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Abstract

Prediction has long been a vibrant topic in modern probability and statistics. In addition to finding

optimal forecast and model selection, it is argued in this paper that the prediction principle can also be

used to analyze critical phenomena, in particular, stationary and unstable time series. Although the

notion of nearly unstable models has become one of the important concepts in time series econometrics,

its role from a prediction perspective is less developed. Based on moment bounds for the extreme-value

(EV) and least squares (LS) estimates, asymptotic expressions for the mean squared prediction errors

(MSPE) of the EV and LS predictors are obtained for a nearly unstable first-order autoregressive

(AR(1)) model with positive error. These asymptotic expressions are further extended to a general

class of nearly unstable models, thereby allowing one to understand to what degree such general models

can be used to establish a link between stationary and unstable models from a prediction perspective.

As applications, we illustrate the usefulness of these results in conducting finite sample approximations

of the MSPE for near unit-root time series.

Keywords: Extreme-value predictor, least squares predictor, mean squared prediction error, nearly

unstable process, positive error.

1 Introduction

Prediction has long been a vibrant topic in modern probability and statistics. The seminal monograph of

Whittle (1963) illustrates the importance of linear prediction. There are several objectives in prediction

studies. The first one is computing an optimal forecast, based on either finite or infinite samples. The

second one is to use prediction methods for model selection. The third one, which is less well known but

of no less importance, is to use the prediction principle to understand critical phenomena, in particular,

stationary and unstable processes, see for example Wei (1992). This goal also constitutes the main focus

of the present paper.

To achieve this goal, moment bounds become indispensable tools. For example, based on maximal

moment inequalities for martingales, Wei (1987, 1992) provided an asymptotic expression for the ac-

cumulated prediction error (APE) of a linear stochastic regression model, which in turn leads to the

Fisher information criterion (FIC) for model selection. Findley and Wei (2002) and Chan and Ing (2011)

established inverse moment bounds for the Fisher information matrices of time series models. These
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useful bounds enable one not only to calculate the mean squared prediction errors (MSPE) of the least

squares predictors, but also to derive the Akaike information criterion (AIC; Akaike (1974)) and the final

prediction error criterion (FPE; Akaike (1969)) in a rigorous manner.

Studies of moment bounds and MSPE have mostly been focused around the least squares procedures,

much less have been conducted on the so-called extreme-value estimates (EVE), which is mainly used

for heavy-tailed dependent data. Due to the emergence of big data, dependent heavy-tailed phenomena

have been reported in various disciplines, see for example, the exemplary monograph by Finkenstädt

and Rootzén (2004) and the examples therein. To appreciate the significance of such types of estimates,

suppose that the data are generated from the first-order autoregressive (AR(1)) model:

yt = ρyt−1 + εt, t = 1, 2, . . . , n, (1.1)

where 0 ≤ ρ < 1 and εt’s are i.i.d. positive noise with regularly varying density fε(x) at zero, i.e.,

lim
x→0

fε(x)

cxα−1
= 1, for some unknown α > 0 and c > 0. (1.2)

One of the most popular methods for estimating ρ in (1.1) is the least squares estimator (LSE),

ρ̃n =
n∑
i=2

(yi−1 − ȳ)(yi − ȳ)/
n∑
i=2

(yi−1 − ȳ)2, (1.3)

where ȳ = ȳn−1 = 1
n−1

∑n−1
i=1 yi. However, when the noise has a density like (1.2), LSE may not be

efficient and other estimation procedures are required. When the parametric form of the distribution of

εt is known, a natural alternative to ρ̃n is the maximum likelihood estimator (MLE), yet as argued in

Davis and McCormick (1989) and Ing and Yang (2014), the MLE is in general analytically difficult to

work with. A remedy for this difficulty is to use the EVE, ρ̂n, instead, where

ρ̂n = min
1≤i≤n−1

yi+1/yi. (1.4)

Note that ρ̂n is also the MLE when εt has an exponential distribution or is uniformly distributed over

[0, a] for some a > 0; see Bell and Smith (1986). Under an assumption more general than (1.2), Bell and

Smith (1986) showed that ρ̂n is consistent. When (1.2) holds, it is shown in Corollaries 2.4 and 2.5 of

Davis and McCormick (1989) that the limit distributions of ρ̂n satisfies

lim
n→∞

P{(cMα(ρ)/α)1/αn1/α(ρ̂n − ρ) > t} = exp{−tα}, (1.5)

where Mα(ρ) = E(
∑∞

j=0 ρ
jε1−j)

α. Equation (1.5) reveals that when α < 2 (α > 2), the convergence rate

of ρ̂n (ρ̃n) is faster than that of ρ̃n (ρ̂n); see Section 2 of Ing and Yang (2014) for a more comprehensive

comparison of ρ̂n and ρ̃n.

Model (1.1) with εt satisfying (1.2) has found broad applications in hydrology, economics, finance,

epidemiology and quality control; see, among others, Gaver and Lewis (1980), Bell and Smith (1986),

Lawrance and Lewis (1985), Davis and McCormick (1989), Smith (1994), Barndorff-Nielsen and Shephard

(2001), Nielsen and Shephard (2003), Sarlak (2008) and Ing and Yang (2014). In particular, Bell and
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Smith (1986) analyzed two sets of pollution data from the Willamette River, Oregon, using model (1.1)

with εt following the uniform distribution or exponential distribution; both are special cases of (1.2).

In addition, Sarlak (2008) adopted model (1.1) with a Weibull error to analyze the annual streamflow

data from the Kizilirmak River in Turkey. On the other hand, model (1.1), focusing exclusively on the

stationary case 0 ≤ ρ < 1, fails to accommodate data that may fluctuate around an upward trend with

variance increasing over time. Ing and Yang (2014) therefore generalized (1.1) to ρ = 1, which is referred

to as the unit-root model, and established the limit distribution of (1.4) in this case. In addition, they

derived asymptotic expressions for the mean squared prediction errors (MSPE) of the EV predictor (ŷn+1)

and the LS predictor (ỹn+1), i.e. MSPEA = E(yn+1 − ŷn+1)
2 and MSPEB = E(yn+1 − ỹn+1)

2, as

lim
n→∞

nmin{1,2/α}(MSPEA − σ2) = RoA(α, ρ), lim
n→∞

n(MSPEB − σ2) = RoB(ρ), (1.6)

where 0 ≤ ρ ≤ 1, RoA(α, ρ) is a positive constant depending on α, ρ and fε1(·) and RoB(ρ) is a positive

constant depending on ρ and σ2 = Var(ε1) > 0; see (37), (42), (47) and (49) of Ing and Yang (2014).

While (1.6) suggests that nmin{1,2/α}(MSPEA − σ2) and n(MSPEB − σ2) can be approximated by

RoA(α, ρ) and RoB(ρ), such an approximation may become unsatisfactory when ρ is near one; see Tables 1–

6 of Section 3.2. This phenomenon is a reminiscence of the nearly unstable autoregressive model that was

discussed in Chan and Wei (1987). By virtue of the order of the observed Fisher’s information number,

they argued that neither the stationary normal limit nor the unit-root limit distributions would be a good

approximation to the finite sample behavior of the LSE for the situation where ρ is close to 1. Putting

it differently, a main difficulty in using (1.6) when ρ is close to 1 may be due to the critical behaviors

of the limit distributions associated with the EVE and LSE. Such critical behaviors perpetuate in the

performance of the corresponding predictors.

To circumvent this difficulty, consider the following family of nearly unstable models:

yt = ρnyt−1 + εt, (1.7)

in which ρn = 1− b/n, b is a positive constant, and εt is defined as in (1.2). The notion of nearly unstable

models has become one of the most important concepts in time series econometrics since the papers of

Chan and Wei (1987) and Phillips (1987). It has found widespread applications in the analysis of time

series data; for more background information, see the surveying articles of Chan (2006) and Chan (2009).

By means of the moment bounds of the EVE and LSE for this class of models, asymptotic expressions

for the MSPEs of ŷn+1 and ỹn+1 under (1.7),

lim
n→∞

nmin{1,2/α}(MSPEA − σ2) = RA(α, b), lim
n→∞

n(MSPEB − σ2) = RB(b), (1.8)

are established, where RA(α, b) is a positive constant depending on α, b and σ2, and RB(b) is a positive

constant depending on b and σ2. When data are generated from model (1.1) with ρ fixed but close to

1, RA(α, b) and RB(b), with b = n(1 − ρ), can be used in place of RoA(α, ρ) and RoB(ρ) to approximate

nmin{1,2/α}(MSPEA − σ2) and n(MSPEB − σ2). Since RA(α, n(1 − ρ)) and RB(n(1 − ρ)) vary with the

sample size n, they are referred to as the finite sample approximations. It is shown in Section 3.2 that
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RA(α, n(1−ρ)) and RB(n(1−ρ)) substantially outperform RoA(α, ρ) and RoB(ρ) in situation where n(1−ρ)

is small to moderate.

One of the most intriguing features of RoB(ρ) is that it exhibits a jump behavior at the point ρ = 1.

Specifically, according to (47) and (48) of Ing and Yang (2014),

RoB(ρ) =


2σ2, for 0 ≤ ρ < 1,

4σ2, for ρ = 1.

(1.9)

This phenomenon is analogous to the “quantum jump” behavior observed in physics, where the state of

a system remains unchanged until a critical amount of energy is accumulated. With the MSPE jump in

(1.9), it will be interesting to explore if a connection between the stationary and the unstable regimes

can be established via a smooth transition mechanism such as (1.7). In other words, would the following

relationship

RB(b)→


2σ2, as b→∞ ,

4σ2, as b→ 0 ,

(1.10)

remain valid? Again, such an issue is a reminiscence of Corollary 1 and Theorem 2 of Chan and Wei

(1987), who showed that under (1.7), the limit distribution of the suitably normalized LSE converges to

the unit-root case as b → 0; and converges to the stationary case as b → ∞. In the current scenario,

although the lower half of (1.10) remains valid for b→ 0, the upper half fails to hold and RB(b) converges

to σ2 as b→∞; see (2.15) and (2.20) of Section 2.

This discrepancy in the upper half of (1.10) suggests that 1 − (b/n) may be converging to unity

too rapidly and as a result, RB(b) does not attain the limiting value RoB(ρ) of the stationary case. An

immediate remedy would be to determine if there exists a constant β ∈ (0, 1) such that the corresponding

AR coefficient 1 − (b/nβ) (which approaches 1 at a slower rate) would give rise to a limiting MSPE

behaving like (1.10). Unfortunately, the answer to this question is still negative. In Section 3.1, we derive

the limiting value, Λ1(β, b), of n(MSPEB − σ2) for the general near unit-root model, namely, (1.7) with

ρn = 1 − b/nβ, 0 < β ≤ 1 and b > 0. We show that Λ1(β, b) remains at the stationary state, 2σ2, for

0 < β < 1/2; transits to the intermediate state, σ2, at β = 1/2; remains at the intermediate state for

1/2 < β < 1; and transits to the unit-root state, 4σ2, at β = 1. Although no single β directly connects

Λ1(β, b) from 2σ2 to 4σ2, our result reveals that a connection can be established through two critical values

of β, namely, β = 1/2 and β = 1, which connect Λ1(β, b) for the stationary and intermediate states, and

for the intermediate and unit-root states, respectively. More precisely, we have limb→∞ Λ1(1/2, b) = 2σ2,

limb→0 Λ1(1/2, b) = σ2, limb→∞ Λ1(1, b) = limb→∞RB(b) = σ2, and limb→0 Λ1(1, b) = limb→0RB(b) =

4σ2. This feature is not only of theoretical interest, but it also provides an alternative finite sample

approximation, Λ1(1/2, n
1/2(1−ρ)), for n(MSPEB−σ2) that surpasses RB(n(1−ρ)) when n(1−ρ) stays

far away from 0. This notion is further elaborated in Section 3.2.
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Although the EV predictor also encounters the MSPE jump at ρ = 1 in the sense that

lim
ρ→1

RoA(α, ρ) 6= RoA(α, 1), (1.11)

this discrepancy can be eliminated by RA(α, b), which satisfies for any 0 < α <∞,

lim
ρ→1

RoA(α, ρ) = lim
b→∞

RA(α, b), RoA(α, 1) = lim
b→0

RA(α, b). (1.12)

For more details, see Remark 1 of Section 2. To deepen our understanding of the EV predictor in the

near unit-root region, we also obtain an asymptotic expression for MSPEA in the general near unit-root

model. This result leads to an alternative finite sample approximation of nmin{1,2/α}(MSPEA−σ2), which

notably improves upon RA(α, n(1 − ρ)) when n(1 − ρ) is relatively large. For more details, see Section

3.2.

