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Abstract

Prediction has long been a vibrant topic in modern probability and statistics. In addition to finding
optimal forecast and model selection, it is argued in this paper that the prediction principle can also be
used to analyze critical phenomena, in particular, stationary and unstable time series. Although the
notion of nearly unstable models has become one of the important concepts in time series econometrics,
its role from a prediction perspective is less developed. Based on moment bounds for the extreme-value
(EV) and least squares (LS) estimates, asymptotic expressions for the mean squared prediction errors
(MSPE) of the EV and LS predictors are obtained for a nearly unstable first-order autoregressive
(AR(1)) model with positive error. These asymptotic expressions are further extended to a general
class of nearly unstable models, thereby allowing one to understand to what degree such general models
can be used to establish a link between stationary and unstable models from a prediction perspective.
As applications, we illustrate the usefulness of these results in conducting finite sample approximations

of the MSPE for near unit-root time series.

Keywords: Extreme-value predictor, least squares predictor, mean squared prediction error, nearly

unstable process, positive error.

1 Introduction

Prediction has long been a vibrant topic in modern probability and statistics. The seminal monograph of
Whittle (1963) illustrates the importance of linear prediction. There are several objectives in prediction
studies. The first one is computing an optimal forecast, based on either finite or infinite samples. The
second one is to use prediction methods for model selection. The third one, which is less well known but
of no less importance, is to use the prediction principle to understand critical phenomena, in particular,
stationary and unstable processes, see for example Wei (1992). This goal also constitutes the main focus
of the present paper.

To achieve this goal, moment bounds become indispensable tools. For example, based on maximal
moment inequalities for martingales, Wei (1987, 1992) provided an asymptotic expression for the ac-
cumulated prediction error (APE) of a linear stochastic regression model, which in turn leads to the
Fisher information criterion (FIC) for model selection. Findley and Wei (2002) and Chan and Ing (2011)

established inverse moment bounds for the Fisher information matrices of time series models. These



useful bounds enable one not only to calculate the mean squared prediction errors (MSPE) of the least
squares predictors, but also to derive the Akaike information criterion (AIC; Akaike (1974)) and the final
prediction error criterion (FPE; Akaike (1969)) in a rigorous manner.

Studies of moment bounds and MSPE have mostly been focused around the least squares procedures,
much less have been conducted on the so-called extreme-value estimates (EVE), which is mainly used
for heavy-tailed dependent data. Due to the emergence of big data, dependent heavy-tailed phenomena
have been reported in various disciplines, see for example, the exemplary monograph by Finkenstadt
and Rootzén (2004) and the examples therein. To appreciate the significance of such types of estimates,

suppose that the data are generated from the first-order autoregressive (AR(1)) model:
Yt = PYt—1 + ¢, t:1a2a"'7n7 (11)

where 0 < p < 1 and ¢;’s are i.i.d. positive noise with regularly varying density f.(z) at zero, i.e.,

lim fe(@)

z—0 cx—1

=1, for some unknown « > 0 and ¢ > 0. (1.2)

One of the most popular methods for estimating p in (1.1) is the least squares estimator (LSE),

n n

o= Wi — 0w -9/ (Wi-1—0)7 (1.3)
i=2 i=2

where § = 91 = ﬁ Z?:_ll y;.- However, when the noise has a density like (1.2), LSE may not be

efficient and other estimation procedures are required. When the parametric form of the distribution of

et is known, a natural alternative to g, is the maximum likelihood estimator (MLE), yet as argued in

Davis and McCormick (1989) and Ing and Yang (2014), the MLE is in general analytically difficult to

work with. A remedy for this difficulty is to use the EVE, j,, instead, where

pn = 1§Ig1§1£1_1yi+1/yi- (1.4)

Note that p, is also the MLE when ¢; has an exponential distribution or is uniformly distributed over
[0, a] for some a > 0; see Bell and Smith (1986). Under an assumption more general than (1.2), Bell and
Smith (1986) showed that p,, is consistent. When (1.2) holds, it is shown in Corollaries 2.4 and 2.5 of
Davis and McCormick (1989) that the limit distributions of p,, satisfies

lim P{(cMa(p)/o)V/*nV/2 (3, — p) > £} = exp{—t7}, (15)

n—o0

where Mo (p) = E(Q72, ple1—;)*. Equation (1.5) reveals that when a < 2 (o > 2), the convergence rate
of pn (pn) is faster than that of p, (pn); see Section 2 of Ing and Yang (2014) for a more comprehensive
comparison of p, and p,.

Model (1.1) with &; satisfying (1.2) has found broad applications in hydrology, economics, finance,
epidemiology and quality control; see, among others, Gaver and Lewis (1980), Bell and Smith (1986),
Lawrance and Lewis (1985), Davis and McCormick (1989), Smith (1994), Barndorff-Nielsen and Shephard
(2001), Nielsen and Shephard (2003), Sarlak (2008) and Ing and Yang (2014). In particular, Bell and



Smith (1986) analyzed two sets of pollution data from the Willamette River, Oregon, using model (1.1)
with &; following the uniform distribution or exponential distribution; both are special cases of (1.2).
In addition, Sarlak (2008) adopted model (1.1) with a Weibull error to analyze the annual streamflow
data from the Kizilirmak River in Turkey. On the other hand, model (1.1), focusing exclusively on the
stationary case 0 < p < 1, fails to accommodate data that may fluctuate around an upward trend with
variance increasing over time. Ing and Yang (2014) therefore generalized (1.1) to p = 1, which is referred
to as the unit-root model, and established the limit distribution of (1.4) in this case. In addition, they
derived asymptotic expressions for the mean squared prediction errors (MSPE) of the EV predictor (gy,+1)
and the LS predictor (f,41), i.e. MSPEA = E(ynt1 — 9nt1)? and MSPER = E(yni1 — Jns1)?, as

lim n™b2/9t(MSPE, — 02) = RY(w, p), lim n(MSPEp — o) = R%(p), (1.6)

n—oo

where 0 < p < 1, R%(«, p) is a positive constant depending on «, p and f.,(-) and R%(p) is a positive
constant depending on p and 0% = Var(e;) > 0; see (37), (42), (47) and (49) of Ing and Yang (2014).

While (1.6) suggests that n™{L.2/a}(MSPE, — 02) and n(MSPEp — ¢2) can be approximated by
RY(a, p) and R%(p), such an approximation may become unsatisfactory when p is near one; see Tables 1-
6 of Section 3.2. This phenomenon is a reminiscence of the nearly unstable autoregressive model that was
discussed in Chan and Wei (1987). By virtue of the order of the observed Fisher’s information number,
they argued that neither the stationary normal limit nor the unit-root limit distributions would be a good
approximation to the finite sample behavior of the LSE for the situation where p is close to 1. Putting
it differently, a main difficulty in using (1.6) when p is close to 1 may be due to the critical behaviors
of the limit distributions associated with the EVE and LSE. Such critical behaviors perpetuate in the
performance of the corresponding predictors.

To circumvent this difficulty, consider the following family of nearly unstable models:

Yt = PnYt—1 + &, (1.7)

in which p, = 1—0/n, b is a positive constant, and ¢; is defined as in (1.2). The notion of nearly unstable
models has become one of the most important concepts in time series econometrics since the papers of
Chan and Wei (1987) and Phillips (1987). It has found widespread applications in the analysis of time
series data; for more background information, see the surveying articles of Chan (2006) and Chan (2009).
By means of the moment bounds of the EVE and LSE for this class of models, asymptotic expressions
for the MSPEs of §,,11 and g,4+1 under (1.7),

lim n™b2/ 9 (MSPE, — 02) = Ra(a, b), lim n(MSPEg — o) = Rp(b), (1.8)

n—oo

are established, where R(«,b) is a positive constant depending on «,b and o2, and Rp(b) is a positive
constant depending on b and ¢>. When data are generated from model (1.1) with p fixed but close to
1, Ra(a,b) and Rp(b), with b = n(1 — p), can be used in place of RY(c,p) and R%(p) to approximate
noin{L.2/a}(MSPE 4 — ¢2) and n(MSPEg — ¢2). Since Ra(a,n(1 — p)) and Rp(n(1 — p)) vary with the

sample size n, they are referred to as the finite sample approximations. It is shown in Section 3.2 that



Ra(a,n(1—p)) and Rp(n(1—p)) substantially outperform R% (e, p) and R%(p) in situation where n(1—p)
is small to moderate.

One of the most intriguing features of R%(p) is that it exhibits a jump behavior at the point p = 1.
Specifically, according to (47) and (48) of Ing and Yang (2014),

202, for 0 < p <1,
R (p) = (1.9)
402, for p = 1.

This phenomenon is analogous to the “quantum jump” behavior observed in physics, where the state of
a system remains unchanged until a critical amount of energy is accumulated. With the MSPE jump in
(1.9), it will be interesting to explore if a connection between the stationary and the unstable regimes
can be established via a smooth transition mechanism such as (1.7). In other words, would the following

relationship

202, as b — o0,
Rp(b) — (1.10)
40% asb—0,

remain valid? Again, such an issue is a reminiscence of Corollary 1 and Theorem 2 of Chan and Wei
(1987), who showed that under (1.7), the limit distribution of the suitably normalized LSE converges to
the unit-root case as b — 0; and converges to the stationary case as b — oco. In the current scenario,
although the lower half of (1.10) remains valid for b — 0, the upper half fails to hold and Rp(b) converges
to 02 as b — oo; see (2.15) and (2.20) of Section 2.

This discrepancy in the upper half of (1.10) suggests that 1 — (b/n) may be converging to unity
too rapidly and as a result, Rp(b) does not attain the limiting value R%(p) of the stationary case. An
immediate remedy would be to determine if there exists a constant § € (0, 1) such that the corresponding
AR coefficient 1 — (b/n®) (which approaches 1 at a slower rate) would give rise to a limiting MSPE
behaving like (1.10). Unfortunately, the answer to this question is still negative. In Section 3.1, we derive
the limiting value, A(3,b), of n(MSPEp — 02) for the general near unit-root model, namely, (1.7) with
pn =1—0b/nP,0 < B <1andb > 0. We show that A;(3,b) remains at the stationary state, 202, for
0 < B < 1/2; transits to the intermediate state, o2, at 3 = 1/2; remains at the intermediate state for
1/2 < B < 1; and transits to the unit-root state, 402, at f = 1. Although no single 3 directly connects
A1(B,b) from 202 to 402, our result reveals that a connection can be established through two critical values
of B, namely, 5 = 1/2 and § = 1, which connect A;(5,b) for the stationary and intermediate states, and
for the intermediate and unit-root states, respectively. More precisely, we have limy_,o, A1(1/2,b) = 2072,
limp 0 A1(1/2,0) = 02, limp 0o A1(1,0) = limy_,oo Rp(b) = 02, and limy_,0 A1(1,b) = limy_,o Rp(b) =
40%. This feature is not only of theoretical interest, but it also provides an alternative finite sample
approximation, Aj(1/2,nY/2(1— p)), for n(MSPEp — 02) that surpasses Rp(n(1 — p)) when n(1 — p) stays

far away from 0. This notion is further elaborated in Section 3.2.



