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Abstract

We propose an adaptively weighted group Lasso procedure for simultaneous

variable selection and structure identification for varying coefficient quantile re-

gression models and additive quantile regression models with ultra-high dimen-

sional covariates. Under a strong sparsity condition, we establish selection con-

sistency of the proposed Lasso procedure when the weights therein satisfy a set

of general conditions. This consistency result, however, is reliant on a suitable

choice of the tuning parameter for the Lasso penalty, which can be hard to make in

practice. To alleviate this difficulty, we suggest a BIC-type criterion, which we call

high-dimensional information criterion (HDIC), and show that the proposed Lasso

procedure with the tuning parameter determined by HDIC still achieves selection

consistency. Our simulation studies support strongly our theoretical findings.

Keywords: Additive models; B-spline; high-dimensional information criteria; Lasso;

structure identification; varying coefficient models.

1 Introduction

We propose adaptively weighted group Lasso (AWG-Lasso) procedures for simultaneous

variable selection and structure identification for varying coefficient quantile regression

models and additive quantile regression models with ultra-high dimension covariates.

Let the number of covariates be denoted by p. Throughout this paper, we assume

p = O(exp(nι)), where n is the sample size and ι is a positive constant specified later in

Assumption A4 and A4’ of Section 5. Under a strong sparsity condition, we establish

selection consistency of AWG-Lasso when its weights, determined by some initial esti-

mates, e.g., Lasso and group Lasso, obey a set of general conditions. This consistency
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result, however, is reliant on a suitable choice for the tuning parameter for the Lasso

penalty, which can be hard to make in practice. To alleviate this difficulty, we sug-

gest a BIC-type criterion, which we call high-dimensional information criterion (HDIC),

and show that AWG-Lasso with the penalty determined by HDIC (denoted by AWG-

Lasso+HDIC hereafter) still achieves selection consistency. This latter result improves

previous ones in [21] and the BIC results in [38] since the former does not deal with semi-

parametric models and the latter concentrates on linear models. See also [5] and [19]

for recent developments in BIC-type model selection criteria. With the selected model,

one can conduct final statistical inference by appealing to the results as in [34], [4], [28].

Moreover, our approach can be implemented at several different quantiles, thereby lead-

ing to a deeper understanding of the data in hand. There are some other approaches to

quantile estimation from ours. For example, [13] deals with quantile estimation based

on the transnormal model.

High dimensional covariate issues have been important and intractable ones. How-

ever, some useful procedures have been proposed, for example, the SCAD in [9], the

Lasso in [30], and the group Lasso in [36] and [26]. The properties of the Lasso were

studied in [40] and [2]. The adaptive Lasso was proposed by [40] and it has the selec-

tion consistency property. The SCAD cannot deal with too many covariates and needs

some screening procedures such as the SIS procedure in [11]. [15] proposed a quantile

based screening procedure. There are some papers on screening procedures for varying

coefficient and additive models, for example, [8], [10], and [20]. Forward type selection

procedures are considered in e.g. [33] and [17]. We name [3], [14], and [32] as general

references on high-dimensional issues.

Because parsimonious modelling is crucial for statistical analysis, simultaneous vari-

able selection and structure identification in semiparametric regression models has been

studied by many authors, see, among others, [37], [22], [35], [6], [23], and [16]. Another

important reason to attain this purpose is that in some high-dimensional situations, there

may be a lack of priori knowledge on how to decide which covariates to be included in

the parametric part and which covariates to be included in the nonparametric part. On

the other hand, to the best of our knowledge, no theoretical sound procedure has been

proposed to achieve the aforementioned goal in the high-dimensional quantile regression

setups. Note that [22] and [23] proposed using the estimated derivatives of coefficient

functions to identify the structures of additive models. These estimated derivatives,

however, usually have slow convergence rates. Moreover, as shown in Section S.3 of the
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supplementary document, the conditions imposed on the B-spline basis functions in [22]

and [23] seem too stringent to be satisfied in practice. Instead of relying on the estimated

derivatives of coefficient functions, we appeal to the orthogonal decomposition method

through introducing an orthonormal spline basis with desirable properties as in [16],

which is devoted to the study of Cox regression models. Our approach not only can be

justified theoretically under a set of reasonable assumptions, but also enables a unified

analysis of varying coefficient models and additive models. The single index model is

another important semiparametric quantile regression model. However. we don’t deal

with the model because the theoretical treatment is completely different from that of

the varying coefficient and additive model. We just refer to [39] and [25] here.

The Lasso for quantile linear regression is considered in [1] and the adaptively

weighted Lasso for quantile linear regression are considered in [7] and [38]. Some authors

such as [18] and [29] deal with group Lasso procedures for additive models and varying

coefficient models, respectively. [24] applied a reproducing kernel Hilbert space approach

to additive models. [28] deals with SCAD type variable selection for parametric part.

In [28], the authors applied the adaptively weighted Lasso iteratively to obtain their

SCAD estimate starting from the Lasso estimate. However, in the quantile regression

setup, there doesn’t seem to exist any theoretical or numerical result for simultaneous

variable selection and structure identification based on the adaptively weighted group

Lasso, in particular when its penalty is determined by a data-driven fashion. To fill

this gap, we establish selection consistency of AWG-Lasso and AWG-Lasso+HDIC in

Section 3, and illustrate the finite sample performance of AWG-Lasso+HDIC through

a simulation study in Section 4. Our simulation study reveals that AWG-Lasso+HDIC

performs satisfactorily in terms of true positive and true negative rates.

This paper is organized as follows: We describe our procedures in Section 2. We

present our theoretical results in Section 3. The results of numerical studies are given in

Section 4. We state assumptions and prove our main results in Section 5 and describe

some important properties of B-spline bases in the supplementary document, which also

contains a real application of the proposed methods and more technical details.

We end this section with some notation used throughout the paper. A and |A| stand

for the complement and the number of the elements of a set A, respectively. For a vector

a, |a| and aT are the Euclidean norm and the transpose, respectively. For a function g

on the unit interval, ‖g‖ and ‖g‖∞ stand for the L2 and sup norms, respectively. We

denote the maximum and minimum eigenvalues of a matrix A by λmax(A) and λmin(A),
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respectively. Besides, C, C1, C2, . . ., are generic positive constants and their values may

change from line to line. Note that an ∼ bn means C1 < an/bn < C2 and that a ∨ b and

a∧ b stand for the maximum and the minimum of a and b, respectively. Convergence in

probability is denoted by
p→.

2 Simultaneous variable selection and structure iden-

tification

We consider varying coefficient models and additive models in this paper. We can deal

with both models in the same way and we concentrate on varying coefficient models in

sections 2 and 3 to save space. We present the specific procedure for additive models in

the supplement.

Suppose that we have n i.i.d. observations {(Yi,Xi, Zi)}ni=1, whereXi = (Xi1, Xi2, . . . , Xip)
T

is a p-dimensional covariate vector and Zi is a scalar index covariate. Then we assume a

quantile varying coefficient model holds for these observations. First we define the τ -th

quantile check function ρτ (u) and its derivative ρ′τ (u) by

ρτ (u) = u(τ − I{u ≤ 0}) and ρ′τ (u) = τ − I{u ≤ 0}.

Then our varying coefficient model is

Yi =

p∑
j=1

Xijgj(Zi) + εi, (1)

where Zi ∈ [0, 1] and E{ρ′τ (εi) |Xi, Zi} = 0. Usually we take Xi1 ≡ 1 for varying

coefficient models.

To deal with partially linear varying coefficient models, we decompose gj(z) as gj(z) =

gcj + gvj(z), where

gcj =

∫ 1

0

gj(z)dz and gvj(z) = gj(z)− gcj.

We define the index set, S0 = (S0
c ,S0

v ), for the true model, where

S0
c = {j | gcj 6= 0} and S0

v = {j | gcj(z) 6≡ 0}.

The index set for a candidate model can be similarly given by S = (Sc,Sv). In

the following, we refer to S0 and S as the true model and the candidate model, re-

spectively whenever confusion is unlikely. When some j’s satisfy both j ∈ S0
c and
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j 6∈ S0
v simultaneously, our true model is a partially linear varying coefficient model,

for example, S0 = ({1, 2, 3}, {1, 2}) with S0
c = {1, 2, 3} and S0

v = {1, 2}. Moreover,

S1 ⊃ S2 means Sc1 ⊃ Sc2 and Sv1 ⊃ Sv2, where Sj = (Scj,Svj), j = 1, 2. In addition,

S1 ∪ S2 = (Sc1 ∪ Sc2,Sv1 ∪ Sv2).

We use the regression spline method to estimate coefficient functions and the covari-

ates for regression spline are defined by

Wi = Xi ⊗B(Zi), (2)

where B(z) = (B1(z), B2(z), . . . , BL(z))T is an orthonormal basis constructed from the

equispaced B-spline basisB0(z) = (B01(z), . . . , B0L(z))T on [0, 1] and ⊗ is the Kronecker

product. We can represent B(z) as B(z) = A0B0(z) and we calculate the L×L matrix

A0 numerically. As in [16], let B(z) satisfy B1(z) = 1/
√
L, B2(z) =

√
12/L(z − 1/2),

and ∫ 1

0

B(z)(B(z))Tdz = L−1IL. (3)

We denote the L × L identity matrix by IL. Note that B1(z) is for gcj (the j-th con-

stant component) and B−1(z) = (B2(z), . . . , BL(z))T is for gvj(z) (the j-th non-constant

component). More details are given in Section S.3 of the supplement.

To carry out simultaneous variable selection and structure identification, we apply

AWG-Lasso to

Yi = W T
i γ + ε′i, (4)

where γ = (γT1 , . . . ,γ
T
p )T . For a given λ > 0, the corresponding objective function is

given by

QV (γ;λ) =
1

n

n∑
i=1

ρτ (Yi −W T
i γ) + λ

p∑
j=1

(w1j|γ1j|+ w−1j|γ−1j|), (5)

where {(w1j, w−1j)}pj=1 is obtained from some initial estimates such as Lasso and group

Lasso, and (γ1j,γ
T
−1j)

T = γj, noting that γ1j is for B1(z) and γ−1j is for B−1(z). Mini-

mizing QV (γ;λ) w.r.t. γ, one gets

γ̂λ = argmin
γ∈RpL

QV (γ;λ).

Denote γ̂λ by (γ̂λ11, γ̂
λT
−11, . . . , γ̂

λ
1p, γ̂

λT
−1p)

T . Then, the model selected by AWG-Lasso is

Ŝλ = (Ŝλc , Ŝλv ), where Ŝλc = {j | γ̂λ1j 6= 0} and Ŝλv = {j | γ̂λ−1j 6= 0}, and this enables us to

identify variables and structures simultaneously.
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Theorem 1 in Section 3 establishes the selection consistency of Ŝλ under a set of

general conditions on {(w1j, w−1j)}pj=1 and a strong sparsity condition on the regression

coefficients that |S0
c | and |S0

v | are bounded. Theorem 1, however, also requires that λ

falls into a suitable interval, which can sometimes be hard to decide in practice. We

therefore introduce a BIC-type criterion, HDIC, to choose a λ in a data-driven fashion.

Express Wi as (v11i,v
T
−11i, · · · , v1pi,v

T
−1pi)

T , where (v1ji,v
T
−1ji)

T is the regressor vector

corresponding to γj. For a given model S = (Sc,Sv), define RV (γS) and γ̃S by

RV (γS) =
1

n

n∑
i=1

ρτ (Yi −W T
iSγS) and γ̃S = argmin

γS∈R|Sc|+(L−1)|Sv |
RV (γS), (6)

where WiS ∈ R|Sc|+(L−1)|Sv | consists of {v1ji | j ∈ Sc} and {v−1ji | j ∈ Sv}. The corre-

sponding coefficient vector γS consists of {γ1ji | j ∈ Sc} and {γ−1ji | j ∈ Sv} as well. The

elements of these vectors are suitably arranged. In this paper, we sometimes take two

index sets S1 and S2 satisfying S1 ⊂ S2 and compare γS1 and γS2 by enlarging γS1 with 0

elements or something, for example, (γTS1 ,0
T )T . Then (γTS1 ,0

T )T and γS2 have the same

dimension and the elements of these vectors are assumed to be conformably rearranged.

The HDIC value for model S is stipulated by

HDIC(S) = logRV (γ̃S) + (|Sc|+ (L− 1)|Sv|)
qn log pn

2n
, (7)

where pn = p ∨ n and qn →∞ at a slow rate described in Section 5. We consider a set

of models {Ŝλ} chosen by AWG-Lasso, where λ ∈ Λ with Λ being a prescribed set of

positive numbers, and select Ŝ λ̂ among {Ŝλ}, where

λ̂ = argmin
λ∈Λ,|Ŝλc |≤Mc,|Ŝλv |≤Mv

HDIC(Ŝλ),

with Mc and Mv being known upper bounds for |S0
c | and |S0

v |, respectively. Under some

regularity conditions, the consistency of Ŝ λ̂ is established in Corollary 1.