In short, the focuses of this paper can be succinctly summarized as follows:

(1) Analysis of near unit-root processes from a prediction perspective.

(2) Analysis of general near unit-root processes, thereby allowing one to understand to what degree

such general models can be used to establish a link between stationary and unstable models from a

prediction perspective.

(3) An illustration of the importance of finite sample approximations of the MSPE derived from

near unit-root and general near unit-root processes.

The rest of the paper is organized as follows. In Section 2, asymptotic properties of the EVE and LSE

for the near unit-root case with ρn = 1−(b/n) are developed, which include: (a) the limit distributions and

the moment bounds; (b) the asymptotic expressions for MSPEA and MSPEB. In Section 3.1, extensions

of the results in Section 2 to the case of ρn = 1 − (b/nβ), 0 < β < 1, are given. In Section 3.2, we offer

finite sample approximations of nmin{1,2/α}(MSPEA − σ2) and n(MSPEB − σ2) based on the asymptotic

expressions obtained in Sections 2 and 3.1. The resultant performance is illustrated using AR(1) models

with Beta(α, 1) errors, in which the AR coefficient lies between 0.86 and 0.99 and 1.5 ≤ α ≤ 4 (see also

Section 3.2). We conclude in Section 4. With the help of Section 3.2, we further provide a simple rule

for choosing a finite sample approximation from those derived in the near unit-root and the general near

unit-root models. This result, together with the proofs of the theorems in Sections 2 and 3.1, is deferred

to the supplementary document.

2 Near Unit-Root Models

In this section, we provide asymptotic expressions for the MSPEs of ŷn+1 and ỹn+1 under (1.7), where

ŷn+1 = µ̂n + ρ̂nyn, (2.1)

with µ̂n = 1
n−1

∑n−1
t=1 (yt+1 − ρ̂nyt), and

ỹn+1 = µ̃n + ρ̃nyn, (2.2)
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noting that with xj = (1, yj)
T ,

(µ̃n, ρ̃n) = (
n−1∑
j=1

xjx
T
j )−1

n−1∑
j=1

xjyj+1. (2.3)

Let zn = (yn − y1)/(n− 1). Then the MSPE of ŷn+1 can be expressed as

MSPEA = E(yn+1 − ŷn+1)
2 = σ2 + E

{
(ρ̂n − ρn)(yn − ȳ) + [(1− ρn)ȳ − µ+ zn]

}2
, (2.4)

where µ = E(ε1). In addition, it is straightforward to see that the MSPE of ỹn+1 satisfies

MSPEB = E(yn+1 − ỹn+1)
2 = σ2 + E

{
n−1

n∑
i=1

ηi + (yn − ȳ)(ρ̃n − ρn)
}2
, (2.5)

where ηi = εi − µ. To simplify the exposition, we shall assume that y0 = 0 for the rest of this paper.

We begin by deriving the limit distributions of ρ̂n and ρ̃n and providing asymptotic expressions for their

mean squared errors (MSEs); see Theorems 2.1 and 2.2. As is clear from (2.4) and (2.5), these results

play important roles in analyzing MSPEA and MSPEB.

Theorem 2.1. Assume (1.7) with 0 < b <∞. Suppose ε1 obeys Eεκ1 <∞ for some κ > 0. Then,

E{n1+1/α(ρ̂n − ρn)}q <∞, for any q > 0. (2.6)

Further, if E(ε1+τ1 ) <∞ for some τ > 0, then

lim
n→∞

P{(cMα,b/α)1/αn1+1/α(ρ̂n − ρn) > t} = exp{−tα}, t > 0 (2.7)

and

lim
n→∞

E[(cMα,b/α)1/αn1+1/α(ρ̂n − ρn)]2 = Γ((α+ 2)/α), (2.8)

where

Mα,b = µα
∫ 1

0
[(1− exp(−bx))/b]α dx. (2.9)

We offer a brief explanation of why n1+1/α is the valid normalization factor in Theorem 2.1. It is not

difficult to see that ρ̂n − ρn = min2≤i≤n εi/yi−1, and exp(−b)St≤ yt =
∑t−1

j=0 ρ
j
nεt−j ≤ St, where St =∑t

j=1 εj . Moreover, it is shown in the proof of Theorem 2 of Ing and Yang (2014) that there exists

1/2 < θ < 1 for which n1+1/α min2≤i≤n εi/Si−1 = n1+1/α minnθ≤i≤n εi/[(i − 1)µ] + op(1). Since the limit

distribution of n1+1/α minnθ≤i≤n εi/[(i − 1)µ] is non-degenerate, this explains why n1+1/α is required by

ρ̂n − ρn to yield the desired results.

Theorem 2.2. Assume (1.7) with 0 < b <∞. Suppose ε1 satisfies Eε2+τ1 <∞ for some τ > 0. Then,

n3/2

σ1,b
(ρ̃n − ρn)

d−→ N(0, 1), (2.10)

6



where σ21,b = σ2/[µ2(I1(b) − I2(b))], with I1(b) = 2−1b−3[2b + 4 exp(−b) − exp(−2b) − 3] and I2(b) =

b−4[b− 1 + exp(−b)]2. Further, assume that Eεs1 <∞ for some s > 10 and there exist positive constants

K, a and δ such that for all |x− y| ≤ δ and all large m,

|Fm(x)− Fm(y)| ≤ K|x− y|a, (2.11)

where Fm is the distribution function of m−1/2
∑m

t=1(εt − Eε1). Then

lim
n→∞

E[n3(ρ̃n − ρn)2] = σ21,b (2.12)

It is interesting to point out that limb→0 σ
2
1,b = 12σ2/µ2, which is exactly the limiting variance of n3/2(ρ̃n−

1) derived in the unit-root model; see Chan (1989) and Ing and Yang (2014). Based on (2.4) and Theorem

2.1, the next theorem gives an asymptotic expression for MSPEA. Define L3(b) = b−4[1 − exp(−b) −
b exp(−b)]2 and M ′α,b = Mα,b/µ

α.

Theorem 2.3. Assume (1.7) with 0 < b <∞. Suppose ε1 obeys Eεκ1 <∞ for some κ > 2. Then,

MSPEA − σ2 = n−2/αΓ
(α+ 2

α

)( α

cM ′α,b

) 2
α
L3(b) +

σ2

n
+ o(max{n−1, n−2/α}), (2.13)

yielding

lim
n→∞

nmin {1,2/α}(MSPEA − σ2) = RA(α, b), (2.14)

where

RA(α, b) = Γ
(α+ 2

α

)( α

cM ′α,b

) 2
α
L3(b)I(α ≥ 2) + σ2I(α ≤ 2),

and the dependence of RA(α, b) on c is suppressed to simplify notation.

Note that in view of the proof of Theorem 2.3, the cross-product term, 2E{(ρ̂n − ρn)(yn − ȳ)[(1− ρn)ȳ −
µ+ zn]}, in the expectation on the right-hand side of (2.4) is asymptotically negligible compared to the

corresponding squared terms E{(ρ̂n−ρn)(yn− ȳ)}2 and E{(1−ρn)ȳ−µ+zn}2. Therefore, the asymptotic

behavior of MSPEA − σ2 is mainly determined by the last two expectations. Since (1− ρn)ȳ − µ+ zn =

(n− 1)−1
∑n−1

j=1 ηj+1, we have E{(1− ρn)ȳ − µ+ zn}2 = σ2/(n− 1). In addition, (yn − ȳ)2/n2 converges

in probability to µ2L3(b); see (A.16). From this and (2.8), it is expected that E{(ρ̂n − ρn)(yn − ȳ)}2 is

of order n−2/α, and the details are presented in the proof of Theorem 2.3. As a result, the normalization

factor nmin {1,2/α} is needed.

Equipped with (2.5) and Theorem 2.2, we have the following asymptotic expression for MSPEB.

Theorem 2.4. Assume (1.7) with 0 < b <∞. Suppose ε1 satisfies (2.11) and Eεs1 <∞ for some s > 12.

Then

lim
n→∞

n(MSPEB − σ2) = RB(b) =

{
1 +

L3(b)

I1(b)− I2(b)

}
σ2. (2.15)
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We conclude this section with a few remarks for Theorems 2.3 and 2.4.

Remark 1. By (37) of Ing and Yang (2014), for 0 ≤ ρ < 1, we have

MSPEA − σ2 = n−2/αΓ
(α+ 2

α

){ α

cMα(ρ)

} 2
α σ2

1− ρ2
+
σ2

n
+ o(max{n−1, n−2/α}), (2.16)

yielding

lim
n→∞

nmin {1,2/α}(MSPEA − σ2) = RoA(α, ρ), (2.17)

where

RoA(α, ρ) = Γ
(α+ 2

α

){ α

cMα(ρ)

} 2
α σ2

1− ρ2
I(α ≥ 2) + σ2I(α ≤ 2).

In addition, (42) of Ing and Yang (2014) implies that for ρ = 1,

nmin {1,2/α}(MSPEA − σ2) = RoA(α, 1) =
1

4
Γ
(α+ 2

α

){α(α+ 1)

c

} 2
α
I(α ≥ 2) + σ2I(α ≤ 2). (2.18)

Therefore, (1.11) follows from (2.17), (2.18) and

Γ
(α+ 2

α

){ α

cMα(ρ)

} 2
α σ2

1− ρ2
→ 0 as ρ→ 1.

On the other hand, in view of

Γ
(α+ 2

α

)( α

cM ′α,b

) 2
α
L3(b)→


1
4Γ
(
α+2
α

){
α(α+1)

c

} 2
α
, as b→ 0 ,

0, as b→∞ ,

the discrepancy between RoA(α, 1) and RoA(α, ρ) in (1.11) can be connected by RA(α, b) in the sense of

(1.12).

Remark 2. While

lim
b→0

RB(b) = RoB(1) = 4σ2, (2.19)

limb→∞RB(b) is not equivalent to RoB(ρ) when ρ increases to 1. More specifically,

σ2 = lim
b→∞

RB(b) 6= lim
ρ→1

RoB(ρ) = 2σ2, (2.20)

recalling that RoB(ρ) = 2σ2 for all 0 ≤ ρ < 1. Equation (2.20) seems to suggest that ρn = 1 − b/n

converges to unity too fast, and hence limb→∞RB(b) does not align with limρ→1R
o
B(ρ). This motivates

one to ask if there exists a β ∈ (0, 1) such that limb→0RB(b) = 4σ2 and limb→∞RB(b) = 2σ2, provided

ρn is replaced by 1− (b/nβ). This question will be discussed in Section 3.

Remark 3. Theorems 2.3 and 2.4 imply that when α < 2 (α > 2), the EV (LS) predictor is better

(worse) than the LS (EV) predictor in the sense that the convergence rate of MSPEA−σ2 (MSPEB−σ2)
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Figure 1: The graph of c = hσ(b).

is faster than MSPEB − σ2 (MSPEA − σ2). However, when α = 2, MSPEA − σ2 and MSPEB − σ2 share

the same rate of convergence, and EV (LS) predictor is more efficient than the LS (EV) predictor if and

only if RA(α, b) < RB(b) (RA(α, b) > RB(b)). In fact, it is not difficult to see that RA(α, b) < RB(b)

or RA(α, b) > RB(b) depends on whether c is greater or smaller than the threshold function hσ(b) =

2(I1(b)−I2(b))[(σ2/b2)
∫ 1
0 (1−exp(−bx))2dx]−1. Moreover, limb→0 hσ(b) = 1/(2σ2) is exactly the threshold

value in the case of ρ = 1 that partitions c into c > 1/(2σ2), in which the EV predictor dominates the LS

predictor; and 0 < c < 1/(2σ2), in which the latter predictor becomes more appealing, see Section 3 of Ing

and Yang (2014). Additionally, hσ(b) is a decreasing function of b, suggesting that the advantage of the

EV predictor over the LS one is more evident as the underlying process becomes “less non-stationary”. It

is also interesting to point out that in the case 0 ≤ ρ < 1, hµ,σ(ρ) = 2(1−ρ){(1+ρ)µ2+(1−ρ)σ2}−1 is the

threshold function playing the same role as hσ(b) in the near unit-root case (see Section 3 of Ing and Yang

(2014)), and hµ,σ(ρ) and hσ(b) coincide in the limit in the sense that limρ→1 hµ,σ(ρ) = limb→∞ hσ(b) = 0.

