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We investigate the prediction capability of the orthogonal greedy algo-
rithm (OGA) in high-dimensional regression models with dependent obser-
vations. The rates of convergence of the prediction error of OGA are obtained
under a variety of sparsity conditions. To prevent OGA from overfitting, we
introduce a high-dimensional Akaike’s information criterion (HDAIC) to de-
termine the number of OGA iterations. A key contribution of this work is
to show that OGA, used in conjunction with HDAIC, can achieve the opti-
mal convergence rate without knowledge of how sparse the underlying high-
dimensional model is.

1. Introduction. Model selection for high-dimensional regression models has been one
of the most vibrant topics in statistics over the past decade. It also has broad applications in
a variety of important fields such as bioinformatics, quantitative finance, image processing
and advanced manufacturing; see Negahban et al. (2012) and Ing et al. (2017) for further
discussion. A typical high-dimensional regression model takes the following form:

p
(1.1) YzZZ,Bjxtj'FSt, t=1,...,n,
j=l1
where n is the sample size, x;1, ..., X;p are predictor variables, &; are mean-zero random dis-

turbance terms and p = p, is allowed to be much larger than n. There are computational and
statistical difficulties in estimating the regression function by standard regression methods
owing to p > n. However, by assuming sparsity conditions on §;, eigenvalue conditions on
the covariance (correlation) matrix of the predictor variables, and distributional conditions on
& or x;j, it has been shown that consistent estimation of the regression function or optimal
prediction is still possible either through penalized least squares methods (see Zhao and Yu
(2006), Candes and Tao (2007), Bickel, Ritov and Tsybakov (2009) and Zhang (2010)) or
through greedy forward selection algorithms (see Bithlmann (2006), Chen and Chen (2008),
Wang (2009), Fan and Lv (2008) and Ing and Lai (2011)).

The vast majority of studies on model (1.1), however, have focused on situations where
X, = (x¢1, .. .,x,p)—r are nonrandom and &; are independently and identically distributed
(ii.d.) or (x;, &) are i.i.d., which regrettably preclude most serially correlated data. In fact,
(1.1) can encompass a broad array of time series models if these restrictions are relaxed. For
example, it becomes the well-known autoregressive (AR) model when x;; =y, ;. Since the
predictor variables in AR models have a natural ordering, a commonly used sparsity condition
is

(1.2) Cij 77 <IBjl<Crj77, 0<Ci<Cr<o00,y>1,
in which |8;| decay polynomially, or
(1.3) Ciexp(—Bj) = IBjl = Caexp(=Bj), 0<C3=C4<00,f>0,
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in which |8;| decay exponentially (see Shibata (1980) and Ing (2007)). Moreover, the model
selection problem in the AR case is simplified to an order selection one, which has been well
explored in the literature (see Shibata (1980)). When x;;, j = 1,..., p, do not have a natural
ordering, for example, the autoregressive exogenous (ARX) model, (1.2) and (1.3) can be
generalized as

(1.4) L7V < Byl < U™

and

(1.5) Lyexp(=B)) = |B(j)| = Urexp(=B)),

respectively, where 0 < L < U < 00,0 < L U <00, and |B})| = Bl = -+ = B, is

a rearrangement of {| ,B;’.‘|} in decreasing order with ,3;.‘ =o0;B; and oj2 = E(xtzj). However,

unlike the order selection problem, the model selection problem in (1.1) with dependent
observations and with coefficients satisfying (1.4) or (1.5) seems to be seldom investigated.
The problem becomes more challenging when B; may obey either one of (1.4), (1.5) or
ko < n, but it is unclear which of the three is true. Here, kg denotes the number of nonzero
coefficients in model (1.1), and kg < n is referred to as the strong sparsity condition.

In this paper, we assume that the (x;, &;) in model (1.1) is a time series obeying concen-
tration inequalities (2.2) and (2.3). We also assume that the 8; in model (1.1) follow one of
the following sparsity conditions: (i) (A3), (ii) (A4), or (iii) kg < n, where (A3) and (A4) are
defined in Section 2.1. Note that (A3) includes (1.4) and

p
(1.6) Z|,B;5|I/V<M4 for some y > 1,0 < My < 00,
j=1

as special cases, whereas (A4) contains (1.5). We use the orthogonal greedy algorithm
(OGA) (Temlyakov (2000)) to sequentially include candidate variables and introduce a high-
dimensional Akaike’s information criterion (HDAIC) to determine the number of OGA it-
erations. This model selection procedure is denoted by OGA+HDAIC. A key contribution
of this paper is to show that OGA+HDAIC achieves the optimal convergence rate without
knowing which sparsity condition among (i), (ii) and (iii) would follow, thereby alleviating
the dilemma mentioned in the previous paragraph.

Following this Introduction, the rest of the paper is organized as follows. In Section 2.1, we
introduce OGA and the assumptions required for our asymptotic analysis of the algorithm.
Section 2.2 derives an error bound for OGA, which is the sum of an approximation error and
a term accounting for the sampling variability. Since the approximation error decreases as the
number m of iterations increases and the sampling variability increases with m, the optimal
m can be determined by equating the two terms in the error bound for OGA. This approach,
however, is infeasible because not only does the solution involve the unknown parameters in
(A3) or (A4), but it is unknown which kind of sparsity among (i), (ii) and (iii) holds true.
To overcome this difficulty, Theorem 3.1 in Section 3.1 proposes using HDIC to determine
the number of iterations, and shows that OGA+HDAIC is rate optimal regardless of which
sparsity condition is true. In Section 3.2, we offer a comprehensive comparison of our results
with those in Negahban et al. (2012) and Ing and Lai (2011), in which the statistical proper-
ties of Lasso (Tibshirani (1996)) and OGA, respectively, are explored under model (1.1) with
independent observations. In this connection, Section 3.2 also discusses the papers by Basu
and Michailidis (2015) and Wu and Wu (2016), which investigate the performance of Lasso
under sparse high-dimensional time series models. The proof of Theorem 3.1 is given in Sec-
tion 3.3. We conclude in Section 4. An Appendix consisting of some technical results is given
at the end of the paper. A simulation study to illustrate the performance of OGA+HDAIC,
along with further technical details, is deferred to the Supplementary Material (Ing (2020)).
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2. Asymptotic theory of OGA in weakly sparse models. This section aims at estab-
lishing the convergence rate of OGA under sparse high-dimensional regression models with
dependent observations. The definition of OGA and the assumptions required for our analy-
sis of OGA are given in Section 2.1. The main result of this section is stated and proved in
Section 2.2.

2.1. Models and assumptions. We assume that {(x;, &)} in model (1.1) is a zero-mean
stationary time series satisfying E(x;6;) = 0. The OGA is a recursive procedure that se-
lects variables from the set of predictor variables in (1.1) one at a time. Define X; =
Xty Xni) | Zi = (2100 -+, 20i) | =Xi/0j, and Y = (y1, ..., yu) . The algorithm is ini-
tialized by setting Jo = @, where J,, denotes the index set of the variables chosen by OGA
at the mth iteration. For m > 1, J,, is recursively updated by

@2.1) I = J—1 U {jim},
where
fomae  max iyl
1<j<pjdin

with ity ; =Z] I —H,)Y/(n'/?||Z;|)), ||la]| denoting the L;-norm of vector a, and H;, J €
P ={1,..., p}, being the orthogonal projection matrix onto the linear span of {Z;,i € J}
Hg =0).

To investigate the performance of OGA, we make the following distributional assump-
tions:

(A1) There exists ¢] > 0 such that

n
n_IZZij&‘,'

2.2) P( max
i=1

I<j<p

> ci‘(logp)“z/nW) =o(1).
(A2) There exists ¢; > 0 such that

n
—1
n~' Y zikzit — pu

2.3) P( max
i=1

1<k,<p

> ¢3 (log p)l/z/nl/z) =o(1),

where pr; = E(z1x211)-

The following examples help illustrate (A1) and (A2). Let Apin(A) (Amax(A)) denote the
minimum (maximum) eigenvalue of matrix A and ||a||{, the L{-norm of vector a.

EXAMPLE 1 (Gaussian linear processes). Let

o0 o0
(2.4) =y w Dd—j. &=y w (0)§_;,
Jj=0 j=0
where 8; = (&1, ..., S,q)T are i.i.d. Gaussian random vectors satisfying
(2.5) E(3)=0,  max E(82) <¢<o00,  Amin(E(8:8,)) >¢co>0,
<i<q

and w (/) obey

oo
(2.6) Olglafxpgﬂw D, < M2 < o0, OrSIlliSrlpro(l)H >¢; > 0.
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Then, by making use of the Hanson—Wright inequality (see Theorem 1.1 of Rudelson and
Vershynin (2013)), it is shown in Section S1 of the Supplementary Material that

2.7) (A1) and (A2) hold true under (2.4)—(2.6) and (2.8),
where (2.8) is given by
1
(2.8) p—>oo asn— oo, —2L_ o).
n

As an application, we consider a high-dimensional ARX model,

2.9) Zam j +ZZﬂ(” Do ten

=1 j=1

in which p = qo + Y., r; satisfies (2.8), 1 — Zqo anj £ 0 for all |z] <1 + ¢ with
l being some positive constant, Z?O lajl + Zm |,B(l)| < M5 < 00, x(l) = e(l) +

2 bVl with Y52 161 < Mg < oo for all 1 <z <p,and & =D, P enT
are 1. 1 d (p+ 1)- dlmenswnal Gaussian random vectors obeying (2.5) with g = p + 1. It is
not difficult to see that (2.4) and (2.6) are fulfilled by the regressor variables and the error

term in (2.9). Hence (A1) and (A2) are applicable to model (2.9).

EXAMPLE 2 (Linear processes with sub-Gaussian innovations). Suppose that (2.4)—(2.6)
and (2.8) are satisfied except that the Gaussianity of §; is replaced by

(2.10) I8eklly, =L, k=1,....q,

where ||-||y, denotes the yr> Orlicz norm and L is some positive number. We note that (2.10)
is fulfilled by sub-Gaussian random variables. Assume g = p°® for some 0 < s < co. Then
by making use of the concentration inequality given in Theorem 1.4 of Adamczak and Wolff
(2015), it can be shown that (A1) and (A2) hold for some large ¢} and ¢5. For more details,
see Huang and Ing (2019). In addition, the regressor variables and the error term in (2.9) still
obey (A1) and (A2), provided assumption (2.10) is used in place of the Gaussian assumption
in Example 1.
We also need a sparsity condition on regression coefficients:

(A3) Thereis 0 < Mo < 00 such that Z?:] ,B;‘.‘z < ]\_40. In addition, there exist y > 1 and
0 < C,, < oo such that for any J C P, ‘

@.11) A

2>(y—1>/(2y—1>
jelJ jelJ

When y =1, (2.11) and (1.6) are equivalent. However, (2.11) is weaker than (1.6) for y > 1.
To see this, note that if (1.6) is true for some y > 1, then by Holder’s inequality,

AHE (Zm;WV)”QV‘”(Z ﬂ;z>w—w<zy-u

jeJ jedJ jeJ

< MZ/(zy_l)<Zﬁ}’-‘

jeJ

’

2) (y=1/2y-1

implying that (2.11) holds for C, = M 2( /=D In view of the connection between (2.11)
and (1.6), the parameter y in (2.11) can be understood as an index to describe the de-
gree of sparseness in the underlying high-dimensional models. The larger the y is, the
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sparser the model is. Although assumptions similar to (1.6) are quite popular for high-
dimensional regression analysis (see, e.g., Wang et al. (2014)), there is a subtle difference
between (2.11) and (1.6). To see this, assume that (1.4) holds for some y > 1. Then (2.11)
holds for the same y (see Lemma A.2 in the Appendix), whereas (1.6) is violated due to
L(1 +1logp) < 25'7:1 |,37|1/V < U( + log p). It is worth mentioning that (1.4) not only
plays an important role in time series modeling, it also allows us to demonstrate that the ap-
proximation error of the population counterpart of OGA (which is defined at the beginning
of Appendix A and is referred to as the population OGA) is almost as small as that of the
best m-term approximation (see (3.24) and Lemma A.3 in the Appendix). In the sequel, we
refer to (2.11) as the “polynomial decay” case, owing to its connection with (1.4). To broaden
OGA’s applications, we also consider a coefficient condition sparser than (2.11):

(A4) There exists 0 < My < oo such that maxj<;< | ,le < My. Moreover, there exists
M > 1 such that for any J C P,

(2.12) > |85 < My max|g7|.
jed jed
Assumption (A4) is referred to as the “exponential decay” case because (1.5) is included by
(2.12).
The following assumption on the covariance structure of z; = (21, ..., 2 p)—r is frequently
used throughout the paper. Define I'(J) = E{z,(])th(J)} and g,;(J) = E(z;iz;(J)), where
JCPandz(J)=(zi,i€J)",

(A5) For some positive numbers D and M,

(2.13) max

_ T (g, (D], <M,
1<#(J)<D(n/log p)1/2,i¢J

where 1(J) denotes the cardinality of J.