Note that in the case of high-dimensional sparse linear models, it is shown in [17]

that (7) with ρτ (·) replaced by the squared loss (·)2 can be used in conjunction with the

orthogonal greedy algorithm (OGA) to yield selection consistency. The major difference

between (7) and the BIC-type criteria considered in [21] is that we deal with semipara-

metric models in this paper. It seems difficult to derive the consistency of Ŝ λ̂ in any

high-dimensional regression setups without the additional penalty term qn in (7).
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3 Consistency results

We prove the consistency of AWG-Lasso and AWG-Lasso+HDIC separately in Subsec-

tion 3.1 and 3.2. It is worth pointing out that due to the similarity between (4)-(7) and

(S.2)-(S.5) in the supplement, the theoretical treatment is almost the same for the two

types of models considered in this paper. Therefore, this section concentrates only on

the varying coefficient model. On the other hand, our numerical studies are conducted

for both types of models, see Section 4.

3.1 Adaptively weighted group Lasso

The consistency of AWG-Lasso for suitably chosen λ and weights is stated in Theorem

1. The proof of Theorem 1 is reliant on the methods of [7], [38], and [28] subject to non-

trivial modifications. The details are deferred to Section 5. For clarity of presentation,

all the technical assumptions of Theorem 1 are also given in Section 5. Roughly speaking,

we assume that the coefficient functions have second order derivatives and we put L =

cLn
1/5. More smoothness is necessary for Theorem 2. If Xij is uniformly bounded, the

Hölder continuity of the second order derivatives with exponent α = 1/2 is sufficient for

Theorem 2.

Define dV (S) = |Sc| + (L − 1)|Sv| and let wS0 denote a weight vector consisting of

{w1j | j ∈ S0
c } and {w−1j | j ∈ S0

v}. For an index set S, we define γ̂λS by

γ̂λS = argmin
γS∈RdV (S)

QV (γS ;λ).

Then γ̂λS0 is an oracle estimator on RdV (S0) with the knowledge of S0. Assumption A2

assumes that the relevant coefficients and the coefficient functions are large enough to

be detected.

Theorem 1 Assume that Assumptions A1, A3-5 and B1–4 in Section 5 hold. Moreover,

assume

max
j∈S0c

w1j ∨max
j∈S0v

w−1j = Op(1), (8)

and for some sufficiently large 0 < a1, a2 <∞,

min
j 6∈S0c

w1j ≥ (a1|wS0|) ∨ 1 and min
j 6∈S0v

w−1j ≥ (a2|wS0|) ∨ 1, (9)
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with probability tending to 1. We enlarge γ̂S0 by adding 0 elements for the S0c part so

that (γ̂λTS0 ,0
T )T ∈ RpL and define Ŝλ from this (γ̂λTS0 ,0

T )T . Then for any λ satisfying

a3
(log pn)1/2

n1/2
≤ λ ≤ (log n)κ

(log pn)1/2

n1/2
(10)

asymptotically, where a3 is a sufficiently large constant and κ is any positive constant,

(γ̂λTS0 ,0
T )T (= Ŝλ) is actually an optimal solution to minimizing QV (γ;λ) w.r.t. γ ∈ RpL

with probability tending to 1. If Assumption A2 also holds, we have for Ŝλ defined here

that

lim
n→∞

P(Ŝλ = S0) = 1.

The order of L1/2λ from (10) is the standard one in the literature since (log pn)1/2 is

due to the large number of covariates and (L/n)1/2 is the standard rate for regression

spline estimation. Recall that our normalization factor of the orthonormal basis is 1/L.

The upper bound of λ in Theorem 1 is a technical one since we approximate RV (γ) by

a quadratic function in γ on a suitable bounded region.

We will further discuss the convergence rate of the AWG-Lasso estimators and present

two examples of data-driven weights.

First we discuss the convergence rate of the AWG-Lasso estimators by referring to

Proposition 1 in Section 5. We have derived the consistency of Ŝλ in Theorem 1. Then

if we apply Proposition 1 with S = S0, we have from Remark 1 there that

P(|γ̂λS − γ∗S | ≥ ηn)→ 0,

where ηn ∼ L{(n−1 log pn)1/2 + λ|wS0|}. We state the proposition for the proofs of

Theorems 1 and 2 to take care of uniformity with respect to the indices of covariates

and we can improve the rate sightly and replace log pn with log n for this one index set

S0. Hence the convergence rate of the oracle AWG-Lasso estimators of gcj, j ∈ S0
c , and

gvj, j ∈ S0
v , is L1/2{(n−1 log n)1/2 + λ|w0

S |} in the setup of Remark 1.

Next we present two examples of data-driven weights here. A simple sufficient con-

dition for (9) is that with probability tending to 1,

minj 6∈S0c w1j ∧minj 6∈S0v w−1j

1 ∨maxj∈S0c w1j ∨maxj∈S0v w−1j

→∞. (11)

Example 1(Adaptive Lasso type weights). We need an initial estimator denoted by

γ = (γ11,γ
T
−11, . . . , γ1p,γ

T
−1p)

T from the group Lasso as in [29] and [18]. Note that
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L−1/2|γ1j| and L−1/2|γ−1j| from [29] and [18] are consistent estimates of |gcj| and ‖gvj‖,
respectively. Actually they have the convergence rates smaller than CL1/2λ for some

sufficiently large C and λ in Theorem 1. Hence

w1j = (L−1/2|γ1j|)−η and w−1j = (L−1/2|γ−1j|)−η (12)

satisfy the conditions (8) and (9) for any positive fixed η if we have for some posi-

tive C that minj∈S0c |gcj| ∧ minj∈S0v ‖gvj‖ > C. On the other hand, if minj∈S0c |gcj| ∧
minj∈S0v ‖gvj‖ → 0 slowly as in Assumption A2 in Section 5, we can cope with this

situation theoretically by making a suitable adjustment to the order of λ. Note that

λw1j = (ξnλ)(ξ−1
n w1j) and λw−1j = (ξnλ)(ξ−1

n w−1j) for a suitable ξn and that ξnλ,

ξ−1
n w1j, and ξ−1

n w−1j have only to meet the assumptions in Theorem 1. However, we

usually have no knowledge of the order of minj∈S0c |gcj| ∧ minj∈S0v ‖gvj‖ in advance and

this kind of adjustment to λ may be practically difficult. Or then we should try a very

wide range of λ.

Example 2 (SCAD-based weights). With the initial estimator γ obtained from the

Lasso penalty estimators such as in [29] and [18], we apply one-step LLA (local linear

approximation) to the SCAD penalty as in [12] to obtain {(w1j, w−1j)}. More specifically,

we set

λw1j|γ1j| = p′λL1/2(L
−1/2|γ1j|)(L−1/2|γ1j|) and (13)

λw−1j|γ−1j| = p′λL1/2(L
−1/2|γ−1j|)(L−1/2|γ−1j|), (14)

where pλ(·) is the SCAD penalty function. Some authors as [28] applied this kind of

AGW-Lasso iteratively to calculate their SCAD estimates.

Because of the properties of the SCAD penalty function, there are positive constants

C1, C2, and C3 such that if with probability tending to 1,

minj∈S0c L
−1/2|γ1j| ∧minj∈S0v L

−1/2|γ−1j|
λL1/2

> C1 and (15)

maxj 6∈S0c L
−1/2|γ1j| ∨maxj 6∈S0v L

−1/2|γ−1j|
λL1/2

< C2, (16)

then we have with probability tending to 1,

w1j = 0(j ∈ S0
c ) and w−1j = 0(j ∈ S0

v ) and w1j > C3(j 6∈ S0
c ) and w−1j > C3(j 6∈ S0

v ).

Thus the weights given in (13) and (14) obey (8) and (9). If necessary, we multiply λ

and the weights by 1/C4 and C4, respectively, where C4 is a sufficiently large constant
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and this adjustment does not essentially affect the condition (10). If

minj∈S0c |gcj| ∧minj∈S0v ‖gvj‖
λL1/2

→∞,

we will have (15) and (16). Note that these weights don’t meet (11).

3.2 Consistency of AWG-Lasso+HDIC

To state the main result of this subsection, we need to introduce Assumption A1, which

assumes that |S0
c | ≤ Cc and |S0

v | ≤ Cv for some fixed Cc and Cv. Let Mc and Mv be

known positive integers fixed with n such that Cc < Mc and Cv < Mv. Define

Ŝ = argmin
|Sc|≤Mc and |Sv |≤Mv

HDIC(S).

Under certain regularity conditions, the next theorem and corollary show that both Ŝ
and Ŝ λ̂ are consistent estimates of S0. We need to replace Assumptions A2–5 and B1–4

with Assumptions A2’–A5’ and B1’–B4’ to carry out subtle evaluations of RV (γS) in

the proof since we deal with high-dimensional semiparametric models. All the technical

assumptions of Theorem 2 are also given in Section 5.

Theorem 2 Assume that Assumptions A1,A2’–A5’, B1’–B4’ and B5 in Section 5 hold.

Then,

lim
n→∞

P (Ŝ = S0) = 1.

Corollary 1 We assume the same assumptions as in Theorem 2 and that (8) and (9)

hold true. Then for Λ satisfying Λ ⊂ [c−1
n

√
log pn/n, cn

√
log pn/n] and {cn

√
log pn/n} ∈

Λ, where cn →∞ and cn/(log n)κ → 0 for some κ > 0, we have

lim
n→∞

P (Ŝ λ̂ = S0) = 1.

Some comments are in order. While Ŝ can achieve selection consistency without

the help of AWG-Lasso, it seems difficult to obtain Ŝ directly when p is large and Mc

and Mv are not very small. On the other hand, Ŝ λ̂ is applicable in most practical

situations. We also note that Theorem 2 extends the result in [21] and can be viewed

as a generalization of the BIC result in [38] to the semiparametric setup, which is of

fundamental interest from both theoretical and practical perspectives. Like [38], [19]

also confines its attention to linear quantile models. Moreover, it seems difficult to
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extend the proof in [19] to situations where the dimension of the true model tends to

infinity. Finally, we mention that there is another version of HDIC,

HDICII(S) = RV (γ̃S) + (|Sc|+ (L− 1)|Sv|)
qn log pn

2n
, (17)

which becomes

HDICII(S) = RV (γ̃S) + (|Sl|+ (L− 2)|Sa|)
qn log pn

2n
(18)

in the case of additive models. It can be shown that HDICII and HDIC share the same

asymptotic properties and their finite sample performance will be compared in the next

section.

4 Numerical studies

In this section, we evaluate the performance of AWG-Lasso+HDIC and AWG-Lasso+HDICII

using one varying coefficient model and two additive models in the case of pL > n. We

set qn = 1 in these numerical studies since the optimal choice of qn in finite sample

remains unsettled and is worth further investigation. Moreover, {(w1j, w−1j)} in (5)

are assigned according to (13) and (14), and {(w2j, w−2j)} in (S.3) are determined in a

similar fashion.

In our simulation study, we consider one varying coefficient model (Example 1) and

two additive models (Examples 2 and 3). In these examples, we set (n, p) = (500, 400),

L = 6, τ = 0.5, Mc = Mv = Ml = Ma = 20 and

Λ =
{
c−1
n

√
log p/n+ kdn, k = 1, . . . , 50

}
,

where cn = 2 log n and dn = {(cn − c−1
n )
√

log p/n}/50.

Based on a λ ∈ Λ and the weights described above, we employ the alternating

direction method of multipliers (ADMM) to minimize (5) ((S.3)) over γ (γ−1), and

then choose the λ minimizing HDIC(Ŝλ) defined in (7) ((S.5)) over λ ∈ Λ, and the

λ minimizing HDICII (Ŝλ) defined in (17) ((18)) over the same set. We conduct 50

simulations and the performance of AWG-Lasso+HDIC and AWG-Lasso+HDICII in

Examples 1–3 is documented in Tables 1–3, respectively. For the purpose of comparison,

we also use the Rqpen package in R (see cv.rq.group.pen) to implement the group Lasso

method in Example 1–3. In addition, the adaptive group Lasso method introduced in

[29] for varying coefficient models (referred to as the T-method), and the group Lasso
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method introduced in [18] for additive models (referred to as the K-method) are included.

Note that since our goal is to identify structures in addition to selecting variables, these

three methods are conducted based on the orthonormal basis functions proposed in this

paper, which enable one to distinguish between constant and non-constant components

for varying coefficient models (or liner and non-linear components for additive models).

On the other hand, we use their original penalties, not the divided ones like ours. The

performance of these three methods is also presented in Tables 1–3. In the the Rqpen

package, the L1 norm is used instead of the L2 norm inside the penalty functions. See

the document for the details. This may be the cause of different performances from the

other methods.

