on Bernstein’s inequality.
(S.44) and (S.45) yields that

X4, logn X3,
osf? = 18010y (S ) + 18100 (525
uniformly in S.

The result for bsy follows from the same argument. Hence the proof of the lemma is

complete.

S.3 Properties of B-spline bases

We describe properties of our basis and give comments on some misleading assumptions
on spline bases in the literature for reference.

First we describe how to construct our orthonormal spline basis B(z) = (By(2), ..., Br(2))"
from the equispaced B-spline basis on [0, 1], which is denoted by By(z) = (Bp1(2), - BO ()T

Recall that L = c;n'/? in this paper. We also should recall two well-known facts:

Byj(z) =1 and Byj(z) >0 (S.46)
2.

Cy Cy
- (S.47)

7 < Anin(20) < Amax() <

where Qg = fo By(2)Bl(z)dz and C; and Cy are positive constants and independent of
L.
Therefore there exists an L x L matrix Ay such that

B(2) = AyBy(z / B(2)BY(2)dz = A)Q AL = L7,

12 1
Bl(Z) = L1/2, and BQ(Z) = f(Z — 5)
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We denote the L x L identity matrix by I.
We can obtain an Ay numerically by carrying out the Gram-Schmidt orthonormal-

ization. Notice also that
C’3 S )\min(AOAg) S AmaX(AOAg) S 04, (848)

where C3 and C} are positive constants and independent of L.
When we deal with varying coefficient models, B;(z) = L~'/? is used for the con-
stant parts and B_; = (Bs(2),...,Br(2))T is used for the non-constant parts. When
12 1

we deal with additive models, By(z) = ,/T<z — 5) is used for the linear parts and

(B3(2),...,Br(2))" is used for the nonlinear parts.

Next we consider approximation by our spline basis B(z) = (By(z), BL,(2))T =
(B1(2), Ba(z), BT, (2))T under Assumption A3. Assume that

1glloc + 119"l + 119 [loe < Cy-

IN

Varying coefficient models: There exists v*;, € RF™! such that ||g, — YT B_1|le
C,C,L~% We can take vf = L'2g,.
Additive models: Let g(x) satisfy fol g(x)dx = 0. Then there exist 75 € R and v*, €
RE=2 such that

lgr = 5 Balloo + llga = ¥5Balloc < C2Cy L™,

Note that €'} and C; are independent of the specific function. We verify the latter
here since the former is easier.

T

Corollary 6.26 in Schumaker (2007) implies that there is v* = (v§,73,v*5)? such

that
lg — 7" Blloo < C3C, L7 (S.49)

since B(z) is constructed from By(x). Noticing

N =LV / (vTB(z) — g(x))dz

and |vi| < C3C,L™/%, we can take v; = 0 without affecting (S.49).
Put
9" (x) = % Ba(w) + ¥ Ba(x) and  g(x) = 13Ba(w) + ga(x),

where 7} is defined in the second equation and ¢;(x) = 74 Bs(z) . Recalling the decom-

position of g(z) and that B(z) is an orthonormal basis with the normalization factor of
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L7 and || By||oe = O(L™Y?), we get

L7y — vl = ‘/ ))By(z)dx| < C,C, L~
Thus we have |5 — 74| < C4,C,L~3/% and
175 — 72) Balloo < C5C, L2 (S.50)

Note that C5, C4, and C5 are independent of the specific function. Hence the desired
result follows from (S.49) and (S.50).

Finally we consider
1 1
Q, - / B(2)(By(2))"dz, Oy — / B()(B(2))"dz, and Bo(Z1) — E{Bo(Z1)}.
0 0

We demonstrate that both 2; and €2, does not necessarily have desirable properties
for theoretical analysis. This conclusion also applies to Bo(Z1) — E{By(Z1)}.
Take a three times continuously differentiable function g(z). Then Corollary 6.26 in

Schumaker (2007) implies that for some v € RL,
3
lg =" Bol < 1LY [lgV]

j 0

lg" —~" Byl < CoL™ ZHQ(J

lg" =~ Byl < CsL™ Z g
=0

where C, Cy, and C3 are independent of g(z).
Taking ¢(z) = sin(2r Rz) with R — oo and R*/L — 0, we have from the above three

inequalities that

gl ~ 1, (gl ~ R, Ng"|| ~ R?,
Yy~ 1, (Y)Y~ R (Y)Y~ R
These and (S.47) imply that ©; and €y have eigenvalues Xl and Xg satisfying XjL —

oo (j = 1,2), respectively. This contradicts some critical assumptions in some papers.
To consider By(Z1) — E{By(Z1)}, we note the following equations.

L Boa(Z1) — E{Bo2(21)}
> =1 and 2 — DBy(Z%), (8.51)

i=1 Bor(Z1) — B{Bo(Z1)}
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where 7; = E{By;(Z1)} and the (L — 1) x L matrix D is defined by

When Z; has a bounded density function, 7; ~ 1/L uniformly in j and we have
i, D= (rn—1,7m,...,71)and |[DVi;_i| ~ 1
for ¢4 = (1,...,1)7 € R*~'. This means
Amin(DDT) = O(L™Y) and Apin (D% DY) = O(L72).

This implies that the basis in (S.51) is not suitable for additive models for this poor

eigenvalue property. That is why we have introduced another basis.