Since F_l(J)gi(J) = argmin,. pi) B(zi — c¢'z,()))?, (2.13) essentially says that the re-
gression coefficients for z;; on z,(J) with all i ¢ J and #(J) < D(n/log p) are L
bounded. This condition holds even when z;1,...,z;, are highly correlated; see Section
S3 of the supplementary document. Let g,(J) =Ez/(J)) and B*(J) = F_I(J)gy(J):
argmin,¢ pz) E(yr — ¢"z,(J))%, which is the regression coefficients for y, on z;(J). By mak-
ing use of (2.13), we will show later that for any J C P with #(J) < D(n/log p)'/?, there
exists 0 < C < oo such that

(2.14) |87 =Bl =€ 2181,
i¢d
where g% = (87, ..., ,B[”;)T and B*(J) here is regarded as a p-dimensional vector with un-

defined entries set to 0. Inequality (2.14) is referred to as the uniform Baxter’s inequality.
(For more details on Baxter’s inequality in autoregressive modeling, see Baxter (1962), Berk
(1974) and Pourahmadi (1989).) This inequality can be used together with (2.11) to yield, for
all #(J) < D(n/log p)'/2,
»\ v=D/Q2y-1)
@.15) I8 =gl =ce, (X 8)
j¢J
which is one of the key ingredients in our asymptotic analysis of OGA+HDAIC.
To derive (2.14) from (2.13), we may assume without loss of generality that J =
{j1,..., jq} for some 1 < g < l_)(n/logp)l/z, where j;,i = 1,...,q, are distinct elements
in P. Note first that

(2.16) 18* = B*(D, < 18*()) = B3], + X_|Bl.

igs

’
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where g% = (,3;*1, ...,,BZ)T. Denote g,(J) by (yy,jl,...,yy,jq)T. Then it follows that
Vyji =1 pjuBlsi=1,...,q, and hence

.
r(W)H'rW)(B*J) - B%) =T~} (Z PiBs Z,qulﬁz*)

IgJ i¢J
=Y BT g ().
IgJ
Taking the Li-norm on both sides, (2.14) (with C = M + 1) follows from (2.16) and (2.13).

Before closing this section, we remark that (2.12) can be viewed as a limiting case
of (2.11). To see this, note that (2.12) implies that for any J C P, 3 ;c; I,B;’fl < M x

ey ﬁjz)limyaoo(y_l)/ 2¥=D In addition, the strong sparsity condition,
2.17) ko = 4(Nn) < M7,

where N, = {j : ﬁ;‘ # 0,1 < j < p} and M7 is some positive integer, is also a limiting

case of (2.11) because (2.17) yields that for any J € P, ¥ ;I < My/? x
(X jeg 7)Moty =0/ Gy,
2.2. Rates of convergence of the OGA. Letx = (x,.. .,)c‘,,)T be independent of and have

the same covariance structure as {x;} and y(x) = Zle Bjx;. Then y(x) can be predicted

by $m(x) = X" (Ju)B(Jm), where X(J) = (x;.i € J) and B(J) = (Z/_; %, ())x[ () 7! x
~ A% A

> r_1X:(J)y;. Note also that 3,,(x) = 2" (J,)B (Jn), where z(J) = (z;,i € J) with z; =

x;/o;, and 3*(fm) = z,(J)z,T(J))_1 > 1 12:(J)y:. One of the most natural perfor-

mance measures for y,,(x) is the conditional mean squared prediction error (CMSPE),

218)  Eufy® — n®} =Ea{y® —y; @ +Eu{y; ®—In®}.

where E, (-) = E(*|y1, X1, ..., ¥n, Xn), and y;(X)= B*T(J)Z(J). A convergence rate of the
left-hand side of (2.18) is established in the next theorem.

THEOREM 2.1. Suppose that (1.1), (A1)—(A3), (AS),

(2.19) Amin(F) > 21 >0
and
/on \12
(2.20) logp=0n), K,= 8( )
logp
hold, where T =E(zz') and 0 < § < min{T, D}, with D defined in assumption (AS) and
T=supt
2.21 *
22D Esup{t:t>0,limsup , i) 51}-
n—o00 mlnﬁ(‘])if(n/logp)lﬂ)\fmin(r(J))

Then

E 5 2
(2.22) max ( n{y(X) — Ym (%)} > —0,(1).

1<m<k,\m~2¥+tl + n=Imlogp

Moreover, if (A4) holds instead of (A3), then

En{y(X) — I (x)}?
exp(—=Gsm) +n—'mlog p

(2.23) max (

I<m=<K,

)=0,0.

where G3 is some positive constant given in (A.2) in the Appendix.
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PROOF. We first prove (2.22). Recall fk = {f1, e fk} and define

Q= n~! Y1 O = Ve )i _ n! Y1 O = Ve )i
J=

YR N Y R
where (31.7, ..., 92.7) " =H, Y. Moreover, let
A = max i —myil <s(o 172

nom={ | max =l < stogp/m'2
and

By ( 2]

2(m) =1 min max |MJ | >";‘s(logp/n)
O<i<m—11<j<

where py; = E[(y(X) — y;(X))zi], s > 0 is some large constant, and 5 =2/(1 — &) with
0 < & < 1 being arbitrarily given.

By an argument similar to that of (3.10) in Ing and Lai (2011), it follows that for all
l<g=<m,

|l/«jq_17jq| > £ lfélia;ip |qu_1,i| on A,(m) N B,(m).

This and (A.1) in the Appendix, which gives an error bound for the population OGA under
(A3), lead to

(2.24) En(y(®) —y; (%)* < Gim 2+ on A, (m) N By(m).
Moreover, (A3) and (2.19) imply that forany 0 <i <m — 1,

En(y(x) — y; (%))?

P
< max [uj | Yo 1]

1=i=p 1=1,i¢J;
p 2\ r=b/@r=n
<CV1max |MJ1 ( Z :31*>
== 1=1,1¢J;
—(y=1/Qy—1) oy en 27 —D/@y=1)
< Cy max |, 1k (Ex(y(® — y;,(0)7) ,
and hence
2—y~ 1 1 -1
(2.25) En(y(®) -y, )" < (¢, max | )
By (2.25),
En(y(®) — y; (x)°
2
<, min En(y(®) - ;)
(2.26) B

—y—l, —14p7! . 2=y
<crv My min  max |u; .|
1% 1 ; ¢ J
O0<i<m—11<j<p isJ

DR R (e B MRVES I 1-y)~!
<C2V T EP (T logp)' T on BS(m).

Since A, (m) decreases as m increases, (2.24) and (2.26) yield that for all 1 <m < K, and
some Cp > 0,

— -1
(2.27) En(y(x)_yfm(x))ZlA,,(K,,) fczmax{m_2y+1,{n_llogp}1 Qy) L.
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We show in Section S1 of the Supplementary Material that

Ael A~ _
(2.28) P(HF (‘]Kn)H <B)=1+4o0(),
where I'(J) =n"! 1 z,(J)th(J) and
_ 1
(2.29) > — - =,
liminf min Amin(F(J)) — ¢34
n—>00 4(J)<K,

noting that the positiveness of the denominator is ensured by (2.20) and (2.21). With the help
of (2.28), (A1), (A2) and (AY), it is shown in the same section that there exists a sufficiently
large s such that

(2.30) lim P(A,(Ky))=1,
n—oo
which, together with (2.27), yields

E,(y(®) — yj (%)?
(2.31) max — — 1 = 0p(D).
1<m=K, max{m~2v*+1 (n=1log p)1-@»~"}

Moreover, we have

nEn[{(Fm(x) — y; (x)}%]
(2.32) max n = 0,(1),
l<=m=K, mlogp

which is also proved in Section S1 of the Supplementary Material. In view of (2.31),
(2.32) and the fact that (log p/n)! ="~ < m=2+1 it m < (n/log p)®~" and (log p/
n)l_(zy)_] < n_lmlogp if m > (n/log p)(Zy)_l, the desired conclusion (2.22) follows.
Equation (2.23) follows from (A.2) in the Appendix (which gives an error bound for the
population OGA under (A4)) and an argument similar to that used to prove (2.22). We skip
the details in order to save space. [

REMARK 1. Itis easy to see that the T defined in (2.21) is nonempty. In particular, x € T
for any x € (0, A1/c3]. It is also not difficult to see that T < a/c for any a > 1.

In view of (2.22), to strike a suitable balance between squared bias and variance, one
should choose m ~ (n/log p)!/?” in the polynomial decay case, which yields a rate of con-

vergence, (n~! log p)l_(z”)_l. Similarly, (2.23) suggests that the best convergence rate one
can expect in the exponential decay case is n! lognlog p, which is ensured by selecting
m =~ logn/G3. The optimality of the rates, (n~!log p)l_(zyrI and n~!'lognlog p, will be
discussed further in Section 3.2. In most practical situations, however, not only do we not
know what y or G3 is, we do not even know which of (A3) and (A4) is true. To attain the
aforementioned optimal convergence rates without knowing the degree of sparseness, a data-
driven method to determine the number of OGA iterations is called for. In the next section,
we show that HDAIC (see (3.1)) can fulfill this need.
Finally, we note that if (2.2) and (2.3) are weakened to

n
n_l Z Zij€j

i=1

. ECT(logp)“*E‘)/z/n”z) =o(l)
1<j<p

(2.33) P( max

and

n
-1
n~' Y zikzit — pu

i=1

(2.34) P( max
I<k,<p

> ¢3(log p)““z)/z/nm) =o(1),
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respectively, where 0 < ¢, ¢2 < 0o are some constants, and (2.20) is strengthened to
nl/2

I4c __ — __
(2.35) (logp) “=0(m) and K,=3§ (log p) 172"

where ¢ = max{cy, c»} and § is some positive constant, then (2.22) and (2.23) become

En{y(X) — I (x)}? B
(2-36) 15%2XKn<m—2V+l +n~!m(log p)1+5> =0
and
En{y(X) = Jm(®)}? B
(2.37) 1§nn1éXK,, (exp(—G3m) +n~m(log p)1+5‘) = 0p(D),

respectively. While (2.33) and (2.34) are satisfied by a broader class of time series models
(see Wu and Wu (2016) for a detailed discussion), to determine the optimal m in (2.36) or
(2.37), the HDAIC must also be corrected according to the value of c. This kind of correction,
however, is hardly implemented in practice because ¢ is in general unknown.

3. Analysis of OGA+HDAIC. In Section 3.1, the rate of convergence of OGA+HDAIC
is established under various sparsity conditions; see Theorem 3.1. Comparisons of Theorem
3.1 and related existing results are given in Section 3.2. The proof of Theorem 3.1 is provided
in Section 3.3.

3.1. Error bounds for OGA+HDAIC. Define

3.1) HDAIC(J) = (1 n M)&},

2

where 67 = n1YT(I—H,)Y and s, is some positive constant, and define

k, = arg 1§n132}(,1 HDAIC(Jy),
noting that fk is defined in (2.1).

THEOREM 3.1. Suppose that (1.1), (A1), (A2), (AS), (2.19), (2.20) and

(3.2) n'Y el =0’ +0,(1)

=1
hold. Then, for

_ 2B *2 *2
(3.3) sq> Vo= M

’

o2
where B is defined in (2.29), we have:
@)
E,(y(x) — 31, (%))
(10%)1—1 /2y

3.4) = 0p(1),

provided (A3) is true;
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(i)
(3.5) E”(y(@ ) _ 0, (1),
provided (A4) is true and log p = o(n /(1z>g n)?);

(iii)
(3.6) En000 — 5,007 0,(1),

kolog p
n

provided E(y,z) is bounded above by a finite constant and

min|,3}‘| >0, forsome6 >0,
JEN, -

3.7) )
w( X 1871) =otn/tog ).

JEN,

REMARK 2. The sparsity condition (3.7) implies ko = o((n/log p)'/3), allowing kg to
grow to oo slowly with n. Moreover, (3.6) also holds when (2.19) is weakened to
(38) min )Lmin(r(-])) > Al

t8(J)<n(n/log p)!/2

for some 1 > 0; see Section S2 in the Supplementary Material. However, since it is unknown
which kind of sparsity condition is true among those described in (i), (i1) and (iii) of Theorem
3.1, and since (2.19) appears to be indispensable for the proofs of (3.4) and (3.5), the latter
assumption is still adopted in our unified theory.