The above discussion is illustrated graphically by Figure 1. Finally, we mention that in view of Theorems

2.1 and 2.2, the rankings of ρ̂n and ρ̃n in terms of MSE are exactly the same as those of ŷn+1 and ỹn+1

in terms of MSPE.

Before closing this section, we remark that when data are generated from model (1.1) with ρ fixed

but close to 1, RA(α, n(1 − ρ)) and RB(n(1 − ρ)) can also be used in place of RoA(α, ρ) and RoB(ρ) to

approximate nmin {1,2/α}(MSPEA − σ2) and n(MSPEB − σ2). These types of approximations, varying

with the sample size n, are referred to as the finite sample approximations of nmin {1,2/α}(MSPEA − σ2)
and n(MSPEB − σ2), or finite sample corrections of RoA(α, ρ) and RoB(ρ). As shown in Section 3.2, the

performance of RA(α, n(1−ρ)) and RB(n(1−ρ)) substantially improves upon that of RoA(α, ρ) and RoB(ρ)

when n(1− ρ) is small to moderate.
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3 General Near Unit-Root Models

In this section, we extend the results in Section 2 to the general near unit-root case ρn = 1 − b/nβ,

where 0 < β < 1 and 0 < b < ∞. One major motive for this extension is to alleviate the difficulty

of RA(α, n(1 − ρ)) (RB(n(1 − ρ))) and RoA(α, ρ) (RoB(ρ)) in approximating nmin {1,2/α}(MSPEA − σ2)

(n(MSPEB −σ2)) when 1− ρ is small but n(1− ρ) becomes relatively large, see Tables 1–6 for details. In

Section 3.1, we derive asymptotic expressions for the MSPEA and MSPEB in the general near unit-root

model. As shown in Section 3.2, these expressions lead to alternative finite sample approximations of

nmin {1,2/α}(MSPEA − σ2) and n(MSPEB − σ2) that can indeed achieve the desired goal.

3.1 Asymptotic Theories

We start by exploring the asymptotic distribution and the MSE of ρ̂n.

Theorem 3.1. Assume (1.7) with ρn = 1 − b/nβ, where 0 < β < 1 and 0 < b < ∞. Suppose that ε1

satisfies Eεκ1 <∞ for some κ > 0. Then

E{nβ+1/α(ρ̂n − ρn)}q <∞, for any q > 0. (3.1)

Further, if

E(εq11 ) <∞, for some q1 > 2/β, (3.2)

then

lim
n→∞

P{(c/α)1/α(µ/b)nβ+1/α(ρ̂n − ρn) > t} = exp{−tα}, t > 0 , (3.3)

and

lim
n→∞

E[(c/α)1/α(µ/b)nβ+1/α(ρ̂n − ρn)]2 = Γ((α+ 2)/α). (3.4)

Theorem 3.1 reveals that the convergence rate of ρ̂n − ρn is slower in the general near unit-root case

than in the near unit-root one. This is because in the former case, the denominator, yi, in ρ̂n − ρn =

min1≤i≤n−1 εi+1/yi has order of magnitude nβ(1− ρin), which is dominated by the order of magnitude of

yi in the near unit-root case.

Theorem 3.2. Assume (1.7) with ρn = 1 − b/nβ, where 0 < β < 1 and 0 < b < ∞. Let ε1 satisfy

E(ε2+τ1 ) <∞ for some τ > 0. Then,√
kn(ρ̃n − ρn)

d−→ N(0, σ2β,b), (3.5)

where kn = n1+β if 0 < β ≤ 1/2 and n3β if β > 1/2, and

σ2β,b =

 {(2b
3σ2)−1µ2I(β = 1/2) + (2b)−1}−1 , if 0 < β ≤ 1/2 ,

2b3σ2/µ2 , if 1/2 < β < 1.
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Moreover, if Eεs1 <∞ for some s > 10 and (2.11) holds, then

lim
n→∞

E[kn(ρ̃n − ρn)2] = σ2β,b. (3.6)

It is shown in the proof of Theorem 3.2 that ρ̃n − ρn =
∑n

i=2(yi−1 − ȳ)ηi/
∑n

i=2(yi−1 − ȳ)2 =∑n
i=2(an,i−1 + ξn,i−1)ηi/

∑n
i=2(an,i−1 + ξn,i−1)

2, where an,i and ξn,i, respectively, denote the determin-

istic and random components of yi − ȳ. Moreover, the order of magnitude of (ρ̃n − ρn)2 is determined

by (
∑n

i=2 a
2
n,i−1)

−1 for 1/2 < β < 1, (
∑n

i=2 ξ
2
n,i−1)

−1 for 0 < β < 1/2, and (
∑n

i=2 a
2
n,i−1 + ξ2n,i−1)

−1 for

β = 1/2, and the growth rates of
∑n

i=2 a
2
n,i−1 and

∑n
i=2 ξ

2
n,i−1 are n3β and n1+β, respectively. This clarifies

why the exponent of kn needs to be changed from 1 + β to 3β after β > 1/2.

With the help of Theorems 3.1 and 3.2, the next two theorems provide asymptotic expressions for

MSPEA and MSPEB in the general near unit-root model.

Theorem 3.3. Assume (1.7) with ρn = 1 − b/nβ, where 0 < β < 1 and 0 < b < ∞. Suppose that ε1

obeys (3.2). Then the following conclusions hold.

(a) For 0 < β < 2/3,

MSPEA − σ2 = n−β−
2
αΓ
(α+ 2

α

)(α
c

) 2
α σ2b

2µ2
+
σ2

n
+ o(max{n−1, n−β−

2
α }). (3.7)

(b) For 2/3 < β < 1,

MSPEA − σ2 = n2β−2−
2
αΓ
(α+ 2

α

)(α
c

) 2
α 1

b2
+
σ2

n
+ o(max{n−1, n2β−2−

2
α }). (3.8)

(b) For β = 2/3,

MSPEA − σ2 = n−
2
3
− 2
αΓ
(α+ 2

α

)(α
c

) 2
α

{
σ2b

2µ2
+

1

b2

}
+
σ2

n
+ o(max{n−1, n−

2
3
− 2
α }).

(3.9)

It is worth mentioning that the first terms on the right-hand sides of (3.7) and (3.8), respectively, are

asymptotically equivalent to those on the right-hand sides of (2.16) and (2.13) with ρ and b replaced by

ρn and n(1 − ρn), where ρn is defined in Theorem 3.3. Moreover, the first term on the right-hand side

of (3.9) is the sum of the first terms on right-hand sides of (3.7) and (3.8). These features reveal that

when ρn converges to 1 at a rate slower than n−2/3, the asymptotic behavior of MSPEA is governed by

the stationary formula (2.16). But when ρn converges to 1 at a rate faster than n−2/3, the asymptotic

behavior of MSPEA is governed by the near unit-root formula (2.13). At the critical point β = 2/3,

however, MSPEA is related to both (2.13) and (2.16). In fact, one can combine (3.7)–(3.9) into

MSPEA − σ2

= n−2/α
{

Γ
(α+ 2

α

)(α
c

) 2
α
[ σ2b

2µ2nβ
+

1

n2(b/nβ)2

]}
+
σ2

n

+ o(max{n−1, n−β−
2
α , n2β−2−

2
α }),

(3.10)
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where 0 < β < 1. Equation (3.10) leads to another finite sample approximation of nmin{1,2/α}(MSPEA −
σ2); see (3.17) in Section 3.2. As will be shown in Section 3.2, (3.17) serves as a satisfactory complement

to RoA(α, ρ) and RA(α, n(1− ρ)) when the latter two approximations perform poorly.

Theorem 3.4. Assume (1.7) with ρn = 1 − b/nβ, where 0 < β < 1 and 0 < b < ∞. Suppose that ε1

satisfies the same assumptions as in Theorem 2.4. Then

Λ1(β, b) ≡ lim
n→∞

n(MSPEB − σ2) =



2σ2 , 0 < β < 1/2 ,

σ2{1 +
(

b2σ2

µ2+b2σ2

)
} , β = 1/2 ,

σ2 , 1/2 < β < 1 .

(3.11)

In view of (2.15), (2.19) and (2.20), Theorem 3.4 can be succinctly summarized to include the case

β = 1 as follows.

Λ1(β, b) =



2σ2 , 0 < β < 1/2 and 0 < b <∞ ,

σ2{1 +
(

b2σ2

µ2+b2σ2

)
} , β = 1/2 and 0 < b <∞ ,

σ2 , 1/2 < β < 1 and 0 < b <∞ ,

RB(b) , β = 1 and 0 < b <∞ ,

4σ2 , β = 1 and b = 0.

(3.12)

Note that Λ1(β, b) = 2σ2, 0 < β < 1/2 is designated as the “stationary state”, while Λ1(1, 0) = 4σ2 is des-

ignated as the “unit-root state”. Moreover, Λ1(β, b) with 1/2 < β < 1 is designated as the “intermediate

state” because its value, σ2, is different from the values of the unit-root and the stationary states.

Equation (3.12) also reveals that there are two critical points, β = 1/2 and β = 1, as far as asymptotic

predictions are concerned. At the critical point β = 1 that separates the unit-root and intermediate

states, we have

(i) limb→0 Λ1(1, b) = 4σ2, which is the value of the unit-root state,

(ii) limb→∞ Λ1(1, b) = σ2, which is the value of the intermediate state.

At the critical point β = 1/2 that separates the stationary and intermediate states, we have

(i) limb→0 Λ1(
1
2 , b) = σ2, which is the value of the intermediate state,

(ii) limb→∞ Λ1(
1
2 , b) = 2σ2, which is the value of the stationary state.

Graphically, these critical phenomena are depicted in Figure 2.
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Figure 2: Theorem 3.4: the vertical axis denotes the value of Λ1(β, b). Note that the points associated

with Λ1(1/2, b) and Λ1(1, b) are not necessarily in the middle. They are only used to illustrate Λ1(1/2, b)

(Λ1(1, b)) decreases (increases) to σ2 (4σ2) as b→ 0, and increases (decreases) to 2σ2 (σ2) as b→∞.

One important conclusion deduced from the above discussion is that due to the existence of the

intermediate state, there exists no 0 < β ≤ 1 such that Λ1(β, b) simultaneously satisfies limb→0 Λ1(β, b) =

4σ2 and limb→∞ Λ1(β, b) = 2σ2, implying that the discontinuity between the unit-root and stationary

states of the MSPEB cannot be connected by a general near unit-root model. In contrast, we also

note that this discontinuity in MSPEB can indeed be connected through“two” general near unit-root

models whose β values correspond to the aforementioned two critical points, 1 and 1/2, as illustrated in

Figure 2. Moreover, when data are generated from model (1.1) with fixed ρ, the critical point β = 1/2

inspires another finite sample approximation, Λ1(1/2, n
1/2(1 − ρ)), of n(MSPEB − σ2) that is expected

to surpass Λ1(1, n(1 − ρ)) = RB(n(1 − ρ)) when n(1 − ρ) becomes relatively large. The performance of

Λ1(1/2, n
1/2(1− ρ)) is also demonstrated in Section 3.2.