Although the EV predictor also encounters the MSPE jump at p = 1 in the sense that
lim RS (a, p) # RS (e, 1), (1.11)
p—1
this discrepancy can be eliminated by R(a,b), which satisfies for any 0 < o < 00,
lim RY(a, p) = lim Ry(a,b), R%(c,1) = lim Ra(a,b). (1.12)
p—1 b—o0 b—0

For more details, see Remark 1 of Section 2. To deepen our understanding of the EV predictor in the
near unit-root region, we also obtain an asymptotic expression for MSPE 4 in the general near unit-root
model. This result leads to an alternative finite sample approximation of n™*{1.2/a}(MSPE 4 — 02), which
notably improves upon R4(«,n(1 — p)) when n(1 — p) is relatively large. For more details, see Section
3.2.

In short, the focuses of this paper can be succinctly summarized as follows:

(1) Analysis of near unit-root processes from a prediction perspective.

(2) Analysis of general near unit-root processes, thereby allowing one to understand to what degree
such general models can be used to establish a link between stationary and unstable models from a

prediction perspective.

(3) An illustration of the importance of finite sample approximations of the MSPE derived from

near unit-root and general near unit-root processes.

The rest of the paper is organized as follows. In Section 2, asymptotic properties of the EVE and LSE
for the near unit-root case with p,, = 1—(b/n) are developed, which include: (a) the limit distributions and
the moment bounds; (b) the asymptotic expressions for MSPE 4 and MSPEg. In Section 3.1, extensions
of the results in Section 2 to the case of p, = 1 — (b/n”),0 < B < 1, are given. In Section 3.2, we offer
finite sample approximations of n™™{1:2/¢}(MSPE 4 — ¢2) and n(MSPEp — 02) based on the asymptotic
expressions obtained in Sections 2 and 3.1. The resultant performance is illustrated using AR(1) models
with Beta(a, 1) errors, in which the AR coefficient lies between 0.86 and 0.99 and 1.5 < a < 4 (see also
Section 3.2). We conclude in Section 4. With the help of Section 3.2, we further provide a simple rule
for choosing a finite sample approximation from those derived in the near unit-root and the general near
unit-root models. This result, together with the proofs of the theorems in Sections 2 and 3.1, is deferred

to the supplementary document.

2 Near Unit-Root Models

In this section, we provide asymptotic expressions for the MSPEs of ¢,+1 and §,+1 under (1.7), where
gnJrl = ,an + ﬁnyn, (2'1)
with fi, = 527 3215 (U1 = Pugi), and

Un+1 = fin + PnYn, (2-2)



noting that with x; = (l,yj)T

)

n—1 n—1
(fims ) = (O] )" @jy11- (2.3)
j=1 J=1
Let z, = (yn —y1)/(n — 1). Then the MSPE of 9,41 can be expressed as
N . _ _ 2
MSPEA = E(yn—H - yn+1)2 = U2 + E{(pn - pn)(yn - y) + [(1 - pn)y —p+ Zn]} ) (2'4)

where p = E(e1). In addition, it is straightforward to see that the MSPE of g, satisfies

n
- _ N 2
MSPEp = E(ynt1 — fns1)” =0 + E{n "> 1+ (yn — 0)(5n — pn) } (2.5)
i=1
where 1n; = ¢; — . To simplify the exposition, we shall assume that yo = 0 for the rest of this paper.
We begin by deriving the limit distributions of p,, and p,, and providing asymptotic expressions for their
mean squared errors (MSEs); see Theorems 2.1 and 2.2. As is clear from (2.4) and (2.5), these results

play important roles in analyzing MSPE 4 and MSPEg.
Theorem 2.1. Assume (1.7) with 0 < b < co. Suppose €1 obeys Eef < oo for some k> 0. Then,
E{n1 /%3, — pu)} < o0, for any g > 0. (2.6)

Further, if E(5}+T) < oo for some T >0, then

lim P{(cMayp Jayentttep — ) >t} = exp{—t*}, t > 0 (2.7)
and
Tim_ E[(eMo./0)n 1% (5, — p,)]? = T((a+2)/a), (28)
where
Myy = 1 /0 11— exp(—ba)) /b da. (2.9)

We offer a brief explanation of why n!'*'/® is the valid normalization factor in Theorem 2.1. It is not
difficult to see that p, — pp, = mino<i<y,&;/yi—1, and exp(—b)S;< yy :Z;B p%st,j < S, where S; =
22:1 €j. Moreover, it is shown in the proof of Theorem 2 of Ing and Yang (2014) that there exists
1/2 < 6 < 1 for which n'Y*ming<;<,, £;/S;_1 = n't1/e min,e<;<,, €/[(i — 1)p) + 0p(1). Since the limit
distribution of n!*1/® min,e<;<, €/[(i — 1)p] is non-degenerate, this explains why n't1/e is required by

Pn — pn to yield the desired results.

Theorem 2.2. Assume (1.7) with 0 < b < co. Suppose €1 satisfies Ea%” < oo for some 7 > 0. Then,
n3/2 J



where O'ib = % /[u?(L(b) — Ix(b))], with I;(b) = 271673[2b + dexp(—b) — exp(—2b) — 3] and I>(b) =
b=4[b — 1 + exp(—b)]%. Further, assume that Eej < oo for some s > 10 and there exist positive constants

K,a and § such that for all |z —y| < 0 and all large m,
[Fm(z) — Fin(y)| < Kz —yl*, (2.11)
where F, is the distribution function of m~Y/23"1" (e, — Ee1). Then

lim E[n® (5, — pa)?] = 03, (2.12)

n—oo

It is interesting to point out that limy_,q crib = 1202 /12, which is exactly the limiting variance of n3/2 (pn—
1) derived in the unit-root model; see Chan (1989) and Ing and Yang (2014). Based on (2.4) and Theorem
2.1, the next theorem gives an asymptotic expression for MSPE4. Define L3(b) = b~*[1 — exp(—b) —
bexp(—b)]* and M/, , = My p/p®.

Theorem 2.3. Assume (1.7) with 0 < b < co. Suppose €1 obeys Eef < oo for some k > 2. Then,

MSPE, — 02 = n*Q/ar(O‘ ;r 2) <C]\Z;b> %Lg(b) + (i + o(max{n~!,n"2/°}), (2.13)
yielding
lim nmin L2/ (VMSPE — 02) = Ra(a, b), (2.14)
where

Ra(a,b) = r(o‘ Z 2) (d\j;,b)iLg(b)I(a > 2) + 0?(a < 2),

and the dependence of Ra(c,b) on c is suppressed to simplify notation.

Note that in view of the proof of Theorem 2.3, the cross-product term, 2E{(pn, — pn)(yn — 9)[(1 — pn)y —
i+ zp]}, in the expectation on the right-hand side of (2.4) is asymptotically negligible compared to the
corresponding squared terms E{(pn — pn)(yn —7)}% and E{(1 — p,,)§ — p+ 2, }2. Therefore, the asymptotic
behavior of MSPE 4 — ¢ is mainly determined by the last two expectations. Since (1 — p,)y — p + 2, =
(n—1)"1 Z;:ll nj+1, we have E{(1 — p,)y — p + 2, }2 = 02/(n — 1). In addition, (y, — 3)?/n? converges
in probability to p?L3(b); see (A.16). From this and (2.8), it is expected that E{(p, — pn)(yn — 7)}? is

-2/«

of order n , and the details are presented in the proof of Theorem 2.3. As a result, the normalization

factor nmin{1.2/9} is needed.

Equipped with (2.5) and Theorem 2.2, we have the following asymptotic expression for MSPEg.

Theorem 2.4. Assume (1.7) with 0 < b < co. Suppose e; satisfies (2.11) and Ee§ < oo for some s > 12.
Then

lim n(MSPEp — 0?) = Rp(b) = {1 + h(lj?’_%} o?. (2.15)



We conclude this section with a few remarks for Theorems 2.3 and 2.4.

Remark 1. By (37) of Ing and Yang (2014), for 0 < p < 1, we have

2 2 2
2 —2ap (Xt 2 a a O o 1, -2/a
MSPE, — 0® =n~2/T( - ){cMa(p)} [ oy +olmax(nT a7y, (2.16)
yielding
lim pmin {L2/at (VMSPE, — 02) = RY(wv, p), (2.17)
where

2

Rala,p) = F(aiz){cM(j(p)}i 1ip2[(a 22+l <)

In addition, (42) of Ing and Yang (2014) implies that for p =1,

2
nmin {12/0} \SPE, — 02) = RY(a, 1) = 1r(0‘ + 2){0‘(0‘ +1) }“I(a >+ o’ (a<2). (218)

4 o c
Therefore, (1.11) follows from (2.17), (2.18) and

2 2
o

F<al—2){ch(p)} 1—p? —Oasp= 1.

On the other hand, in view of

2
1p(at2)falet) 1«
() g )iLB(b)% ir(ep){=et ) oo,

/
le CMa,b

0, as b — o0,

the discrepancy between R (c,1) and R9 (e, p) in (1.11) can be connected by Ra(c,b) in the sense of
(1.12).

Remark 2. While
lim Rp(b) = R%(1) = 402, (2.19)
b—0
limy_,c Rp(b) is not equivalent to R%(p) when p increases to 1. More specifically,
0? = lim Rp(b) # lim R%(p) = 202, (2.20)
b—o0 p—1

recalling that R%(p) = 202 for all 0 < p < 1. Equation (2.20) seems to suggest that p, = 1 — b/n
converges to unity too fast, and hence lim,_, Rp(b) does not align with lim,_,; R%(p). This motivates
one to ask if there exists a 8 € (0,1) such that limy_,o Rp(b) = 40 and limy_,o, Rp(b) = 202, provided
pn is replaced by 1 — (b/n?). This question will be discussed in Section 3.