REMARK 3. We briefly discuss extensions of Theorems 2.1 and 3.1 to the following
multivariate time series models:

P
(3.9) yi=Y bjxj+e, t=1,...n,
=1

where y,, e;, and b; are d-dimensional vectors, d is allowed to grow to infinity with n and
{(e;r,xtT)T} is a zero-mean stationary time series satisfying E(X;e;r) = 0. Define l/AI Ji=
IYTA-HHZ|I/(n'?|Z; ), where Y = (y,,...,y,) ", and H; and Z; are defined as in
§ection 2.1. A multivariate version of OGA, MOGA, is initialized by io =. Form=>1,
L, is recursively updated by

im = im—l ) {im}a

where fm =argmax; ., j4i 'ﬁim,l,
conditions (A3) and (A4):

(A3') There is 0 < My < oo such that

P
d="7|b%(* < Mo.
j=1

;- Consider multivariate extensions of the sparsity

Moreover, there exist y > 1 and 0 < C,, < 0o such that for any J C P,

O A A DN

}(7/—1)/(27/—1)
jeJ jeJ

9’

*— . .
where bJ- =o0,b;.
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(A4") There is 0 < My < oo such that

max ||b’jk | <d'/?My.
I<j=p

Moreover, there exists M1 > 1 such that for any J C P,
bt <M b|.
;H 1 = My max|b]
Moreover, a natural generalization of (A1) under model (3.9) is
(A1’) There exists ¢j > 0 such that

n
-1
n~' Y zjen

t=1

P( max zc’f(logpd)l/z/nl/2> =o(1),
1<j=p,i<i=<d

where (g/1,...,84)" = e;.

Letx=(xg,... ,xp)T be defined as in Section 2.2 and y(x) = Zle b;x;. Then, y(x) can be

predicted by 3, (X) = B(Ly) x(Ly), where B(J) = (X x,(J) xx ()71 Y1 x,(J) X
y;r. Suppose that

(3.10) logpd =o(n) and K, =t(n/logpd)'/?,
for some ¢ > 0. Then, under (3.10) and the assumptions of Theorem 2.1, with (A1), (A3) and
(A4) replaced by (A1), (A3') and (A4'), it can be shown that

(d_lEnlly(X) el

3.11 ma
.11 ko =27+ +n~!mlog pd

I<m=<K,

)= 0,0,

and for some G4 > 0,

(3.12) max

1<m<K,

( d"Enlly®) = 3, @17

= 0,(1).
exp(—Ggqm) +n1mlogpd> (D

To choose a suitable number of MOGA iterations, one may consider a multivariate extension
of HDAIC (MHDAIC),

a 1 -
MHDAIC(J) = (1 + M)zj,

n
where % 7=md) (YT A =H;))Y) and 1, is some positive constant, and define

i, =arg min MHDAIC(L,,).
1<m<K,

We conjecture that d~'E, ly(x) — j’rhn (X)||2 is of order Op,((log pd/n)l_l/(zy)),

O, (lognlog pd/n), or O,(kolog pd/n) under (A3’), (A4’), or a strong sparsity condition

resembling (3.7), respectively. However, the rigorous proof of this result and those of (3.11)

and (3.12) are out of the scope of this paper, and are left for future work.

3.2. Some comparisons with existing results. 1t would be interesting to compare (3.4)
with Corollary 3 of Negahban et al. (2012), which provides an error bound for Lasso in the
following high-dimensional regression model:

p
(3.13) =) Bixij+e, t=1,...,n,
j=1
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where {¢;} is a sequence of i.i.d. N (O, 02) random variables and {x; i} are nonrandom con-

stants satisfying n~! 1 xtzj <1, 1< j < p, and the restricted eigenvalue condition defined
in (31) of their paper. When
P
(3.14) M 1BV < m/1og p)' =@,
j=1

for some y > 1, it is shown in the corollary that

- P 1 1-1/Q2y)
315 1B~ =0, (S (222) "),

j=1 "

where /§ 5, 18 the Lasso estimate of 8* with A, = 40 (log p/ n)'/2. On the other hand, (3.4)
implies that under model (1.1),

18, ) = B*I> < a7 "B (y(®) — 3 (%))’

10gp 1-1/Q2y)
=0,((= .

In addition to allowing for serially correlated data, (3.16) may lead to a faster convergence
rate than (3.15). In particular, the bound on the right-hand side of (3.15) is larger than that
on the right-hand side of (3.16) by a factor of log p as p — co when (1.4), with y > 1, and
(3.14) follows.

Assuming that the {x;} and {¢,} in (3.13) are generated according to independent, centered,
Gaussian stationary time series, Proposition 3.3 of Basu and Michailidis (2015) establishes
for Lasso the following bounds:

(3.16)

A kol
317 IB,, - 817 = 0, (%82
and
2 ~ kol
(.19) Y (B, - ) = 0,(<EE),
t=1
172

where p — o0, kg = O(n/log p), and A, > c*(log p/n)"/= for some c* > 0. By (3.6) and
an argument used in Section S2 of the Supplementary Material, it can be shown that under
model (1.1),

. kol
(3.19) B, - 8712 = 0, (27
and

noo kol
(3.20) n Y (% (BU) - B) = 0,,( 0 :gp).

t=1

Although (3.17)—(3.20) suggest that Lasso and OGA+HDAIC share the same error rate in
the case of ky <« n, they are obtained under somewhat different assumptions. Note first that
unlike (3.17) and (3.18), (3.19) and (3.20) do not require that {x;} and {&;} are independent,
and hence are applicable to ARX models. Moreover, (3.17) and (3.18) are established under

(3.21) esssup Amax(fx(0)) < S,

oe[—m,m]
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and

(3.22) essinf Amin(fx(0)) > s,

Oel—m,m]
where 0 < s < § < 0o and fx(0) =[1/Q2m)]1 372 _ o Tx (D) exp(—ilf) with Tx(l) = E(x; x
XITH). Assumption (3.22) is comparable to (2.19) (which assumes that Ay (I') is bounded
away from zero and is needed for proving (3.19) and (3.20)), but is more stringent than the
latter because

Jmnin(T) = Aain (Tx(©)) = Anin ( f_ £(0) de)

> 2 {92?5 }Tng ] /\mm(fx(9))}-
Maximum eigenvalue assumptions like (3.21) are not required for (3.19) and (3.20). This
type of assumption can be easily violated when the components of x; are highly correlated,
as illustrated by an ARX example in Section S3 of the Supplementary Material, in which
Amax(I’) — o0 as p — o0, and hence ess supge[_mn])\max(fx(é)) > [1/27)]Amax(T). On
the other hand, while (3.19) and (3.20) are obtained under the beta-min condition given in
(3.7), (3.17) and (3.18) do not assume any beta-min condition. Wu and Wu (2016) also in-
vestigate the performance of Lasso under (3.13) with kg < n and {x;;} being nonrandom and
obeying the restricted eigenvalue condition defined in (4.2) of their paper. They allow {e;}
to be a stationary process following some general moment and dependence conditions. The
error rates that they derive for Lasso, however, are usually larger than those in (3.17)—(3.20).

In fact, it can be argued that all error bounds obtained in Theorem 3.1 are rate opti-
mal. To see this, let J (m),1 <m < K,, be a sequence of nested models chosen from p
candidate variables in a data-driven fashion, where ji(f (m)) = m. The CMSPE of model
Fm) i By = 3, 0% = Ba(y(X) = 3 (D2 + Bu(§ ) (%) = ¥,y (X)), where
y7(xX) = x' (J) ﬁ (J). It is not difficult to show that the squared bias terms obey

(3.23) En(y(X) = ¥y ) = E((X) — 373 (%)),
where yx(x), satisfying g(Jy) =m and
(3.24) E(r(0 = yy; ()" = _min E(y(x) = vy ()",

is called the best m-term approximation of y(x). In addition, an argument similar to that used
to prove (2.32) implies that the variance terms satisfy

NEn (3 %) = ¥ X))?
(3.25) max  ——— " T — 0,().
l<m<K, mlog p

In view of (3.23) and (3.25), the best possible rate that can be achieved by a forward inclusion
method accompanied by a stopping criterion is the same as that of

(3.26) Lu(m¥)= min L,m)= min {E(y(x) — ys: (X)* +mlog p/n}.

1<m<K, 1<m<K,

According to Lemma A.3, (A.11) and E(y(x) — yx (x))2 =0if m > ko, the convergence rate
of L, (m}) under (1.4), (1.5) or (2.17) is (log p/n)l_l/zy, lognlog p/n, or kglog p/n, which
coincides with that of (3.4), (3.5) or (3.6), respectively. We therefore conclude that the bounds
obtained in Theorem 3.1 are rate optimal. In this connection, we also note that when (1.1)
is a stationary AR(p) model with p > n, the set of candidate models are usually given by
AR(1), ..., AR(K,), with K, approaching oo at a rate slower than n. Unlike f(m), 1<m<
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K, the candidate set in this case is not determined by any data-driven methods, and hence
the corresponding variance terms can get rid of the variance inflation factor log p (see (3.25)),
which is introduced by data-dependent selection of the candidate set from all p variables. As
a result, the optimal rate that can be attained by an order selection criterion is equivalent to
that of

. 2
(3.27) 15r}glfnkn{E(y(X) —y5: ()" +m/n};
see Shibata (1980) for more details. Under (1.2), (1.3) or (2.17) with N, = {1, ..., ko}, the
convergence rate of (3.27) is (1/n)'=1/27 logn/n or ko/n, which differs by a factor of
(log p)! =127 from that of L, (m*) under (1.4), (1.5) or (2.17), respectively.

We would also like to point out the differences between the current paper and the paper
by Ing and Lai (2011), which investigates the performance of OGA under (1.1) with (x;, &)
being i.i.d. and obeying sub-Gaussian or subexponential distributions. Note first that Theo-
rem 1 of Ing and Lai (2011) can be understood as a special case of Theorem 2.1 when y =1
and observations are independent over time. However, since the former theorem only focuses
on the case of y = 1, its proof does not involve the approximation errors of the population
OGA under general sparsity conditions such as those given in Lemma A.1 in the Appendix.
Moreover, when y = 1 is known, the optimal rate, (log p/n)'/2, can be achieved by choosing
m = (n/log p)'/2, without recourse to any data-driven method to help determine the number
of iterations. Alternatively, Theorem 3.1 encompasses a much wider class of sparsity condi-
tions, and demonstrates that HDAIC can automatically choose a suitable m, leading to the
optimal balance between the squared bias term and the variance term, without knowing the
degree of sparseness. Indeed, Theorem 4 of Ing and Lai (2011) has suggested using a high-
dimensional information criterion (whose penalty is heavier than that of HDAIC) to decide
the number of OGA iterations when the regression coefficients satisfy the strong sparsity
condition, (2.17), and a beta-min condition. Theorem 5 of Ing and Lai (2011) further intro-
duces a backward elimination method based on the aforementioned information criterion to
remove possible redundant variables surviving the first two (variable) screening stages, and
shows that the resultant set of variables is equivalent to V,, with probability tending to 1. Al-
though the approaches adopted in both papers can be considered similar to a certain extent,
their goals are entirely different. In particular, whereas Ing and Lai (2011) aim to establish
selection consistency under the strong sparsity condition, this paper focuses on prediction
efficiency under much more general sparsity conditions, which include the strong sparsity
one as a special case. From a technical point of view, the main differences between the two
papers are: (i) serial correlation is not allowed in Ing and Lai (2011); and (ii) the squared
bias term in Theorems 4 (or Theorem 5) of Ing and Lai (2011) completely vanishes along the
OGA path in the sense that

P(lirlxnlifn : E,(y(x) — i (X))2 = 0) — 1 asn— oo,
which is ensured by the sure screening property of OGA under the strong sparsity condition
(see Theorem 3 of Ing and Lai (2011)), but the squared bias term in Theorem 3.1 decays at a
variety of unknown rates and can never be zero along the OGA path, making it much harder
to pursue the bias-variance tradeoff along this data-driven path.

We close this section by mentioning that while condition (3.3) on s, involves unknown
parameters, we have introduced a data-driven method for determining s, in Section S3 of the
Supplementary Material, which is of practical relevance.
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3.3. Proof of Theorem 3.1. We only prove (3.4). The proof of (3.5) is similar to that
of (3.4), and hence is omitted. The proof of (3.6) is slightly different, and is deferred to
the Supplementary Material because of space constraints. In the rest of the proof, a weaker
restriction on the penalty term,

236’1“2
o2
is used instead of (3.3), although the latter one is required in the proof of (3.6).