3.2 Simulations

In this section, we propose finite sample approximations of nmin{1,2/α}(MSPEA−σ2) and n(MSPEB−σ2)
(finite sample corrections of RoA(α, ρ) and RoB(ρ)) based on Theorems 2.3, 2.4, 3.3 and 3.4, and investigate

their performance via simulated data generated from model (1.1), with ρ ∈ {0.86, 0.9, 0.95, 0.975, 0.99},
n ∈ {100, 200, 500, 1000, 3000, 6000, 10000}, and εt obeying the Beta(α, 1) distribution with α ∈ {1.5, 2, 4}.
Note that the performance of our finite sample corrections in the case of 0 < α < 1 is largely similar to
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that in the case of α = 1.5. The details are skipped here. For a given triple (n, ρ, α), let y
(j)
1 , . . . , y

(j)
n

denote the data generated in the j-th simulation, where 1 ≤ j ≤ 5000. We also generate y
(j)
n+1 and compute

the empirical estimate of nmin{1,2/α}(MSPEA − σ2),

RAn = nmin{1, 2
α
}

 1

5000

5000∑
j=1

(y
(j)
n+1 − ŷ

(j)
n+1)

2 − σ2
 , (3.13)

and that of n(MSPEB − σ2),

RBn = n

 1

5000

5000∑
j=1

(y
(j)
n+1 − ỹ

(j)
n+1)

2 − σ2
 , (3.14)

where ŷ
(j)
n+1 and ỹ

(j)
n+1, respectively, denote the EV and LS predictors calculated in the j-th simulation

based on y
(j)
1 , . . . , y

(j)
n .

While (1.6) suggests that for a sufficiently large n, RoA(α, ρ) and RoB(ρ) should give good approx-

imations of nmin{1,2/α}(MSPEA − σ2) (or RAn) and n(MSPEB − σ2) (or RBn), the results are often

unsatisfactory in the scenarios considered. In view of Theorems 2.3 and 2.4, when n(1 − ρ) is small,

it seems reasonable to use RA(α, n(1 − ρ)) and RB(n(1 − ρ)) as finite sample corrections for RoA(α, ρ)

and RoB(ρ), where RA(α, b) and RB(b) are defined in (2.14) and (2.15), and n(1− ρ) can be viewed as a

measure of how far the underlying model deviates from the unit-root model.

On the other hand, when 1−ρ is small but n(1−ρ) becomes relatively large, both RA(α, n(1−ρ)) and

RoA(α, ρ) may perform inferiorly. Therefore, we suggest an alternative approximation of nmin{1,2/α}(MSPEA−
σ2) based on (3.10), which is derived from the general near unit-root model. More specifically, ignoring the

smaller order terms in (3.10), we obtain from the equation that nmin{1,2/α}(MSPEA−σ2) is approximately

equal to {
Γ
(α+ 2

α

)(α
c

) 2
α
[ σ2b

2µ2nβ
+

1

n2(b/nβ)2

]}
+

σ2

n1−2/α
(3.15)

for α ≥ 2, and

σ2 + n1−2/α
{

Γ
(α+ 2

α

)(α
c

) 2
α
[ σ2b

2µ2nβ
+

1

n2(b/nβ)2

]}
(3.16)

for 0 < α < 2. Replacing b/nβ in (3.15) and (3.16) by 1− ρ, one gets an alternative to RA(α, n(1− ρ)):

R∗A(α, n, 1− ρ) =


R∗1(α, ρ) +R∗2(α, n(1− ρ)) + σ2

n1−2/α , α ≥ 2 ,

σ2 + n1−2/αR∗1(α, ρ) + n1−2/αR∗2(α, n(1− ρ)) , 0 < α < 2,

(3.17)

where

R∗1(α, ρ) = Γ
(α+ 2

α

)(α
c

)2/ασ2(1− ρ)

2µ2
,

and

R∗2(α, n(1− ρ)) = Γ
(α+ 2

α

)(α
c

)2/α 1

n2(1− ρ)2
.
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One of the most appealing features of (3.17) is that it depends on the parameters, β and b, in the general

near unit-root model only through 1− ρ, and hence can be implemented without facing the identifiability

issue associated with β and b.

Similarly, both RB(α, n(1 − ρ)) and RoB(α, ρ) may perform poorly for small 1 − ρ and for relatively

large n(1− ρ). We therefore consider the following alternative,

Λ1(1/2, n
1/2(1− ρ)) = σ2

{
1 +

( n(1− ρ)2σ2

µ2 + n(1− ρ)2σ2

)}
, (3.18)

which is Λ1(1/2, b) with b replaced by n1/2(1 − ρ). Since Λ1(1/2, b) falls between (σ2, 2σ2) and can fill

the gap between 2σ2 = RoB(α, ρ) and σ2 = limb→∞RB(α, b) in the sense that limb→∞ Λ1(1/2, b) = 2σ2

and limb→0 Λ1(1/2, b) = σ2, it is expected that Λ1(1/2, n
1/2(1 − ρ)) will provide a more satisfactory

approximation of n(MSPEB − σ2) when ρ is too small (large) for RB(n(1− ρ)) (RoB(α, ρ)) to do a good

job. We emphasize that the b in Λ1(1/2, b) is replaced by n1/2(1−ρ) instead of n(1−ρ) because Λ1(1/2, b)

is derived from the general near unit-root model with β = 1/2.

For notational simplicity, define

R
(1)
A = RoA(α, ρ), R

(2)
A = RA(α, n(1− ρ)), R

(3)
A = R∗A(α, n, 1− ρ),

R
(1)
B = RoB(ρ), R

(2)
B = RB(n(1− ρ)), R

(3)
B = Λ1(1/2, n

1/2(1− ρ)).

The degree of closeness between R
(i)
A and RAn and that between R

(i)
B and RBn are assessed by

P
(i)
A =

min{R(i)
A , RAn}

max{R(i)
A , RAn}

and P
(i)
B =

min{R(i)
B , RBn}

max{R(i)
B , RBn}

, i = 1, 2, 3.

Clearly, 0 ≤ P
(i)
A , P

(i)
B ≤ 1 and a larger value represents a better performance. The values of RAn (RBn)

and P
(i)
A (P

(i)
B ), i = 1, 2, 3, are summarized in Tables 1–3 (Tables 4–6) for α = 1.5, 2 and 4, respectively. To

better explain these tables, the corresponding value of n(1− ρ), which is denoted by b, is also included.

Table 1 shows that when α = 1.5, P
(1)
A = P

(2)
A for each (n, ρ), which is due to R

(1)
A = R

(2)
A for each

(n, ρ). On the other hand, P
(3)
A is notably larger than P

(1)
A = P

(2)
A for n = 100 or 1 ≤ n(1−ρ) ≤ 5 although

P
(i)
A , i = 1, 2, 3, have similar values otherwise. These facts reveal that while n1−2/α(R∗1(α, ρ)+R∗1(α, n(1−
ρ))) in R

(3)
A is asymptotically negligible compared to the corresponding leading term, σ2 = R

(1)
A = R

(2)
A ,

in the case of α < 2, it can help improve the finite sample performance of this leading term. For any fixed

ρ, all P
(i)
A , i = 1, . . . , 3, gradually approach 1 as n increases, which coincides with the asymptotic result

established for the stationary case, namely, the first relation of (1.6). Table 2 shows that when α = 2

and 1 ≤ n(1 − ρ) ≤ 5, P
(2)
A usually has the highest value among P

(i)
A , i = 1, . . . , 3, except for the case

of (n, ρ) = (200, 0.99), where P
(3)
A = 0.9747 > P

(2)
A = 0.9144 > P

(1)
A = 0.1786. For 5 < n(1 − ρ) ≤ 28,

P
(3)
A appears to dominate its competitors with the exception of (n, ρ) = (1000, 0.99), in which P

(2)
A is

slightly larger than P
(3)
A . One explanation of this result is that when n(1 − ρ) becomes larger, R∗1(α, ρ)

and R∗2(α, n(1−ρ)) in R
(3)
A can complement each other and jointly provide a good approximation of RAn ,

which is further improved via σ2/n1−2/α. For 28 < n(1− ρ) ≤ 1400, P
(1)
A and P

(3)
A behave quite similarly

and are usually significantly larger than P
(2)
A except for ρ ≥ 0.975. For any fixed ρ, P

(1)
A has an obvious
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tendency to increase to 1 as n grows from 100 to 10000. This is also in agreement with the first relation

of (1.6). Like Table 2, Table 3 (α = 4) also shows that P
(2)
A usually dominates P

(i)
A , i = 1 and 3, when

1 ≤ n(1−ρ) ≤ 5. However, an exception happens in the case of (n, ρ) = (100, 0.975), where P
(3)
A is ranked

first. Note that in this range of n(1−ρ), P
(1)
A in Table 3 is less than 0.02 and somewhat smaller than P

(1)
A

in Table 2. This is because for α = 2, R
(1)
A contains σ2, which is non-negligible compared to RAn . As a

result, σ2 keeps P
(1)
A bounded away from zero although the other component of R

(1)
A is extremely small.

However, for α = 4 and small n(1 − ρ), R
(1)
A is approximately equal to R∗1(α, ρ), which is substantially

smaller than RAn . The advantage of R
(3)
A is more evident in Table 3 since P

(3)
A is noticeably larger than

P
(1)
A and P

(2)
A for almost all 10 ≤ n(1 − ρ) ≤ 1400. When 70 ≤ n(1 − ρ) ≤ 1400, P

(2)
A in Table 3 is less

than 0.05 and distinctively smaller than P
(2)
A in Table 2. We explain this by noting that for α = 2 and

large n(1 − ρ), σ2 in R
(2)
A is quite close to RAn , and hence induces a relatively large P

(2)
A although the

other component of R
(2)
A is very small. For α = 4 and large n(1−ρ), however, R

(2)
A is approximately equal

to R∗2(α, n(1− ρ)), which is exceedingly small compared to RAn . For any fixed ρ, Table 3 shows that P
(1)
A

still possesses a clear upward trend. This phenomenon can once again be explained by the first relation

of (1.6). However, because the convergence rate of MSPEA − σ2 is much slower in α = 4 than in α ≤ 2,

P
(1)
A may not be very close to 1 even when n = 10000.

It is shown in Table 4 that P
(2)
B = max1≤i≤3 P

(i)
B for 1 ≤ n(1 − ρ) ≤ 12.5, and P

(3)
B = max1≤i≤3 P

(i)
B

for 12.5 < n(1 − ρ) ≤ 300, with the exception of n(1 − ρ) = 30, where P
(2)
B is slightly larger than P

(3)
B .

For 300 < n(1 − ρ) ≤ 1400, P
(1)
B and P

(3)
B have similar values and are much larger than P

(2)
B . Table 4

also reveals that for ρ = 0.99, RBn decreases from 0.217 to 0.0761 as n grows from 100 to 3000, and then

slowly increases to 0.08 as n increases to 10000. When ρ gets smaller, this feature of RBn , first decreasing

and then increasing as n grows, becomes more evident. For example, RBn with ρ = 0.975 decreases from

0.158 to 0.084 as n grows from 100 to 1000, and then increases to 0.110 as n increases to 10000. Moreover,

for ρ = 0.95 (0.9, 0.86), RBn decreases from 0.117 (0.103, 0.109) to 0.086 (0.101, 0.108) as n grows from

100 to 500 (200, 200), and then increases to 0.136 (0.139, 0.134) as n increases to 10000. The decreasing

part of RBn can be explained by R
(2)
B , which decreases to the value of intermediate state, σ2 = 0.0686, as

n(1 − ρ) (or, equivalently, n) increases. The increasing part of RBn , however, is more in line with R
(3)
B ,

which increases to 2σ2 after leaving the intermediate state. Tables 5 and 6 share similar features as Table

4. Moreover, as α grows, the areas of n(1− ρ) for which R
(2)
B works best and R

(3)
B outperforms R

(1)
B tend

to expand. In Figure 3, we give the plots of time series realizations generated from model (1.1), with

ρ = 0.95 and εt obeying Beta(1.5, 1), Beta(2, 1) and Beta(4, 1) distributions. This figure shows that the

nonstationary feature of these series becomes more evident as α increases, which may partly explain why

R
(2)
B and R

(3)
B play increasingly essential roles in approximating RBn when α becomes larger.