Remark 3. Theorems 2.3 and 2.4 imply that when o < 2 (o > 2), the EV (LS) predictor is better
(worse) than the LS (EV) predictor in the sense that the convergence rate of MSPE 4 — 02 (MSPEp — 0?)
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Figure 1: The graph of ¢ = hy(b).

is faster than MSPEg — 02 (MSPE 4 — 02). However, when a = 2, MSPE4 — 02 and MSPEp — o2 share
the same rate of convergence, and EV (LS) predictor is more efficient than the LS (EV) predictor if and
only if Rq(a,b) < Rp(b) (Ra(a,b) > Rp(b)). In fact, it is not difficult to see that Ra(a,b) < Rp(b)
or Ra(a,b) > Rp(b) depends on whether c is greater or smaller than the threshold function h,(b) =
2(11(b)—I(b))[(c?/b?) fol(l—exp(—bx))de]_l. Moreover, limy_,o by (b) = 1/(20?) is exactly the threshold
value in the case of p = 1 that partitions ¢ into ¢ > 1/(20%), in which the EV predictor dominates the LS
predictor; and 0 < ¢ < 1/(202), in which the latter predictor becomes more appealing, see Section 3 of Ing
and Yang (2014). Additionally, h,(b) is a decreasing function of b, suggesting that the advantage of the
EV predictor over the LS one is more evident as the underlying process becomes “less non-stationary”. It
is also interesting to point out that in the case 0 < p < 1, by, »(p) = 2(1—p){(1+p)u®+(1—p)o?} 1 is the
threshold function playing the same role as h,(b) in the near unit-root case (see Section 3 of Ing and Yang
(2014)), and hy o (p) and he(b) coincide in the limit in the sense that lim, 1 hy o (p) = limy_o0 ho(b) = 0.
The above discussion is illustrated graphically by Figure 1. Finally, we mention that in view of Theorems
2.1 and 2.2, the rankings of p,, and p, in terms of MSE are exactly the same as those of §,11 and ¥n+1
in terms of MSPE.

Before closing this section, we remark that when data are generated from model (1.1) with p fixed
but close to 1, Ra(a,n(l — p)) and Rp(n(l — p)) can also be used in place of RY(«,p) and R%(p) to
approximate n™*{1.2/2}(MSPE, — ¢2) and n(MSPEp — ¢2). These types of approximations, varying
with the sample size n, are referred to as the finite sample approximations of n™n {12/ O‘}(MSPE 4 —0?)
and n(MSPEp — ¢?), or finite sample corrections of RY(a, p) and R%(p). As shown in Section 3.2, the
performance of Ra(a,n(1—p)) and Rp(n(1— p)) substantially improves upon that of R (c, p) and R%(p)

when n(1 — p) is small to moderate.



3 General Near Unit-Root Models

In this section, we extend the results in Section 2 to the general near unit-root case p, = 1 — b/n?,
where 0 < f < 1 and 0 < b < co. One major motive for this extension is to alleviate the difficulty
of Ra(a,n(1 — p)) (Rp(n(l — p))) and R%(a,p) (R%(p)) in approximating n™n{12/a}(MSPE, — ¢2)
(n(MSPEg — ¢2)) when 1 — p is small but n(1 — p) becomes relatively large, see Tables 1-6 for details. In
Section 3.1, we derive asymptotic expressions for the MSPE, and MSPEp in the general near unit-root
model. As shown in Section 3.2, these expressions lead to alternative finite sample approximations of
noin{L.2/a}(MSPE 4 — 02) and n(MSPEp — 02) that can indeed achieve the desired goal.

3.1 Asymptotic Theories

We start by exploring the asymptotic distribution and the MSE of p,,.

Theorem 3.1. Assume (1.7) with p, = 1 —b/n?, where 0 < B < 1 and 0 < b < co. Suppose that &1

satisfies Eet < oo for some k > 0. Then

E{n (5, — p,)}? < oo, for any q > 0. (3.1)
Further, if
E(e9) < oo, for some q1 > 2/8, (3.2)
then
dim P{(c/a)!/(u/0)n" % (b — pn) > £} = exp{~1"}, t > 0, (33)
and
lim E[(c/a)"*(u/b)n (5, — pu)] = T((a+2) /). (3.4)

n—oo

Theorem 3.1 reveals that the convergence rate of p, — p, is slower in the general near unit-root case
than in the near unit-root one. This is because in the former case, the denominator, y;, in p, — p, =
minj<;<n—1€;+1/y; has order of magnitude nP(1 — pi), which is dominated by the order of magnitude of

y; in the near unit-root case.

Theorem 3.2. Assume (1.7) with p, = 1 —b/nP, where 0 < B < 1 and 0 < b < oco. Let 1 satisfy
E(e2'7) < oo for some T > 0. Then,

~ d
Vkn(n = pn) == N(0,03,), (3.5)
where k, = n'*P if 0 < f<1/2 and n®P if 3 > 1/2, and

{(20°0%) " PI(B =1/2) + (2b) '}, if 0< B <1/2,
o =
- 20302 /2, if1/2<p8<1.

10



Moreover, if Eej < oo for some s > 10 and (2.11) holds, then

lim Elkn(pn — pn)?] = 05 (3.6)

n—o0

It is shown in the proof of Theorem 3.2 that pn, — pr = Do o(Yic1 — U0/ Doro(yio1 — §)? =
Yo o(ani—1 + &ni—1)ni/ Do o(ani—1 + €ni-1)?, where a,; and &, ;, respectively, denote the determin-
istic and random components of y; — 7. Moreover, the order of magnitude of (5, — p,)? is determined
by (XCitgan; 1) Hfor 1/2 < B <1, (1,82, 1) Hor 0 < 8<1/2,and (X1 ya, | +&, )" for
B =1/2, and the growth rates of Y ;" yaZ; ; and Y1, &2, are n38 and n'*8, respectively. This clarifies
why the exponent of k,, needs to be changed from 1+ ( to 33 after g > 1/2.

With the help of Theorems 3.1 and 3.2, the next two theorems provide asymptotic expressions for

MSPE 4 and MSPEpg in the general near unit-root model.

Theorem 3.3. Assume (1.7) with p, = 1 —b/n®, where 0 < B < 1 and 0 < b < co. Suppose that &1
obeys (3.2). Then the following conclusions hold.

(a) For 0 < B < 2/3,

f2yanio% o L
IV () 5+ T+ ofmaxtn AR, (37)

MSPE4 — 02 = n—ﬁ—§r<
22

« C

(b) For2/3 < <1,
2

2 2
MSPE, — o? = n? 280 (S22 (2)7 15 4 T ofmax{n ! n? 22y, (3.8)

(b) For g =2/3,

.. 2 sfo% 1
v, ot i (22) () {2+ 5o

+Z 4 o(max{n_l,n_%_g}).
n

It is worth mentioning that the first terms on the right-hand sides of (3.7) and (3.8), respectively, are
asymptotically equivalent to those on the right-hand sides of (2.16) and (2.13) with p and b replaced by
pn and n(1 — py,), where p, is defined in Theorem 3.3. Moreover, the first term on the right-hand side
of (3.9) is the sum of the first terms on right-hand sides of (3.7) and (3.8). These features reveal that
when p,, converges to 1 at a rate slower than n=2/3, the asymptotic behavior of MSPE, is governed by
the stationary formula (2.16). But when p,, converges to 1 at a rate faster than n~2/3, the asymptotic
behavior of MSPE4 is governed by the near unit-root formula (2.13). At the critical point f = 2/3,
however, MSPE 4 is related to both (2.13) and (2.16). In fact, one can combine (3.7)—(3.9) into

MSPE 4 — o2
2

= (e () (3)* s + )+ (310

+ o(max{n1, nh% , n2-2-% ),
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where 0 < § < 1. Equation (3.10) leads to another finite sample approximation of nmin{l’g/o‘}(MSPEA —

02); see (3.17) in Section 3.2. As will be shown in Section 3.2, (3.17) serves as a satisfactory complement

to RY(a, p) and Ra(a,n(1l — p)) when the latter two

approximations perform poorly.

Theorem 3.4. Assume (1.7) with p, = 1 —b/n®, where 0 < B < 1 and 0 < b < co. Suppose that &1

satisfies the same assumptions as in Theorem 2.4. Then

A1(B,b) = lim n(MSPEp — 0?) =

n—o0

\

202, 0<B<1/2,
{1+ (i)}, B=1/2, (3.11)
o?, 1/2<B<1.

In view of (2.15), (2.19) and (2.20), Theorem 3.4 can be succinctly summarized to include the case

8 =1 as follows.

202,

o1+ (%)}
A (B,0) = o2,

Rp(b),

402,

0<pf<1/2and 0<b< o0,
f=1/2and 0 <b < o0,
1/2<pB<1land 0<b< oo, (3.12)

B=1land 0 <b< 0,

B=1and b=0.

Note that A1(3,b) = 202,0 < B < 1/2 is designated as the “stationary state”, while A1(1,0) = 402 is des-
ignated as the “unit-root state”. Moreover, Aj(3,b) with 1/2 < § < 1 is designated as the “intermediate

state” because its value, o2, is different from the values of the unit-root and the stationary states.

Equation (3.12) also reveals that there are two critical points, § = 1/2 and 8 = 1, as far as asymptotic

predictions are concerned. At the critical point 8 = 1 that separates the unit-root and intermediate

states, we have

(i) limy_0 A1(1,b) = 402, which is the value of the unit-root state,

(ii) limp_eo A1(1,b) = o, which is the value of the intermediate state.

At the critical point § = 1/2 that separates the stationary and intermediate states, we have

(i) limyoA1(%,b) = o2, which is the value of the intermediate state,

(i) limpe A1(3,b) = 202, which is the value of the stationary state.

Graphically, these critical phenomena are depicted in

12

Figure 2.
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Figure 2: Theorem 3.4: the vertical axis denotes the value of A1(3,b). Note that the points associated
with Aq(1/2,b) and A;(1,b) are not necessarily in the middle. They are only used to illustrate A;(1/2,b)

(A1(1,b)) decreases (increases) to o2 (402) as b — 0, and increases (decreases) to 202 (02) as b — o0.

One important conclusion deduced from the above discussion is that due to the existence of the
intermediate state, there exists no 0 < 8 < 1 such that A;(3,b) simultaneously satisfies limy_,o A1(3,b) =
402 and limy_ o0 A1(B,b) = 202, implying that the discontinuity between the unit-root and stationary
states of the MSPEp cannot be connected by a general near unit-root model. In contrast, we also
note that this discontinuity in MSPEpg can indeed be connected through“two” general near unit-root
models whose (3 values correspond to the aforementioned two critical points, 1 and 1/2, as illustrated in
Figure 2. Moreover, when data are generated from model (1.1) with fixed p, the critical point 5 = 1/2
inspires another finite sample approximation, A1(1/2,n1/2(1 —p)), of n(MSPEp — ¢?) that is expected
to surpass Aj(1,n(1 — p)) = Rp(n(l — p)) when n(1 — p) becomes relatively large. The performance of
A1(1/2,nY%(1 — p)) is also demonstrated in Section 3.2.