S.4 A real application

In this section, the usefulness of our methods is illustrated via a real dataset, available
from http://www.res.org.uk. This dataset includes a variety of variables describing more
than 100 Japanese industrial chemical firms listed on the Tokyo stock exchange. The
goal is to investigate the relationship between shareholder concentration and several
indices for managerial moral hazard in the form of expenditure with scope for private
benefit, which has been studied previously by Yafeh and Yosha (2003), Horowitz and Lee
(2005) and Lian (2012). The response variable Y is the general sales and administrative
expenses deflated by sales, which is one of five measures of activities with a scope for
managerial moral hazard given by Yafeh and Yosha (2003). We consider the additive
regression model with covariates, X;:log(assets), Xs: the age of the firm, Xj3: leverage
(ratio of debt to total assets), Xy: profit (variance of operating profitability of firms
between 1977 and 1986), X5: TOPTEN (the percentage of ownership held by the 10
largest shareholders), and Xg: share (share of the largest creditor in total debt). All
covariates are normalized into the range of [0,1] via a linear transformation. Note that
only 114 firms are included in our analysis because of the missing covariates. The model
selection results based on AWG-Lasso+HDIC and AWG-Lasso+HDICy; with 7 = 0.5
are summarized in Table S.1, in which L;, NL;, and NS;,7 = 1,...,6, are defined as in

Example 2 of Section 4 with the number of replications set to 1. It is shown in Table
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Table S.1: (L;,NL;,NS;),i = 1,...,6 in the data on Japanese industrial chemical firms

(n,p) = (114,6) with 7 = 0.5
(Ly,NL{,NS; ) (L2, NLy,NS,) (L3, NL3,NS; ) (Ls,NLy, NS, ) (Ls,NL5, NS5 ) (Lg, NLg, NSg )
AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0)
AWG-Lasso+HDICy, (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0,0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0)

S.1 that all covariates are survived after model selection, and the firm size [log(assets)]
and firm age [the age of the firm| are identified as nonlinear covariates, in accordance
with the findings given by Horowitz and Lee (2005).

We now evaluate the performance of these two methods in high-dimensional sit-

uations based on the result obtained from the above analysis. To this aim, we ar-

tificially generate irrelevant covariates X;,j = 7,...,100, where X7,..., X are i.i.d.
N (0, (0.15)%) distributed, X1, ..., Xjg are i.i.d. U(0,0.5) distributed, and (X7, ..., X10)
and (Xig,...,Xi00) are independent. In view of (S.1), we also transform (X~,..., X))

into the range [0,1] using (X; — minjer, . 10y Xi)/(MaxXeqr,.. 10y Xi — mingeqr, 10y Xi),
1 = 7,...,10. Since the above analysis suggests that all Xi,..., X4 are relevant, the

TNR is defined by

100
Zj:7 ]{Xj is not selected}

94
In order to alleviate the overfitting problem of AWG-Lasso+HDIC and AWG-Lasso+HDICyy,
we also increase the penalty ¢, from 1 to 3. For 7 = 0.5 and ¢, = 1,2 and 3, the per-
formance of the two methods in terms of L;, NL;, and NS;,2 = 1,...,6, and TNR is
documented in Table S.2. Table S.2 shows that for ¢, = 1, X1, ..., X4 are still identi-

fied as relevant variables although the structure identification results may slightly differ

from the low-dimensional case considered previously. However, the TNR values of AWG-
Lasso+HDIC and AWG-Lasso+HDICyy are 0.72 and 0.35, suggesting that the methods
suffer from an overfitting problem. When ¢, increases to 2, the TNR values of the two
methods increase substantially, in particular, for AWG-Lasso+HDICy;. On the other
hand, X, and X5 are now identified as irrelevant variables, suggesting the potential
problem of false negatives. The result for ¢, = 3 is similar to that for ¢, = 2.

In conclusion, we note that our methods perform reasonably well in discovering rele-
vant variables and excluding irrelevant ones. The model/structure identification results,
however, may sometimes be sensitive to the choice of ¢,, which deserves a separate

investigation.
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Table S.2: (L;,NL;,NS;),i = 1,...,6 and TNR in the data on Japanese industrial chemical firms

with artificial covariates

(n,p,q) = (114,100, 1) with 7 = 0.5

(Li,NLi,NS; ) (Ls,NLy,NSs) (Lg, NLy,NS; ) (L, NLy,NS; ) (Ls,NLs,NS; ) (Lg, NLg, NS5 )

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0,1.0,0.0) (1.0, 0.0,0.0) (0.0, 1.0, 0.0)

AWG-Lasso+HDICy; (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0,1.0,0.0)  (0.0,1.0,0.0) (0.0, 1.0, 0.0)
(TNR)
AWG-Lasso+HDIC (0.72)
AWG-Lasso+HDICy; (0.35)

(n,p,¢n) = (114,100, 2) with 7 = 0.5

(Li,NLi,NS; ) (Ly,NLy,NSs) (Lg, NLy,NS; ) (L, NLy,NS; ) (Ls,NLs,NS; ) (Lg, NLg, NS5 )

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0)

AWG-Lasso+HDICy; (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0) (0.0, 1.0,0.0)  (0.0,0.0, 1.0) (0.0, 1.0, 0.0)
(TNR)
AWG-Lasso+HDIC (0.82)
AWG-Lasso+HDICy; (0.82)

(n,p, gn) = (114,100, 3) with 7 = 0.5

(L, NL1,NS; ) (Ls,NLs,NSy) (Ls, NLy, NS, ) (Li, NL;,NS; ) (Ls,NL;,NS; ) (Lg, NLg, NSg )

AWG-Lasso+HDIC (0.0, 1.0, 0.0)  (0.0,0.0, 1.0) (1.0, 0.0, 0.0) (0.0, 1.0,0.0)  (0.0,0.0, 1.0) (0.0, 1.0, 0.0)

AWG-Lasso+HDICy; (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (1.0, 0.0, 0.0) (0.0,1.0,0.0)  (0.0,0.0,1.0) (0.0, 1.0, 0.0)
(TNR)
AWG-Lasso+HDIC (0.82)
AWG-Lasso+HDICyy (0.82)
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