As a final remark, we note that Tables 1–3 (Tables 4–6) together portrait situations where R
(i)
A , i = 2, 3

(R
(i)
B , i = 2, 3) can approximate RAn (RBn) better than R

(1)
A (R

(1)
B ). This information in conjunction

with suitable estimators of b, c and α enables one to construct a data-driven procedure for estimating

nmin{1,2/α}(MSPEA − σ2) and n(MSPEB − σ2) in the near unit-root region. The details are deferred to

the supplementary document.
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Table 1: The values of RAn and P
(i)
A , i = 1, 2, 3, under the Beta(1.5, 1) noise. P

(1)
A (P

(2)
A , P

(3)
A ) is colored in red

(blue, green) when it is equal to max1≤i≤3 P
(i)
A .

ρ 0.86 0.9 0.95 0.975 0.99

b 14 10 5.0 2.5 1.0

RAn 0.0770 0.0786 0.0917 0.1349 0.2150

n = 100 P
(1)
A 0.8909 0.8715 0.7470 0.5078 0.3186

P
(2)
A 0.8909 0.8715 0.7470 0.5078 0.3186

P
(3)
A 0.9519 0.9361 0.8729 0.8170 0.6608

b 28 20 10 5.0 2.0

RAn 0.0707 0.0741 0.0743 0.0866 0.1299

n = 200 P
(1)
A 0.9703 0.9244 0.9219 0.7910 0.5273

P
(2)
A 0.9703 0.9244 0.9219 0.7910 0.5273

P
(3)
A 0.9881 0.9584 0.9633 0.8914 0.9212

b 70 50 25 12.5 5.0

RAn 0.0718 0.0713 0.0682 0.0719 0.0792

n = 500 P
(1)
A 0.9555 0.9607 0.9956 0.9527 0.8649

P
(2)
A 0.9555 0.9607 0.9956 0.9527 0.8649

P
(3)
A 0.9833 0.9826 0.9809 0.9720 0.9433

b 140 100 50 25 10

RAn 0.0690 0.0707 0.0699 0.0709 0.0729

n = 1000 P
(1)
A 0.9938 0.9689 0.9799 0.9661 0.9396

P
(2)
A 0.9938 0.9689 0.9799 0.9661 0.9396

P
(3)
A 0.9833 0.9861 0.9897 0.9738 0.9585

b 420 300 150 75 30

RAn 0.0700 0.0691 0.0670 0.0693 0.0676

n = 3000 P
(1)
A 0.9785 0.9913 0.9781 0.9884 0.9868

P
(2)
A 0.9785 0.9913 0.9781 0.9884 0.9868

P
(3)
A 0.9942 0.9971 0.9724 0.9913 0.9839

b 840 600 300 150 60

RAn 0.0688 0.0661 0.0702 0.0694 0.06853

n = 6000 P
(1)
A 0.9956 0.9649 0.9757 0.9870 0.9994

P
(2)
A 0.9956 0.9649 0.9757 0.9870 0.9994

P
(3)
A 0.9913 0.9565 0.9800 0.9903 0.9989

b 1400 1000 500 250 100

RAn 0.0681 0.0693 0.0702 0.0702 0.0671

n = 10000 P
(1)
A 0.9927 0.9885 0.9757 0.9757 0.9795

P
(2)
A 0.9927 0.9885 0.9757 0.9757 0.9795

P
(3)
A 0.9825 0.9970 0.9805 0.9786 0.9777
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Table 2: The values of RAn and P
(i)
A , i = 1, 2, 3, under the Beta(2, 1) noise. P

(1)
A (P

(2)
A , P

(3)
A ) is colored in red

(blue, green) when it is equal to max1≤i≤3 P
(i)
A .

ρ 0.86 0.9 0.95 0.975 0.99

b 14 10 5.0 2.5 1.0

RAn 0.0756 0.0812 0.1307 0.2644 0.5096

n = 100 P
(1)
A 0.8580 0.7635 0.4491 0.2160 0.1101

P
(2)
A 0.8103 0.8288 0.8256 0.8718 0.9241

P
(3)
A 0.9180 0.8843 0.7550 0.8211 0.4824

b 28 20 10 5.0 2.0

RAn 0.0685 0.0690 0.0745 0.1198 0.3141

n = 200 P
(1)
A 0.9465 0.8986 0.7879 0.4766 0.1786

P
(2)
A 0.8302 0.8435 0.9034 0.9007 0.9144

P
(3)
A 0.9573 0.9319 0.9218 0.8106 0.9747

b 70 50 25 12.5 5.0

RAn 0.0658 0.0623 0.0600 0.0673 0.1158

n = 500 P
(1)
A 0.9864 0.9952 0.9783 0.8484 0.4845

P
(2)
A 0.8479 0.8973 0.9533 0.9331 0.9318

P
(3)
A 0.9803 0.9984 0.9953 0.9438 0.8305

b 140 100 50 25 10

RAn 0.0641 0.0619 0.0595 0.0588 0.0696

n = 1000 P
(1)
A 0.9880 0.9984 0.9866 0.9711 0.8060

P
(2)
A 0.8675 0.8982 0.9395 0.9728 0.9669

P
(3)
A 0.9960 0.9999 0.9929 0.9986 0.9508

b 420 300 150 75 30

RAn 0.0657 0.0602 0.0605 0.0593 0.0566

n = 3000 P
(1)
A 0.9861 0.9710 0.9708 0.9621 0.9914

P
(2)
A 0.8445 0.9216 0.9188 0.9386 0.9989

P
(3)
A 0.9775 0.9753 0.9704 0.9648 0.9890

b 840 600 300 150 60

RAn 0.0677 0.0610 0.0594 0.0576 0.0587

n = 6000 P
(1)
A 0.9575 0.9837 0.9880 0.9905 0.9566

P
(2)
A 0.8199 0.9095 0.9344 0.9639 0.9508

P
(3)
A 0.9491 0.9882 0.9870 0.9910 0.9613

b 1400 1000 500 250 100

RAn 0.0652 0.0633 0.0588 0.0562 0.0584

n = 10000 P
(1)
A 0.9938 0.9794 0.9982 0.9842 0.9606

P
(2)
A 0.8512 0.8767 0.9438 0.9875 0.9503

P
(3)
A 0.9862 0.9764 0.9980 0.9836 0.9637
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Table 3: The values of RAn and P
(i)
A , i = 1, 2, 3, under the Beta(4, 1) noise. P

(1)
A (P

(2)
A , P

(3)
A ) is colored in red

(blue, green) when it is equal to max1≤i≤3 P
(i)
A .

ρ 0.86 0.9 0.95 0.975 0.99

b 14 10 5.0 2.5 1.0

RAn 0.0109 0.0158 0.0493 0.1444 0.3148

n = 100 P
(1)
A 0.2522 0.1203 0.0183 0.0035 0.0006

P
(2)
A 0.4488 0.6266 0.8621 0.9252 0.9371

P
(3)
A 0.8966 0.8465 0.7918 0.9963 0.3540

b 28 20 10 5.0 2.0

RAn 0.0062 0.0067 0.0134 0.0474 0.1808

n = 200 P
(1)
A 0.4440 0.2836 0.0672 0.0105 0.0011

P
(2)
A 0.1894 0.3433 0.7388 0.8966 0.9591

P
(3)
A 0.9033 0.8876 0.8709 0.7973 0.8084

b 70 50 25 12.5 5.0

RAn 0.0041 0.0035 0.0037 0.0081 0.0454

n = 500 P
(1)
A 0.6729 0.5429 0.2432 0.0617 0.0044

P
(2)
A 0.0486 0.1143 0.4054 0.7654 1.0000

P
(3)
A 0.9654 0.9695 0.9550 0.9044 0.8111

b 140 100 50 25 10

RAn 0.0035 0.0029 0.0022 0.0029 0.0112

n = 1000 P
(1)
A 0.7818 0.6551 0.4091 0.1724 0.0179

P
(2)
A 0.0129 0.0345 0.1364 0.5172 0.8839

P
(3)
A 0.9923 0.9580 0.9640 0.9389 0.8830

b 420 300 150 75 30

RAn 0.0032 0.0024 0.0015 0.0011 0.0017

n = 3000 P
(1)
A 0.8550 0.7910 0.5997 0.4194 0.1079

P
(2)
A 0.0015 0.0040 0.0252 0.1436 0.5942

P
(3)
A 0.9553 0.9598 0.9209 0.9940 0.9641

b 840 600 300 150 60

RAn 0.0031 0.0023 0.0013 0.0008 0.0008

n = 6000 P
(1)
A 0.8979 0.8313 0.7151 0.5316 0.2298

P
(2)
A 0.0004 0.0010 0.0074 0.0451 0.3105

P
(3)
A 0.9555 0.9442 0.9677 0.9628 0.9605

b 1400 1000 500 250 100

RAn 0.0030 0.0022 0.0011 0.0007 0.0005

n = 10000 P
(1)
A 0.9000 0.8636 0.8545 0.6571 0.3600

P
(2)
A 0.0002 0.0040 0.0031 0.0202 0.1800

P
(3)
A 0.9506 0.9608 0.9217 0.9428 0.9260
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Table 4: The values of RBn and P
(i)
B , i = 1, 2, 3, under the Beta(1.5, 1) noise. P

(1)
B (P

(2)
B , P

(3)
B ) is colored in red

(blue, green) when it is equal to max1≤i≤3 P
(i)
B .

ρ 0.86 0.9 0.95 0.975 0.99

b 14 10 5.0 2.5 1.0

RBn 0.1086 0.1028 0.1167 0.1584 0.2170

n = 100 P
(1)
B 0.7920 0.7498 0.8512 0.8655 0.6318

P
(2)
B 0.7366 0.8327 0.9443 0.9836 0.9894

P
(3)
B 0.8030 0.7737 0.6142 0.4379 0.3165

b 28 20 10 5.0 2.0

RBn 0.1084 0.1007 0.0919 0.1130 0.1688

n = 200 P
(1)
B 0.7901 0.7345 0.6703 0.8242 0.8122

P
(2)
B 0.6815 0.7557 0.9314 0.9752 0.9819

P
(3)
B 0.9029 0.8687 0.8110 0.6209 0.4077

b 70 50 25 12.5 5.0

RBn 0.1192 0.1096 0.0860 0.0868 0.1112

n = 500 P
(1)
B 0.8692 0.7994 0.6273 0.6331 0.8111

P
(2)
B 0.5921 0.6515 0.8663 0.9401 0.9910

P
(3)
B 0.9498 0.9308 0.9506 0.8343 0.6224

b 140 100 50 25 10

RBn 0.1291 0.1209 0.0976 0.0835 0.0899

n = 1000 P
(1)
B 0.9411 0.8818 0.7119 0.6090 0.6562

P
(2)
B 0.5390 0.5782 0.7316 0.8922 0.9522

P
(3)
B 0.9500 0.9390 0.9292 0.9085 0.7770

b 420 300 150 75 30

RBn 0.1323 0.1257 0.1133 0.0900 0.0761

n = 3000 P
(1)
B 0.9647 0.9166 0.8264 0.6564 0.5550

P
(2)
B 0.5201 0.5488 0.6125 0.7822 0.9645

P
(3)
B 0.9939 0.9904 0.9612 0.9624 0.9497

b 840 600 300 150 60

RBn 0.1329 0.1306 0.1214 0.0977 0.0766

n = 6000 P
(1)
B 0.9691 0.9523 0.8854 0.7126 0.5587

P
(2)
B 0.5172 0.5267 0.5683 0.7103 0.9255

P
(3)
B 0.9903 0.9932 0.9832 0.9942 0.9870

b 1400 1000 500 250 100

RBn 0.1340 0.1392 0.1356 0.1096 0.0804

n = 10000 P
(1)
B 0.9771 0.9849 0.9890 0.7873 0.5864

P
(2)
B 0.5126 0.4935 0.5073 0.6304 0.8694

P
(3)
B 0.9899 0.9606 0.9236 0.9656 0.9893
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Table 5: The values of RBn and P
(i)
B , i = 1, 2, 3, under the Beta(2, 1) noise. P

(1)
B (P

(2)
B , P

(3)
B ) is colored in red

(blue, green) when it is equal to max1≤i≤3 P
(i)
B .