3.2 Simulations

In this section, we propose finite sample approximations of n™™{%2/¢}(MSPE 4 — ¢2) and n(MSPEg — 02)
(finite sample corrections of RY(«, p) and R%(p)) based on Theorems 2.3, 2.4, 3.3 and 3.4, and investigate
their performance via simulated data generated from model (1.1), with p € {0.86,0.9,0.95,0.975,0.99},
n € {100,200, 500, 1000, 3000, 6000, 10000}, and &; obeying the Beta(c, 1) distribution with o € {1.5,2,4}.

Note that the performance of our finite sample corrections in the case of 0 < o < 1 is largely similar to
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that in the case of & = 1.5. The details are skipped here. For a given triple (n,p,a), let ygj), . ,ygj)
)

denote the data generated in the j-th simulation, where 1 < j < 5000. We also generate y,"/

the empirical estimate of n™*{1:2/0}(MSPE, — ¢2),

, and compute

5000
min{1,2 1 ' Y

Ra, = e ¢ s S iy 0P =0t 0 (3.13)

j=1

and that of n(MSPEg — ¢2),
;%00 _
Rp, =n 3 o5 2 Wi = 370)" =0 ¢ (3:14)
j=1

where 3)7(1]+)1 and gﬁﬁl, respectively, denote the EV and LS predictors calculated in the j-th simulation

based on y§j), . ,ygj).

While (1.6) suggests that for a sufficiently large n, R9(«,p) and R%(p) should give good approx-
imations of n™{L2/a}(MSPE, — ¢2) (or R4,) and n(MSPEp — ¢?) (or Rp,), the results are often
unsatisfactory in the scenarios considered. In view of Theorems 2.3 and 2.4, when n(1 — p) is small,
it seems reasonable to use Ra(co,n(1 — p)) and Rp(n(1 — p)) as finite sample corrections for R («, p)
and R%(p), where R(a,b) and Rp(b) are defined in (2.14) and (2.15), and n(1 — p) can be viewed as a
measure of how far the underlying model deviates from the unit-root model.

On the other hand, when 1 — p is small but n(1— p) becomes relatively large, both R4 (a, n(1—p)) and
R (v, p) may perform inferiorly. Therefore, we suggest an alternative approximation of pmin{1,2/a} (MSPE 4—
02) based on (3.10), which is derived from the general near unit-root model. More specifically, ignoring the

smaller order terms in (3.10), we obtain from the equation that n™*{1.2/¢}(MSPE 4 —¢?) is approximately

equal to

2 2
«@

{F<a ;_ 2) (%) [222225 " n2(b;nﬂ)2} } + nﬁm (3.15)

for > 2, and

2\ /a\ar o%b 1
et e e () () ) .
otn { a c 2u2np + n2(b/nb)? (3-16)
for 0 < a < 2. Replacing b/n” in (3.15) and (3.16) by 1 — p, one gets an alternative to Ra(a,n(1 — p)):

2
Ri(a, p) + Ry(a,n(1 = p)) + %7 a>2,
RZ(OJ,TL, 1- p) = (317)

o2 +n' 2R (a, p) + n' " Ri(a,n(1 — p)), 0<a<?2,

where

Rt =1(42)(2)7 2

and

At - =022 (2 e
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One of the most appealing features of (3.17) is that it depends on the parameters, 5 and b, in the general
near unit-root model only through 1 — p, and hence can be implemented without facing the identifiability
issue associated with [ and b.

Similarly, both Rg(c,n(1 — p)) and R%(c, p) may perform poorly for small 1 — p and for relatively
large n(1 — p). We therefore consider the following alternative,

n(l — 0202
Ar(1/2,012(1 = p)) = o2 {1 n (u2 ﬁmp—) p)202)} , (3.18)

which is Aj(1/2,b) with b replaced by n'/2(1 — p). Since A;(1/2,b) falls between (02, 20?) and can fill
the gap between 202 = R%(a, p) and 02 = limp 0o Rp(a,b) in the sense that limy_,o A1(1/2,0) = 202
and limy_oA1(1/2,b) = o2, it is expected that Ay(1/2,n'/2(1 — p)) will provide a more satisfactory
approximation of n(MSPEp — 02) when p is too small (large) for Rp(n(1 — p)) (R%(«, p)) to do a good
job. We emphasize that the b in A1(1/2,b) is replaced by n'/?(1— p) instead of n(1 — p) because A;(1/2,b)
is derived from the general near unit-root model with 5 = 1/2.

For notational simplicity, define
1 0 2 3 *
R1(4) = R% (o, p), R(A) = Ra(a,n(1l —p)), Rg) = R)(a,n,1—p),
Ry =Ry(p), RY =Rp(n(1-p), RY =A(1/2,072(1-p)).
The degree of closeness between REZ) and R4, and that between Rg) and Rp, are assessed by

min{RY Ra} | o) _ min{RY Rp,)
maX{RX), Ra,} b maX{Rg), RBn}7

Py = i=1,2,3.
Clearly, 0 < PX), Pg) < 1 and a larger value represents a better performance. The values of Ry, (Rp,)
and PX)(P](;))J = 1,2, 3, are summarized in Tables 1-3 (Tables 4-6) for « = 1.5,2 and 4, respectively. To
better explain these tables, the corresponding value of n(1 — p), which is denoted by b, is also included.
Table 1 shows that when a = 1.5, Pfll) = Pf) for each (n,p), which is due to RS) = R(AQ) for each
(n, p). On the other hand, Pég) is notably larger than Pf(‘l) = f) forn =100 or 1 < n(1—p) < 5 although
PX),i = 1,2,3, have similar values otherwise. These facts reveal that while n'=%/*(R¥(a, p) + R* (o, n(1 —
p))) in RS’) is asymptotically negligible compared to the corresponding leading term, o2 = RS) = Rf),
in the case of a < 2, it can help improve the finite sample performance of this leading term. For any fixed
p, all PX),i =1,...,3, gradually approach 1 as n increases, which coincides with the asymptotic result
established for the stationary case, namely, the first relation of (1.6). Table 2 shows that when o = 2
and 1 < n(l —p) <5, Pf) usually has the highest value among P(i),i =1,...,3, except for the case
of (n,p) = (200,0.99), where P = 0.9747 > P = 0.9144 > P{") = 0.1786. For 5 < n(1 — p) < 28,
Pf) appears to dominate its competitors with the exception of (n,p) = (1000,0.99), in which PE) is
)

slightly larger than Pf . One explanation of this result is that when n(1 — p) becomes larger, R} (a, p)
and R3(a,n(l—p)) in R(j) can complement each other and jointly provide a good approximation of R4,,,
which is further improved via o2 /n'=2/%. For 28 < n(1 — p) < 1400, PS) and ng) behave quite similarly

and are usually significantly larger than Pﬁf) except for p > 0.975. For any fixed p, Plgl) has an obvious
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tendency to increase to 1 as n grows from 100 to 10000. This is also in agreement with the first relation
of (1.6). Like Table 2, Table 3 (a = 4) also shows that PIEXQ) usually dominates PX),Z' = 1 and 3, when
1 <n(1—p) <5. However, an exception happens in the case of (n, p) = (100,0.975), where ng) is ranked
first. Note that in this range of n(1— p), PE) in Table 3 is less than 0.02 and somewhat smaller than Pf(xl)
in Table 2. This is because for a = 2, RS) contains o2, which is non-negligible compared to R4,. As a
result, o2 keeps Pjgl) bounded away from zero although the other component of RS) is extremely small.
However, for & = 4 and small n(1 — p), RS) is approximately equal to Rj(a,p), which is substantially
smaller than R4,. The advantage of Rf) is more evident in Table 3 since P{gg) is noticeably larger than
P and PP for almost all 10 < n(1 — p) < 1400. When 70 < n(1 — p) < 1400, P'?) in Table 3 is less
than 0.05 and distinctively smaller than Pf) in Table 2. We explain this by noting that for « = 2 and

large n(1 — p), o2 in Rf) is quite close to R4,, and hence induces a relatively large Pf) although the

other component of Rg) is very small. For o = 4 and large n(1— p), however, Rf) is approximately equal
to R3(c,n(1 —p)), which is exceedingly small compared to R4, . For any fixed p, Table 3 shows that Plgl)
still possesses a clear upward trend. This phenomenon can once again be explained by the first relation

2 is much slower in o = 4 than in o < 2,

of (1.6). However, because the convergence rate of MSPE4 — o
PS) may not be very close to 1 even when n = 10000.

It is shown in Table 4 that P](32) = maxj<;<3 Pg) for 1 < n(l—p) <12.5, and PS) = maxj<;<3 Pg)
for 12.5 < n(1 — p) < 300, with the exception of n(1 — p) = 30, where P]_(;) is slightly larger than Pg').
For 300 < n(1 — p) < 1400, P](gl) and Pg’) have similar values and are much larger than P](32). Table 4
also reveals that for p = 0.99, Rp, decreases from 0.217 to 0.0761 as n grows from 100 to 3000, and then
slowly increases to 0.08 as n increases to 10000. When p gets smaller, this feature of Rp, , first decreasing
and then increasing as n grows, becomes more evident. For example, Rp, with p = 0.975 decreases from
0.158 to 0.084 as n grows from 100 to 1000, and then increases to 0.110 as n increases to 10000. Moreover,
for p = 0.95 (0.9, 0.86), Rp, decreases from 0.117 (0.103, 0.109) to 0.086 (0.101, 0.108) as n grows from
100 to 500 (200, 200), and then increases to 0.136 (0.139, 0.134) as n increases to 10000. The decreasing
part of Rp, can be explained by Rg), which decreases to the value of intermediate state, o = 0.0686, as
n(1 — p) (or, equivalently, n) increases. The increasing part of Rp,, however, is more in line with Rg),
which increases to 202 after leaving the intermediate state. Tables 5 and 6 share similar features as Table
4. Moreover, as « grows, the areas of n(1 — p) for which R(B2) works best and Rg) outperforms Rg) tend
to expand. In Figure 3, we give the plots of time series realizations generated from model (1.1), with
p = 0.95 and &; obeying Beta(1.5,1), Beta(2,1) and Beta(4,1) distributions. This figure shows that the
nonstationary feature of these series becomes more evident as « increases, which may partly explain why
Rg) and Rg) play increasingly essential roles in approximating Rp, when a becomes larger.