Example 1. We generate the output variables Y1, . . . , Yn using the varying coefficient

model,

Yi =

p∑
j=1

Xijgj(Zi) + εi,

where εi, Zi and {Xij}pj=1 are independently generated from N(0, 0.52), U(0, 1) and

U(0, 100) distributions, respectively. Following [16], the coefficient functions gj(z) are

set to

g1(z) = g2(z) = 1, g3(z) = 4z, g4(z) = 4z2, gj(z) = 0, 5 ≤ j ≤ p.

Therefore, Xi1 and Xi2 are relevant covariates with constant coefficients, Xi3 and Xi4 are

relevant covariates with non-constant coefficients, whereas Xi,5, . . . , Xi,p, are irrelevant

variables. Since our goal is to identify both relevant variables and the structures of

relevant coefficients, define

Csj = I{gj(·) is identified as a constant function at the sth replication},

NCsj = I{gj(·) is identified as a non-constant function at the sth replication},

NSsj = I{gj(·) is identified as a zero function at the sth replication}.

It is clear that Csj + NCsj + NSsj = 1 for each 1 ≤ j ≤ p. We further define the true

negative rate (TNR) and the strictly true positive rate (STPR),

TNRs =

∑p
j=5 I{NSsj=1}

p− 4
and STPRs =

∑2
j=1 I{Csj=1} +

∑4
j=3 I{NCsj=1}

4
,

noting that STPRs = 1 if at the sth replication, Xi1 and Xi2 are identified as relevant

variables with constant coefficients and Xi3 and Xi4 are identified as relevant variables

12



with non-constant coefficients. Therefore, STPRs can be viewed as a stringent version

of the conventional true positive rate, which treats constant and non-constant coeffi-

cient functions indifferently. Now, the performance measures of a selection method are

specified as follows:

Cj =
1

50

50∑
s=1

Csj, NCj =
1

50

50∑
s=1

NCsj,NSj =
1

50

50∑
s=1

NSsj,

TNR =
1

50

50∑
s=1

TNRs, STPR =
1

50

50∑
s=1

STPRs.

The performance of AWG-Lasso+HDIC, AWG-Lasso+HDICII, Rqpen, and T-method on

(Cj, NCj, NSj), j = 1, . . . , 4, STPR and TNR is demonstrated in Table 1. Table 1 shows

that AWG-Lasso+HDIC and AWG-Lasso+HDICII have high capability in identifying

the true variables and true structures in the sense that C1=C2=NC3=NC4=STPR=1

hold for the two methods. Table 1 also reveals that both methods perform satisfactorily

in identifying irrelevant variables since their TNR values are quite close to 1. Because

Rqpen encounters singularity problems in many replications, its performance measures

are set to missing in Table 1. The T-method performs quite well in identifying irrelevant

variables and non-constant functions because its TNR, NC3, and NC4 are equal to 1. The

method, however, erroneously treats constant functions as non-constant ones, leading to

a low STPR value of 0.5.

Example 2. We generate Y1, . . . , Yn from the following additive model,

Yi = µ+

p∑
j=1

gj(Xij) + εi, (19)

where µ = 0, εi and {Xij}pj=1 follow N(0, 0.52) and U(0, 1), respectively. Following [16]

again, we set

g1(x) = g2(x) = 21/2(x− 1/2), g3(x) = 2−1/2 cos(2πx) + (x− 1/2),

g4(x) = sin(2πx), gi(x) = 0, 5 ≤ i ≤ p,
(20)

noting that Xi1 and Xi2 are relevant through the linear functions g1(·) and g2(·), whereas

Xi3 and Xi4 are relevant through the nonlinear functions g3(·) and g4(·). Let NSsj and

TNRs be defined as in Example 1, and define

Lsj = I{gj(·) is identified as a linear function at the sth replication},

NLsj = I{gj(·) is identified as a non-linear function at the sth replication},

STPRs =

∑2
j=1 I{Lsj=1} +

∑4
j=3 I{NLsj=1}

4
.
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Then, the performance measures of AWG-Lasso+HDIC, AWG-Lasso+HDICII, Rqpen,

and K-method are given by

Lj =
1

50

50∑
s=1

Lsj, NLj =
1

50

50∑
s=1

NLsj,NSj =
1

50

50∑
s=1

NSsj,

TNR =
1

50

50∑
s=1

TNRs, STPR =
1

50

50∑
s=1

STPRs,

and summarized in Tables 2. Table 2 shows that L1 = L2 = 1 hold for AWG-Lasso+HDIC,

AWG-Lasso+HDICII, and Rqpen, implying that these three methods can easily iden-

tify relevant linear functions. In addition, the NL3 and NL4 of these three methods

are equal (or close) to 1, leading to very high STRP values. While the TNR values of

AWG-Lasso+HDIC and AWG-Lasso+HDICII are still very close to 1, Rqpen has a low

TNR value of 0.67, revealing that the method may suffer from overfitting. On the other

hand, the K-method can avoid overfitting and has the highest possible TNR value of 1.

Moreover, its NL3 and NL4 are equal to 1, showing a good ability to identify non-linear

functions. Unfortunately, the method fails to identify linear functions, resulting a low

STPR value of 0.5.

Example 3. Suppose that Y1, . . . , Yn are still generated from model (19), but with

(20) replaced by

g1(x) =
3 sin(2πx)

(2− sin(2πx))
− 0.4641016, g2(x) = 6x(1− x)− 1, g3(x) = 2x− 1,

g4(x) = x− 0.5, g5(x) = −x+ 0.5, gi(x) = 0, 6 ≤ i ≤ p,

(21)

which are suggested in [22]. As observed in (21), Xi1 and Xi2 are relevant through

the nonlinear functions g1(·) and g2(·), and Xi3 ∼ Xi5 are relevant through the linear

functions g3(·) ∼ g5(·). With

TNRs =

∑p
j=6 I{NSsj=1}

p− 5
and STPRs =

∑2
j=1 I{NLsj=1} +

∑5
j=3 I{Lsj=1}

5
,

the performance measures of the methods considered in Example 2 are given by

Lj =
1

50

50∑
s=1

Lsj, NLj =
1

50

50∑
s=1

NLsj,NSj =
1

50

50∑
s=1

NSsj,

TNR =
1

50

50∑
s=1

TNRs, STPR =
1

50

50∑
s=1

STPRs,
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and summarized in Table 3. Table 3 shows that NL1 = NL2 = L3 = L4 = L5 =

STPR = 1 hold for AWG-Lasso+HDIC and AWG-Lasso+HDICII, suggesting that the

two methods can perfectly identify the relevant variables as well as the corresponding

functional structures. The two methods are also good at identifying irrelevant variables

in terms of TNR values. The performance of the K-method in this example resembles

that in Example 2. Rqpen still encounters overfitting as in Example 2. Moreover, it has

a limited ability to identify linear functions although it can perfectly identify non-linear

ones.

In conclusion, we note that the results of this section, together with those obtained

in the previous sections, demonstrate that AWG-Lasso+HDIC and AWG-Lasso+HDICII

have a strong ability to simultaneously identify the relevant (or irrelevant) variables and

their corresponding structures in the high-dimensional quantile regression setup, a fea-

ture rarely reported in the literature. While the T- and K-methods also perform well

in identifying relevant (or irrelevant) variables, they are not very successful in structure

identification. This is mainly because the two methods don’t penalize constant/linear

and non-constant/non-linear terms separately. Rqpen can encounter numerical difficul-

ties in high-dimensional varying coefficient models as demonstrated in Example 1. The

performance of Rqpen in structure identification is as good as our method in Example

2, and slightly better than the K-method in Example 3. The method, however, often

suffers from overfitting.

Table 1: (Ci,NCi,NSi), i = 1, . . . , 4, STPR, and TNR in Example 1

(n, p) = (500, 400)

(C1,NC1,NS1 ) (C2,NC2,NS2) (C3,NC3,NS3 ) (C4,NC4,NS4 ) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.963

AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.963

Rqpen (–, –, –) (–, –, –) (–, –, –) (–, –, –) – –

T-method (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 0.5 1.0

Table 2: (Li,NLi,NSi), i = 1, . . . , 4, STPR, and TNR in Example 2

(n, p) = (500, 400)

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0,0.96, 0.04) (0.0, 1.0, 0.0) 1.0 0.997

AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 0.98, 0.02) (0.02, 0.98, 0.0) 0.99 0.998

Rqpen (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.674

K-method (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 0.5 1.0
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Table 3: (Li,NLi,NSi), i = 1, . . . , 5, STPR, and TNR in Example 3

(n, p) = (500, 400)

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) (L5,NL5,NS5 ) STPR TNR

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.997

AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.997

Rqpen (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.48, 0.52, 0.0) (0.40, 0.60, 0.0) (0.42, 0.58, 0.0) 0.66 0.406

K-method (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 0.6 1.0

5 Proofs of the main theorems

First we introduce notation and assumptions. Then we prove Theorems 1 and 2. All

the technical proofs are given in the supplement. We denote the conditional probability

and expectation on {(Xi, Zi)}ni=1 by Pε(·) and Eε(·), respectively.

Assumption A1 is about |S0
c | and |S0

v |.
Assumption A1: There are bounded constants Cc, Cv, Mc, and Mv such that |S0

c | ≤
Cc < Mc and |S0

v | ≤ Cv < Mv. Besides, we know Mc and Mv in advance.

This assumption looks restrictive and we may be able to relax this assumption

slightly. However, there are still many assumptions and parameters and we decided

not to introduce more complications to relax Assumption A1. Note that we can easily

relax the conditions on Cc only for Theorem 1 if
∑

j∈S0c
w2

1j = Op(1).

Assumptions A2 and A2’ are about the relevant non-zero coefficients and coefficient

functions. We need to assume that they are large enough to be detected for our con-

sistency results. Recall that L is the dimension of the spline basis and referred to in

Assumption A3 and that qn appeared in (7).

Assumption A2: We have in probability

minj∈S0c |gcj| ∧minj∈S0v ‖gvj‖
L1/2{(n−1 log pn)1/2 + λ|wS0|}

→ ∞.

Assumption A2’: We have

minj∈S0c |gcj| ∧minj∈S0v ‖gvj‖
q

1/2
n (n−1L log pn)1/2

→∞.

Next we consider the smoothness of relevant non-zero coefficient functions and spline

approximation.

Assumption A3: We take L = cLn
1/5 and use linear or smoother splines. Besides, we

have for some positive Cg,∑
j∈S0c∪S0v

(‖gj‖∞ + ‖g′j‖∞ + ‖g′′j ‖∞) ≤ Cg.
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When Assumption A3 holds, there exists γ∗j = (γ∗1j,γ
∗T
−1j)

T ∈ RL for every j ∈ S0
c ∪S0

v

such that∑
j∈S0c∪S0v

‖gj − γ∗Tj B‖∞ ≤ C1L
−2, γ∗1j = L1/2gcj, and

∑
j∈S0v

‖gvj − γ∗T−1jB−1‖∞ ≤ C2L
−2,

where C1 and C2 depend only on Cg and the order of the spline basis. Let γ∗S0 consist

of γ∗1j, j ∈ S0
c , and γ∗−1j, j ∈ S0

v . For S including the true S0, γ∗S means a vector

of coefficients for our spline basis to approximate gj up to the order of L−2. When

j ∈ Sc ∩S0
c or j ∈ Sv ∩S0

v , the corresponding elements are put to 0. The other elements

are γ∗1j, j ∈ S0
c , and γ∗−1j, j ∈ S0

v . See Section S.3 in the supplement for more details on

the above approximations.

We define some notation related to spline approximation, δi, δij, ε
′
i, and τi, by δij =

gj(Zj)− γ∗Tj B(Zi),

δi =
∑

j∈S0c∪S0v

Xij(gj(Zi)− γ∗Tj B(Zi)) =
∑

j∈S0c∪S0v

Xijδij,

ε′i = εi + δi, and τi = Pε(ε
′
i ≤ 0). (22)

Under Assumptions A3 and A4 below, we have uniformly in i and j,

|δij| = O(L−2) and |δi| ≤ C1XML
−2 → 0

for some positive C1, where let XM be a constant satisfying maxi,j |Xij| ≤ XM . We

allow XM to diverge as in Assumptions A4 and A4’. Note that

1

n

n∑
i=1

δ2
i ≤

{
n−1

n∑
i=1

( ∑
j∈S0c∪S0v

X2
ij

)2}1/2{
n−1

n∑
i=1

( ∑
j∈S0c∪S0v

δ2
ij

)2}1/2

. (23)

When we examine the properties of our BIC type criteria, we need more smoothness

of the coefficient functions to evaluate the approximation bias. We replace Assumption

A3 with Assumption A3’ for simplicity of presentation. In fact, the Hölder continuity

of g′′j with exponent α ≥ 1/2 is sufficient if X4
ML

−2α = O(L−1). If XM is bounced, the

proof of Theorem 2 will work for α = 1/2. See Lemma 4 in Subsection S.2.2 of the

supplement. When we assume Assumption A3’, we can replace L−2 with L−3 in the

above approximations.