ρ 0.86 0.9 0.95 0.975 0.99

b 14 10 5.0 2.5 1.0

RBn 0.0824 0.0793 0.0956 0.1285 0.1736

n = 100 P
(1)
B 0.7414 0.7138 0.8605 0.8646 0.6399

P
(2)
B 0.7868 0.8752 0.9341 0.9821 0.9983

P
(3)
B 0.8068 0.7784 0.5987 0.4356 0.3204

b 28 20 10 5.0 2.0

RBn 0.0828 0.0757 0.0728 0.0891 0.1370

n = 200 P
(1)
B 0.7454 0.6814 0.6553 0.8020 0.8109

P
(2)
B 0.7223 0.8151 0.9533 0.9978 0.9835

P
(3)
B 0.8916 0.8806 0.8080 0.6331 0.4065

b 70 50 25 12.5 5.0

RBn 0.0920 0.0824 0.0666 0.0694 0.0880

n = 500 P
(1)
B 0.8282 0.7417 0.5995 0.6247 0.7921

P
(2)
B 0.6215 0.7015 0.9054 0.9524 0.9854

P
(3)
B 0.9363 0.9335 0.9468 0.8306 0.6352

b 140 100 50 25 10

RBn 0.0942 0.0900 0.0719 0.0651 0.0716

n = 1000 P
(1)
B 0.8478 0.8101 0.6472 0.5860 0.6445

P
(2)
B 0.5983 0.6289 0.8039 0.9263 0.9693

P
(3)
B 0.9914 0.9602 0.9566 0.9166 0.7854

b 420 300 150 75 30

RBn 0.1061 0.1027 0.0888 0.0699 0.0600

n = 3000 P
(1)
B 0.9550 0.9249 0.7994 0.6291 0.5406

P
(2)
B 0.5260 0.5441 0.6338 0.8165 0.9908

P
(3)
B 0.9843 0.9673 0.9280 0.9456 0.9582

b 840 600 300 150 60

RBn 0.1164 0.1041 0.0924 0.0739 0.0620

n = 6000 P
(1)
B 0.9538 0.9375 0.8318 0.6656 0.5588

P
(2)
B 0.4780 0.5350 0.6050 0.7612 0.9256

P
(3)
B 0.9234 0.9961 0.9930 0.9908 0.9571

b 1400 1000 500 250 100

RBn 0.1063 0.1059 0.0994 0.0805 0.0653

n = 10000 P
(1)
B 0.9567 0.9531 0.8946 0.7245 0.5877

P
(2)
B 0.5189 0.5250 0.5603 0.6956 0.8667

P
(3)
B 0.9758 0.9897 0.9823 0.9928 0.9453
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Table 6: The values of RBn and P
(i)
B , i = 1, 2, 3, under the Beta(4, 1) noise. P

(1)
B (P

(2)
B , P

(3)
B ) is colored in red

(blue, green) when it is equal to max1≤i≤3 P
(i)
B .

ρ 0.86 0.9 0.95 0.975 0.99

b 14 10 5.0 2.5 1.0

RBn 0.0348 0.0343 0.0444 0.0625 0.0854

n = 100 P
(1)
B 0.6526 0.6435 0.8330 0.8528 0.6241

P
(2)
B 0.8939 0.9708 0.9640 0.9696 0.9778

P
(3)
B 0.8241 0.8085 0.6067 0.4277 0.3123

b 28 20 10 5.0 2.0

RBn 0.0340 0.0335 0.0336 0.0431 0.0666

n = 200 P
(1)
B 0.6371 0.6285 0.6304 0.8086 0.8003

P
(2)
B 0.8452 0.8836 0.9911 0.9930 0.9970

P
(3)
B 0.8944 0.8572 0.8098 0.6219 0.4007

b 70 50 25 12.5 5.0

RBn 0.0370 0.0336 0.0309 0.0322 0.0425

n = 500 P
(1)
B 0.6929 0.6304 0.5797 0.6041 0.7974

P
(2)
B 0.7429 0.8244 0.9353 0.9844 1.0000

P
(3)
B 0.9296 0.9304 0.9057 0.8388 0.6287

b 140 100 50 25 10

RBn 0.0407 0.0376 0.0303 0.0303 0.0344

n = 1000 P
(1)
B 0.7638 0.7054 0.5685 0.5685 0.6454

P
(2)
B 0.6641 0.7234 0.9142 0.9538 0.9680

P
(3)
B 0.9497 0.9178 0.9631 0.9024 0.7784

b 420 300 150 75 30

RBn 0.0462 0.0439 0.0341 0.0295 0.0286

n = 3000 P
(1)
B 0.8674 0.8239 0.6394 0.5549 0.5374

P
(2)
B 0.5791 0.6109 0.7924 0.9256 0.9967

P
(3)
B 0.9857 0.9439 0.9680 0.9662 0.9417

b 840 600 300 150 60

RBn 0.0483 0.0480 0.0383 0.0313 0.0283

n = 6000 P
(1)
B 0.9074 0.9003 0.7197 0.5876 0.5318

P
(2)
B 0.5523 0.5572 0.6993 0.8622 0.9725

P
(3)
B 0.9914 0.9520 0.9618 0.9657 0.9630

b 1400 1000 500 250 100

RBn 0.0513 0.0495 0.0410 0.0323 0.0281

n = 10000 P
(1)
B 0.9624 0.9287 0.7692 0.6060 0.5272

P
(2)
B 0.5205 0.5397 0.6529 0.8321 0.9679

P
(3)
B 0.9829 0.9731 0.9822 0.9961 0.9869
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Figure 3: Plots of time series realizations generated from model (1.1), where ρ = 0.95 and εt has a Beta(α,
1) distribution, with α = 4 (green line), 2 (blue line) and 1.5 (red line).

2

4 Concluding Remarks

By deriving asymptotic expressions for the MSPEs of the EV and LS predictors under near unit-root and

general near unit-root models, this paper provides a deeper appreciation for the performance of the LS and

EV predictors in the near unit-root region. In particular, our analysis reveals that the expressions derived

for the LS predictor for the critical points, β = 1 and β = 1/2, not only jointly connect the discontinuities

in limn→∞ n(MSPEB − σ2), but also combine their strengths to yield finite sample approximations of

n(MSPEB − σ2) that perform satisfactorily in the near unit-root region. Moreover, the expressions

derived for the EV predictor for β = 1 and 0 < β < 1 also lead to finite sample approximations of

n(MSPEA − σ2) that can achieve a similar goal. Finally, we mention that the results established in this

paper and in Ing and Yang (2014) can be unified as follows:

MSPEA − σ2

= n−2/αΓ
(α+ 2

α

)(α
c

) 2
α

{[ σ2b

2µ2nβ
+

1

n2(b/nβ)2

]
I{0<β<1,0<b<∞}

+
( 1

M ′α,b

)2/α
L3(b)I{β=1,0<b<∞} +

( 1

Mα(1− b)

)2/α σ2

b(2− b)
I{β=0,0<b≤1} +

(α+ 1)2/α

4
I{β=1,b=0}

}

+
σ2

n
+ o(max{n−1, n−β−

2
α , n2β−2−

2
α }),

(4.19)
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and

MSPEB − σ2

= n−1
{

Λ1(β, b)I{0<β≤1,0<b<∞} + 2σ2I{β=0,0<b≤1} + 4σ2I{β=1,b=0}
}

+ o(n−1).
(4.20)

Equations (4.19) and (4.20) provide a more comprehensive perspective on the performance of the EV and

LS predictors and may facilitate broader applications.
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Supplement to “Nearly Unstable Processes: A Prediction Perspective”

by Ngai Hang Chan, Ching-Kang Ing, and Romgmao Zhang

A Proofs of the Theorems in Sections 2 and 3.1

Before proceeding with the proofs, we would like to first point out the key difference between our asymp-

totic framework and those in Chan and Wei (1987), Phillips (1987) and Phillips and Magdalinos (2007).

Let ρn = 1 − b/nβ, with 0 < β ≤ 1 and 0 < b < ∞, and y∗t = yt − nβµ/b. Then, model (1.1) can be

expressed as

y∗t = ρny
∗
t−1 + ηt, (A.1)

which is an AR(1) model driven by a zero-mean white-noise process {ηt}. While the asymptotic behavior

of the LSE under (A.1) has been extensively studied by the aforementioned authors, their results rely

heavily on the initial condition y∗0 = Op(1), which is obviously violated by our initial condition y0 = 0,

leading to

y∗0 = −nβµ/b. (A.2)

With the initial condition like (A.2), most existing results established for the LSE under model (A.1)

are no longer applicable. As shown for the rest of this section, our asymptotic analysis is similar to that

adopted by Ing and Yang (2014). However, substantial efforts are needed to deal with the critical behavior

of the EV and LS predictors exhibited in the near unit-root region.

Proof of Theorem 2.1. We first prove (2.6). By exp(−b)
∑t

j=1 εj ≤ yt =
∑t−1

j=0 ρ
j
nεt−j ≤

∑t
j=1 εj and

(19) of Ing and Yang (2014), which shows that for any q > 0,

E

n1+1/α min
2≤t≤n

εt/ t−1∑
j=1

εj


q

<∞, (A.1)

the desired conclusion (2.6) follows. The proof of (2.7) is similar to that of (7) of Ing and Yang (2014).

The details are omitted. Finally, (2.8) follows directly from (2.6) and (2.7). 2

Proof of Theorem 3.1. Equation (3.1) can be shown by an argument similar to that used to prove

(2.6). We thus skip the details. For (3.3), it suffices to show that

n1/α+β min
νn≤i≤n

(εi/yi−1)− n1/α+β min
2≤i≤n

(εi/yi−1) = op(1) (A.2)

and for any t > 0,

lim
n→∞

P{(c/α)1/α(µ/b)n1/α+β min
νn≤i≤n

(εi/yi−1) > t} = exp{−tα}, (A.3)

1



where vn � nθ for some β < θ < 1.

To show (A.2), note first that

n1/α+β min
vn≤i≤n

(εi/yi−1)− n1/α+β min
2≤i≤n

(εi/yi−1) ≤ n1/α+β( min
νn≤i≤n

εi/yi−1)IAn ,

whereAn = {minνn≤i≤n εi/yi−1 > min2≤i≤νn εi/yi−1}. Let qn = s
1/2
n nβ/νβn in which sn satisfies snν

1/α
n /n1/α =

o(1) and sn → ∞. Then, by (3.1), (1.2), the weak law of large number and Chebyshev’s inequality, one

has for any ε > 0,

P (n1/α+β( min
νn≤i≤n

εi/yi−1)IAn > ε) ≤ P (An)

≤ P ( min
νn≤i≤n

εi/yi−1 > s−1/2n q−1n ν−β−(1/α)n ) + P ( max
2≤i≤νn

yi−1 ≥ qnνβn)

+ P ( min
2≤i≤νn

εi < s−1/2n ν−1/αn )

= O

(
s
1/2
n qnν

1/α+β
n

n1/α+β

)
+ o(1) + 1−

(
1− C

νns
α/2
n

)νn
= o(1),

where C is some positive constant independent of n. Thus, (A.2) is proved.