As a final remark, we note that Tables 1-3 (Tables 4-6) together portrait situations where RX) ,1=2,3
(Rg),i = 2,3) can approximate Ry, (Rp,) better than RS) (Rg)). This information in conjunction
with suitable estimators of b,c and « enables one to construct a data-driven procedure for estimating
nein{l.2/a(MSPE 4 — 02) and n(MSPEp — ¢?) in the near unit-root region. The details are deferred to

the supplementary document.
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Table 1: The values of Ran, and Pg),i = 1,2, 3, under the Beta(1.5,1) noise. PIE‘D (Pf), Pflg)) is colored in red

(blue, green) when it is equal to maxj<;<s PX).

p 0.86 0.9 0.95 0.975 0.99
b 14 10 5.0 2.5 1.0
Ran | 0.0770 | 0.0786 | 0.0917 | 0.1349 | 0.2150
n =100 PS) 0.8909 | 0.8715 | 0.7470 | 0.5078 | 0.3186
Pf) 0.8909 | 0.8715 | 0.7470 | 0.5078 | 0.3186

b 28 20 10 5.0 2.0
Ran | 0.0707 | 0.0741 | 0.0743 | 0.0866 | 0.1299
n=200 | P{" | 0.9703 | 0.9244 | 0.9219 | 0.7910 | 0.5273
PP | 0.9703 | 0.9244 | 0.9219 | 0.7910 | 0.5273

b 70 50 25 12.5 5.0
Ran | 0.0718 | 0.0713 | 0.0682 | 0.0719 | 0.0792
n=500 | P{" | 0.9555 | 0.9607 | 0.9956 | 0.9527 | 0.8649
P | 0.9555 | 0.9607 | 0.9956 | 0.9527 | 0.8649
Py 0.9809

b 140 100 50 25 10
Ran | 0.0690 | 0.0707 | 0.0699 | 0.0709 | 0.0729
n=1000 | P{” | 0.9938 | 0.9689 | 0.9799 | 0.9661 | 0.9396
P | 0.9938 | 0.9689 | 0.9799 | 0.9661 | 0.9396
PP | 0.9833

b 420 300 150 75 30
Ran | 0.0700 | 0.0691 | 0.0670 | 0.0693 | 0.0676
n=3000 | P{” | 0.9785 | 0.9913 | 0.9781 | 0.9884 | 0.9868
P® | 09785 | 0.9913 | 0.9781 | 0.9884 | 0.9868
PP 0.9724 0.9839

b 840 600 300 150 60
Ra, | 0.0688 | 0.0661 | 0.0702 | 0.0694 | 0.06853
n=6000 | P{" | 0.9956 | 0.9649 | 0.9757 | 0.9870 | 0.9994
P | 0.9956 | 0.9649 | 0.9757 | 0.9870 | 0.9994
PP | 0.9913 | 0.9565 0.9989

b | 1400 | 1000 | 500 250 100

Ran | 0.0681 | 0.0693 | 0.0702 | 0.0702 | 0.0671
n=10000 | P{" | 0.9927 | 0.9885 | 0.9757 | 0.9757 | 0.9795
PP | 0.9927 | 0.9885 | 0.9757 | 0.9757 | 0.9795
PP | 0.9825 0.9777
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Table 2: The values of Ran and PX),Z' = 1,2,3, under the Beta(2,1) noise. Pfll) (Pf), Pf(lg)) is colored in red

(blue, green) when it is equal to maxj<;<s PX).

p 0.86 0.9 095 | 0975 | 0.99
b 14 10 5.0 2.5 1.0
Ran | 0.0756 | 0.0812 | 0.1307 | 0.2644 | 0.5096
n=100 | P{" | 0.8580 | 0.7635 | 0.4491 | 0.2160 | 0.1101
PP | 08103 | 0.8288 | 0.8256 | 0.8718 | 0.9241
pY 0.7550 | 0.8211 | 0.4824

b 28 20 10 5.0 2.0
Ran | 0.0685 | 0.0690 | 0.0745 | 0.1198 | 0.3141
n=1200 | P{" | 0.9465 | 0.8986 | 0.7879 | 0.4766 | 0.1786
P | 0.8302 | 0.8435 | 0.9034 | 0.9007 | 0.9144
Py 0.8106

b 70 50 25 12.5 5.0
Ran | 0.0658 | 0.0623 | 0.0600 | 0.0673 | 0.1158
n=500 | P{" | 0.9864 | 0.9952 | 0.9783 | 0.8484 | 0.4845
P | 0.8479 | 0.8973 | 0.9533 | 0.9331 | 0.9318
P | 0.9803 0.8305

b 140 100 50 25 10
Ran | 0.0641 | 0.0619 | 0.0595 | 0.0588 | 0.0696
n=1000 | P{” | 0.9880 | 0.9984 | 0.9866 | 0.9711 | 0.8060
P | 0.8675 | 0.8982 | 0.9395 | 0.9728 | 0.9669
pY 0.9508

b 420 300 150 75 30
Ran | 0.0657 | 0.0602 | 0.0605 | 0.0593 | 0.0566
n=3000 | P{” | 0.9861 | 0.9710 | 0.9708 | 0.9621 | 0.9914
PP | 0.8445 | 0.9216 | 0.9188 | 0.9386 | 0.9989
PP | 0.9775 0.9704 0.9890

b 840 600 300 150 60
Ran | 0.0677 | 0.0610 | 0.0594 | 0.0576 | 0.0587
n=6000 | P{" | 0.9575 | 0.9837 | 0.9880 | 0.9905 | 0.9566
PP | 08199 | 0.9095 | 0.9344 | 0.9639 | 0.9508
PP | 0.9491 0.9870

b 1400 | 1000 500 250 100
Ran | 0.0652 | 0.0633 | 0.0588 | 0.0562 | 0.0584
n=10000 | P{" | 0.9938 | 0.9794 | 0.9982 | 0.9842 | 0.9606
P | 0.8512 | 0.8767 | 0.9438 | 0.9875 | 0.9503
PP | 09862 | 0.9764 | 0.9980 | 0.9836
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Table 3: The values of Ran and PX),Z' = 1,2,3, under the Beta(4,1) noise. Pfll) (Pf), Pf(lg)) is colored in red

(blue, green) when it is equal to maxj<;<s PX).

p 0.86 0.9 0.95 | 0975 | 0.99
b 14 10 5.0 2.5 1.0
Ran | 0.0109 | 0.0158 | 0.0493 | 0.1444 | 0.3148
n=100 | P{" | 0.2522 | 0.1203 | 0.0183 | 0.0035 | 0.0006
PP | 0.4488 | 0.6266 | 0.8621 | 0.9252 | 0.9371
Py 0.7918 0.3540

b 28 20 10 5.0 2.0
Ran | 0.0062 | 0.0067 | 0.0134 | 0.0474 | 0.1808
n=200 | P{" | 04440 | 0.2836 | 0.0672 | 0.0105 | 0.0011
PP | 01894 | 0.3433 | 0.7388 | 0.8966 | 0.9591
Py 0.7973 | 0.8084

b 70 50 25 12.5 5.0
Ran | 0.0041 | 0.0035 | 0.0037 | 0.0081 | 0.0454
n=500 | P{" | 06720 | 0.5429 | 0.2432 | 0.0617 | 0.0044
PP | 0.0486 | 0.1143 | 0.4054 | 0.7654 | 1.0000

9% 0.8111
b 140 100 50 25 10

Ran | 0.0035 | 0.0029 | 0.0022 | 0.0029 | 0.0112
n=1000 | P{” | 0.7818 | 0.6551 | 0.4091 | 0.1724 | 0.0179
PP | 0.0129 | 0.0345 | 0.1364 | 0.5172 | 0.8839
pY 0.8830
b 420 300 150 75 30
Ran | 0.0032 | 0.0024 | 0.0015 | 0.0011 | 0.0017
n=3000 | P{" | 0.8550 | 0.7910 | 0.5997 | 0.4194 | 0.1079
PP | 0.0015 | 0.0040 | 0.0252 | 0.1436 | 0.5942

b 840 600 300 150 60
Ran | 0.0031 | 0.0023 | 0.0013 | 0.0008 | 0.0008
n=6000 | P{" | 0.8979 | 0.8313 | 0.7151 | 0.5316 | 0.2298
P | 0.0004 | 0.0010 | 0.0074 | 0.0451 | 0.3105

b 1400 | 1000 500 250 100
Ran | 0.0030 | 0.0022 | 0.0011 | 0.0007 | 0.0005
n=10000 | P{" | 0.9000 | 0.8636 | 0.8545 | 0.6571 | 0.3600
P | 0.0002 | 0.0040 | 0.0031 | 0.0202 | 0.1800
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Table 4: The values of Rp, and Pg'),i = 1,2,3, under the Beta(1.5,1) noise.

(blue, green) when it is equal to maxj<;<s P](;)

Pl(gl) (Pg), P};’)) is colored in red

p 0.86 0.9 095 | 0975 | 0.99
b 14 10 5.0 2.5 1.0
Rp, | 0.1086 | 0.1028 | 0.1167 | 0.1584 | 0.2170
n=100 | PS’ | 0.7920 | 0.7498 | 0.8512 | 0.8655 | 0.6318
P | 0.7366 | 0.8327 | 0.9443 | 0.9836 | 0.9894
Py 0.7737 | 0.6142 | 0.4379 | 0.3165
b 28 20 10 5.0 2.0
Rp, | 0.1084 | 0.1007 | 0.0919 | 0.1130 | 0.1688
n=200 | PY’ | 0.7901 | 0.7345 | 0.6703 | 0.8242 | 0.8122
P | 0.6815 | 0.7557 | 0.9314 | 0.9752 | 0.9819
2 0.8110 | 0.6209 | 0.4077
b 70 50 25 12.5 5.0
Rpn | 0.1192 | 0.1096 | 0.0860 | 0.0868 | 0.1112
n=>500 | PS’ | 0.8692 | 0.7994 | 0.6273 | 0.6331 | 0.8111
PP | 0.5921 | 0.6515 | 0.8663 | 0.9401 | 0.9910
Py 0.8343 | 0.6224
b 140 100 50 25 10
Rpn | 0.1291 | 0.1209 | 0.0976 | 0.0835 | 0.0899
n=1000 | P | 0.9411 | 0.8818 | 0.7119 | 0.6090 | 0.6562
PP | 0.5390 | 0.5782 | 0.7316 | 0.8922 | 0.9522
Py 0.7770
b 420 300 150 75 30
Rpn | 01323 | 0.1257 | 0.1133 | 0.0900 | 0.0761
n=3000 | PY) | 0.9647 | 0.9166 | 0.8264 | 0.6564 | 0.5550
PP | 0.5201 | 0.5488 | 0.6125 | 0.7822 | 0.9645
Py 0.9497
b 840 600 300 150 60
Rp, | 0.1329 | 0.1306 | 0.1214 | 0.0977 | 0.0766
n=6000 | PS | 0.9691 | 0.9523 | 0.8854 | 0.7126 | 0.5587
PY | 05172 | 0.5267 | 0.5683 | 0.7103 | 0.9255
Py
b 1400 | 1000 | 500 250 100
Rp, | 0.1340 | 0.1392 | 0.1356 | 0.1096 | 0.0804
n=10000 | P’ | 0.9771 | 0.9849 | 0.9890 | 0.7873 | 0.5864
PP | 0.5126 | 0.4935 | 0.5073 | 0.6304 | 0.8694
Py 0.9606 | 0.9236
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Table 5: The values of Ry, and Pg),i = 1,2,3, under the Beta(2,1) noise.