Assumption A3’: We take L = cLn
1/5 and use quadratic or smoother splines. Besides,

we have for some positive Cg,∑
j∈S0c∪S0v

(‖gj‖∞ + ‖g′j‖∞ + ‖g′′j ‖∞ + ‖g(3)
j ‖∞) ≤ Cg.
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Next we state assumptions on XM , p, and qn. When we consider additive models,

we can take XM = 1. Assumptions A4 and A4’ imply that ι in p = O(exp(nι)) is less

than 1/5.

Assumption A4: For any positive k,

XM(log pn)1/2n−1/10(log n)k → 0. (24)

Besides, E{B2
0l(Z1)X2

1j} = O(L−1) and E{B0l(Z1)|X1j} = O(L−1) uniformly in l and j.

Recall that B0l(z) is the l-th element of the B-spline basis.

Assumption A4’: In Assumption A4, (24) is replaced with

XM(log pn)1/2q3/2
n n−1/10(log n)k → 0.

Next we state assumptions on the conditional distribution of εi on (Xi, Zi). We

denote the conditional distribution function by Fi(ε) and the conditional density function

by fi(ε).

Assumption A5: There exist positive Cf1, Cf2, and Cf3 such that uniformly in i,

|Fi(u+ δ)− Fi(δ)− ufi(δ)| ≤ Cf1u
2 and fi(δ) ≤ Cf2 when |δ|+ |u| ≤ Cf3.

Assumption A5’: In addition to Assumption A5, E{|εi|} < ∞ and when |a| → 0, we

have uniformly in i,

Eε[(a− εi − δi)I{0 < εi + δi ≤ a}] =
a2

2
fi(−δi) +O(|a|3) for a > 0,

and

Eε[(εi + δi − a)I{a < εi + δi ≤ 0}] =
a2

2
fi(−δi) +O(|a|3) for a < 0.

Actually, when a > 0 and a→ 0, we have under some regularity conditions that∫ a−δi

−δi
(a− εi − δi)fi(ε)dε =

a2

2
fi(−δi) +O(a3).

We introduce some more notation and another kind of assumptions to describe prop-

erties of the adaptively weighted Lasso estimators.

We define two index sets SM and SC+M . These index sets are defined for Theorem

2 and they are related to Assumption A1.
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SM = {S | S0 ⊂ S, |Sc| ≤Mc, and |Sv| ≤Mv} and (25)

SC+M = {S | S0 ⊂ S, |Sc| ≤ Cc +Mc, and |Sv| ≤ Cv +Mv} (26)

We define some random variables related to WiS and describe assumptions on those

random variables. The assumptions on those random variables follow from similar as-

sumptions on their population versions and standard technical arguments. We omit the

assumptions on the population versions and standard technical arguments here since

they are just standard ones in the literature.

We define Θ1(S) by

Θ1(S) =
1

n

n∑
i=1

|WiS |2 =
1

n

n∑
i=1

L−1
∑
j∈Sc

|Xij|2 +
1

n

n∑
i=1

|B−1(Zi)|2
∑
j∈Sv

|Xij|2.

For technical and notational convenience, we redefine Θ1(S) by Θ1(S) ∨ 1.

Assumption B1: For some positive CB1, we have Θ1(S0) ≤ CB1 with probability

tending to 1,

Assumption B1 follows from some mild moment conditions under Assumption A1.

We define Θ2(S) and Θ3(S) by

Θ2(S) = Lλmin(Σ̂S) and Θ3(S) = Lλmax(Σ̂S),

where Σ̂S = n−1
∑n

i=1 fi(−δi)WiSW
T
iS . The following assumptions are about their eigen-

values. Recall that our normalization factor of the basis is L−1.

Assumption B2: For some positive CB2, we have Θ2(S0) ≥ CB2 with probability

tending to 1.

Assumption B2’: For some positive C ′B2, we have Θ2(S) ≥ C ′B2 uniformly in S ∈ SC+M

with probability tending to 1.

Assumption B3: For some positive CB3, we have with probability tending to 1

Θ3(S0 ∪ ({j}, φ)) ≤ CB3 uniformly in j ∈ S0
c and

Θ3(S0 ∪ (φ, {j})) ≤ CB3 uniformly in j ∈ S0
v .

Assumption B3’: For some positive C ′B3, we have with probability tending to 1

Θ3(S) ≤ C ′B3 uniformly in S ∈ SC+M .
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We define Θ4 by Θ4 = n−1
∑n

i=1

∑
j∈S0v

X2
ij.

Assumption B4: For some positive CB4, we have Θ4 ≤ CB4 with probability tending

to 1.

Assumption B4’: In addition to Assumption B4, we have for some positive C ′B4,

n−1

n∑
i=1

( ∑
j∈S0c∪S0v

X2
ij

)2

≤ C ′B4 with probability tending to 1.

Assumption B4’ is used to control (23). Assumptions B4 and B4’ follow from mild

moment conditions under Assumption A1.

We define Θ5(S) by Θ5(S) = max1≤i≤n |WiS |2. Notice that there are positive con-

stants C1 and C2 such that

|WiS |2 = L−1
∑
j∈Sc

X2
ij + |B−1(Zi)|2

∑
j∈Sv

X2
ij ≤ C1X

2
M(L−1|Sc|+ |Sv|) ≤ C2X

2
M (27)

for any S ∈ SC+M under Assumption A1.

We define Ω̂S by Ω̂S = n−1
∑n

i=1 τi(1− τi)WiSW
T
iS . The last assumption is about its

eigenvalues. Recall that τi is defined in (22).

Assumption B5: There is a positive constant CB5 such that uniformly in S ∈ SC+M ,

1

CB5

≤ Lλmin(Ω̂S) ≤ Lλmax(Ω̂S) ≤ CB5 with probability tending to 1.

We state Proposition 1 before we prove Theorem 1. The proposition gives the con-

vergence rate of the AWG-Lasso estimator. We prove this proposition by following that

of Theorem 1 in [7] in the supplement.

We use the proposition with S = S0 or with S ∈ SC+M and λ = 0. Let wS be a

vector consisting of {w1j | j ∈ Sc} and {w−1j | j ∈ Sv}. Then we define |wS | and Kn by

|wS |2 =
∑
j∈Sc

w2
1j +

∑
j∈Sv

w2
−1j and Kn(S) =

√
n−1Θ1(S) log pn + λ|wS |.

Tentatively we assume the weights are constants, not random variables.

Proposition 1 Suppose that S0 ⊂ S and Assumptions A1 and A3-5 hold. Besides we

assume (Θ5(S)

Θ2(S)

)1/2

(Θ
−1/2
2 (S) ∨Θ

1/2
4 )Kn(S)L→ 0 (28)

and we define ηn by ηn = CMLKn(S), where CM satisfies

CM ≥ b1

{ 1

Θ2(S)
∨
( Θ4

Θ2(S)

)1/2}
(29)
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for sufficiently large b1 depending on b2 in (30). Then we have for any fixed positive b2

that

Pε(|γ̂λS − γ∗S | ≥ ηn) ≤ exp(−b2 log pn). (30)

Later we use Assumptions B1-4 to control random variables in (28) and (29) in

Proposition 1. Here some remarks on Proposition 1 are in order.

Remark 1 When wS is a random vector and λ > 0, “→ 0” in (28) should be replaced

with “
p→ 0.” Besides, when for some positive C1, C2, and C3,

P(C1 ≤ Θ2(S), Θ1(S) ≤ C2, Θ4 ≤ C3)→ 1,

the RHS of (29) is bounded from above in probability and Θ1(S) in Kn(S) can be

replaced with a constant. Thus we have P(|γ̂λS−γ∗S | ≥ ηn)→ 0 under (28) in probability

with a fixed CM . Especially when S = S0,

ηn ∼ L{(n−1 log pn)1/2 + λ|wS0|}.

Remark 2 Since Θ5(S0) ≤ C4X
2
M for some positive C4 under Assumption A1, (28)

reduces to XML{(n−1 log pn)1/2 + λ|wS0|}
p→ 0 in the setup of Remark 1 with S = S0

and this is not a restrictive condition.

Remark 3 When λ = 0 and the assumptions in Theorem 2 hold, we have for γ̂λS = γ̃S

that

|γ̂λS − γ∗S | = |γ̃S − γ∗S | ≤ C5L(n−1 log pn)1/2

uniformly in S ∈ SC+M with probability tending to 1 for some positive C5. We use this

result in the proof of Theorem 2.

We provide the proof of Theorem 1. We define ΓS(M) by

ΓS(M) = {γS ∈ RdV (S) | |γS − γ∗S | ≤M} (31)

Proof of Theorem 1) First we prove (γ̂λS0 ,0
T )T ∈ RpL is a global minimizer of (5)

by checking the following conditions (32) and (33). These conditions follow from the

standard optimization theory as in [38] and [28]. In addition to (32) as in [38] and [28],

we should deal with (33) since we are employing group penalties. Hereafter in this proof,

we omit the superscript λ and write γ̂S0 for γ̂λS0
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With probability tending to 1, we have∣∣∣ 1
n

n∑
i=1

L−1/2Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ ≤ λw1j for any j ∈ S0

c and (32)

∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ ≤ λw−1j for any j ∈ S0

v . (33)

We verify only (33) since (32) is easier.

Proposition 1, Remark 1, and the conditions of this theorem imply that

|γ̂S0 − γ∗S0| ≤ C1L{(n−1 log pn)1/2 + λ|wS0|) ≤ C2L(n−1 log pn)1/2(log n)kλ (34)

with probability tending to 1 for some positive C1 and C2. We define Vj(γS0) by

Vj(γS0) = n−1

n∑
i=1

B−1(Zi)Xij

{
ρ′τ (Yi −W T

iS0γS0)− ρ′τ (Yi −W T
iS0γ

∗
S0)
}

− Eε

[
n−1

n∑
i=1

B−1(Zi)Xij

{
ρ′τ (Yi −W T

iS0γS0)− ρ′τ (Yi −W T
iS0γ

∗
S0)
}]

By considering the upper bounds given in (34), we can take a positive constant Cξ

for any small positive ξ such that with probability larger than 1− ξ,∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ (35)

≤
∣∣∣Eε

[ 1

n

n∑
i=1

B−1(Zi)Xij{ρ′τ (Yi −W T
iS0γS0)− ρ′τ (Yi −W T

iS0γ
∗
S0)}

]
γS0=γ̂S0

∣∣∣
+

∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ
∗
S0)
∣∣∣+ max

γS0∈ΓS0 (CξL(n−1 log pn)1/2(logn)kλ )
|Vj(γS0)|.

We use the following two lemmas to evaluate (35). These lemmas are to be proved

in the supplement.

Lemma 1 For some positive C1, we have∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ
∗
S0)
∣∣∣ ≤ C1(n−1 log pn)1/2

uniformly in j ∈ S0
v with probability tending to 1

Lemma 2 Take any fixed positive C and k and fix them. Then we have

max
γS0∈ΓS0 (CL(n−1 log pn)1/2(logn)k)

|Vj(γS0)| = op(λ)

uniformly in j ∈ S0
v .
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Finally we evaluate

Eε

[ 1

n

n∑
i=1

B−1(Zi)Xij{ρ′τ (Yi −W T
iS0γS0)− ρ′τ (Yi −W T

iS0γ
∗
S0)}

]
γS0=γ̂S0

(36)

=
1

n

n∑
i=1

B−1(Zi)Xij{Fi(−δi)− Fi(−δi +W T
iS0(γ̂S0 − γ∗S0))}.

Setting ∆̂0 = γ̂S0 − γ∗S0 and recalling Assumption A5, we find that (36) is rewritten as

− 1

n

n∑
i=1

B−1(Zi)Xijfi(−δi)W T
iS0∆̂

0 + op((n
−1 log pn)1/2) = −Dj∆̂

0 + op((n
−1 log pn)1/2)

(37)

uniformly in j ∈ S0
v , where Dj is clearly defined in the above equation.

Assumption B3 implies that for some positive C1,

λmax(DT
j Dj) ≤ C1L

−2 (38)

uniformly in j ∈ S0
v with probability tending to 1. This is because Dj is part of

Σ̂S0∪(φ,{j}). Thus (34) and (38) yield that for some positive C2,

|Dj∆̂
0| ≤ C2{(n−1 log pn)1/2 + λ|wS0|} (39)

uniformly in j ∈ S0
v with probability tending to 1.

By combining (35), Lemmas 1 and 2, (37), and (39), we obtain∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ ≤ λw−1j

uniformly in j ∈ S0
v with probability tending to 1. Hence (33) is established.

As for the latter part of the theorem, Assumption A2 implies that γ∗1j, j ∈ S0
c , and

γ∗−1j, j ∈ S0
v , are large enough to be detected due to Proposition 1 with S = S0.