By making use of (2.11), (2.14) (which is ensured by (2.13)) and (2.19), we show in

Section B in the Appendix that for any 1 <m < K,

(3.28) s> V¥ =

’

(3.29) <n™ 'Y e (Jm) — Bu(2(Jn))

t=1
= CMJ’,M Rl,p{En (82(jm))}(2y_2)/(21’—1)’
where Cyyi = (M + D2C2; 772D with M defined in (2.13), Ry, =

T
maxj<j,i<p In_l Z?:l 212t — pitl, & (J) = yr — & _ﬁ* (Nz,(J)and e(J) = y(x) —ys(X) =
y(x) — ,B*T (J)z(J). In addition, it is shown in Section S2 of the Supplementary Material that

n
n'Y ere(Un)
t=1

(3.30) § A .
SCM,V,MRlp{En(gz(Jm))}(y /@r=1),
n=! ?:lzt(fm)st(fmn@_lj
max _ ()
(3.31) ==Ky m{E,(e2(Jy))}@r—2/Cr=1
. (e
< Catyo |IT (k)| RY,.
and
=t 2 ()edl2
_ o
(3.32) max r (J’”)§||r (]Kn)HR%’p’

1<m<K, m

where Ry , = max;<;<p In—! Y i & and ||v||2A = v " Av for vector v and nonnegative
definite matrix A.
Let m* = min{(n/log p)'/?", K, } and

(3.33) fw =min{k : 1 <k < K, By (e2(J0) < Gm* 7'} (ming = K,,),
in which G > C, and C; is defined in (2.27). Using (3.29)—(3.32), we next show that
(3.34) lim Pk, <k, —1)=0.

n—oo

2y+1

Since (2.27) implies E,(s2(J2)) < Com: 7" < GmX "' on A,(K,), it follows that

my > k, on A, (Ky). By (2.30), one obtains
Pky <k — 1)
(3.35) < Plky <ky — 1, An(Kp)) + P(AS(K)))
n
=< P( miIl On(k) < Sam: (n_l ny2> logp/n, An(Kn)) +o(1),

1<k<kn—1 1
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where

n n n
0,(k) =01 "2 + 2071 Y e (Jer — 207t Y e (e

=1 t=1 =1

n 2

—n Y el () —

t=1

By (2.2), (2.3) and (2.28),
(3.36) lim P(W,) =1,
n—>oo

n™" "z, (Jo) (e + &:(J0))
=1

' o

where
Wa={Ri, < c5(log p)'/2/n"2} N (R, < cf(log p)!/2/n'12)
aA—] =~ _
n{Ir ()| = B}
Moreover, (3.29)—(3.32), (2.28) and (2.27) imply that for 1 <k < 1€n — 1 and all large n,

n
n 'y ef (o)

t=1
(3.37) > Ea(e*(J0)
CM,V,)\]C; log p y=1/2y
y {l_m<l{y:1}+( p > I{y>1})} on an
n 11\/;2 A CT
] 7 2], il
n t;etuk)st <Eu(e°(U0) &0
(3.38) -
on W,,
_1le » 2.7 11"{2” )“CT
n l_Zletum;)sz <Eu(e"(U0) 50—
(3.39) -
on W, NA,(K,),
n
n S 62 ()
t=1
< E,(e*(Ji)
(3.40) x =D/2
Cr | Cmyn€ log p\ "=
< {E_,_(;ITVI_D(I{),:]H—( " ) I{y>1})}
on W, N A,(K,),
. 2
nil ZZ[(J/{)SI(J/() :
P I (o
<Ea(e*(Jp)
(3.41) .
Cr.yr, B8 logp (y—=1/2y
y W(qy:lw( - > 1{y>1})

on W, NA,(K,),
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and
n 2 )
_ N ~ . Bc
Y (e En (6% (J1) —
r=1 NI /9)
By (3.37)-(3.42), it follows that for large enough G in (3.33), there exists 0 < ¢ < 1/2 such
that for all large n,

(3.42) on W, NA,(K,).

min  Q,(k)> min E,(e*(Jo)(1 -0
(3 43) 1<k<k,—1 1<k<k,—1
’ 2y+1

>Gm (1—0) onW,NA,(K,).

In addition, (2.2), (2.3), (A3) and log p/n < mz_zyﬂ ensure that there exists M, > 0 such
that

*—1 Ny 2
(3.44) lim P(s“m”” 2i=101 100 < Mzmjz”‘> —1.

n—oo n

By (2.30), (3.36), (3.44) and selecting G in (3.43) larger than 2M>, we obtain the desired
conclusion (3.34).
Using (3.29)—(3.32) again, it is shown in Section S2 of the Supplementary Material that

. » *\
(3.45) nli)ngo P(kpn>Vm})=0, y>1,

where V is a sufficiently large constant to be specified in the proof of (3.45). With the help
of (3.34) and (3.45), the desired conclusion follows if one can show that for y > 1,

R w—2v+l
(3.46) En{y®) = 5, 0 1z o cyme = Oplmy ),
and for y =1,

(3.47) En{y(x) = 5 0P 1z i g, =O0p((ogp/m)'"?).

To show (3.46), note first that
A 2
En(y(X) _ylg (X)) I{]E <]€ <Vm)

(3.48) <E.2(Jp )+ [LU) P T ' Iz, <t <vmsy

~ 2 /\— ~ 2 A ~ ~
LT G IEIT ) =T g, <ty <vmgy

where L(J) =n~! Yz (e +&(J)). By (A3), (2.2), (2.3), (2.13) and straightforward
algebraic manipulations, it holds that

~ 2
L) Tk, <k <vims)

2

n n

<2Vm max (n ZS;Z;,’) +2Vm max ( _IZZtith—,Oij)
=1 t=1

"1<i<p I<i,j<p
P 2
¥ 1
(3.49) x (;!ﬂﬂ) (14, max 7™ De,)’
m*log p
:0p< K )
—2y+1
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Moreover, we have

(3.50) Engz(jlgn) <Ene2(Jp2) < sz;k;zyH on A(K,),
and
n
£ ) = Oty < K e,
(3.51) ” ( kn) ( kn)“ {kn<kn<Vmi} = nlsnilj!)épn ;ZnZU Pij

= Op(l),

where the equality is ensured by (2.3) and (2.20). Consequently, (3.46) follows from (3.48)-
(3.51), (2.30) and (2.28). The proof of (3.47) is similar to that of (3.46). The details are
omitted. g

4. Conclusions. This paper has addressed the important problem of selecting high-
dimensional linear regression models with dependent observations when knowledge is lack-
ing about the degree of sparseness of the true model. When the true model is known to be
an AR model or a regression model whose predictor variables have been ranked a priori
based on their importance, this type of problem has been tackled in the past; see, for exam-
ple, Ing (2007), Yang (2007), Zhang and Yang (2015) and Ding, Tarokh and Yang (2018).
These authors have proposed various ways to combine the strengths of AIC and BIC and
shown that their methods achieve the optimal rate without knowing whether (1.2), (1.3) or
(2.17), with N, = {1, ..., ko}, is true. Their approaches, however, are not applicable to situ-
ations where the predictor variables have no natural ordering or their importance ranks are
unknown. To alleviate this difficulty, we first use OGA to rank predictor variables, and then
choose along the OGA path the model that has the smallest HDAIC value. Our approach is
not only computationally feasible, but also rate optimal without the need for knowing how
sparse the underlying time series model is.

Compared to a similar attempt made in Negahban et al. (2012), in which Lasso is
used instead of OGA+HDAIC, the novelty of this paper is threefold: first, the validity of
OGA-+HDAIC is established not only for independent data, but also for time series data; sec-
ond, the advantage of OGA+HDAIC is obtained in the important special case (1.5), which
is seldom discussed in the high-dimensional literature; third, in another important special
case (1.4), it is shown that OGA+HDAIC can have a faster convergence rate than Lasso.
Finally, we note that OGA is exclusive for linear models. The counterpart of OGA in nonlin-
ear models is the Chebyshev greedy algorithm (CGA) (Temlyakov (2015)). Investigating the
performance of CGA+HDAIC in high-dimensional nonlinear time series models would be
an interesting topic for future research.

APPENDIX A: RATES OF CONVERGENCE OF THE POPULATION OGA

In this section, we consider the population counterpart of OGA, whose convergence rate
plays a crucial role in the analysis of the first term on the right-hand side of (2.18). Let
0 < & <1 be given. The algorithm initializes J¢ o = &. Form > 1, Jg ,, is recursively updated
by

Jeom = Jem—1 Y {Jem},
where j¢ ,, is any element / in P satisfying

’

|E(umflzl)| 25 max |E(um71Zj)
l<j=<p

with ug = y(x) and up = y(X) — yy.,, (X) if m > 1. Because the algorithm is implemented
based on the “population” correlations of X, it is referred to as the population OGA when
& =1, and the population weak OGA when 0 < § < 1. The following lemma provides a rate
of convergence of the E(ufn) under (A3) or (A4).
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LEMMA A.1. Assume (2.11) and (2.19). Then there exists G > 0 such that

(A1) E(2) =E(y®) — yr,,,(®)* < Gim =21,
Moreover, if (2.12) holds instead of (2.11), then there exist G2, G3 > 0 such that
(A2) E(uZ) = E(y(®) — ys,,,(0)* < Gaexp(—G3m).

PROOF. Straightforward calculations yield

p
E(u;,) = E[()’(X) — Ve ®) D ﬂ}‘z,}

j=1
(A.3) ,
< max |y, | > 18]l
=/=p J=1J¢Jem

recalling ny; = E[(y(X) — y;(X))z;]. In addition, (2.19) implies

P
2
(A4) Ep)>x Y. BI.
=V dem

By (A.3), (A.4) and (2.11), it follows that

p R (y—=1/2y-1
2 *
E(u;) <C, 1?1-35)(,7 |MJg,m,j|( Z B; )

(A.5) J=1.78 e
< nyl—(y—l)/(zy—l) 1glja§p . I[E(u;)](y—l)/(Zy—l)’

and hence

(A.6) [BG2)]/ 0 <y VD max il

I<j=<p
In view of (A.6), one has
2 2
E(um+1) = E(um - MJE.}nsjE,m+1Zj$,m+l)

§E(ui) — &2 max Mz’m?j

I<j=p
(A.7)
<E(2) — g0 V@D 2 B2 P/
=E(u2){1 - 27U 2[Ew2)] /)

The desired conclusion (A.1) follows from (A.7) and Lemma 1 of Gao, Ing and Yang (2013).
To show (A.2), note first that (2.12), (A.3) and (A.4) yield

21172 —1/2
Euy) 17 =2y My max i, 1

This and an argument similar to that used in (A.7) imply

(A8) Bty 41) < E(up,) — €22 M; "E(usy,)
=B(u2){1 — &2 M),

Since M1 > 1,0< A1 <1,and 0 < & <1, (A.8) leads directly to (A.2). U
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Lemma A.2 shows that (1.4) is a special case of (2.11). Using Lemmas A.1 and A.2,
Lemma A.3 demonstrates that the rate m—2¥t! obtained in (A.1) cannot be improved under
(1.4). More specifically, recall the best m-term approximation, y;x(x), of y(x) (see (3.24)).
Lemma A.3 asserts that when (1.4) and (2.19) hold true, the approximation errors of y, , (x)
and y,= (x) only differ by a positive constant.

LEMMA A.2. Suppose that (1.4) is true for some y > 1. Then (2.11) holds for the
same y .

PROOF. See Section S1 of the Supplementary Material. [
LEMMA A.3. Suppose that (1.4) holds for some y > 1 and (2.19) is true. Then, for all

1 <m < (1 —€)p, where € is an arbitrarily small positive constant, there exist D1, D> and
D3 such that

&.9) E(y®) = y2,,,®)* < DIE(y®) — ys; (0)%,
and
(A.10) Dym ™+ <E(y(®) — yjz (%))* < Dam =2+,

PROOF. By Lemmas A.1 and A.2, it follows that forall 1 <m < (1 — €)p,

Gim™ T > B(y(®) — vy, (®)* = E(y(®) — ysz (%))

P
=AY /372 >h Y ﬂjz =VSVAND DR et

JEn T j=m+l1

where J is the index set corresponding to {,3(21), ey ,B(Zm)} and d > 0 depends only on y
and €. These inequalities lead immediately to (A.9) and (A.10). [

REMARK A.1. Theorem 2.1 of Temlyakov (1998) shows that a near best m-term approx-
imation can be realized by a greedy-type algorithm under a basis L ,-equivalent to the Haar
basis. Since the Haar basis yields an identity correlation matrix, our correlation assumption,
(2.19), appears to be substantially weaker. The performance of the m-term approximation
of OGA has been investigated by Tropp (2004) under a noise-free underdetermined system
and a condition on the cumulative coherence function, which requires that the atoms in the
dictionary are “nearly” uncorrelated. His approximation error for OGA is larger than that of
the best m-term approximation by a factor of (1 4+ 6m)!/2. Suppose that (1.5) holds. Then

5 2
n Y B sE(y<x>—yj;;(x>)st(Z ﬂ;fzj) ,

J¢Ts, JE
which, together with (1.5) and Minkowski’s inequality, yields
(A.11) C]ﬁﬁ)\]L% exp(—2pm) <E(y(x) — Vi (X))2 <Cap U12 exp(—28m),

where Cy g < C; g are some positive constants depending on 8. On the other hand, the argu-
ment used to prove (A.2) leads to

(A.12) E(y(X) — ys,, (X))7 = O (exp(—nmfoga)).

where foga = ézkl (L1/ Ui — exp(—,B))2 < 28. Equations (A.11) and (A.12) suggest that
the population OGA and the best m-term approximation in general do not share the same
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convergence rate in the exponential decay case. To be as efficient as the best m-term approx-
imation, the population OGA needs to run for another m(28/foga — 1) iterations, which is
still of order m.