(blue, green) when it is equal to maxj<;<s P](;).

Pj(gl) (P](32), Pg’)) is colored in red

p 0.86 0.9 095 | 0975 | 0.99
b 14 10 5.0 2.5 1.0
Rpn | 0.0824 | 0.0793 | 0.0956 | 0.1285 | 0.1736
n=100 | P’ | 0.7414 | 0.7138 | 0.8605 | 0.8646 | 0.6399
PY) | 0.7868 | 0.8752 | 0.9341 | 0.9821 | 0.9983
Py 0.7784 | 0.5987 | 0.4356 | 0.3204
b 28 20 10 5.0 2.0
Rpn | 0.0828 | 0.0757 | 0.0728 | 0.0891 | 0.1370
n=200 | PS’ | 0.7454 | 0.6814 | 0.6553 | 0.8020 | 0.8109
PY | 0.7223 | 0.8151 | 0.9533 | 0.9978 | 0.9835
28 0.8080 | 0.6331 | 0.4065
b 70 50 25 12.5 5.0
Rpn | 0.0920 | 0.0824 | 0.0666 | 0.0694 | 0.0880
n=>500 | PS’ | 0.8282 | 0.7417 | 0.5995 | 0.6247 | 0.7921
PP | 0.6215 | 0.7015 | 0.9054 | 0.9524 | 0.9854
Py 0.8306 | 0.6352
b 140 100 50 25 10
Rpn | 0.0942 | 0.0900 | 0.0719 | 0.0651 | 0.0716
n=1000 | P{" | 0.8478 | 0.8101 | 0.6472 | 0.5860 | 0.6445
PP | 0.5983 | 0.6289 | 0.8039 | 0.9263 | 0.9693
pY 0.9166 | 0.7854
b 420 300 150 75 30
Rgn | 0.1061 | 0.1027 | 0.0888 | 0.0699 | 0.0600
n=3000 | PY" | 0.9550 | 0.9249 | 0.7994 | 0.6291 | 0.5406
PY | 0.5260 | 0.5441 | 0.6338 | 0.8165 | 0.9908
Py 0.9582
b 840 600 300 150 60
Rpn | 0.1164 | 0.1041 | 0.0924 | 0.0739 | 0.0620
n=6000 | PS” | 0.9538 | 0.9375 | 0.8318 | 0.6656 | 0.5588
PY) | 0.4780 | 0.5350 | 0.6050 | 0.7612 | 0.9256
PY | 0.9234
b 1400 | 1000 | 500 250 100
Rpn | 0.1063 | 0.1059 | 0.0994 | 0.0805 | 0.0653
n=10000 | P’ | 0.9567 | 0.9531 | 0.8946 | 0.7245 | 0.5877
PY) | 05189 | 0.5250 | 0.5603 | 0.6956 | 0.8667
J S
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Table 6: The values of R, and Pg),i = 1,2,3, under the Beta(4,1) noise. P](;) (P](;), Pg’)) is colored in red

(blue, green) when it is equal to maxj<;<s P](;).

P 0.86 0.9 095 | 0975 | 0.99
b 14 10 5.0 2.5 1.0
Rpn | 0.0348 | 0.0343 | 0.0444 | 0.0625 | 0.0854
n=100 | PY’ | 0.6526 | 0.6435 | 0.8330 | 0.8528 | 0.6241
PY) | 0.8939 | 0.9708 | 0.9640 | 0.9696 | 0.9778
P | 0.8241 | 0.8085 | 0.6067 | 0.4277 | 0.3123

b 28 20 10 5.0 2.0

Rpn | 0.0340 | 0.0335 | 0.0336 | 0.0431 | 0.0666
n=200 | P | 06371 | 0.6285 | 0.6304 | 0.8086 | 0.8003
P | 0.8452 | 0.8836 | 0.9911 | 0.9930 | 0.9970
28 0.8572 | 0.8098 | 0.6219 | 0.4007

b 70 50 25 12.5 5.0
Rpn | 0.0370 | 0.0336 | 0.0309 | 0.0322 | 0.0425
n=500 | PY | 06929 | 0.6304 | 0.5797 | 0.6041 | 0.7974
PP | 0.7429 | 0.8244 | 0.9353 | 0.9844 | 1.0000
Py 0.9057 | 0.8388 | 0.6287

b 140 100 50 25 10
Rgn | 0.0407 | 0.0376 | 0.0303 | 0.0303 | 0.0344
n=1000 | PS | 0.7638 | 0.7054 | 0.5685 | 0.5685 | 0.6454
P | 0.6641 | 0.7234 | 0.9142 | 0.9538 | 0.9680
Py 0.9024 | 0.7784

b 420 300 150 75 30
Rpn | 0.0462 | 0.0439 | 0.0341 | 0.0295 | 0.0286
n=23000 | PY | 0.8674 | 0.8239 | 0.6394 | 0.5549 | 0.5374
P | 05791 | 0.6109 | 0.7924 | 0.9256 | 0.9967
Py 0.9417

b 840 600 300 150 60
Rgn | 0.0483 | 0.0480 | 0.0383 | 0.0313 | 0.0283
n=6000 | PS" | 0.9074 | 0.9003 | 0.7197 | 0.5876 | 0.5318
P | 05523 | 05572 | 0.6993 | 0.8622 | 0.9725
Py 0.9630

b | 1400 | 1000 500 250 100
Rgn | 0.0513 | 0.0495 | 0.0410 | 0.0323 | 0.0281
n=10000 | PSY | 0.9624 | 0.9287 | 0.7692 | 0.6060 | 0.5272
P | 0.5205 | 0.5397 | 0.6529 | 0.8321 | 0.9679
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Figure 3: Plots of time series realizations generated from model (1.1), where p = 0.95 and ¢; has a Beta(a,
1) distribution, with oo = 4 (green line), 2 (blue line) and 1.5 (red line).

4 Concluding Remarks

By deriving asymptotic expressions for the MSPEs of the EV and LS predictors under near unit-root and
general near unit-root models, this paper provides a deeper appreciation for the performance of the LS and
EV predictors in the near unit-root region. In particular, our analysis reveals that the expressions derived
for the LS predictor for the critical points, 8 = 1 and 8 = 1/2, not only jointly connect the discontinuities
in lim, 0o n(MSPEpR — ¢2), but also combine their strengths to yield finite sample approximations of
n(MSPEp — 0?) that perform satisfactorily in the near unit-root region. Moreover, the expressions
derived for the EV predictor for 5 = 1 and 0 < 8 < 1 also lead to finite sample approximations of
n(MSPE4 — ¢?) that can achieve a similar goal. Finally, we mention that the results established in this

paper and in Ing and Yang (2014) can be unified as follows:
MSPE,4 — o2

i o= [ K [N P

1 \2/e 1 20 g2 (a + 1)/ (4.19)
+<M(I)c b) L3 (b)I{p=10<b<oo} + (Ma(l — b)) b2 —1b) Iig—0,0<b<1) + ff{ﬂzl,b:()}

2
+ 7 + o(max{nfl,nfﬁfg,nw*%% )
n
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and

MSPEp — o

. ) ) ) (4.20)
=n" {A1(B, ) [jo<p<t,0cbeo0} + 207 L 15—0,0<b<1} +40° [g—1p—0y } +0(n ).

Equations (4.19) and (4.20) provide a more comprehensive perspective on the performance of the EV and

LS predictors and may facilitate broader applications.
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Supplement to “Nearly Unstable Processes: A Prediction Perspective”

by Ngai Hang Chan, Ching-Kang Ing, and Romgmao Zhang

A Proofs of the Theorems in Sections 2 and 3.1

Before proceeding with the proofs, we would like to first point out the key difference between our asymp-
totic framework and those in Chan and Wei (1987), Phillips (1987) and Phillips and Magdalinos (2007).
Let p, =1 —b/n?, with 0 < < 1and 0 < b < oo, and y; = y; — n’u/b. Then, model (1.1) can be

expressed as

Yl = puYi—1 + M, (A1)

which is an AR(1) model driven by a zero-mean white-noise process {1;}. While the asymptotic behavior
of the LSE under (A.1) has been extensively studied by the aforementioned authors, their results rely
heavily on the initial condition y§ = Op(1), which is obviously violated by our initial condition yo = 0,

leading to
v = —nPpfb. (A.2)

With the initial condition like (A.2), most existing results established for the LSE under model (A.1)
are no longer applicable. As shown for the rest of this section, our asymptotic analysis is similar to that
adopted by Ing and Yang (2014). However, substantial efforts are needed to deal with the critical behavior

of the EV and LS predictors exhibited in the near unit-root region.