Hence the proof of the theorem is complete.

Now we state the proof of Theorem 2

Proof of Theorem 2) We give the details of the overfitting case here. We can deal

with the underfitting case by following the standard arguments and we give the proof of

the underfitting case in the supplement.

Let S satisfy S ∈ SM and S 6= S0. See (25) for the definition of SM . “Uniformly

in S” means “uniformly in S satisfying S ∈ SM and S 6= S0”. We have replaced

Assumption A3 with Assumption A3’. We use Assumption A3’ only once in the proof
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(Lemma 4) and we use Assumption A3 in the other part. Assumption A3’ can be relaxed

in some cases. See Lemma 4 in Subsection S.2.2 of the supplement for more details.

If we have established

RV (γ∗S0) =
1

n

n∑
i=1

ρτ (εi) +O(XML
−2) =

1

n

n∑
i=1

E{ρτ (εi)}+ op(1), (40)

RV (γ̃S0) = RV (γ∗S0) + op(1), and uniformly in S, (41)

RV (γ̃S0)−RV (γ̃S) = (dV (S)− dV (S0))Op(n
−1{(log pn) ∨ (qn log pn)1/2}), (42)

then we have for some positive C1,

0 ≤ logRV (γ̃S0)− logRV (γ̃S) = − log
{

1 +
RV (γ̃S)−RV (γ̃S0)

RV (γ̃S0)

}
(43)

≤ 1

C1

{RV (γ̃S0)−RV (γ̃S)}

uniformly in S with probability tending to 1. By (42) and (43), we obtain

logRV (γ̃S0)− logRV (γ̃S) = (dV (S)− dV (S0))Op(n
−1{log pn ∨ (qn log pn)1/2})

< (dV (S)− dV (S0))
log pn

2n
qn

uniformly in S with probability tending to 1. Hence the proof for the overfitting case is

complete.

Thus we have only to prove (40)-(42). We prove only (42) since (40) and (41) are

easy to deal with.

(49), (50), and (53), which will be defined later, are important when we prove (42).

To verify (49), first we will prove in the supplement that

RV (γS)−RV (γ∗S) = −(γS − γ∗S)T
1

n

n∑
i=1

WiS(τi − I{ε′i ≤ 0}) +
1

2
(γS − γ∗S)T Σ̂S(γS − γ∗S)

+ (γS − γ∗S)T
1

n

n∑
i=1

WiS(τi − τ) +Op

( log pn
n(log n)2

)
(44)

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S for any fixed M1.

We use (44) to derive a useful expression of RV (γ̃S). Put

aS =
1

n

n∑
i=1

WiS(τi− I{ε′i ≤ 0}), bS =
1

n

n∑
i=1

WiS(τi− τ), and γS − γ∗S = Σ̂−1
S aS . (45)

According to (S.19) in Lemma 4 in Subsection S.2.2 of the supplement,

(γS − γ∗S)T
1

n

n∑
i=1

WiS(τi − τ) = (γS − γ∗S)TbS = Op

((qn log pn)1/2

n

)
(46)
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and this term in (44) is negligible uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S for

any fixed M1.

By applying Bernstein’s inequality conditionally on {(Xi, Zi)}ni=1 first and using As-

sumption B5, we have

|aS |2 = Op

( log pn
n

)
(47)

uniformly in S. Thus we have from Assumption B2’ that uniformly in S,

γS − γ∗S = Op(L(n−1 log pn)1/2). (48)

We take some δS ∈ RdV (S). If γS + δS ∈ ΓS(M1L(qnn
−1 log pn)1/2), we have from

(44) and (46) that uniformly in δS and S,

RV (γS+δS)−RV (γ∗S) = −1

2
aTS Σ̂−1

S aS+
1

2
δTS Σ̂SδS+Op

((qn log pn)1/2

n

)
+Op

( log pn
n(log n)2

)
.

(49)

Because of the optimality of RV (γ̃S) and (49), we should have

RV (γ̃S)−RV (γ∗S) = −1

2
aTS Σ̂−1

S aS +Op

((qn log pn)1/2

n

)
+Op

( log pn
n(log n)2

)
(50)

uniformly in S. The above arguments show that this expression also holds for S0. By

combining (49) and (50) and setting δS = γ̃S − γS , we also obtain

|γ̃S − γS |2 = Op

(L(qn log pn)1/2

n

)
+Op

( L log pn
n(log n)2

)
(51)

uniformly in S. Note again that these expressions also hold for S0. This equation is

used later in the underfitting case.

We evaluate the difference between RV (γ̃S) and RV (γ̃S0). Now write

Σ̂S =

(
Σ̂S0 Σ̂S12

Σ̂S21 Σ̂S22

)
and aS =

(
aS0

aS2

)
(52)

and notice that RV (γ∗S) = RV (γ∗S0). Thus due to (50), we have only to consider the

difference

aTS Σ̂−1
S aS − a

T
S0Σ̂

−1
S0aS0 = aTS0Σ̂

−1
S0 Σ̂S12F̂S2Σ̂S21Σ̂−1

S0aS0 (53)

− 2aTS0Σ̂
−1
S0 Σ̂S12F̂S2aS2 + aTS2F̂S2aS2,

where F̂S2 = (Σ̂S22 − Σ̂S21Σ̂−1
S0 Σ̂S12)−1, when we evaluate RV (γ̃S)−RV (γ̃S0).
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We will demonstrate that the RHS of (53) has the stochastic order of (dV (S) −
dV (S0))Op(n

−1 log pn) uniformly in S.

From Assumptions B2’ and B3’, we have for some positive C1, C2, and C3,

C1L ≤ λmin(F̂S2) ≤ λmax(F̂S2) ≤ C2L and λmax(Σ̂S21Σ̂S12) ≤ C3L
−2 (54)

uniformly in S with probability tending to 1.

By applying Bernstein’s inequality conditionally on {(Xi, Zi)}ni=1 first and using As-

sumption B5, we have that uniformly in S,

|aS2|2 = (dV (S)− dV (S0))Op

( log pn
nL

)
. (55)

Hence (54) and (55) imply that the third term on the RHS of (53) satisfies

aTS2F̂S2aS2 = (dV (S)− dV (S0))Op(n
−1 log pn) uniformly in S. (56)

To evaluate the first and second terms on the RHS of (53),

(aTS0Σ̂
−1
S0 Σ̂S12)F̂S2(Σ̂S21Σ̂−1

S0aS0) and (aTS0Σ̂
−1
S0 Σ̂S12)F̂S2aS2, (57)

we consider

Σ̂S21Σ̂−1
S0aS0 = Σ̂S21Σ̂−1

S0
1

n

n∑
i=1

WiS0(τi − I{ε′i ≤ 0}) (58)

to obtain (62) below. And write

Σ̂S12 = (s1, . . . , sdV (S)−dV (S0))

and note that (54) implies

sTj sj = Op(L
−2) and λmax(Σ̂S21Σ̂−1

S0 Ω̂S0Σ̂
−1
S0 Σ̂S12) = Op(L

−1) (59)

uniformly in j and S with probability tending to 1. Besides, we have for some positive

C4 and C5,

max
j
|sTj Σ̂−1

S0WiS0| ≤ C4L|sj||WiS0| ≤ C5L|sj|XM = Op(XM) (60)

uniformly in i and S with probability tending to 1.

Hence by applying Bernstein’s inequality conditionally together with (59) and (60),

we obtain
1

n

n∑
i=1

sTj Σ̂−1
S0WiS0(τi − I{ε′i ≤ 0}) = Op({(nL)−1 log pn}1/2) (61)
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uniformly in j and S. Therefore (61) yields that uniformly in S,

|Σ̂S21Σ̂−1
S0aS0|

2 = (dV (S)− dV (S0))Op((nL)−1 log pn). (62)

Thus (54), (55), (57), and (62) imply that the first and second terms on the RHS of

(53) have the stochastic order of (dV (S) − dV (S0))Op(n
−1 log pn) uniformly in S as in

(56). We have demonstrated that the RHS of (53) has the stochastic order of (dV (S)−
dV (S0))Op(n

−1 log pn) uniformly in S.

Hence (42) follows from (50) and this evaluation of (53) and the proof of the over-

fitting case is complete. The proof of the underfitting case is given in the supplement.

Hence the proof is complete.
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Supplement to “Adaptively weighted group Lasso for

semiparametric quantile regression model”

by Toshio Honda, Ching-Kang Ing, and Wei-Ying Wu

S.1 Additive models

We can deal with additive models in the same way because of the similarity between (4)

and (S.2). We describe the specific procedure for additive models in this section. Recall

we assume some initial estimates are available here, too.

We have no index variable and assume the additivity and Xij ∈ [0, 1] for j = 1, . . . , p.

Hence our model is

Yi = µ+

p∑
j=1

gj(Xij) + εi, (S.1)

where Xij ∈ [0, 1],
∫ 1

0
gj(x)dx = 0, and E{ρ′τ (εi) |Xi} = 0. To deal with partially

linear additive coefficient models, we decompose gj(x) as gj(x) = glj(x) + gaj(x), where

glj(x) = cljB2(x) (the j-th linear component) and gaj(x) (the j-th nonlinear component)

satisfies ∫ 1

0

glj(x)gaj(x)dx = 0.

Our regression spline model is given by

Yi = µ+W T
i γ−1 + ε′i, (S.2)

where γ−1 = (γT−11, . . . ,γ
T
−1p)

T and Wi = (BT
−1(Xi1), . . . ,BT

−1(Xip))
T , with γ−1j and

B−1(z) defined as in Section 2. Denote the true model by S0 = (S0
l ,S0

a), where

S0
l = {j | glj(x) 6≡ 0} and S0

a = {j | gaj(x) 6≡ 0}.

When some j’s satisfy both j ∈ S0
l and j 6∈ S0

a simultaneously, our true model is a

partially linear additive model.

We describe the details of our simultaneous variable selection and structure identifica-

tion procedure for additive models. First express γ−1j as γ−1j = (γ2j,γ
T
−2j)

T , noting that

γ2j is forB2(Xij) =
√

12/L(Xij−1/2) and γ−2j is forB−2(Xij) = (B3(Xij), . . . , BL(Xij))
T .

For a given λ, the AWG-Lasso objective function is

QA(γ−1;λ) =
1

n

n∑
i=1

ρτ (Yi − µ−W T
i γ−1) + λ

p∑
j=1

(w2j|γ2j|+ w−2j|γ−2j|), (S.3)
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where {(w2j, w−2j)}pj=1 are obtained from some initial estimates. Minimizing QA(γ−1;λ)

w.r.t. γ−1, one gets

γ̂λ−1 = argmin
γ−1∈Rp(L−1)

QA(γ−1;λ),

where γ̂λ−1 = (γ̂λ21, γ̂
λT
−21, . . . , γ̂

λ
2p, γ̂

λT
−2p)

T . Then, the model selected by AWG-Lasso is

Ŝλ = (Ŝλl , Ŝλa ), where Ŝλl = {j | γ̂λ2j 6= 0} and Ŝλa = {j | γ̂λ−2j 6= 0}. Like Section 2,

this section also considers using HDIC to choose a suitable λ from a prescribed set Λ of

positive numbers. DenoteWi in (S.2) by (v21i,v
T
−21i, . . . , v2pi,v

T
−2pi)

T , where (v2ji,v
T
−2ji)

T

is the regressor vector corresponds to γ−1j. For a given model S = (Sl,Sa), define

RA(γS) =
1

n

n∑
i=1

ρτ (Yi − µ−W T
iSγS) and γ̃S = argmin

γS∈R|Sl|+(L−2)|Sa|
RA(γS), (S.4)

where WiS ∈ R|Sl|+(L−2)|Sa| consists of {v2ji | j ∈ Sl} and {v−2ji | j ∈ Sa} and the corre-

sponding coefficient γS ∈ R|Sl|+(L−2)|Sa| is conformably defined as in (6).

The HDIC value for model S is stipulated by

HDIC(S) = logRA(γ̃S) + (|Sl|+ (L− 2)|Sa|)
qn log pn

2n
, (S.5)

where pn and qn are defined as in Section 2. Let Ml and Ma be some known upper

bounds for |S0
l | and |S0

a |, respectively. We suggest choosing model Ŝ λ̂, where

λ̂ = argmin
λ∈Λ,|Ŝλl |≤Ml,|Ŝλa |≤Ma

HDIC(Ŝλ).

S.2 Technical results for Theorems

S.2.1 Technical results for Theorem 1

We provide the proofs of Proposition 1 and Lemmas 1 and 2 here. We omit λ of γ̂λS for

notational simplicity.

First we state Lemma 3 for Proposition 1 and the notation for the lemma. Then we

prove Proposition 1 by following Lemma 1 and Theorem 1 in Fan et al. (2014). Next

we present the proofs of Lemmas 3, 1, and 2.