To show (A.3), one can use (3.2) and Lemma 2 of Wei (1987) to obtain

max
νn≤i≤n

|yi−1 − Eyi−1| = Op(n
1/q1+β/2). (A.4)

In addition, there exists c1 > 0 such that for all νn ≤ i ≤ n,

Eyi−1 = µnβ(1− ρi)/b ≥ c1nβ, (A.5)

By (A.4), (A.5), (1.2) and 1/q1 + β/2 < β, it holds that

lim
n→∞

P{(c/α)1/α(µ/b)n1/α+β min
νn≤i≤n

(εi/yi−1) > t}

= lim
n→∞

P

{
(µ/b)(c/α)1/αn1/α+β min

νn≤i≤n

(
εi

µnβ(1− ρi)/b

)
> t

}
= exp{−tα},

which completes the proof of (A.3). Finally, (3.4) is a immediate consequence of (3.1) and (3.3). 2

Proofs of Theorems 2.2 and 3.2. Define

an,i =

1− ρin
1− ρn

− 1

(n− 1)

n−1∑
j=1

1− ρj−1n

1− ρn

µ,

and ξn,i =
∑i−1

j=0 ρ
jηi−j − (n− 1)−1

∑n−1
i=1

∑i−1
j=0 ρ

jηi−j . Then

ρ̃n − ρn =

n∑
i=2

(yi−1 − ȳ)ηi/

n∑
i=2

(yi−1 − ȳ)2

=

n∑
i=2

(an,i−1 + ξn,i−1)ηi/

n∑
i=2

(an,i−1 + ξn,i−1)
2.

(A.6)

2



Straightforward calculations yield for 0 < β ≤ 1,

lim
n→∞

1

n3β

n∑
i=2

a2n,i−1 =
µ2

2b3
I(0 < β < 1) + µ2(I1(b)− I2(b))I(β = 1), (A.7)

and

n∑
i=2

Eξ2n,i−1 = σ2(2b)−1n1+β(1− exp(−bn1−β))(1 + o(1)). (A.8)

In addition, for 0 < β < 1, we have

1

n1+β

n∑
i=2

ξ2n,i−1 −
1

n1+β

n∑
i=2

(
i−1∑
j=0

ρjηi−j)
2 = op(1), (A.9)

and

1

n1+β

n∑
i=2

(
i−1∑
j=0

ρjηi−j)
2 p−→ σ2

2b
. (A.10)

Moreover, for β = 1/2,

1

n3/2

n∑
i=2

(an,i−1 + ξn,i−1)
2 =

1

n3/2

n∑
i=2

(a2n,i−1 + ξ2n,i−1) + op(1) =
σ2

2b
+
µ2

2b3
+ op(1). (A.11)

By (A.6)–(A.11) and the martingale central limit theorem (see, e.g., Theorem 3.2 of Phillips and Mag-

dalinos (2007)), (2.10) and (3.5) follow.

Set kn = n3 for β = 1. By (2.11), Eεs1 <∞ for some s > 10, and an argument similar to that used to

prove Lemma 2 of Yu, Lin and Cheng (2012), we have E|
√
kn(ρ̃n − ρn)|γ <∞ for some γ > 2, and hence

{kn(ρ̃n − ρn)2} is uniformly integrable. This together with (2.10) (resp. (3.5) ) yields (2.12) (resp. (3.6)

). 2

Proofs of Theorems 2.3 and 3.3. It follows from (2.4) and E[(1 − ρn)ȳ − µ + zn]2 = E[(n −
1)−1

∑n
j=2 ηj ]

2 = σ2/(n− 1) that

MSPEA − σ2 = σ2/(n− 1) + E{(ρ̂n − ρn)(yn − ȳ)}2

+ 2E{(ρ̂n − ρn)(yn − ȳ)[((1− ρn)ȳ − µ) + zn]}
(A.12)

To deal with the second term on the right-hand side of (A.12), we express yn − ȳ as

yn − ȳ =

n−1∑
j=0

ρj − 1

n− 1

n−1∑
i=1

i−1∑
j=0

ρj

µ+

n−1∑
j=0

ρjηn−j −
1

n− 1

n−1∑
i=1

i−1∑
j=0

ρjηi−j


:= X1,n +X2,n.

(A.13)

Some algebraic manipulations give

lim
n→∞

X2
1,n

n4β−2
=
µ2

b4
I(0 < β < 1) + µ2L3(b)I(β = 1) (A.14)

3



and

EX2
2,n =

σ2

2b
nβ(1 + o(1))I(0 < β < 1) +O(n)I(β = 1). (A.15)

Combining (A.13)–(A.15) yields for 2/3 < β ≤ 1,

(yn − ȳ)2

n4β−2
p−→ µ2

b4
I(2/3 < β < 1) + µ2L3(b)I(β = 1), (A.16)

and for 0 < β ≤ 2/3,

lim
n→∞

n−βE(yn − ȳ)2 =
σ2

2b
I(0 < β < 2/3) +

µ2

b4
I(β = 2/3). (A.17)

By the moment conditions on ε1 and a straightforward calculation, it follows that for 0 < β ≤ 2/3 there

exists 2/3 < ζ < 1 for which

n−β/2(yn − ȳ) = n−β/2(X1,n +
nζ−1∑
j=0

ρjηn−j) + r1,n,

where r1,n satisfies E|r1,n|q1 = o(1) for some q1 > 2, and

lim
n→∞

E[n−β(X1,n +

nζ−1∑
j=0

ρjηn−j)
2] = lim

n→∞
E[n−β(yn − ȳ)2].

In addition, by (3.1) and an argument similar to that used to prove (A.2), we obtain

nβ+1/α(ρ̂n − ρn) = nβ+1/α
(

min
2≤i≤n−nζ

εi
yi−1

)
+ r2,n,

where r2,n satisfies E|r2,n|q = o(1) for any q > 0, and

lim
n→∞

E
[
nβ+1/α

(
min

2≤i≤n−nζ
εi
yi−1

)]2
= lim

n→∞
E[nβ+1/α(ρ̂n − ρn)]2.

These facts and the independence between n−β/2
∑nζ−1

j=0 ρjηn−j and nβ+1/α(min2≤i≤n−nζ εi/yi−1) yield

for 0 < β ≤ 2/3

lim
n→∞

E{n−β(yn − ȳ)2[nβ+1/α(ρ̂n − ρn)]2}

= lim
n→∞

E{n−β(yn − ȳ)2} lim
n→∞

E{[nβ+1/α(ρ̂n − ρn)]2}.
(A.18)

Now, by (A.16)–(A.18), (2.6), (2.8), (3.1), (3.4) and the moment conditions imposed on ε1, it holds that

for 2/3 < β ≤ 1,

lim
n→∞

E[n−β+1/α+1(ρ̂n − ρn)(yn − ȳ)]2

= Γ
(α+ 2

α

)(α
c

)2/α
b−2I(2/3 < β < 1) + Γ

(α+ 2

α

)( α

cM
′
α,b

)2/α
L3(b)I(β = 1),

(A.19)
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and for 0 < β ≤ 2/3,

lim
n→∞

E[n1/α+β/2(ρ̂n − ρn)(yn − ȳ)]2

= Γ
(α+ 2

α

)(α
c

)2/α{σ2b
2µ2

I(0 < β ≤ 2/3) +
1

b2
I(β = 2/3)

}
.

(A.20)

To deal with the third term on the right-hand side of (A.12), we obtain from an argument similar to

that used to prove (2.9) in the supplementary document for Ing and Yang (2014) that for 2/3 < β ≤ 1,

E{(ρ̂n − ρn)(yn − ȳ)[((1− ρn)ȳ − µ) + zn]} = o(max{n−1, n2β−2−2/α}), (A.21)

and for 0 < β ≤ 2/3,

E{(ρ̂n − ρn)(yn − ȳ)[((1− ρn)ȳ − µ) + zn]} = o(max{n−1, n−β−2/α}). (A.22)

Consequently, the desired conclusions (2.13) and (3.7)–(3.9) are ensured by (A.12), and (A.19)–(A.22). 2

Proofs of Theorems 2.4 and 3.4. It follows from (2.5) that

E(yn+1 − ỹn+1)
2 − σ2

=
σ2

n− 1
+ E{(yn − ȳ)(ρ̃n − ρn)}2 +

2

n− 1
E{(

n∑
i=2

ηi)(yn − ȳ)(ρ̃n − ρn)}. (A.23)

By (A.7)–(A.11), Theorems 2.2 and 3.2, (2.11), Eεs1 < ∞ for some s > 12, and an argument similar

to that used to prove Lemma 2 of Yu, Lin and Cheng (2012), we obtain, after some tedious algebraic

manipulations,

E{(
n∑
i=2

ηi)(yn − ȳ)(ρ̃n − ρn)} = o(1), (A.24)

and

lim
n→∞

n

σ2
E{(yn − ȳ)(ρ̃n − ρn)}2 =



1 0 < β < 1/2 ,

b2σ2

µ2+b2σ2 β = 1/2 ,

0 1/2 < β < 1 ,

L3(b)
I1(b)−I2(b) β = 1.

(A.25)

Consequently, Theorems 2.4 and 3.4 are guaranteed by (A.23)–(A.25).

B The implementation of finite sample approximations

B.1 Rules of thumb developed from Tables 1–6

With the help of Tables 1–3 (Tables 4–6), we offer a simple rule for choosing a better approximation of

nmin{1,2/α}(MSPEA − σ2) (n(MSPEB − σ2)) from R
(2)
A and R

(3)
A (R

(2)
B and R

(3)
B ) when 100 ≤ n ≤ 1000,
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1 ≤ n(1 − ρ) = b ≤ 140 and 1.5 ≤ α ≤ 4. According to Tables 1–3, we first introduce Rule I for

approximating nmin{1,2/α}(MSPEA − σ2):

Rule I.

1. Choose R
(3)
A if 1.5 ≤ α < 2.

2. Choose R
(2)
A if 2 ≤ α ≤ 4 and 1 ≤ b ≤ 5.

3. Choose R
(3)
A if 2 ≤ α ≤ 4 and 5 < b ≤ 140.

Although there are a few cases where Rule I leads to a P
(i)
A (defined in Section 3.2) slightly smaller than

max1≤i≤3 P
(i)
A , the rule has the advantage of easy implementation, which is practically appealing. In the

same spirit, we propose using Rule II (according to Tables 4–6) for approximating n(MSPEB − σ2):

Rule II.

1. Choose R
(2)
B if 1.5 ≤ α ≤ 2 and 1 ≤ b ≤ 12.5.

2. Choose R
(3)
B if 1.5 ≤ α ≤ 2 and 12.5 < b ≤ 140.

3. Choose R
(2)
B if 2 < α ≤ 4 and 1 ≤ b ≤ 25.

4. choose R
(3)
B if 2 < α ≤ 4 and 25 < b ≤ 140.

Note that Rules I and II can be further refined by checking a more dense grid of n, b and α, which is

not pursued here. In Section B.2, we provide reliable estimators, ρ̂∗n, b̂∗n, α̂∗n, ĉ∗n, µ̂∗n and σ̂2
∗
n , of ρ, b, α,

c, µ and σ2. With these estimators, Rules I and II can be implemented in practice via replacing b, α,

R
(i)
A , i = 2, 3 and R

(i)
B , i = 2, 3 therein by b̂∗n, α̂∗n, R̂

(i)
A , i = 2, 3 and R̂

(i)
B , i = 2, 3, where

R̂
(2)
A =


Γ
(
α̂∗n+2
α̂∗n

)(
α̂∗n

ĉ∗nM̂
′
α̂∗n,b̂∗n

)2/α̂∗n

L3(b̂
∗
n) + σ̂∗

2

n I(α̂∗n = 2) α̂∗n ≥ 2 ,

σ̂∗
2

n α̂∗n < 2,

(B.1)

in which M̂
′

α̂∗n,b̂
∗
n

is M
′
α,b with α and b replaced by α̂∗n and b̂∗n, respectively,

R̂
(3)
A =


R̂∗1 + R̂∗2 + σ̂∗

2
n

n1−2/α̂∗n
α̂∗n ≥ 2 ,

n1−2/α̂
∗
n(R̂∗1 + R̂∗2) + σ̂∗

2

n α̂∗n < 2,

(B.2)

with

R̂∗1 = Γ((α̂∗n + 2)/α̂∗n)(α̂∗n/ĉ
∗
n)2/α̂

∗
n [σ̂∗

2

n (1− ρ̂∗n)]/2µ̂∗
2

n ,

and

R̂∗2 = Γ((α̂∗n + 2)/α̂∗n)(α̂∗n/ĉ
∗
n)2/α̂

∗
n [n(1− ρ̂∗n)]−2,
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R̂
(2)
B =

{
1 +

L3(b̂
∗
n)

I1(b̂∗n)− I2(b̂∗n)

}
σ̂∗

2

n , (B.3)

and

R̂
(3)
B =

{
1 +

b̂∗
2

n σ̂
∗2
n

nµ̂∗2n + b̂∗2n σ̂
∗2
n

}
σ̂∗

2

n . (B.4)

B.2 Estimation of unknown parameters in Rules I and II

In this section, we address the problem of estimating the unknown parameters in Rules I and II. Suppose

first that α > 2 or α ≤ 2 is known a priori. Then, according to Theorems 1 and 2 and Remark 3, it is

reasonable to estimate ρ by

ρ̂∗n =


ρ̂n α ≤ 2 ,

ρ̃n α > 2.