Proof of Theorem 2.1. We first prove (2.6). By exp(—b) 22:1 gj <y = Z;;B phei_j < Z;Zl ej and
(19) of Ing and Yang (2014), which shows that for any ¢ > 0,
q

t—1

1+1/c . )

E<n Join. et/ g 15] < 00, (A.1)
]:

the desired conclusion (2.6) follows. The proof of (2.7) is similar to that of (7) of Ing and Yang (2014).
The details are omitted. Finally, (2.8) follows directly from (2.6) and (2.7). O

Proof of Theorem 3.1. Equation (3.1) can be shown by an argument similar to that used to prove
(2.6). We thus skip the details. For (3.3), it suffices to show that

1/a+p ; Nt _ pl/atB s oy —
n Jmin (ei/yi-1) —n Join (ei/yi-1) = 0p(1) (A.2)
and for any ¢ > 0,
tim_ P{(c/a)/*(u/Bn"/** min (i/yir) > 1} = exp{—1}, (A.3)

1



where v, =< n? for some 8 < 0 < 1.
To show (A.2), note first that

VatB i (o o ) LatB i (g < o Lfadk B e g
n vgégn(&/yzfl) n legn(sz/yza)_n (Vgrglgnsz/yH)IAn,

where A, = {min,, <<, €;/yi—1 > minas<i<,, €i/yi—1}. Let ¢, = s%/%ﬁ/uﬁ in which s,, satisfies snurl/a/nl/“ =

o(1) and s, — oo. Then, by (3.1), (1.2), the weak law of large number and Chebyshev’s inequality, one
has for any € > 0,

P(nl/o‘+5( mir<1 gi/yi—1)1a, >€) < P(Ay)

vp<i<n

: “1/2 -1, p—(1
< P(min eifyi1> s, 2y vy A=) + P(,max yi1 > @Vl

+ P(min g < s, 219

2<i<n
12 1/a+B Vn
B Sn 4nln _ _ C B
=0 < l/otB ) +o(1)+1 (1 unsﬁ/z) =o(1),

where C' is some positive constant independent of n. Thus, (A.2) is proved.
To show (A.3), one can use (3.2) and Lemma 2 of Wei (1987) to obtain

max |y;—1 — Eyi1| = Op(n!/a+012), (A.4)

vp<i<n

In addition, there exists ¢; > 0 such that for all v, <1 <mn,
By 1 = (1= p') /b > ern”, (A.5)
By (A.4), (A.5), (1.2) and 1/q1 + B/2 < f3, it holds that

lim P{(c/a)"*(pu/b)n*/*P min (g;/y;—1) >t}

n— o0 vp<i<n
L Va, 1/atB &i — @
L e R B et

which completes the proof of (A.3). Finally, (3.4) is a immediate consequence of (3.1) and (3.3). O

Proofs of Theorems 2.2 and 3.2. Define

n—1

(1-p 1 1-ph
i = 1—pp (n—l)z 1—pp

1

1,
j=1

and &, = Y720 Py — (n— 1)V S0 iy Then

Pn = pn = Z(yi—l - Z?)Th‘/Z(yi—l -9)?
. =2 =2 (AG)

n
(anyi—1 + &nji—1)ni/ Z(an,ifl +&nio1)?

=2 =2



Straightforward calculations yield for 0 < 8 < 1,

2

Tm L Zam L= B0 < B < 1) 4 (0 (0) - BE)IE=1), (A7)
and
i E{fm«fl = 02(2b) ' P (1 — exp(—bntP)) (1 + o(1)). (A.8)
=2

In addition, for 0 < 8 < 1, we have

nH‘B Zgnz 1 nHVB Z Zﬂjm —j)" = op(1), (A.9)
=2 7=0
and
n o2
i= 2 7=0
Moreover, for = 1/2,
RN 2 IR 2 ot
32 Z(an,i—l +&n,i-1)” = 3 Z(an,iq + &nic1) Fop(1) = 95 T T op(1). (A.11)
i=2 i=2

By (A.6)—(A.11) and the martingale central limit theorem (see, e.g., Theorem 3.2 of Phillips and Mag-
dalinos (2007)), (2.10) and (3.5) follow.

Set k, = n3 for 8 = 1. By (2.11), E¢§ < oo for some s > 10, and an argument similar to that used to
prove Lemma 2 of Yu, Lin and Cheng (2012), we have E|v/ky(pn — pn)|” < oo for some v > 2, and hence
{kn(pn — pn)?} is uniformly integrable. This together with (2.10) (resp. (3.5) ) yields (2.12) (resp. (3.6)
)- 0

Proofs of Theorems 2.3 and 3.3. It follows from (2.4) and E[(1 — p,)§J — p + 2z:)° = E[(n —
1)t > =2 n;)?> = o?/(n — 1) that

MSPE4 — 02 = 62/(n— 1) + E{(pn — pu)(yn — i)}

(A.12)
+ 2E{(hn = pn)(yn = PI((L = pn)y — 1) + 2u]}
To deal with the second term on the right-hand side of (A.12), we express vy, — ¥ as
n—1i-1 n—1i-1
11]0 o ijﬁnj n_lz ;}P]UZJ (A.13)
= X1+ Xop.
Some algebraic manipulations give
lim st = (0 <B<1) 4 p*Ls(b)I(B=1) (A.14)
oo nAB—2 b4



and
2

EX3, = %bnﬂ(1 +o()I(0 < B<1)+O0m)I(B=1). (A.15)

Combining (A.13)—(A.15) yields for 2/3 < g <1,

_7\2 2
W — %1(2/3 <B<1)+pLs(b)I(B = 1), (A.16)
and for 0 < 5 < 2/3,
2 2
Tim 0By, - §)* = %1(0 <B<2/3)+ ‘5—41(5 =2/3). (A.17)

By the moment conditions on € and a straightforward calculation, it follows that for 0 < 8 < 2/3 there
exists 2/3 < ¢ < 1 for which

nS—1

n Py, =) = PP(Xin 4+ D )+ 11
=0

where 71, satisfies E|rq ,,|7 = o(1) for some ¢; > 2, and
nS—1

lim Efn ™ (X1n+ Y p'0a)?] = lim Eln Py, — 9)?.
j=0

n—oo n—oo
In addition, by (3.1) and an argument similar to that used to prove (A.2), we obtain

nﬁ-l—l/a(ﬁn - ,On) _ nﬁ+1/a( min o ) tro,
2<i<n—nS Yi—1 ’

where ry ,, satisfies E|ry |7 = o(1) for any ¢ > 0, and

lim E[nﬁﬂ/a( min
n—o00 2<i<n—nS Yi—1 n—00

These facts and the independence between n /2 Z;ial P 1n_; and nftl/ Y(ming<; <, ¢ €/yi—1) yield

for 0 < 5 <2/3

lim E{n_ﬁ(yn - gj)z[n6+1/a(ﬁn - pn)]2}

nree (A.18)
= lim E{n""(y, — )} lim E{[n"*V/*(p — pu)]*}.

Now, by (A.16)—(A.18), (2.6), (2.8), (3.1), (3.4) and the moment conditions imposed on 1, it holds that
for 2/3 < p <1,

lim Bln "4 (5, — pn) (yn — 7))

n—o0

o (2)""0721(2/3 < B < 1) +I(

«

LH)( o (A.19)




and for 0 < 8 < 2/3,

lim Efn"/ "2, — pu)(yn — 9))°

_ (A.20)

a2/ (02
~r (@ @ a0 < s <2+ s =2}

To deal with the third term on the right-hand side of (A.12), we obtain from an argument similar to

that used to prove (2.9) in the supplementary document for Ing and Yang (2014) that for 2/3 < 5 <1,
B{(pn — pu)(n — DI = pu)i — 1) + 2]} = o(max{n, n2-2-2/a}) (A.21)
and for 0 < 5 < 2/3,
E{(pn = p)(yn = DL = p)7 — 1) + 2a]} = o(max{n~",n=F72/}). (A.22)
Consequently, the desired conclusions (2.13) and (3.7)—(3.9) are ensured by (A.12), and (A.19)-(A.22). O
Proofs of Theorems 2.4 and 3.4. It follows from (2.5) that
E(Ynt1 = Jni1)? — 0

0-2 "
B = )0~ PV B W~ D) —p)h. (A2
=2

n—1

By (A.7)-(A.11), Theorems 2.2 and 3.2, (2.11), Eej < oo for some s > 12, and an argument similar
to that used to prove Lemma 2 of Yu, Lin and Cheng (2012), we obtain, after some tedious algebraic

manipulations,
E{O 1) (wn — 9)(pn — pn)} = o(1), (A.24)
i=2

and

1 0<p<1/2,

n % B = 1/2’
lim TE{(yn - g)(ﬁn - pn)}2 = (A'25)

n—oo g
0 1/2<p<1,

Ls(b) _
L 11(6)3—12(12) 5_1

Consequently, Theorems 2.4 and 3.4 are guaranteed by (A.23)—(A.25).

B The implementation of finite sample approximations

B.1 Rules of thumb developed from Tables 1-6

With the help of Tables 1-3 (Tables 4-6), we offer a simple rule for choosing a better approximation of
nein{l.2/e}(MSPE 4 — 02) (n(MSPEp — 0?)) from Rg) and Rf) (Rg) and Rg’)) when 100 < n < 1000,
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1 <n(l-p) =b< 140 and 1.5 < o < 4. According to Tables 1-3, we first introduce Rule I for
approximating n™*{1.2/a}(MSPE, — o?):

Rule I.
1. Choose Rf) if15<a<?.
2. ChooseRg) f2<a<4and1<b<5h.
3. Choose Rf) if2<a<4andb<b<140.

Although there are a few cases where Rule I leads to a PX) (defined in Section 3.2) slightly smaller than
maxi<;<3 P(i), the rule has the advantage of easy implementation, which is practically appealing. In the

same spirit, we propose using Rule II (according to Tables 4-6) for approximating n(MSPEp — o2):
Rule II.

1. Choose R if 1.5 < o< 2 and 1 < b < 12.5.

2. Choose R if 1.5 < o < 2 and 12.5 < b < 140.

3. ChooseRg) f2<a<4and1<b<25.

4. choose Rg) if 2 < a<4and 25 < b < 140.

Note that Rules I and II can be further refined by checking a more dense grid of n,b and «, which is
not pursued here. In Section B.2, we provide reliable estimators, g}, 37*1, ar, ¢, iy and (”}72:, of p, b, a,
¢, i and o2. With these estimators, Rules I and II can be implemented in practice via replacing b, o,

RW i =23 and RY i =2 3 therein by b7, a%, RV i = 2,3 and RY i = 2,3, where

Ak A% 2/&: ~
r (%) ( i ) La(by) + 65 1(65, =2) 65> 2,
n b*

~ n *M ~
Rf) _ % b (B.1)
¥’ at < 2,
in which M; - is M;,b with o and b replaced by &;, and l;;kl, respectively,
A A A*2
» R+ RS + 24 &y, > 2,
RY) = (B.2)

n'=2/% (Rt + Ry) + 65 af <2,
with
% ~ % A% [ Ak [k AKX T A %2 A~k ~ %2
Ry =T((a5, +2)/ay) (a5, /én)* (67 (1= )] /24,

and

Ry = T((@, + 2)/3)(@5/6)%/ % (1 - 7))



A2 _ )y Ls(n) g (B.3)
I(b;) — I2(b7,)

and

ey
RY = {1 + ””} 5. (B.4)

nii + by
B.2 Estimation of unknown parameters in Rules I and II

In this section, we address the problem of estimating the unknown parameters in Rules I and II. Suppose
first that o > 2 or a < 2 is known a priori. Then, according to Theorems 1 and 2 and Remark 3, it is

reasonable to estimate p by

P = (B5)
pn > 2.