Before we state Lemma 3, we define

GS(M) = sup
γS∈ΓS(M)

|{RV (γS)−RV (γ∗S)} − Eε{RV (γS)−RV (γ∗S)}|

where ΓS(M) is defined in (31).
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Lemma 3 Assume that Assumption A3 holds. For any fixed M , t, and S, we have

Pε

(
GS(M) ≥ 4M

√
Θ1(S)

n
+ t
)
≤ exp

{
− nt2

8Θ1(S)M2

}
.

When t = K0M{n−1Θ1(S) log pn}1/2, we have from Lemma 3 that

Pε

(
GS(M) ≥ (4 +K0)M

√
Θ1(S) log pn

n

)
≤ exp(−K2

0 log pn/8).

A remark is in place: A lower limit of the probability, 1−exp(−K2
0 log pn/8), appears

in the proof. But it is only related to evaluating GS(M) and this GS(M) does not contain

the weights. Hence we can also deal with stochastic weights by using this proposition.

Proof of Proposition 1) We follow that of Theorem 1 in Fan et al. (2014). The

following arguments do not depend on S.

Taking M = CMLKn(S), we evaluate the following expression on ΓS(M).

Eε{RV (γS)−RV (γ∗S)} = Eε

[ 1

n

n∑
i=1

{ρτ (ε′i − ai)− ρτ (ε′i)}
]
, (S.6)

where we use the notation defined in (22) after Assumption A3 such as ε′i = εi + δi and

ai = W T
iS(γS − γ∗S). Note that

|ai| ≤ |WiS |M ≤ Θ
1/2
5 (S)M → 0

due to the assumption of this proposition.

If ai > 0, we have from the definition of ρτ (·) that

ρτ (ε
′
i − ai)− ρτ (ε′i) =

∫ ai

0

I{0 < ε′i ≤ s}ds+ ai(I{ε′i ≤ 0} − τ).

Then from Assumption A5, we obtain

Eε

[ ∫ ai

0

I{0 < ε′i ≤ s}ds+ ai(I{ε′i ≤ 0} − τ)
]

=

∫ ai

0

(Fi(s− δi)− Fi(−δi))ds+ ai(τi − τ)

=
1

2
fi(−δi)a2

i + o(a2
i ) +O(a2

i (log n)−1) +O(|τ − τi|2 log n).

uniformly in i. Note that |τ − τi|2 ≤ C1|δi|2 for some positive C1 and that we can deal

with the case of ai < 0 in the same way.
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Hence the expression in (S.6) can be represented as

1

2n

n∑
i=1

fi(−δi)a2
i + o

(
n−1

n∑
i=1

a2
i

)
+O

(
n−1 log n

n∑
i=1

δ2
i

)
. (S.7)

The first term of (S.7) is written as

1

2n

n∑
i=1

fi(−δi)a2
i =

1

2
(γS − γ∗S)T

1

n

n∑
i=1

fi(−δi)WiSW
T
iS(γS − γ∗S) (S.8)

≥ Θ2(S)

2L
|γS − γ∗S |2.

As for the third term of (S.7), we have from Assumption A3 that

log n

n

n∑
i=1

δ2
i =

log n

n

n∑
i=1

(∑
j∈S0v

Xijδij

)2

≤ log n

n

n∑
i=1

(∑
j∈S0v

X2
ij

)(∑
j∈S0v

δ2
ij

)
(S.9)

≤ C1 log n

nL4

n∑
i=1

∑
j∈S0v

X2
ij ≤

C1 log n

L4
Θ4 (S.10)

for some positive C1. We defined Θ4 just before Assumption B4.

By combining (S.7), (S.8), and (S.9), we have

Eε{RV (γS)−RV (γ∗S)} ≥ Θ2(S)

2L
(1 + o(1))|γS − γ∗S |2 +O

(Θ4 log n

L4

)
. (S.11)

We define γαS by

γαS = αγ̂S + (1− α)γ∗S (S.12)

for

0 ≤ α =
M

M + |γ̂S − γ∗S |
≤ 1.

Then

γαS ∈ ΓS(M).

Since the convexity of QV (γS) implies that

QV (γαS ) ≤ αQV (γ̂S) + (1− α)QV (γ∗S) ≤ QV (γ∗S),

4



we have with probability larger than or equal to 1− exp(−K2
0 log pn/8) that

Eε[RV (γS)−RV (γ∗S)]γS=γαS
(S.13)

≤ 1

n

n∑
i=1

ρτ (γ
∗
S)− Eε

{ 1

n

n∑
i=1

ρτ (γ
∗
S)
}
− 1

n

n∑
i=1

ρτ (γ
α
S ) + Eε

[ 1

n

n∑
i=1

ρτ (γS)
]
γS=γαS

+QV (γαS )−QV (γ∗S)

−λ
∑
j∈Sc

w1j|γα1j| − λ
∑
j∈Sv

w−1j|γα−1j|+ λ
∑
j∈Sc

w1j|γ∗1j|+ λ
∑
j∈Sv

w−1j|γ∗−1j|

≤ GS(M) + λ|wS ||γαS − γ∗S |

≤ (4 +K0)M
{√Θ1(S) log pn

n
+ λ|wS |

}
= (4 +K0)MKn(S).

By (S.11) and (S.13), we have

|γαS − γ∗S |2 ≤
2(4 +K0)L

Θ2(S)
{MKn(S) +O(Θ4L

−4 log n)}

≤ 2(4 +K0)L

Θ2(S)
{CMK2

n(S)L+O(Θ4L
−4 log n)}

with probability larger than or equal to 1− exp(−K2
0 log pn/8). Hence

|γαS − γ∗S | ≤
{2(4 +K0)}1/2

Θ
1/2
2 (S)

{C1/2
M Kn(S)L+O(Θ

1/2
4 L−3/2(log n)1/2)} (S.14)

≤ 1

2
CMLKn(S) =

1

2
M

with probability larger than or equal to 1− exp(−K2
0 log pn/8).

(S.12), (S.14), and simple algebra yield

|γ̂S − γ∗S | ≤M = CMLKn(S)

with probability larger than or equal to 1− exp(−K2
0 log pn/8).

Hence the proof of the proposition is complete.

Proof of Lemma 3) We follow that of Lemma 1 in Fan et al. (2014).

Due to the Lipschitz continuity of ρτ (u) and application of the concentration inequal-

ities (Theorems 14.3 and 14.4 in Bühlmann and van de Geer (2011)), we have

Eε{GS(M)} ≤ 2Eε

[
sup

γS∈ΓS(M)

∣∣∣ 1
n

n∑
i=1

ξi{ρτ (Yi −W T
iSγS)− ρτ (Yi −W T

iSγ
∗
S)}
∣∣∣]

≤ 4Eε

[
sup

γS∈ΓS(M)

∣∣∣ 1
n

n∑
i=1

ξiW
T
iS(γS − γ∗S)

∣∣∣],
5



where {ξj}nj=1 is a Rademacher sequence of and independent of {(Yj,Xj, Zj)}nj=1. Since∣∣∣ n∑
i=1

ξiW
T
iS(γS − γ∗S)

∣∣∣
=

∣∣∣∑
j∈Sc

( n∑
i=1

ξiXijL
−1/2

)
(γ1j − γ∗1j) +

∑
j∈Sv

{ n∑
i=1

ξiXijB
T
−1(Zi)(γ−1j − γ∗−1j)

}∣∣∣
≤ |γS − γ∗S |

{∑
j∈Sc

∣∣∣ n∑
i=1

ξiXijL
−1/2

∣∣∣2 +
∑
j∈Sv

∣∣∣ n∑
i=1

ξiXijB−1(Zi)
∣∣∣2}1/2

,

we have

Eε{GS(M)} (S.15)

≤ 4M

n1/2
Eε

[{ 1

n

∑
j∈Sc

∣∣∣ n∑
i=1

ξiXijL
−1/2

∣∣∣2 +
1

n

∑
j∈Sv

∣∣∣ n∑
i=1

ξiXijB−1(Zi)
∣∣∣2}1/2]

≤ 4M

n1/2

[
Eε

{ 1

n

∑
j∈Sc

∣∣∣ n∑
i=1

ξiXijL
−1/2

∣∣∣2 +
1

n

∑
j∈Sv

∣∣∣ n∑
i=1

ξiXijB−1(Zi)
∣∣∣2}]1/2

≤ 4M

n1/2

{ 1

n

n∑
i=1

|WiS |2
}1/2

≤ 4M

√
Θ1(S)

n
.

Next we apply Massart’s inequality (Theorem 14.2 in Bühlmann and van de Geer

(2011)) to evaluate the stochastic part GS(M)− Eε{GS(M)}. Then noticing

|W T
iS(γS − γ∗S)|2 ≤ |WiS |2|γS − γ∗S |2 ≤ |WiS |2M2

and

1

n

n∑
i=1

|WiS |2M2 ≤ Θ1(S)M2,

we have as in Lemma 1 in Fan et al. (2014)

Pε

(
GS(M) ≥ 4M

√
Θ1(S)

n
+ t
)
≤ exp

{
− nt2

8Θ1(S)M2

}
.

We used (S.15) to evaluate Eε{GS(M)} in the conditional probability.

Hence the proof of the lemma is complete.

Proof of Lemma 1) Recall that B(z) = A0B0(z) and note (S.48) in Section S.3. Thus

we have only to demonstrate∣∣∣ 1
n

n∑
i=1

B0l(Zi)Xijρ
′
τ (εi + δi)

∣∣∣ ≤ C1{(nL)−1 log pn}1/2 (S.16)
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uniformly in l and j with probability tending to 1 for some positive C1. Recall B0l(z) is

the l-th element of the B-spline basis.

Note that

Eε

{ 1

n

n∑
i=1

B0l(Zi)Xijρ
′
τ (εi + δi)

}
=

1

n

n∑
i=1

B0lXij(Zi)(τ − τi)

and |τ − τi| = O(L−2) uniformly in i.

Since Assumption A4 implies

E
{ 1

n

n∑
i=1

B0l(Zi)Xij(τ − τi)
}

= O(L−3)

and

Var
{ 1

n

n∑
i=1

B0l(Zi)Xij(τ − τi)
}

= O(n−1L−5),

uniformly in l and j, we apply Bernstein’s inequality unconditionally and obtain∣∣∣Eε

{ 1

n

n∑
i=1

B0l(Zi)Xijρ
′
τ (εi + δi)

}∣∣∣ ≤ C2{(nL5)−1 log pn}1/2 +O(L−3) (S.17)

uniformly in l and j with probability tending to 1 for some positive C2.

Noticing that
1

n

n∑
i=1

B2
0l(Zi)X

2
ij ≤ C3L

−1

uniformly in l and j with probability tending to 1 for some positive C3, we apply Bern-

stein’s inequality conditionally and obtain∣∣∣ 1
n

n∑
i=1

B0l(Zi)Xijρ
′
τ (εi + δi)− Eε

{ 1

n

n∑
i=1

B0l(Zi)Xijρ
′
τ (εi + δi)

}∣∣∣ ≤ C4{(nL)−1 log pn}1/2

(S.18)

uniformly in l and j with probability tending to 1 for some positive C4.

Hence (S.16) follows from (S.17) and (S.18) and the proof of the lemma is complete.

Proof of Lemma 2) We can prove this lemma almost in the same way as Lemma B.5

in Sherwood and Wang (2016) and the detailed proof is very lengthy. We just outline

the proof.

First we define dlj(γS0) by

dlj(γS0) =
1

n

n∑
i=1

B0l(Zi)Xij[ρ
′
τ (Yi −W T

iS0γS0)− ρ′τ (Yi −W T
iS0γ

∗
S0)

− Eε{ρ′τ (Yi −W T
iS0γS0)− ρ′τ (Yi −W T

iS0γ
∗
S0)}]

7



and take and fix any positive C0. Then as in the proof of Lemma 1, we have only to

prove that

|dlj(γS0)| ≤ C1{(nL log n)−1 log pn}1/2

uniformly in l, j ∈ S0
v , and γS0 ∈ ΓS0(C0L(n−1 log pn)1/2(log n)k) with probability tend-

ing to 1 for some positive C1 depending on C0.

Note that the conditional variance of dlj(γS0) is uniformly bounded by

C2XM

nL
L(n−1 log pn)1/2(log n)k ≤ C3XM{n−3(log n)2k log pn}1/2

with probability tending to 1 for some positive C2 and C3. They depend on C0. Besides,

we can cover ΓS0(C0L(n−1 log pn)1/2(log n)k) by N open balls with radius

[{C0L(n−1 log pn)1/2(log n)k}n−2m]1/2

for any large fixed m and this N satisfies

N = O(nmdV (S0)).

See Lemma 2.5 in van de Geer (2000) for this upper bound of N . We denote the centers

of the covering open balls by γ1, . . . ,γN . Note that

pLN = O(exp{log pn +mdV (S0) log n}).