APPENDIX B: PROOF OF (3.29)
Recall that (2.13) implies (2.14) with C = M + 1. This, (2.11) and (2.19) yield

! Zs, (Jm) — (Jm>)‘

)3 {n—lzsﬁn—ﬁ@z””} =)

#4(J)=m t=1

P p
> {ZZW — B (|8 - B

g(J)=m li=11=1

Z 2tiZtl — Pil

} {Im=17}

> (zmﬂ)zqu:”

n
n~! ZZziZzl — pil
1=1 g(=m “j¢J

2)(21/—2)/(21/—1)

<M+ 1)2 max
1<il<p

<Co(M+1)°Ri, Y, (Zﬁ,-*

g(J)=m “j¢J
<CmyrRi1p Z {E (Z(J))}(Zy /= 1)I{ Fn=1T}
g(J)=m
{ ( 2(] ))}(2)/ 2)/y— 1)

L=

= CM VA1 Ry P
Thus, (3.29) follows.
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Supplement to “Model selection for high-dimensional linear regression with depen-
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Supplement to “Model selection for high-dimensional
linear regression with dependent observations”

CHING-KANG ING

National Tsing Hua University

This supplementary document contains three sections. The proofs of (2.7),
(2.28), (2.30), (2.32), and Lemma A1.2 in Ing (2019) are provided in Section
S1, and the proofs of (3.6), (3.30)—(3.32), and (3.45) in Ing (2019) are offered
in Section S2. In Section S3, a simulation study is given to demonstrate the
performance of OGA+HDAIC under a high-dimensional ARX model whose
T obeys Apax(T) — 0o and Apin(T) > A1 > 0.

S1. Proofs of (2.7), (2.28), (2.30), (2.32), and Lemma A1.2.

PROOF OF (2.7). By (2.4), the second relation of (2.5), and the first
relation of (2.6), it holds that for some 0 < M5 < oo,

(Sll) Ongllag};)\max(zl) < MS,

where ¥; = E(X;X]") with Xo = (219, ..., 2n0)" = (¢1,...,&,)". Then,
by the Hanson-Wright inequality (see Theorem 1.1 of Rudelson and
Vershynin (2013)), (2.8), (S1.1), and ||A||Z < nA?_ (A), there exists
some ¢ > 0 such that for any s > 0, any 0 < [ < p, and all large n,

P(n” Zﬂftz ot| > s(logp/n)'/?)

1/2

_ lo s(nlogp)
(S1.2) <2Zex [—cmm{ 5n gp, }
- KA} K2 A (5)
—cs?logp
K2 (%)

max

< 2exp [ ] < 2exp[—es?(K*Ms) " logp),
where K = (8/3)'/2, || A||r denotes the Frobenius norm of 4, and o2 =
Ee?. Similarly, using Apax (X;+3X0) < 2M;3 and Apax{ E(X;, +X3,) (X, +
X;,) "} < 4Ms, where 1 <1, 11,1y < p, we obtain

n

P(In™" Y (xa +e)* = (0f +05)| > s(logp/n)*/?)

t=1
< 2exp|—cs?(2K?Ms)~?log pl,

(S1.3)



2

and

n

Pt 3 (e, +20)* = B, +20,)%) > slog p/n)* ")

t=1
< 2exp[—cs*(4K*M3)~?log p).

(S1.4)

By (S1.2)—(S1.4), it holds that for all large n,
(S1.5)

P( max |n~ thllxtb — B(zy,xy,)| > s(logp/n)*/?)

1<ly,l2<p Py

n

<p® max P(In™"Y (wu, +2u,)* — Blau, + xu,)?| > (25/3)(logp/n)"?)

1<l1,l2<p —

B 1/2
+ 20 max P(jn” Zxﬂ of| > (25/3)(logp/n)""?)

< 6p® exp[—c (23/3) (4K2M3) “logp] = o(1),

provided s = st > (T2K*M2/c)/?, and

(S1.6) n
P(max |n~ z;mtisﬂ > s(logp/n)'/?)
<o P Y- (st = (ol > 3) g/
+2p max P(jn” ; wi, — o7l > (25/3)(logp/n)'/?)

< 6pexp|—c(2s/3)*(2M3) " log p] = o(1),

provided s = s5 > (9K*M2/c)'/2. By the third relation of (2.5) and
the second relation of (2.6), one obtains

(S1.7) min o7 > ¢ > 0.
1<i<p

Combining (S1.7), (S1.5), and (S1.6) yields (2.2) with ¢} = s3/c/? and
(2.3) with ¢ = s7/c.



PROOF OF (2.28). Note first that (2.21) implies

(S1.8) liminf min Ay (T(J)) — c50 > 0.

n—oo #(J)<K,

Define F,, = {|D(Jx,) — T'(Jk,)|| < Knc;(logp)'/2/n/2}. Then it fol-
lows from (2.3) and some algebraic manipulations that

(S1.9) lim P(F,)=1.

n—oo

Equations (S1.8) and (S1.9) ensure

(S1.10) lim P(Q,) =1,

n—o0

where Q,, = {I'"(Jg, ) exists}.
In view of (2.29), one has for all large n,

P(f‘_l(an) < B7QH7FH)
cio 1
>P((1-— 2 : ; nFn)
o (( mlnﬂ(J)gKn )\mln(F(J)) mlnﬁ(J)gKn )\mln(F(J)) Q
A A ~ A A1l A A
> P (1~ [P(i,) ~ D) D G DIE G )l < 10 (i) @ B
= P(Qan>7

which, together with (S1.9) and (S1.10), leads to (2.28). O

)T ()l <

PROOF OF (2.30). Since (A2) implies maxi<j<, [n™ "> 1, 2 — 1] =
0p(1), (2.30) is ensured by

(S1.11) P(ﬁ(J)<%az(1 ” ™! thétji_;l]‘ > s(log pn/n)"/?) = o(1),
SAn 5T =1

and

(S1.12)

P max ot Z 2iing — Bz2ip)| > s(logpa/n)'/?) = o(1),



4

s 1 sL T __ B
for some large s, where (23;.;,...,2,;.;) = (I = H;)Z; and 2;; =

— g (J))T1(J)z(J). Straightforward calculations yield

n
max  |n” Z&ttzt”| < max |n~ Zzti€t|
t=1

J)<Kn—1i¢J 1<i<p

r K, (1 r! ,
+ maxnll N +ﬁ(5r)lg>lgnll (J)gi(J)]|1)

HK
(S1.13) n "
X max [n” ;zﬁzw pij| max |n~ ;Zn-é‘tl

n

—1
+ max |07 (7)gi(J) [ max [ ;Zti5t|'

By (S1.13), (A1), (A2), (A5), and (2.28), (S1.11) holds with s > ¢j(1+
To prove (S1.12), we note that (A5) and some algebraic manipula-
tions give

n

Y ki — Bl
ﬁ(J)SIIgi}i,i,je,ﬁJm — 5%t (22i:7)|

(S1.14) < max [n™" Y zuzy — pyl(1+2M + M?)

1<4,5<p P
n

+ max [T ( WEKn(14 M)? max |n- Zztiztj—piﬂ.

#()<Knp 1<4,5<p P

Combining (S1.14), (A2), (2.20), and (2.28), one obtains (S1.12) when
s > c3(1 4+ 2M + M? + (1 + M)%5c;B). Thus, the proof of (2.30) is
complete. O

PROOF OF (2.32). Note first that

(S1.15)
En(Jm (%) =y, (x))

n

_ - 5 1 -
<Yz (e + el T IPIT (i)
t=1

0 )2 max [PCn) = T [In ™ 2 ) (e + 2 e)) 1

1<m<K,
t=1



Since K, (logp/n)'/? <6, by (A2),

(S1.16) P( max_ ||T(J,) —T(Jy)| < d¢) = 1.

1<m<K, -

Some algebraic manipulations yield

n

(S1.17) |n~? Zzt(j Jed|? < m(1112a<x In~ Zzti5t|)2>
=1 =1
and

n

<Yz m)e ()1

t=1

(S1.18) < m( max |n~ 12%% Pu’) 18 /3( )Hl

1<4,j<p

1<,5<p

< m( max |n~ Zztﬂtj —pu)?1B71F(M +1)?,
t=1

where the last inequality is ensured by (2.14). Consequently, the desired
conclusion (2.32) follows from (S1.15)—(S1.18), (2.28), (A1), (A2), and

(A4). O
PROOF OF LEMMA A1.2. We first show that for any J C {1,--- ,p},
(S1.19) Dy} 5y < (O erh,
JjeJ JjeJ

where D; = min{20~1/=1 _1 (y—1)/(4y—2)}. We prove (S1.19) by
induction. It is easy to see that (S1.19) is true for all J with #(J) = 1.
Assume that (S1.19) holds for all J with 1 < #(J) = k < p. We are
going to show that (S1.19) is also true for all J with §(J) =k + 1. To
this end, define L = min{i : i € J} and B = J — {L}. Since §(B) =k
by the induction hypothesis, it follows that

(S1.20) Di(Y i)y < (O e,

JjeB jEB
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If L727 <37 pj~27, then (S1.20) and ) 557 < L7271 yield

(S1.21)
1 (v=1)/(2v-1)
(Zj—%)(v—l)/(%—l) - (Zj—%)(w—l)/(?v—l) (1 + s j27>
jeJ jEB JjeB
- _ _ v—1
> (Z] 27y (=1)/2r=1) <1+ — )
ieb (4y —2) L™ ZjeB] 2y
_ v—1 _

>Dy )y j7+ L™

; (4y — 2) LY {L=2v+1}v/(2v—1)
> D Z]'_v‘

jeJ

On the other hand, assume L™ > >7._ 5 j~*7. Then, by (S1.20),

(51.22)
L7+ Zj—v < L7+ Dl—l(zj'—?v)(v—l)/(%—l)

JjEB JjEB

e )
=Dyl (Y (Xjepi )0~V =D 4+ DL
(3 ey 3 2) 0D/

jeJ
(L ZJEB j*h)(%l)/(?’vfl) + Dy
(1+ L% zjij—%)(v—l)/(?v—l) :

< Dfl(zj*%)(vfl)/(hfl)
j€J

Since Dy < 20-D/2=1) _ 1 it can be shown that

oO-1/@=1 4 D,
(1 + 9)(7*1)/(27*1)

<1, forall0 <6 <1,

which, together with (S1.22) and (S1.21), yields that (S1.19) holds with
8(J) =k +1.
Let j be defined implicitly by |3}| = ]BE“})L For J = {j1, - ,5} C

{1,---,p},alsodefine J = {jy,--- , j;}. It follows from (1.4) and (S1.19)



that
Mg <UD T <uD(d ] b/
i&s jeJ jeJ
S UDl—lL—(Q’Y—Q)/(Q’Y—l) (Z /66?))(7—1)/(27—1)
jed
- - - - *2 — —
<UDy L~/ (" gty h/ @),
JjeJ

Therefore, (2.11) holds for C, = UD;'L=(r=2)/Cr=1), H

S2. Proofs of (3.6), (3.30)—(3.32), and (3.45). To prove (3.6), we
need an auxiliary lemma, which is a counterpart of Lemma A1.1 in the
case of strong sparsity.

LEMMA S2.1. Assume

$2.1 in A (T(J)) > Ao > 0.
(S2.1) o (T'(J)) = Xo

Then,
(52.2)  E(up,) = E(y(x) =y, (%))* < E(y*(x)) exp(—£*Aom/ ko).

Proof. By (A1.3), the Cauchy-Schwarz inequality, and (S2.1),

p
1/2 %2
E(y(x) =y, (x))? < gggéglwg,m,j!ko/ (> B
T j:17]¢J§,m
and
P 2
By(x) =y, (x)* =X > B
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and hence
E(upi1) < Btm = g demss Ziemsn)”
< Blug,) — € max 15
< E(uy,) (1 = €2/ ko),
leading to the desired conclusion (52.2). O

In this section, we prove (3.6) in situations where the minimum eigen-
value assumption (2.19) is weaken to (3.8). With the help of Lemma
S2.1, the next theorem provides a counterpart of (2.31):

(2.3)
- E,(y(x) —y;, (%)) _
1<m<K, max{exp(—&§2Aim/ko), ko(D_;cn, 18;])? log p/n}

which plays a crucial role in the proof of (3.6). Here £ is any constant
lying between 0 and 1, and 0 < A} < dcj.