By virtue of (B.5), it is natural to estimate p and o? by gf = n~! Z?:_ll(yt-f'l — pry) and 6% =

n1 Z?;ll (Yeg1 — i — prye)2. In addition, b = n(1 — p) can be consistently estimated by b* = n(1 — p%),

in view of Theorems 2.1 and 2.2. The performance of I;;‘l is demonstrated via the empirical estimate,
5000 7

(b —b 1 b (i) — b
E n — n
( b ) 5000 2 b

=1

of the relative bias E[(b* — b)/b], based on the data generated from 5000 simulation runs of model (1.1)
with Beta(a,1) error, where p € {0.86,0.9,0.95,0.975,0.99}, a € {1,1.5,2,2.5,3.5,4}, and b% (i) is b*
obtained in the ith simulation. Since our study is meant to be illustrative rather than exhaustive, we only
focus on the sample size n = 10000. The results are summarized in Table 7. It is shown in Table 7 that
all values of E[(b% — b)/b] are quite close to 0, and [E[(b* — b)/b]| is clearly smaller in the case of o < 2
than in the case of a > 2. This latter feature coincides with the fact that the convergence rate of p,, in
the case of a < 2 is faster than p,.

Estimating ¢ and « is much more involved than estimating b. While it seems feasible to perform
kernel density estimation based on the AR residuals, é; = y; — p}yi—1, to estimate ¢ and «, the usual
kernel estimators can be seriously biased when 0 < o < 1 because the corresponding density function is
nonzero or even has a pole at the origin; see Marron and Ruppert (1994). Indeed, Marron and Ruppert
(1994) suggested some sophisticated kernel estimation algorithms to reduce the boundary bias. However,
consistency of the resulting estimators of ¢ and « still seems difficult to establish when only (1.2) is
assumed. In this connection, we also mention that a similar difficulty arises in constructing a confidence
interval for p based on (1.5), in which « and ¢ appear in the normalizing constant and « also appears
in the limit. To bypass this difficulty, Datta and McCormick (1995) proposed an asymptotically pivotal
quantity based on p, and adopted a bootstrap procedure to consistently estimate the limit distribution

of the proposed pivotal quantity.



Table 7: The values of E[(b% — b)/b], with n = 10000, under model (1.1) with Beta(c, 1) errors.

p(b)

a  0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)
1 -0.0002  -0.0002  -0.0002  -0.0002  -0.0002
1.5 -0.0003  -0.0003  -0.0003  -0.0003  -0.0003
0.014  -0013  -0.013 -0.013  -0.013

2.5 0.001 0.004 0.003 0.004 0.004
0.003 0.004 0.004 0.003 0.003

0.001 0.002 0.005 0.004 0.002

Table 8: The values of E(a*(m) — ), with n = 10000, under model (1.1) with Beta(a, 1) errors.

p(b)
a m 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)
1 250 0.022 0.023 0.018 0.022 0.023
1.5 250 -0.013  -0.009  -0.006 -0.007  -0.009
500 0.040  -0.040  -0.040 0.040  -0.043
2.5 250 0.068 0.107 0.095 0.109 0.099
250 0.098 0.101 0.088 0.097 0.095
250 0.097 0.101 0.148 0.128 0.114




Here, we take a somewhat nonstandard approach to estimate o and c¢. Note that (1.2) yields

lim P(nl/o‘a(l) > x) = exp(—(c/a)x®),

n—00
where €(;y is the jth order statistic of {¢1,...,&,}, and hence nt/ “g(1) has the limiting Weibull density,
a oa— (03
foy(z) = g2 fexp(—(z/2)%), (B.6)

1/«

with shape parameter o and scale parameter A = («/c)'/®. This motivates the following procedure for

estimating « and c:
1. Produce the AR residuals: ;41 = yi+1 — pyyi, e =1,...,n— 1.

2. Divide {1,...,n} into m subgroups, {1,...,n1},...,{nm-1+1,...,nn}, where n; = |[(n — 1)/m]
or |[(n—1)/m| + 1 with |a]| denoting the largest integer < a.

3. Let £(1)(j) denote the smallest positive value among {&,; ;+1,--.,én;},J = 1,...,m.

4. Use the Weibull density (B.6) and ni/aé(l)(l), e ,n%aé(l)(m) to construct the maximum likelihood
estimate (& (m), \:(m)) of (a, \).

n

5. Estimate ¢ by ¢ (m) = & (m)/(j\jl(m))a?l(m)

n

Under the stationary model (1.1), Hsiao, Huang, and Ing (2017) established the consistency of (Gm,(m), é,(m))
regardless of whether v < 2 or av > 2, where (&, (m), é,(m)) is (& (m), & (m)) with €;41 replaced by the
EV residual y;+1—pnyi, m — oo and n/m — oo. This result enables them to asymptotically correctly iden-
tify the better estimator between p,, and p, in a data-driven fashion. The consistency of (& (m), ¢k (m))
under the near unit-root model (1.7) can also be established by an argument similar to that used in Hsiao,

Huang and Ing (2017). The details, however, are not pursued here. In Table 8, the empirical estimate,

5000
1

E(&%(m) —a) = =300
=1

(@5,,:(m) — a),

of the bias of &} (m), E(&}(m) — «), is presented under the same scenarios as those in Table 7, where

gt 3
an,i

(m) is &} (m) obtained in the ith simulation. The tuning parameter m is set to 250 and 500 in
our study. However, only the smaller one between E(&*(250) — a) and E(a*(500) — ) is reported in
Table 8. It remains for future research to choose m such that the resultant & (m) has a better finite
sample performance. With the same m as in Table 8, we present the empirical estimate, E(é;(m) —c),
of E(&:(m) — ¢) in Table 9. Table 8 reveals that & (m) appears to be a reliable estimate of a because
all values of [E(&%(m) — a)| are small. On the other hand, we notice that [E(&%(m) — )| is larger in
a > 1.5 than o = 1.5, which may be attributed to a slower convergence rate of p;, in the former case. In
addition, perhaps due to a positive value of the density function at the origin, the performance of & (m)
in the case of a = 1 also looks inferior to that in the case of o = 1.5, although p} in the former case has

a faster convergence rate.



Table 9: The values of E(&(m) — ¢), with n = 10000 and the same m as those in Table 8, under model
(1.1) with Beta(a, 1) errors.

p(b)
a  0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)
1 0.152 0.152 0.151 0.160 0.146
1.5 0.033 0.059 0.049 0.071 0.055
2 0.097 0.109 0.111 0.105 0.077
2.5 0.484 0.596 0.698 0.703 0.539
3 0.517 0.451 0.388 0.473 0.455
4 0.591 0.578 0.565 0.560 0.551

Table 10: The values of E(¢*(m, r) —¢), with n = 10000 and the same m as those in Table 8, under model
(1.1) with Beta(ca, 1) errors.

p(b)

a v 0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)
1 25 0.014 0.011  -0.006 0.006 0.014
15 5 0.005  -0.013  -0.031 0.015 0.013
2 5 0.023 0.018 0.021 0.015 0.005
25 20 -0.023 0.082 0.093 0.133 0.062

15 0.077 0.069 0.021 0.066 0.060
4 15 0.046  -0.023 0.117 0.050 0.088

Table 9 shows that the performance of ¢ (m) is in general unsatisfactory. In particular, all values of

E(é,’;(m) — ¢) are positive and are considerably larger than 0 for « > 2. Taking a closer look at

G (m)

ComT Y malEy (6)) 4R

(B.7)
we found that a non-negligible portion of {n; [é(l)(i)]d;(m)} concentrates near 0. As a result, the de-
nominator on the right-hand side of (B.7) tends to underestimate A* = a/¢, and hence ¢ (m) tends to
overestimate ¢, as observed in Table 9. To remedy this difficulty, we suggest an alternative, ¢ (m,r),
which is ¢} (m) with the denominator replaced by the sample mean from the highest (1 — )% of the
elements of {ni[é(l)(i)]é‘:l(m),i = 1,...m}. Under the same simulation setting as Table 9, we com-
pute the empirical estimate, E(&(m,r) — ¢), of E(&(m,r) — ¢), and report the smallest one among
E(¢:(m,r) — ¢),r = 5,10,15, 20,25, 30; see Table 10. Table 10 shows that all values of [E(&(m,r) — ¢)|
are not distant from 0, and clearly smaller than [E(é*(m) — ¢)|.

We now return to the more practical situation where a > 2 or o < 2 is unknown. In this case, we

suggest the following rule:
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Table 11: The values of F', with n = 10000, under model (1.1) with Beta(a, 1) errors.

p(b)
a  0.86(1400) 0.9(1000) 0.95(500) 0.975(250) 0.99(140)
1 1.000 1.000 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 1.000
2 0.978 0.984 0.980 0.982 0.986
2.5 0.922 0.930 0.938 0.926 0.908
3 1.000 0.996 0.998 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000

Rule III.
1. Judge a > 2 if &, (m) — & > 2,
2. Judge a <2 if ap(m) — € < 2,

where &y, (m) is defined previously and ¢ is a prescribed small positive number. In Table 11, with the
same scenarios as those in Table 7, we report the percentage, F', of Rule III (with m = 500 and & = 0.14)

making correct judgements, where
F =4({i:1<i<5000,I(bn,i(500)—0.14 > 2) = I(a > 2)})/5000,

n = 10000 and &y, (500) denotes é&,(500) obtained in the ith simulation. Note that £ = 0.14 is an
approximation of 2oyrE/v/500, where O'I%ALE is the limiting variance of the MLE of a of the Weibull
density (A.6) calculated at « = 2 and A = 1. As shown in Table 11, all values of F' are near 1, in
particular when o < 2 or o > 2.5. This result implies that Rule III provides a reliable decision about
whether or not o > 2, thereby allowing one to carry out the aforementioned estimates of a and ¢ in
practice.

Finally, we want to reiterate that this section is exploratory in nature, and there remain a number
of unsettled issues (e.g., the choices of m and r in &} (m) and ¢ (m,r)) worthy of further investigation.
On the other hand, our simulation study suggests that the notoriously difficult problem of estimating «
and c in the distribution of £; can be somewhat alleviated through the proposed estimates, &} (m) and

¢ (m,r), provided m and r are properly given.
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