For any γs among the centers, we have by employing Bernstein’s inequality condi-

tionally that

Pε

(
|dlj(γs)| ≥ C4

√
log pn
nL log n

)
≤ exp

{
− C3

(log pn)1/2n3/10

XM(log n)k+1

}
uniformly in γs with probability tending to 1 for some positive C4 and C5 and we also

have from Assumption A4 that

pLN exp
{
− C3

(log pn)1/2n3/10

XM(log n)k+1

}
= exp

[
C6{log pn +mdV (S0) log n} − C3

(log pn)1/2n3/10

XM(log n)k+1

]
→ 0

for some positive C6. Therefore we successfully evaluated dlj(γS0) at all the centers.

We can evaluate dlj(γS0) inside the open balls exactly as in the proof of Lemma B.5

in Sherwood and Wang (2016) since we can take any large m. Hence the proof of the

lemma is complete.
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S.2.2 Technical results for Theorem 2

In this subsection, we state Lemma 4 and then give the proofs of the underfitting case,

(44), and Lemma 4.

First we state Lemma 4, which is used to evaluate the bias from (τi− τ) in the proof

of Theorem 2. Note that the Hölder continuity of g′′j with exponent α is almost sufficient

for τi − τ = Op(XML
−(2+α)).

Recall the definition of bS in (45) and bS2 is defined as aS2 in (52). By using the

properties of bS and bS2 in this lemma and replacing aS with aS + bS in (45), we can

prove Theorem 2 in the same way if X4
ML

−2α = O(L−1). Recall that L = cLn
1/5 in this

paper. Both of |bS |2 and |bS2|2 have Op

(
X4
M logn

L5+2α

)
and these are not typos.

Lemma 4 In the setup of Theorem 2, we have

(γS − γ∗S)TbS = Op

((qn log pn)1/2

n

)
(S.19)

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S for any fixed M1. Let Assumption

A3’ be replaced with Assumption A3. If τi−τ = Op(XML
−(2+α)) uniformly in i for some

nonnegative α, we have

|bS |2 = Op

(X4
M log n

L5+2α

)
and |bS2|2 = Op

(X4
M log n

L5+2α

)
uniformly in S.

Since dV (S) = |Sc|+ (L− 1)|Sv|, we have uniformly in S,

|bS |2 = Op

( log pn
n

)
and |bS2|2 = (dV (S)− dV (S0))Op

( log pn
nL

)
as in (47) and (55) if X4

ML
−2α = O(L−1). Then we can prove Theorem 2 in the same

way.

Proof of the undefitting case) Next we consider the underfitting case. For S =

(Sc,Sv) that does not include S0 and satisfies

|Sc| ≤Mc and |Sv| ≤Mv,

we put

S+ = S ∪ S0. (S.20)

Then S+ ∈ SC+M in (26). Note that uniform results proved in the overfitting case still

hold for S+ in (S.20).
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Since

logRV (γ̃S)− logRV (γ̃S0) = log
{

1 +
RV (γ̃S)−RV (γ̃S0)

RV (γ̃S0)

}
and

RV (γ̃S0) =
1

n

n∑
i=1

ρτ (εi) + op(1) = E{ρτ (εi)}+ op(1), (S.21)

we have only to demonstrate

RV (γ̃S)−RV (γ̃S0) > C1Lζ
2
n

log pn
2n

(S.22)

uniformly in S with probability tending to 1 for some C1 and ζn such that ζn/q
1/2
n = Cζ .

Note that we should be able to take and fix any sufficiently large Cζ and that C1 has to

be independent of Cζ when Cζ is large. Then Assumption A1 and (S.21) assure (S.22)

dominates the penalty terms. Since (S.21) follows from the argument for the overfitting

case and Assumption A5’, we consider only (S.22).

From Assumption A2’, we have uniformly in S,

|γ∗S0−S |
L(n−1qn log pn)1/2

→∞,

where γ∗S0−S is obtained by removing all the j-th elements satisfying j ∈ S ∩ S0 from

γ∗S0 .

Since S+ includes S0 and S does not include S0, Proposition 1 with no penalty

implies that

|(γ̃TS ,0T )T − γ̃S+ | > Lζn(n−1 log pn)1/2 (S.23)

uniformly in S with probability tending to 1 for ζn = Cζq
1/2
n . Note that we can take and

fix any large Cζ here. This also holds with γ̃S+ replaced by γS+ due to (51).

Let us follow the standard arguments for general underfitting cases. There is an

0 < α < 1 such that

|α((γ̃TS ,0
T )T − γS+)| = Lζn(n−1 log pn)1/2

and set

∆S = α((γ̃TS ,0
T )T − γS+).

10



The arguments from (44) to (50) imply that

RV (γS+ + ∆S) ≥ RV (γS+) + C2ζ
2
n

L log pn
2n

+Op

((qn log pn)1/2

n

)
+Op

( log pn
n(log n)2

)
(S.24)

≥ RV (γS+) + C2ζ
2
n

L log pn
4n

≥ RV (γ̃S+) + C2ζ
2
n

L log pn
4n

uniformly in S with probability tending to 1 for some positive C2 independent of Cζ .

We used the optimality of γ̃S+ and Assumption B5 here.

Because of (S.24), the convexity of RV (γS+), and the definition of ∆S , we have

RV (γ̃S) ≥ RV (γS+ + ∆S) ≥ RV (γS+) ≥ RV (γ̃S+) (S.25)

uniformly in S with probability tending to 1. From (S.24) and (S.25), we obtain

RV (γ̃S) ≥ RV (γ̃S+) + C2ζ
2
n

L log pn
4n

(S.26)

uniformly in S with probability tending to 1. Recalling the results for the overfitting

case such as (50) and the evaluation of (53), we have

RV (γ̃S+) ≥ RV (γ̃S0) + (dV (S0)− d(S+))
qn log pn

2n
(S.27)

uniformly in S with probability tending to 1.

By combining (S.26) and (S.27), we get

RV (γ̃S) ≥ RV (γ̃S0) + C2ζ
2
n

L log pn
4n

+ (dV (S0)− d(S+))
qn log pn

2n
(S.28)

uniformly in S with probability tending to 1. Since dV (S0) − d(S+) = O(L) from

Assumption A1 and ζn = Cζq
1/2
n , we have from (S.28) that

RV (γ̃S) > RV (γ̃S0) + C3ζ
2
n

L log pn
2n

(S.29)

for any sufficiently large fixed Cζ uniformly in S with probability tending to 1. Note that

C3 is independent of Cζ when Cζ is larger than some value depending on the assumptions.

Hence we have established (S.22) and the proof of the underfitting case is complete.
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Proof of (44)) We take a positive M1 and consider

RV (γS)−RV (γ∗S) (S.30)

+
1

n

n∑
i=1

W T
iS(γS − γ∗S)(τ − I{ε′i ≤ 0})− Eε{RV (γS)−RV (γ∗S)}

− 1

n

n∑
i=1

W T
iS(γS − γ∗S)(τ − τi)

=
1

n

n∑
i=1

Di(γS),

where Di(γS) is clearly defined in the above equation, τi = Pε(ε
′
i ≤ 0), and |γS − γ∗S | ≤

M1L(qnn
−1 log pn)1/2.

We show that
1

n

n∑
i=1

Di(γS) = Op

( log pn
n(log n)2

)
(S.31)

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S for any fixed M1. To verify (S.31),

we should note that

Di(γS) = Di(γS)− Eε{Di(γS)}, (S.32)

where

Di(γS) = ρτ (Yi −W T
iSγS)− ρτ (W T

iSγ
∗
S) +W T

iS(γS − γ∗S)(τ − I{ε′i ≤ 0})

and that

ρτ (ε
′
i − ai)− ρτ (ε′i) = −ai(τ − I{ε′i ≤ 0})− (ε′i − ai)[I{ε′i ≤ ai} − I{ε′i ≤ 0}], (S.33)

where ai = W T
iS(γS − γ∗S).

By using (S.33), we can obtain the following three facts (S.34)-(S.36) uniformly in

γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S. Note that C2, . . . , C7 are some positive constants.
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max
1≤i≤n

|WiS | ≤C2XM(M1/2
c L−1/2 +M1/2

v ) ≤ C3XM (S.34)

max
1≤i≤n

|Di(γS)| ≤ max
1≤i≤n

|WiS |M1L(qnn
−1 log pn)1/2 ≤ C4XMM1L(qnn

−1 log pn)1/2

(S.35)

1

n2

n∑
i=1

Eε[{Di(γS)}2] ≤ C5

n2

n∑
i=1

|W T
iS(γS − γ∗S)|3 (S.36)

≤ C6

n
max
1≤i≤n

|WiS |{M1L(qnn
−1 log pn)1/2}3λmax

(
n−1

n∑
i=1

WiSW
T
iS

)
≤ C7M

3
1M2

n
L2XM(qnn

−1 log pn)3/2

if

λmax

(
n−1

n∑
i=1

WiSW
T
iS

)
≤ M2

L
. (S.37)

By using (S.34)-(S.36) and Bernstein’s inequality, we have

Pε

(∣∣∣n−1

n∑
i=1

Di(γS)
∣∣∣ ≥ log pn

n(log n)2

)
≤ C8 exp

{
− C9n

1/10(log pn)1/2

M3
1M2q

3/2
n XM(log n)4

}
(S.38)

for any fixed γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S if (S.37) holds. Note that C8 and C9

are some positive constants.

By appealing to the standard argument based on the Lipschitz continuity and (S.38)

and using Assumptions A4’ and B5, we obtain (S.31) uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2)

and S for any fixed M1.

We evaluate Eε{RV (γS) − RV (γ∗S)} in (S.30) by using (S.33) and Assumption A5’.

Since

Eε{ρτ (ε′i − ai)− ρτ (ε′i)} =
1

2
fi(−δi)a2

i + ai(τi − τ) +O(|ai|3),

where ai = W T
iS(γS − γ∗S), we have

Eε{RV (γS)−RV (γ∗S)} =
1

2n

n∑
i=1

fi(−δi)a2
i +

1

n

n∑
i=1

ai(τi − τ) +O
( 1

n

n∑
i=1

|ai|3
)

(S.39)

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S. Assumption A4’ implies that uni-

formly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S for any fixed M1,

1

n

n∑
i=1

|ai|3 ≤
maxni=1 |ai|

n

n∑
i=1

|ai|2 = Op

( log pn
n(log n)2

)
. (S.40)
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By (S.39) and (S.40), we obtain

Eε{RV (γS)−RV (γ∗S)} =
1

2
(γS − γ∗S)T Σ̂S(γS − γ∗S) (S.41)

+
1

n

n∑
i=1

ai(τi − τ) +Op

( log pn
n(log n)2

)
uniformly in γS ∈ ΓS(M1L(qnn

−1 log pn)1/2) and S for any fixed M1.

By combining (S.30), (S.31), and (S.41), we obtain (44),

RV (γS)−RV (γ∗S) = −(γS − γ∗S)T
1

n

n∑
i=1

WiS(τi − I{ε′i ≤ 0}) +
1

2
(γS − γ∗S)T Σ̂S(γS − γ∗S)

+ (γS − γ∗S)T
1

n

n∑
i=1

WiS(τi − τ) +Op

( log pn
n(log n)2

)
uniformly in γS ∈ ΓS(M1L(qnn

−1 log pn)1/2) and S for any fixed M1. Hence the proof of

(44) is complete.

Proof of Lemma 4) We prove the former half by using Assumption A3’. By exploiting

(23) and Assumptions A3’ and B4’, we have

1

n

n∑
i=1

|ai(τi − τ)| ≤
(
n−1

n∑
i=1

a2
i

)1/2(
n−1

n∑
i=1

(τi − τ)2
)1/2

= Op

((qn log pn)1/2

n

)
.

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)1/2) and S since

1

n

n∑
i=1

a2
i = Op(n

−1Lqn log pn) and
1

n

n∑
i=1

(τi − τ)2 = Op(L
−6)

uniformly as well.

Before we consider the latter, we should recall that B(z) = A0B0(z), where B0(z) =

(B01(z), . . . , B0L(z))T is the equispaced B-spline basis on [0, 1], and that the first element

of B(z) is L−1/2. Therefore we should deal with

XM

nL1/2

n∑
i=1

|τi − τ | (S.42)

and

XM

n

n∑
i=1

B0(Zi)|τi − τ |. (S.43)
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As for (S.42), we have

XM

nL1/2

n∑
i=1

|τi − τ | = Op

( X2
M

L2+1/2+α

)
(S.44)

from the assumption on (τi − τ).

Since we have E{B0j(Zi)} = O(L−1) uniformly in j, we have

XM

n

n∑
i=1

B0j(Zi)|τi − τ | = Op

(X2
M(log n)1/2

L3+α

)
(S.45)

uniformly in j from the standard argument based on Bernstein’s inequality.