Op(1),

THEOREM S2.1.  Suppose that (Al), (A2), (Ab), (3.7), (3.8), and
(2.20) hold, and E(y?) is bounded above by a constant. Then, (S2.3)
follows. Moreover,

(S2.4) lim P(N, C Juz) =1,

n—oo

where R is some large constant.

Proof. Note first that (3.8) implies

TCS

S2.5 li 2

(52.5) HLSup min~ Awn(L() =
4(J)<7(n/log p)t/?

for any 0 < 7 < min{\;/c}, n}. This guarantees that the 7 in (2.21)
associated with the definition of K, is nonempty. It follows from (3.7)
that kg = o((n/logp)'/?), which together with (2.20) and (S2.5), yields

(52.6) ﬁ(J)ISiil(}}i’Kn Amin(T'(J)) > dc3,

noting that 0 < d¢j < 1. Define

— N | < * 1/2
Cn(m) {(Jﬂ,):ﬁ(maX i — il < s 18;1)(log p/n) }

J)<m—1,i¢J
)< ¢ JENR



_ 1/2
D, (m) {0&%15?%'“] “s( Y 187 (log p/n) }

JEN,

where s > 0 is some large constant and & = 2/(1 — €) with 0 < £ < 1
being arbitrarily given. Because we do not assume that >y |55] is
bounded above by a finite constant, the definitions of C,,(m) and D,,(m)
are slightly different from those of A,(m) and B, (m) in the proof of
Theorem 2.1.

By an argument similar to that used to prove (2.24), it holds that

g, 5.0 = Emax |y o on Cy(m) () Da(m

1<i<p

which, together with Lemma S2.1, (S2.6), and the boundedness of
E(y?), gives

(S52.7)
En(y(x) =y, (x))* < Gexp(=E*Aim/ko) on Cyy(m) (1) Du(
where G is some positive constant and 0 < \¥ < éc;.

By (52.6) and an argument similar to that used to prove Lemma
S2.1, we also have

<2 min max |[Ljij|2

(S2.8) )\* 0<i<m—11<j<p
logp .
jGNn

Combining (S2.7), (52.8), and C,,(K,,) C C,,(m) for 1 <m < K, yields

(52.9)

e E,(y(x) —y; (x))? < ConCy(E,).

1<m<K, max{exp(— §2A’{m/ko),ko(zje]v |5*|)210gp/n} N

where C' is some positive constant. In view of (52.9), the desired con-
clusion (52.3) follows if

(52.10) lim P(C,(K,)) = 1.

n—o0
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Since (2.28) is still valid when (3.8) is used in place of (2.19), (S2.10)
can be proved in a similar fashion as in the proof of (2.30). The details
are omitted.

To prove (S2.4), let R be large enough such that Cexp(—&2\iR) <
Ai0? /2, where § is defined in (3.7). By (S2.9), (S2.10), and (3.7),

(S2.11) lim P(E,(y(x) = yj,, (x))? < A\16%/2) = 1.

n—o0

Define G, = {N,.[ j]%ko # ()}. Then, on the set G,

Ea(y(x) —yz,, (0P =M Y 8 > N6,

j¢ij0
and hence by (S2.11),
P(Gn) < P(En(y(x) =y, (x))* = ME) = o(1).

Thus (S2.4) is proved. O]
We are in the position to prove (3.6).

THEOREM S2.2.  Suppose that (3.2) and the same assumptions as
in Theorem S2.1 hold. Then, for s, satisfying (3.3), (3.6) follows.

Proof. Define E, = {N,, C ijO} and k, = ming <<, {k: 1 < k <
K,, N, C jk} (min @ = K,,). We first show that
(S2.12) lim P(k, < kn, E,) = 0.

n—oo

Straightforward calculations yield on the set {k, < ky} () En,

- . sikoRlogp.
(92.13) 52 A, — 2|8 Bl gm—ogpa?j_ :

Ik Ik n En

where

~

A, = n*lz;%n (I-H; )Z; and B, = n*lz;kn I-H; e,

kn—1 kn kn—1

with € = (g1,...,2,)". Note also that
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t=1
1 _
+ max |I' (J)||Rko(1+ max ||T7J)gi(J
max ([T ()l Rko(1+ max I07()gi()]l)
X max In~ ZZ”Z” Pij| max In~ Zzﬁgt|

t=1 t=1
n

+ max ||[I'” i max [n~ Zi€t |,
s 07 CDgi) s o ™3 e

and
n
% o <) e -0
" t=1
n

+ max [T ()||Rk0(max |n~ Zzti6t|)2.

< 1<i<p
#(J)<Rko —1

Therefore, by (A1), (A2), (A5), (2.28), (2.20), (3.8), (3.2), and (3.7)

(which ylelds |B* | = o((n/(kolog p))'/?)), one obtains,
(S2.14) 185 Bal = 0,(1),

and

(S2.15) &?}E — 0% = o0,(1).

Moreover, there exists some positive constant v such that

(S2.16) lim P(ﬁ A > 0%A, >v) = 1.

n—oo

Consequently, (52.12) follows from (52.13)—(52.16).
We next show that

(S2.17) lim P(k, > kn, E,) = 0.

n—oo
Some algebraic manipulations imply that on the set {k, > k,} () Ey,
(S2.18)

aKnl _ a ]%n_l%n 1 A
(Hﬂ)n eT(H, —H, ez ! Jlogp .o
n n

- )
n kn Jk n
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and
“1_Ter.  _ TT. r T 1
nle (1, —Hj Je < 2(kh — k) max [E7 ()]
(S2.19) n n
-1 2 -1 2
X {(lg}%pm ;Ztiztj = pijl) +(lfg%>;|n ;thftD }

As a result, (S2.17) follows from (52.19), (S2.18), (2.20), (S2.15), (3.3),
(2.28), (A1), and (A2). Thus,

(S2.20) lim P(kn = kn, E,) = 0.

n—oo

Now, by (A1), (A2), (2.28), and

lim P([0(J;,) = T (Jg,) | < koRej(logp/n)' /2 by < ko) = 1,

n—o0

one gets

En (93, (x) — y(X))2]{kn=1€n,En}

n

— 7 e
<Yz )l PIT (T ) g, <0y

t=1

N -1 - . ;
+ 07z e PIT (e )IPITCE,) = D) g, <y
t=1

ko logp
-0, ().

which, together with (S2.20), leads to the desired conclusion (3.6). O
In the rest of this section, we prove (3.30)—(3.32) and (3.45).

PROOF OF (3.30). By an argument similar to that used to prove
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(3.29), one obtains

n! Z er(Jm)er
Z { th } {Jm=J}

#(J)=m

< Ry, Z ZW — Bi( |I{J —7

g(J)=m j=1
1/2 2 (v=1)/(2v-1)
< OV Rop{En(E () )Y,

Thus, (3.30) follows. O

PROOF OF (3.31). By (2.14) with C' = M + 1, (2.11), (2.19), and
for any J C {1,...,p} and i € J,

> (B; = B1())pji =0,

J=1

it follows that for any 1 < m < K,,,

1>~ 2 )T ooy < ITTHED 0D 2z () 2
t=1 t=1
< ||f_1(Kn)|| Z {Z[n_l Z Z(@; — B () (2520 — pji)]Q} [{jm:J}
f()=m \i€J t=1 j=1

< IDHK)ImRE, Y (185 = B (DD L, —gy

f(J)=m j=1

[ 5 (27-2)/(27-1
= |T7Y(K )||CMW,\1mR1p{E 2(Jm ))} =2)/(2y )7

yielding (3.31). O
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PROOF OF (3.32). Equation (3.32) follows directly from

Hn_l ZZt(jm)gtH%—l(m) < ||f_1(Kn>||||”_1 Zzt(jm)f?tHQ
t=1 t=1
I Y {zm—lzzﬁetv}z{w
#(N=m \ieJ =1

< D7N(K) [ImRS,
where 1 <m < K,,. O

PROOF OF (3.45). Since for v > 1 and all large n, m* = (n/log p)"/?7,
K, > Vm;, and s,m logp/n < V' it follows that

(S2.21)
Plkn > Vm®) < Pk, > Vi, Ay (K,)) + P(AS(K,))

: So(k —m})logp
< A < c
=P (Vm%%g& AV O, ~ Zolk) S 0 Au(Kn) | 4 PIAL(K)),

as n is sufficiently large, where

:n_lzgf(jm + 2n~ 1|Z€t €t|—|—2n 1|Z€,§ Jk 5t|
t=1

t=1
n n

+2|ln Z Zt(']k)gt(']k)“%‘fl(jk) +2[ln Z Zt(Jk)gtH%‘fl(jk)'

t=1 t=1

By (3.29)-(3.32), (2.28), (3.2), and (2.27), one obtains for Vm} <
k < K,, and all large n,

n R 1 )
n! Z&%(Jm;) < {02 + CM777A103(02 + 1)( ng)(W l)/27}
(52.22) t=1 n

log p Q7 klogp
(n)ll/(27)<‘/1 WﬂA

where Qf = (C + ¢1) with ¢; being arbitrarily small positive constant,

(S2.23) DY (g e < S on W) An(K2),
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where Q5 = {Cy2 ,, ¢il1 + Cy%]},

k1l
(S2.24) 1|Zet Jo)ed] < Q2 %88 on W, () An(K

n

. . lo
In ™t Sz le s, < (14 Co) f’;p)l "
(52.25) t=1

X CM,),)\lBC2

zklogp klogp
An(
7 nWaf)

- - Bc’klo
(52.26) [n~? Zzt(Jk)etH%,l(jk) < ZA 08D ) W,

t=1 "
and
(S2.27) Tim P(—o?/V < &?fkn —0*<o?)V)=1.
Let V be large enough such that
(52.28)  (Qi+4Q5+2)/(Vo*) + V* <s,(1 -V 1)? /(14 V1),
where V* is defined in (3.28). Then, by (S2.22)-(S2.28),

o?Vm? log p

So(k—m})logp .,
Vme <1kn<Kn (1+V-)n Tk,
(1-V1)s, o, Q7+4Q5+2
| e VY 3 on W, () An(K.

— Zn(k) >

which, together with (2.30), (3.36), and (52.21), gives (3.45). O

S3. A Simulation Study based on high-dimensional ARX mod-
els.

S3.1. Some numerical results. In this section, we report the finite-
sample performance of OGA+HDAIC under the following ARX model,

(S3.1) Ye = ay_ 1—1—204] +e&, t=1,...,n,
7=1
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in which |a| < 1, a; satisfies (A3), (A4) or (2.17),

(93.2) 29 = ¢zl + ey,

with |¢] < 1,

(SBB) 815]' = dtj + nNwy,

(53.4) Ingl # 0,

and (dy,...,dy, w;)" being iid. (p + 1)-dimensional standard nor-

mal vector, and {¢;} is a sequence of i.i.d. standard normal variables

independent of {(d,...,dy,w;)"}. Relation (S3.4) implies that the

regressor vector X; = (Ty1,. .., Trpy1) = (yt,l,xgl), o ,xgp))T are not

only contemporaneously dependent, but also time dependent. More-

over, it is not difficult to see that Ap.x(T') grows to oo as p does, where

T = E(zz]) with z; = (201, ..., 2ep41) | and 2y = 24/ (var(zy))Y2.
On the other hand, we show in the Section S3.2 that

(S3.5) Amin(T') satisfies (2.19).

With an argument similar to that used to prove (S3.5), it also can be
shown that there exists some positive constant C; < oo such that for
any J C {1,...,p+1}and 1 <i < p+1, |[T7H(J)gi(J)|| < Cy, and
hence (A5) follows. Consequently, it is valid to apply OGA+HDAIC to
model (53.1), according to Theorem 3.1.

In our numerical study, (n,p)=(100, 1000), (200, 2000), or (400,
4000), ¢ = —0.8,—0.5,0.5 or 0.8, » = 1 or 2, and a = —0.7,0 or
0.8. The maximum number K, of the OGA iterations is given by

n/logp, and the penalty term s, in HDAIC ((3.1)) is chosen

from S = {s,1 = 1.75,5,2 = 2.75,5,3 = 3.75, 5a4—475} in a
data-driven manner. More specifically, we first select model J j using
OGA+HDAIC;, j = ,4, where HDAIC; is HDAIC with sa = Saj-

We then choose s, from a prediction point of view, where j is the
minimizer of the prediction loss,

n

n— LG/\ﬂ Z <yt_gt‘]k a)z’

t=|4n/5]+1
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over 1 < j < 4. Here ?)t,j,;mj = X:(j,;mj),ét—l(jign,j) and

Bi(1) = O x(Nx[ (1) xi()u.
=1 =1

While S is allowed to vary from one user to another, we have found
that the S given above usually leads to reliable results.