(B.5)

By virtue of (B.5), it is natural to estimate µ and σ2 by µ̂∗n = n−1
∑n−1

t=1 (yt+1 − ρ̂∗nyt) and σ̂∗
2

n =

n−1
∑n−1

t=1 (yt+1 − µ̂∗n − ρ̂∗nyt)2. In addition, b = n(1− ρ) can be consistently estimated by b̂∗n = n(1− ρ̂∗n),

in view of Theorems 2.1 and 2.2. The performance of b̂∗n is demonstrated via the empirical estimate,

Ê

(
b̂∗n − b
b

)
=

1

5000

5000∑
i=1

b̂∗n(i)− b
b

,

of the relative bias E[(b̂∗n − b)/b], based on the data generated from 5000 simulation runs of model (1.1)

with Beta(α,1) error, where ρ ∈ {0.86, 0.9, 0.95, 0.975, 0.99}, α ∈ {1, 1.5, 2, 2.5, 3.5, 4}, and b̂∗n(i) is b̂∗n

obtained in the ith simulation. Since our study is meant to be illustrative rather than exhaustive, we only

focus on the sample size n = 10000. The results are summarized in Table 7. It is shown in Table 7 that

all values of Ê[(b̂∗n − b)/b] are quite close to 0, and |Ê[(b̂∗n − b)/b]| is clearly smaller in the case of α < 2

than in the case of α ≥ 2. This latter feature coincides with the fact that the convergence rate of ρ̂n in

the case of α < 2 is faster than ρ̃n.

Estimating c and α is much more involved than estimating b. While it seems feasible to perform

kernel density estimation based on the AR residuals, ε̂i = yi − ρ̂∗nyi−1, to estimate c and α, the usual

kernel estimators can be seriously biased when 0 < α ≤ 1 because the corresponding density function is

nonzero or even has a pole at the origin; see Marron and Ruppert (1994). Indeed, Marron and Ruppert

(1994) suggested some sophisticated kernel estimation algorithms to reduce the boundary bias. However,

consistency of the resulting estimators of c and α still seems difficult to establish when only (1.2) is

assumed. In this connection, we also mention that a similar difficulty arises in constructing a confidence

interval for ρ based on (1.5), in which α and c appear in the normalizing constant and α also appears

in the limit. To bypass this difficulty, Datta and McCormick (1995) proposed an asymptotically pivotal

quantity based on ρ̂n and adopted a bootstrap procedure to consistently estimate the limit distribution

of the proposed pivotal quantity.
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Table 7: The values of Ê[(b̂∗n − b)/b], with n = 10000, under model (1.1) with Beta(α, 1) errors.

ρ(b)

α 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002

1.5 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003

2 -0.014 -0.013 -0.013 -0.013 -0.013

2.5 0.001 0.004 0.003 0.004 0.004

3 0.003 0.004 0.004 0.003 0.003

4 0.001 0.002 0.005 0.004 0.002

Table 8: The values of Ê(α̂∗n(m)− α), with n = 10000, under model (1.1) with Beta(α, 1) errors.

ρ(b)

α m 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 250 0.022 0.023 0.018 0.022 0.023

1.5 250 -0.013 -0.009 -0.006 -0.007 -0.009

2 500 -0.040 -0.040 -0.040 -0.040 -0.043

2.5 250 0.068 0.107 0.095 0.109 0.099

3 250 0.098 0.101 0.088 0.097 0.095

4 250 0.097 0.101 0.148 0.128 0.114

8



Here, we take a somewhat nonstandard approach to estimate α and c. Note that (1.2) yields

lim
n→∞

P (n1/αε(1) > x) = exp(−(c/α)xα),

where ε(j) is the jth order statistic of {ε1, . . . , εn}, and hence n1/αε(1) has the limiting Weibull density,

f(1)(x) =
α

λα
xα−1exp(−(x/λ)α), (B.6)

with shape parameter α and scale parameter λ = (α/c)1/α. This motivates the following procedure for

estimating α and c:

1. Produce the AR residuals: ε̂i+1 = yi+1 − ρ̂∗nyi, i = 1, . . . , n− 1.

2. Divide {1, . . . , n} into m subgroups, {1, . . . , n1}, . . . , {nm−1 + 1, . . . , nm}, where ni = b(n − 1)/mc
or b(n− 1)/mc+ 1 with bac denoting the largest integer ≤ a.

3. Let ε̂(1)(j) denote the smallest positive value among {ε̂nj−1+1, . . . , ε̂nj}, j = 1, . . . ,m.

4. Use the Weibull density (B.6) and n
1/α
1 ε̂(1)(1), . . . , n

1/α
m ε̂(1)(m) to construct the maximum likelihood

estimate (α̂∗n(m), λ̂∗n(m)) of (α, λ).

5. Estimate c by ĉ∗n(m) = α̂∗n(m)/(λ̂∗n(m))α̂
∗
n(m).

Under the stationary model (1.1), Hsiao, Huang, and Ing (2017) established the consistency of (α̂n(m), ĉn(m))

regardless of whether α ≤ 2 or α > 2, where (α̂n(m), ĉn(m)) is (α̂∗n(m), ĉ∗n(m)) with ε̂i+1 replaced by the

EV residual yi+1−ρ̂nyi, m→∞ and n/m→∞. This result enables them to asymptotically correctly iden-

tify the better estimator between ρ̂n and ρ̃n in a data-driven fashion. The consistency of (α̂∗n(m), ĉ∗n(m))

under the near unit-root model (1.7) can also be established by an argument similar to that used in Hsiao,

Huang and Ing (2017). The details, however, are not pursued here. In Table 8, the empirical estimate,

Ê(α̂∗n(m)− α) =
1

5000

5000∑
i=1

(α̂∗n,i(m)− α),

of the bias of α̂∗n(m), E(α̂∗n(m) − α), is presented under the same scenarios as those in Table 7, where

α̂∗n,i(m) is α̂∗n(m) obtained in the ith simulation. The tuning parameter m is set to 250 and 500 in

our study. However, only the smaller one between Ê(α̂∗n(250) − α) and Ê(α̂∗n(500) − α) is reported in

Table 8. It remains for future research to choose m such that the resultant α̂∗n(m) has a better finite

sample performance. With the same m as in Table 8, we present the empirical estimate, Ê(ĉ∗n(m) − c),
of E(ĉ∗n(m) − c) in Table 9. Table 8 reveals that α̂∗n(m) appears to be a reliable estimate of α because

all values of |Ê(α̂∗n(m) − α)| are small. On the other hand, we notice that |Ê(α̂∗n(m) − α)| is larger in

α > 1.5 than α = 1.5, which may be attributed to a slower convergence rate of ρ̂∗n in the former case. In

addition, perhaps due to a positive value of the density function at the origin, the performance of α̂∗n(m)

in the case of α = 1 also looks inferior to that in the case of α = 1.5, although ρ̂∗n in the former case has

a faster convergence rate.
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Table 9: The values of Ê(ĉ∗n(m) − c), with n = 10000 and the same m as those in Table 8, under model
(1.1) with Beta(α, 1) errors.

ρ(b)

α 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 0.152 0.152 0.151 0.160 0.146

1.5 0.033 0.059 0.049 0.071 0.055

2 0.097 0.109 0.111 0.105 0.077

2.5 0.484 0.596 0.698 0.703 0.539

3 0.517 0.451 0.388 0.473 0.455

4 0.591 0.578 0.565 0.560 0.551

Table 10: The values of Ê(ĉ∗n(m, r)− c), with n = 10000 and the same m as those in Table 8, under model
(1.1) with Beta(α, 1) errors.

ρ(b)

α r 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 25 0.014 0.011 -0.006 0.006 0.014

1.5 5 -0.005 -0.013 -0.031 0.015 0.013

2 5 0.023 0.018 0.021 0.015 0.005

2.5 20 -0.023 0.082 0.093 0.133 0.062

3 15 0.077 0.069 0.021 0.066 0.060

4 15 -0.046 -0.023 0.117 0.050 0.088

Table 9 shows that the performance of ĉ∗n(m) is in general unsatisfactory. In particular, all values of

Ê(ĉ∗n(m)− c) are positive and are considerably larger than 0 for α > 2. Taking a closer look at

ĉ∗n(m) =
α̂∗n(m)

m−1
∑m

i=1 ni[ε̂(1)(i)]
α̂∗n(m)

, (B.7)

we found that a non-negligible portion of {ni[ε̂(1)(i)]α̂
∗
n(m)} concentrates near 0. As a result, the de-

nominator on the right-hand side of (B.7) tends to underestimate λα = α/c, and hence ĉ∗n(m) tends to

overestimate c, as observed in Table 9. To remedy this difficulty, we suggest an alternative, ĉ∗n(m, r),

which is ĉ∗n(m) with the denominator replaced by the sample mean from the highest (1 − r)% of the

elements of {ni[ε̂(1)(i)]α̂
∗
n(m), i = 1, . . .m}. Under the same simulation setting as Table 9, we com-

pute the empirical estimate, Ê(ĉ∗n(m, r) − c), of E(ĉ∗n(m, r) − c), and report the smallest one among

Ê(ĉ∗n(m, r) − c), r = 5, 10, 15, 20, 25, 30; see Table 10. Table 10 shows that all values of |E(ĉ∗n(m, r) − c)|
are not distant from 0, and clearly smaller than |Ê(ĉ∗n(m)− c)|.

We now return to the more practical situation where α > 2 or α ≤ 2 is unknown. In this case, we

suggest the following rule:
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Table 11: The values of F , with n = 10000, under model (1.1) with Beta(α, 1) errors.

ρ(b)

α 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)

1 1.000 1.000 1.000 1.000 1.000

1.5 1.000 1.000 1.000 1.000 1.000

2 0.978 0.984 0.980 0.982 0.986

2.5 0.922 0.930 0.938 0.926 0.908

3 1.000 0.996 0.998 1.000 1.000

4 1.000 1.000 1.000 1.000 1.000

Rule III.

1. Judge α > 2 if α̂n(m)− ξ > 2,

2. Judge α ≤ 2 if α̂n(m)− ξ ≤ 2,

where α̂n(m) is defined previously and ξ is a prescribed small positive number. In Table 11, with the

same scenarios as those in Table 7, we report the percentage, F , of Rule III (with m = 500 and ξ = 0.14)

making correct judgements, where

F = ]({i : 1 ≤ i ≤ 5000, I(α̂n,i(500)− 0.14 > 2) = I(α > 2)})/5000,

n = 10000 and α̂n,i(500) denotes α̂n(500) obtained in the ith simulation. Note that ξ = 0.14 is an

approximation of 2σMLE/
√

500, where σ2MLE is the limiting variance of the MLE of α of the Weibull

density (A.6) calculated at α = 2 and λ = 1. As shown in Table 11, all values of F are near 1, in

particular when α < 2 or α > 2.5. This result implies that Rule III provides a reliable decision about

whether or not α > 2, thereby allowing one to carry out the aforementioned estimates of α and c in

practice.

Finally, we want to reiterate that this section is exploratory in nature, and there remain a number

of unsettled issues (e.g., the choices of m and r in α̂∗n(m) and ĉ∗n(m, r)) worthy of further investigation.

On the other hand, our simulation study suggests that the notoriously difficult problem of estimating α

and c in the distribution of εt can be somewhat alleviated through the proposed estimates, α̂∗n(m) and

ĉ∗n(m, r), provided m and r are properly given.
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