(S.44) and (S.45) yields that

|bS |2 = |Sv|Op

(X4
M log n

L5+2α

)
+ |Sc|Op

( X4
M

L5+2α

)
uniformly in S.

The result for bS2 follows from the same argument. Hence the proof of the lemma is

complete.

S.3 Properties of B-spline bases

We describe properties of our basis and give comments on some misleading assumptions

on spline bases in the literature for reference.

First we describe how to construct our orthonormal spline basisB(z) = (B1(z), . . . , BL(z))T

from the equispaced B-spline basis on [0, 1], which is denoted byB0(z) = (B01(z), . . . , B0L(z))T .

Recall that L = cLn
1/5 in this paper. We also should recall two well-known facts:

L∑
j=1

B0j(z) = 1 and B0j(z) ≥ 0 (S.46)

C1

L
≤ λmin(Ω0) ≤ λmax(Ω0) ≤ C2

L
(S.47)

where Ω0 =
∫ 1

0
B0(z)BT

0 (z)dz and C1 and C2 are positive constants and independent of

L.

Therefore there exists an L× L matrix A0 such that

B(z) = A0B0(z),

∫ 1

0

B(z)BT (z)dz = A0Ω0A
T
0 = L−1IL,

B1(z) = L1/2, and B2(z) =

√
12

L

(
z − 1

2

)
.
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We denote the L× L identity matrix by IL.

We can obtain an A0 numerically by carrying out the Gram-Schmidt orthonormal-

ization. Notice also that

C3 ≤ λmin(A0A
T
0 ) ≤ λmax(A0A

T
0 ) ≤ C4, (S.48)

where C3 and C4 are positive constants and independent of L.

When we deal with varying coefficient models, B1(z) = L−1/2 is used for the con-

stant parts and B−1 = (B2(z), . . . , BL(z))T is used for the non-constant parts. When

we deal with additive models, B2(z) =
√

12
L

(
z − 1

2

)
is used for the linear parts and

(B3(z), . . . , BL(z))T is used for the nonlinear parts.

Next we consider approximation by our spline basis B(z) = (B1(z),BT
−1(z))T =

(B1(z), B2(z),BT
−2(z))T under Assumption A3. Assume that

‖g‖∞ + ‖g′‖∞ + ‖g′′‖∞ ≤ Cg.

Varying coefficient models: There exists γ∗−1 ∈ RL−1 such that ‖gn − γ∗T−1B−1‖∞ ≤
C1CgL

−2. We can take γ∗1 = L1/2gc.

Additive models: Let g(x) satisfy
∫ 1

0
g(x)dx = 0. Then there exist γ∗2 ∈ R and γ∗−2 ∈

RL−2 such that

‖gl − γ∗2B2‖∞ + ‖ga − γ∗T−2B−2‖∞ ≤ C2CgL
−2.

Note that C1 and C2 are independent of the specific function. We verify the latter

here since the former is easier.

Corollary 6.26 in Schumaker (2007) implies that there is γ∗ = (γ∗1 , γ
∗
2 ,γ

∗T
−2)T such

that

‖g − γ∗TB‖∞ ≤ C3CgL
−2 (S.49)

since B(x) is constructed from B0(x). Noticing

γ∗1 = L1/2

∫ 1

0

(γ∗TB(x)− g(x))dx

and |γ∗1 | ≤ C3CgL
−3/2, we can take γ∗1 = 0 without affecting (S.49).

Put

g∗(x) = γ∗2B2(x) + γ∗T−2B−2(x) and g(x) = γ′2B2(x) + ga(x),

where γ′2 is defined in the second equation and gl(x) = γ′2B2(x) . Recalling the decom-

position of g(x) and that B(x) is an orthonormal basis with the normalization factor of
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L−1 and ‖B2‖∞ = O(L−1/2), we get

L−1|γ∗2 − γ′2| =
∣∣∣ ∫ 1

0

(g∗(x)− g(x))B2(x)dx
∣∣∣ ≤ C4CgL

−5/2.

Thus we have |γ∗2 − γ′2| ≤ C4CgL
−3/2 and

‖(γ∗2 − γ′2)B2‖∞ ≤ C5CgL
−2. (S.50)

Note that C3, C4, and C5 are independent of the specific function. Hence the desired

result follows from (S.49) and (S.50).

Finally we consider

Ω1 =

∫ 1

0

B′0(z)(B′0(z))Tdz, Ω2 =

∫ 1

0

B′′0 (z)(B′′0 (z))Tdz, and B0(Z1)− E{B0(Z1)}.

We demonstrate that both Ω1 and Ω2 does not necessarily have desirable properties

for theoretical analysis. This conclusion also applies to B0(Z1)− E{B0(Z1)}.
Take a three times continuously differentiable function g(z). Then Corollary 6.26 in

Schumaker (2007) implies that for some γ ∈ RL,

‖g − γTB0‖ ≤ C1L
−3

3∑
j=0

‖g(j)‖,

‖g′ − γTB′0‖ ≤ C2L
−2

3∑
j=0

‖g(j)‖,

‖g′′ − γTB′′0‖ ≤ C3L
−1

3∑
j=0

‖g(j)‖.

where C1, C2, and C3 are independent of g(z).

Taking g(z) = sin(2πRz) with R→∞ and R3/L→ 0, we have from the above three

inequalities that

‖g‖ ∼ 1, ‖g′‖ ∼ R, ‖g′′‖ ∼ R2,

γTΩ0γ ∼ 1, (γTΩ1γ)1/2 ∼ R, (γTΩ2γ)1/2 ∼ R2.

These and (S.47) imply that Ω1 and Ω2 have eigenvalues λ̃1 and λ̃2 satisfying λ̃jL →
∞ (j = 1, 2), respectively. This contradicts some critical assumptions in some papers.

To consider B0(Z1)− E{B0(Z1)}, we note the following equations.

L∑
j=1

τj = 1 and


B02(Z1)− E{B02(Z1)}

...

B0L(Z1)− E{B0L(Z1)}

 = DB0(Z1), (S.51)
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where τj = E{B0j(Z1)} and the (L− 1)× L matrix D is defined by

D = (0 IL−1)−


τ2 · · · τ2

. . . . . . . . . . .

τL · · · τL

 .

When Z1 has a bounded density function, τj ∼ 1/L uniformly in j and we have

iTL−1D = (τ1 − 1, τ1, . . . , τ1) and |DT iL−1| ∼ 1

for iL−1 = (1, . . . , 1)T ∈ RL−1. This means

λmin(DDT ) = O(L−1) and λmin(DΩ0D
T ) = O(L−2).

This implies that the basis in (S.51) is not suitable for additive models for this poor

eigenvalue property. That is why we have introduced another basis.

S.4 A real application

In this section, the usefulness of our methods is illustrated via a real dataset, available

from http://www.res.org.uk. This dataset includes a variety of variables describing more

than 100 Japanese industrial chemical firms listed on the Tokyo stock exchange. The

goal is to investigate the relationship between shareholder concentration and several

indices for managerial moral hazard in the form of expenditure with scope for private

benefit, which has been studied previously by Yafeh and Yosha (2003), Horowitz and Lee

(2005) and Lian (2012). The response variable Y is the general sales and administrative

expenses deflated by sales, which is one of five measures of activities with a scope for

managerial moral hazard given by Yafeh and Yosha (2003). We consider the additive

regression model with covariates, X1:log(assets), X2: the age of the firm, X3: leverage

(ratio of debt to total assets), X4: profit (variance of operating profitability of firms

between 1977 and 1986), X5: TOPTEN (the percentage of ownership held by the 10

largest shareholders), and X6: share (share of the largest creditor in total debt). All

covariates are normalized into the range of [0,1] via a linear transformation. Note that

only 114 firms are included in our analysis because of the missing covariates. The model

selection results based on AWG-Lasso+HDIC and AWG-Lasso+HDICII with τ = 0.5

are summarized in Table S.1, in which Li,NLi, and NSi, i = 1, . . . , 6, are defined as in

Example 2 of Section 4 with the number of replications set to 1. It is shown in Table
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Table S.1: (Li,NLi,NSi), i = 1, . . . , 6 in the data on Japanese industrial chemical firms

(n, p) = (114, 6) with τ = 0.5

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) (L5,NL5,NS5 ) (L6,NL6,NS6 )

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0)

AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0)

S.1 that all covariates are survived after model selection, and the firm size [log(assets)]

and firm age [the age of the firm] are identified as nonlinear covariates, in accordance

with the findings given by Horowitz and Lee (2005).

We now evaluate the performance of these two methods in high-dimensional sit-

uations based on the result obtained from the above analysis. To this aim, we ar-

tificially generate irrelevant covariates Xj, j = 7, ..., 100, where X7, . . . , X10 are i.i.d.

N(0, (0.15)2) distributed, X11, . . . , X100 are i.i.d. U(0, 0.5) distributed, and (X7, . . . , X10)

and (X11, . . . , X100) are independent. In view of (S.1), we also transform (X7, . . . , X10)

into the range [0,1] using (Xi − mini∈{7,...,10}Xi)/(maxi∈{7,...,10}Xi − mini∈{7,...,10}Xi),

i = 7, . . . , 10. Since the above analysis suggests that all X1, . . . , X6 are relevant, the

TNR is defined by ∑100
j=7 I{Xj is not selected}

94
.

In order to alleviate the overfitting problem of AWG-Lasso+HDIC and AWG-Lasso+HDICII,

we also increase the penalty qn from 1 to 3. For τ = 0.5 and qn = 1, 2 and 3, the per-

formance of the two methods in terms of Li,NLi, and NSi, i = 1, . . . , 6, and TNR is

documented in Table S.2. Table S.2 shows that for qn = 1, X1, . . . , X6 are still identi-

fied as relevant variables although the structure identification results may slightly differ

from the low-dimensional case considered previously. However, the TNR values of AWG-

Lasso+HDIC and AWG-Lasso+HDICII are 0.72 and 0.35, suggesting that the methods

suffer from an overfitting problem. When qn increases to 2, the TNR values of the two

methods increase substantially, in particular, for AWG-Lasso+HDICII. On the other

hand, X2 and X5 are now identified as irrelevant variables, suggesting the potential

problem of false negatives. The result for qn = 3 is similar to that for qn = 2.

In conclusion, we note that our methods perform reasonably well in discovering rele-

vant variables and excluding irrelevant ones. The model/structure identification results,

however, may sometimes be sensitive to the choice of qn, which deserves a separate

investigation.
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Table S.2: (Li,NLi,NSi), i = 1, . . . , 6 and TNR in the data on Japanese industrial chemical firms

with artificial covariates

(n, p, qn) = (114, 100, 1) with τ = 0.5

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) (L5,NL5,NS5 ) (L6,NL6,NS6 )

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0)

AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0)

(TNR)

AWG-Lasso+HDIC (0.72)

AWG-Lasso+HDICII (0.35)

(n, p, qn) = (114, 100, 2) with τ = 0.5

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) (L5,NL5,NS5 ) (L6,NL6,NS6 )

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0)

AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0)

(TNR)

AWG-Lasso+HDIC (0.82)

AWG-Lasso+HDICII (0.82)

(n, p, qn) = (114, 100, 3) with τ = 0.5

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) (L5,NL5,NS5 ) (L6,NL6,NS6 )

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0)

AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 0.0, 1.0) (0.0, 1.0, 0.0)

(TNR)

AWG-Lasso+HDIC (0.82)

AWG-Lasso+HDICII (0.82)
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[1] P. Bühlmann and S. van de Geer. (2011). Statistics for High-Dimensional Data:

Methods Theory and Applications. Springer, New York, Dordrecht, Heidelberg, Lon-

don.

[2] J. Fan, Y. Fan, and E. Barut. (2014). Adaptive robust variable selection. Ann.

Statist., 42, 324–351.

[3] Horowitz, J. L., and Lee, S. (2005). Nonparametric estimation of an additive

quantile regression model. J. Amer. Statist. Assoc, 100, 1238–1249.

[4] H. Lian. (2012). Semiparametric estimation of additive quantile regression models

by twofold penalty. Journal of Business & Economic Statistics, 30, 337–350.

[5] L. L. Schumaker. (2007). Spline Functions: Basic Theory 3rd ed. Cambridge

University Press, Cambridge, 2007.

20



[6] B. Sherwood and L. Wang. (2016). Partially linear additive quantile regression

in ultra-high dimension. Ann. Statist., 44, 288–317.

[7] Y. Tang, X. Song, H. J. Wang, and Z. Zhu. (2013). Variable selection in high-

dimensional quantile varying coefficient models. J. Multivariate Anal., 122, 115–132.

[8] S. van de Geer. (2000). Empirical Processes in M-estimation. Cambridge Univer-

sity Press, Cambridge.

[9] Yafeh,Y., and Yosha, O. (2003). Large Shareholders and Banks: Who Monitors

and How? The Economic Journal, 113, 128–146.

21