Let (yt(i),xgi)),t = 1,...,n, be observations generated from model
(S3.1) and jél)ﬁ(i) denote the model selected by OGA+HDAIC at the

ith simulation run. In view of Theorem 3.1, the performance of OGA+HDAIC
is evaluated by the empirical mean squared prediction error (EMSPE),

1000

1 . N9
. EMSPE = — @y — 5@

where x¥ is an independent copy of {xgi) } obtained at the ith simula-
tion run, y(x®) = 87x® with 8 = (a,a4,...,0a,)7, and
T

NQ) _ T 76 A3i) ¢ 7(2)

k() nj nj
with 8O (J) = (", x2 ()= (1)1 3, x7 )y n addition to
OGA+HDAIC, we also evaluate the performance of Lasso and ISIS-

SCAD (Fan and Lv (2008)) via (53.6) with g)g)ﬁ(i) replaced by the

predictors obtained from these two methods. We use the Glmnet and
SIS packages in R to implement Lasso and ISIS-SCAD, respectively.
Note that it does not seem appropriate to choose the tuning param-
eter )\, for Lasso by cross validation because time series data have a
natural temporal ordering. We therefore set A, = (logp/n)'/?, which
is suggested in the numerical section of Basu and Michailidis (2015).
The following three examples compare the aforementioned three model
selection methods under different sparsity conditions.

Example 1. We set a;; = 15577, v = 1.5,2.5 or 3.5, which satisfy (A3),
the polynomial decay case. We compute the EMSPEs of OGA+HDAIC,
Lasso, and ISIS-SCAD, and summarize the results in Table S1. The
table reveals that when v > 2.5, OGA+HDAIC outperforms the other

two methods in most cases, except for (v,n) = (2.5,1) and (a,¢) =
(0.8,0.8) or (-0.7,-0.8) (in which ISIS-SCAD has the smallest EMSPESs)



18

and for (v,n) = (2.5,2) and (a,¢) = (0.8,0.8) or (-0.7, -0.8) (in which
Lasso has the smallest EMSPEs when n < 400). On the other hand,
Lasso usually works better than OGA+HDAIC and ISIS-SCAD in the
case of (,m) = (1.5, 1). This is particularly true for a = 0. However, the
advantage of Lasso under this pair of (v, 7n) vanishes when 7 increases
to 2. More specifically, when (v,n) = (1.5,2), Lasso is still better than
the other two methods if (n, p) = (100, 1000), but OGA+HDAIC tends
to surpass Lasso when (n,p) = (200, 2000) or (400, 4000).
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Example 2. We set o; = 15exp(—fj),5 = 1,1.5 or 2, which sat-
isfy (A4), the exponential decay case. The EMSPEs of OGA+HDAIC,
Lasso, and ISIS+SCAD are summarized in Table S2. The table shows
that OGA+HDAIC outperforms Lasso and ISIS-SCAD in the majority
of combinations of (n, 3, n, p, a, ). Since the previous example suggests
that OGA+HDIC tends to surpass the other two methods when ~ be-
comes large and since it is shown in Section 2.1 that the exponential de-
cay case can be viewed as the case of v — 00, this phenomenon does not
seem counterintuitive. For most (a, ¢) pairs, Lasso demonstrates a clear
advantage over ISIS-SCAD. The only exception is (a,¢) = (—0.7,0.8),
in which both methods are comparable.

Example 3 We set (aq,...,a5) = (3,—3.5,4,—-2.8,3.2) and a; = 0
for j > 6. Therefore, (2.17) (which is stronger than (3.7)) is satisfied.
The EMSPEs of OGA+HDAIC, Lasso, and ISIS-SCAD are summa-
rized in Table S3. Since (2.17) can also be viewed as the case of v — oo
(see Section 2.1), it is not surprising to see that OGA+HDAIC has
smaller EMSPEs than those of Lasso in all cases of Table S3. Ac-
tually, OGA+HDAIC also works better than ISIS-SCAD, except for
(n,p) = (400,4000), n = 1, and ¢ = 0.5 or -0.5. In this connection, it
is interesting to note that ISIS-SCAD is better than Lasso as long as
n > 200. For n = 100, Lasso outperforms ISIS-SCAD when ¢ = —0.8
or 0.8, and is comparable to the latter when ¢ = —0.5 or 0.5.

The above examples suggest that the finite sample performance of
our method compares favorably to Lasso and ISIS-SCAD regardless
of what kind of sparsity condition is being imposed on model (S3.1).
This is in particular the case when the regression coefficients decay
relatively quickly, the correlations among the regressors are relatively
high, or (n,p) is relatively large.
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The EMSPEs

TABLE S1
of OGA+HDAIC (M1), Lasso (M2), and ISIS-SCAD (M3) in Example 1
with the smalleest one marked in blue

EMSPE
a=20
= —038 = —-05 =05 $ =038
n oy (n, p) M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
1 1.5 (100,1000) 22.1961 10.7045 36.8100 13.2042 8.7596 20.4714 14.7278 9.2787 21.6220 23.2504 10.3417 34.3955
(200,2000) 6.7092 4.8439 7.5811 5.3121 3.3460 5.0037  5.2053 3.8885 5.8881 7.0679 4.8641 7.6271
(400,4000) 3.4712 2.6017 2.7204 2.5430 1.5501 2.0693 2.4968 1.7043 2.0720 3.4137 2.8289 2.9407
2.5 (100, 1000) 1.0024 1.1157 1.2848 0.6626 0.6784 1.2904 0.6183 0.6804 1.3824 0.9866 0.9630 1.3702
(200,2000) 0.4761 0.5051 0.8689 0.3427 0.3459 1.0195 0.3356 0.3680 1.0319 0.4566 0.5218 0.9558
(400,4000) 0.2498 0.2775 0.5752 0.1858 0.2089 0.6094 0.1960 0.2085 0.6584 0.2472 0.3021 0.5855
3.5 (100,1000) 0.3119 0.4929 0.9786 0.2938 0.3436 0.9638 0.3029 0.3399 1.0584 0.3317 0.4347 0.9692
(200,2000) 0.1527 0.2241 0.6367 0.1432 0.1771 0.6018 0.1399 0.1894 0.6403 0.1548 0.2494 0.6642
(400,4000) 0.0862 0.1363 0.3458 0.0787 0.1091 0.1289 0.0715 0.1054 0.1440 0.0932 0.1349 0.3235
2 1.5 (100,1000) 22.3940 7.5179 23.3027 14.7638 8.3148 18.5156 14.0111 9.0098 19.3890 24.0272 7.1240 22.8202
(200,2000) 7.5428 6.8712 8.4175 5.5065 5.6629 4.9733  4.9934 5.3248 4.3016 6.7764 6.7898 7.8329
(400,4000) 3.2673 5.0939 4.9644 2.3035 2.7283 2.6599 2.5927 2.9722 2.6172 3.4509 5.4842 5.1715
2.5 (100,1000) 1.0731 0.9132 0.9160 0.6608 0.7221 1.1767 0.7367 0.7143 1.1288 1.0629 0.8335 1.0533
(200, 2000) 0.4757 0.4890 0.5110 0.3454 0.3886 0.7700 0.3324 0.4041 0.8044 0.4887 0.5265 0.5016
(400,4000) 0.2457 0.3507 0.2462 0.2030 0.2274 0.4057 0.1926 0.2383 0.4129 0.2606 0.3456 0.2646
3.5 (100,1000) 0.3644 0.4364 0.6999 0.2922 0.3558 0.8992 0.2928 0.3496 0.8521 0.3770 0.3889 0.6784
(200,2000) 0.1829 0.2111 0.3687 0.1405 0.1842 0.6152 0.1446 0.1899 0.5898 0.1934 0.2184 0.3909
(400,4000) 0.0890 0.1306 0.1243 0.0797 0.1090 0.4512 0.0743 0.1036 0.4463 0.0945 0.1245 0.1278
EMSPE
a=0.8
» = —0.8 ¢ = —0.5 ¢ =0.5 ¢ =0.8
n oy (n, p) M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
1 1.5 (100,1000) 23.9721 17.5310 85.7529 14.0960 13.7620 38.3318 14.8493 11.6079 36.4437 26.0687 6.8995 28.5434
(200, 2000) 7.5498 6.9242 11.1260 5.1280 5.0385 8.4774 5.6938 5.1562 5.1509 7.9694 3.5413 9.6480
(400,4000) 3.4080 3.0575 2.7114 2.4409 2.0277 1.9751 2.5443 2.3934 2.5755 3.4371 2.9683 6.5900
2.5 (100,1000) 1.0967 1.7889 1.3915 0.6926 1.0308 1.2704 0.6651 1.1098 1.4305 1.1701 1.2033 0.9691
(200, 2000) 0.4877 0.8384 0.8278 0.3717 0.5015 0.9865 0.3906 0.5398 0.7374 0.4768 0.5393 0.3866
(400,4000) 0.2519 0.4177 0.6411 0.2036 0.2771 0.6515 0.1860 0.2896 0.2040 0.2358 0.2957 0.2099
3.5 (100, 1000) 0.3134 0.9253 0.8893 0.2798 0.5682 1.1478 0.3371 0.5347 1.0402 0.4100 0.6334 0.5409
(200, 2000) 0.1571 0.4552 0.6569 0.1454 0.2801 0.6570 0.1401 0.2657 0.4705 0.1623 0.3063 0.1391
(400,4000) 0.0902 0.2518 0.3456 0.0802 0.1672 0.1522 0.0820 0.1453 0.0870 0.0836 0.1713 0.0880
2 1.5 (100,1000) 22.9579 11.8524 92.0668 14.5482 11.7189 123.6786 15.3556 9.9395 17.7668 24.9125 9.1306 36.8341
(200, 2000) 7.2616 8.1428 8.7994 5.5308 6.6218 8.8938 5.3159 6.4400 8.0841 8.0254 9.8247 25.2122
(400,4000) 3.3697 5.4927 3.7112 2.6246 3.2296 2.2848 2.7131 4.7056 5.9056 3.4238 10.8819 19.7596
2.5 (100,1000) 1.0808 1.8080 1.2866 0.7967 1.1999 5.8798 0.7378 0.9207 0.7579 1.1800 0.9973 1.4335
(200, 2000) 0.5025 0.8315 0.7196 0.3777 0.6013 0.8206 0.3642 0.4394 0.3981 0.5745 0.5116 0.9175
(400,4000) 0.2518 0.4815 0.3871 0.2117 0.3293 0.6060 0.2063 0.2533 0.2122 0.2490 0.3913 0.5946
3.5 (100,1000) 0.4047 0.9779 0.7136 0.3067 0.6546 3.6636 0.3522 0.5108 0.6496 0.4470 0.6484 0.4173
(200,2000) 0.1786 0.4693 0.5181 0.1464 0.3093 0.6508 0.1486 0.2189 0.1695 0.1827 0.3207 0.2165
(400,4000) 0.0885 0.2478 0.3413 0.0807 0.1807 0.5232 0.0779 0.0877 0.0678 0.0924 0.1354 0.1309
EMSPE
a=—0.7
¢ = —0.8 ¢ = —0.5 ¢ = 0.5 ¢ = 0.8
n oy (n, p) M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
1 1.5 (100,1000) 23.7873 6.9571 27.5542 16.4657 11.7806 31.5113 15.0582 15.0576 38.8196 25.7137 19.6362 74.7621
(200,2000) 7.8205 3.4614 8.6765 5.6263 5.1266 5.6158 5.0666 5.5067 6.8292 8.1514 7.6958 9.6657
(400,4000) 3.6674 3.1707 5.3638 2.5397 2.2089 2.2186 2.5357 2.2711 2.0741 3.3660 3.3883 2.6878
2.5 (100,1000) 1.1392 1.2737 0.9707 0.7059 1.0189 1.4391 0.7087 1.1831 1.3936 1.1557 2.1703 1.4029
(200,2000) 0.5040 0.5659 0.4494 0.3767 0.4872 0.9395 0.3763 0.5687 1.0103 0.5651 0.9838 0.9273
(400,4000) 0.2312 0.3013 0.1812 0.2097 0.2644 0.3598 0.2009 0.2995 0.6883 0.2627 0.4622 0.6653
3.5 (100,1000) 0.3593 0.5783 0.6178 0.3092 0.4888 1.0893 0.3473 0.6419 1.1307 0.3789 1.1312 0.9047
(200,2000) 0.1649 0.2953 0.1986 0.1399 0.2400 0.6399 0.1393 0.3347 0.6228 0.1677 0.5503 0.6058
(400,4000) 0.0896 0.1648 0.0807 0.0821 0.1361 0.1279 0.0836 0.1732 0.1582 0.0906 0.2590 0.4024
2 1.5 (100,1000) 20.9301 8.4471 30.1870 16.6701 8.5779 24.6006 16.0150 13.2857 89.8765 23.2190 11.2563 89.8992
(200, 2000) 7.5029 8.2639 19.2839 5.7050 6.3007 6.4398 5.3648 6.7807 10.0675 7.3821 8.2874 12.6981
(400,4000) 3.4153 7.6315 13.2952 2.6129 4.4953 4.5728 2.3785 3.0696 2.1969 3.3456  5.2534 3.8305
2.5 (100,1000) 1.1858 0.8933 1.2094 0.7702 0.8371 6.6903 0.6787 1.3412 7.3425 1.2542 2.0541 1.2137
(200, 2000) 0.5244 0.4930 0.6567 0.3834 0.4255 0.4109 0.3563 0.6768 0.8503 0.6031 0.9921 0.7274
(400,4000) 0.2607 0.3435 0.4033 0.1943 0.2472 0.1933 0.1992 0.3494 0.6045 0.2594 0.5429 0.3693
3.5 (100,1000) 0.3961 0.6252 0.3350 0.3107 0.4713 0.6952 0.3588 0.6951 0.8830 0.4216 1.1544 0.8793
(200, 2000) 0.1686 0.2738 0.1913 0.1481 0.2115 0.3070 0.1424 0.3743 0.7121 0.1792 0.5662 0.5236
(400,4000) 0.0914 0.1361 0.1077 0.0779 0.1021 0.0823 0.0834 0.1936 0.5124 0.0951 0.2682 0.3333




The EMSPEs

TABLE S2
of OGA+HDAIC (M1), Lasso (M2), and ISIS-SCAD (M8) in Ezample 2
with the smallest one marked in blue
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(n,p)

EMSPE

a=20

$=—-08

$=—0.

5

=05

=038

M1 M2 M3

M1 M2

M3

M1

M2

M3

M1 M2

M3

(100, 1000)
(200, 2000)
(400, 4000)

0.3281 0.5610 0.8980
0.1185 0.2842 0.5572
0.0722 0.1429 0.2416

0.2708 0.4023
0.1256 0.2280
0.0644 0.1202

0.9951
0.5828
0.1232

0.2863
0.1403
0.0671

0.4624
0.2233
0.1277

1.0768
0.6203
0.1217

0.4253 0.6136
0.1446 0.2868
0.0757 0.1604

0.9255
0.6510
0.2755

1.5

(100, 1000)
(200, 2000)
(400, 4000)

0.2006 0.2988 0.7511
0.0982 0.1736 0.5659
0.0427 0.0876 0.2202

0.1803 0.2393
0.1085 0.1481
0.0672 0.0806

0.8078
0.3177
0.0835

0.1791
0.1055
0.0648

0.2665
0.1378
0.0831

0.7383
0.3189
0.0911

0.1966 0.3350
0.1204 0.1711
0.0443 0.0955

0.9051
0.5717
0.2491

2.0

(100, 1000)
(200, 2000)
400, 4000)

0.1670 0.2238 0.6848
0.0460 0.1279 0.3439
0.0234 0.0595 0.0781

0.1732 0.1848
0.0880 0.1152
0.0301 0.0553

0.7434
0.4739
0.0551

0.1890
0.0926
0.0322

0.2021
0.1061
0.0597

0.8594
0.4497
0.0587

0.1785 0.2552
0.0564 0.1199
0.0262 0.0677

0.8219
0.3975
0.0788

2 1.0

(

(100, 1000)
(200, 2000)
(400, 4000)

0.4442 0.5674 0.8024
0.1411 0.3065 0.5099
0.0701 0.1570 0.3425

0.2749 0.4263
0.1337 0.2487
0.0603 0.1340

0.8466
0.6774
0.5275

0.3146
0.1443
0.0691

0.4785
0.2432
0.1427

0.8068
0.6935
0.5243

0.4256 0.6297
0.1518 0.3003
0.0716 0.1753

0.8531
0.5392
0.3731

1.5

(100, 1000)
(200, 2000)
(400, 4000)

0.2250 0.3177 0.6630
0.1097 0.1862 0.4902
0.0448 0.0968 0.3387

0.1783 0.2569
0.1093 0.1604
0.0642 0.0878

0.7564
0.6618
0.5137

0.1803
0.1073
0.0660

0.2819
0.1484
0.0911

0.7266
0.6252
0.4982

0.2169 0.3496
0.1323 0.1815
0.0459 0.1041

0.7209
0.5291
0.3426

2.0

(100, 1000)
(200, 2000)
(400, 4000)

0.2086 0.2396 0.5690
0.0564 0.1393 0.4326
0.0235 0.0645 0.3247

0.2028 0.1983
0.0956 0.1246
0.0303 0.0604

0.7341
0.6158
0.5002

0.1985
0.0991
0.0324

0.2179
0.1150
0.0651

0.7381
0.5950
0.5013

0.2121 0.2707
0.0688 0.1307
0.0254 0.0748

0.6386
0.4436
0.3223

(n, p)

EMSPE

a = 0.8

$=-038

=0

5

=05

=038

M1 M2 M3

M1 M2

M3

M1

M2

M3

M1 M2

M3

1 1.0

(100, 1000)
(200, 2000)
(400, 4000)

0.3124 1.0860 0.8638
0.1427 0.5321 0.5437
0.0689 0.2706 0.2814

0.3001 0.7034
0.1356 0.3443
0.0601 0.1653

1.1454
0.5742
0.1070

0.2838
0.1542
0.0654

0.6581
0.2917
0.1440

1.1340
0.6306
0.1408

0.4351 0.9258
0.1492 0.3829
0.0761 0.1730

1.1025
0.4467
0.1083

1.5

(100, 1000)
(200, 2000)
(400, 4000)

0.1847 0.7151 0.7371
0.1152 0.3766 0.5056
0.0401 0.1995 0.2280

0.1750 0.4652
0.1084 0.2355
0.0614 0.1298

0.7263
0.3644
0.0875

0.1997
0.1152
0.0636

0.3776
0.1835
0.1001

0.7978
0.3840
0.0802

0.2518 0.4736
0.1236 0.2320
0.0437 0.1155

0.9103
0.6219
0.2435

2.0

(100, 1000)
(200, 2000)
(400, 4000)

0.1851 0.5590 0.6781
0.0503 0.2772 0.3668
0.0279 0.1569 0.0664

0.2066 0.3691
0.0934 0.1836
0.0299 0.1071

0.8591
0.4480
0.0605

0.2295
0.1010
0.0317

0.2906
0.1450
0.0727

0.9937
0.5301
0.0612

0.2333 0.3385
0.0651 0.1657
0.0241 0.0783

0.9691
0.4763
0.1161

2 1.0

(100, 1000)
(200, 2000)
(400, 4000)

0.4650 1.1777 0.8390
0.1528 0.5744 0.4820
0.0705 0.2724 0.3573

0.3184 0.7600
0.1444 0.3701
0.0583 0.1747

5.6650
0.6382
0.5431

0.3166
0.1654
0.0634

0.7468
0.3310
0.1589

0.9741
0.6212
0.3118

0.5277 0.6918
0.1599 0.2864
0.0710 0.1825

0.5469
0.1612
0.0705

1.5

(100, 1000)
(200, 2000)
(400, 4000)

0.2424 0.7881 0.7280
0.1277 0.4061 0.4740
0.0405 0.2071 0.3364

0.1678 0.5070
0.1122 0.2488
0.0584 0.1368

0.7480
0.6323
0.4770

0.1861
0.1192
0.0639

0.4234
0.2044
0.1080

0.8527
0.6216
0.5334

0.2502 0.4947
0.1221 0.2320
0.0486 0.1001

0.7544
0.4798
0.1590

2.0

(100, 1000)
(200, 2000)
(400, 4000)

0.2275 0.6298 0.6724
0.0680 0.3139 0.4204
0.0261 0.1715 0.2989

0.2149 0.4086
0.0936 0.1984
0.0307 0.1145

0.7517
0.6189
0.4921

0.2360
0.1032
0.0304

0.3154
0.1584
0.0786

0.8320
0.6089
0.4835

0.2691 0.3613
0.0828 0.1868
0.0225 0.0847

0.7145
0.4681
0.3055

(n, p)

EMSPE

a = —0.7

$=—-08

$=—-0

5

=05

$ =038

M1 M2 M3

M1 M2

M3

M1

M2

M3

M1 M2

M3

(100, 1000)
(200, 2000)
(400, 4000)

0.3923 0.8555 0.8500
0.1470 0.3876 0.5197
0.0695 0.1696 0.1920

0.2603 0.6613
0.1357 0.3111
0.0638 0.1292

1.0998
0.6854
0.1274

0.2793
0.1433
0.0624

0.7804
0.3805
0.1775

1.0841
0.7145
0.1580

0.3710 1.3601
0.1443 0.6393
0.0718 0.2828

1.1162
0.6618
0.2523

1.5

(100, 1000)
(200, 2000)
(400, 4000)

0.2061 0.4892 0.8020
0.1180 0.2392 0.5618
0.0437 0.1074 0.2071

0.1837 0.4066
0.1150 0.1950
0.0615 0.0927

0.7410
0.3468
0.0847

0.1795
0.1091
0.0640

0.5265
0.2671
0.1331

0.7851
0.3806
0.0850

0.2176 0.9117
0.1230 0.4565
0.0449 0.2042

0.8910
0.6260
0.2539

2.0

(100, 1000)
(200, 2000)
(400, 4000)

0.2111 0.3675 0.7299
0.0610 0.1681 0.4017
0.0264 0.0766 0.0747

0.2275 0.3222
0.0946 0.1482
0.0295 0.0717

0.9492
0.4252
0.0751

0.2056
0.0941
0.0300

0.4218
0.2137
0.1053

0.9569
0.4932
0.0780

0.2017 0.6927
0.0603 0.3432
0.0267 0.1609

0.8491
0.3904
0.0861

2 1.0

(100, 1000)
(200, 2000)
(400, 4000)

0.4524 0.6927 0.5352
0.1606 0.3163 0.2322
0.0762 0.1887 0.0775

0.3052 0.7218
0.1424 0.3474
0.0606 0.1523

0.8919
0.6142
0.5302

0.2963
0.1454
0.0624

0.8245
0.3932
0.1876

0.9141
0.6633
0.5374

0.4763 1.4264
0.1568 0.6549
0.0697 0.2979

0.9073
0.5642
0.3853

1.5

(100, 1000)
(200, 2000)
(400, 4000)

0.2795 0.5065 0.6255
0.1383 0.2539 0.4527
0.0452 0.1085 0.2962

0.1729 0.4228
0.1152 0.2104
0.0599 0.1019

0.7275
0.6273
0.4993

0.1834
0.1116
0.0636

0.5488
0.2722
0.1383

0.8646
0.5771
0.5239

0.2494 0.9429
0.1238 0.4693
0.0496 0.2163

0.7724
0.5333
0.3605

2.0

(100, 1000)
(200, 2000)
(400, 4000)

0.2500 0.3842 0.6739
0.0723 0.1852 0.4351
0.0274 0.0853 0.3129

0.2251 0.3318
0.0984 0.1588
0.0319 0.0772

0.7768
0.5822
0.4474

0.2218
0.1001
0.0296

0.4457
0.2263
0.1108

0.8517
0.5809
0.4816

0.2295 0.7436
0.0739 0.3772
0.0248 0.1747

0.6365
0.4849
0.2951
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TABLE S3

The EMSPEs of OGA+HDAIC (M1), Lasso (M2), and ISIS-SCAD (M3) in Ezample 3
with the smallest one marked in blue

EMSPE

a=0

$=-08

$=-05

¢ =0.5

¢ =0.8

M1 M2 M3

M1 M2

M3

M1 M2

M3

M1

M2 M3

n__ (n,p)
1 (100, 1000) 2.1666 2.3035 9.7631
0.3773

0.0581

200, 2000) 0.0585 0.7577

0.1702 1.0979
0.0908 0.4943
0.0329 0.2337

0.7898
0.2118
0.0283

0.1913 1.2168
0.0699 0.4845
0.0314 0.2240

0.7542
0.2231
0.0227

1.1725
0.0565
0.0268

2.7214
0.7205
0.2920

7.8962
0.3690
0.1071

2 (100, 1000) 2.2190 5.3889
200, 2000) 0.0621 1.6642

400, 4000) 0.0288 0.5757

15.0595
0.4467

(
(
(400, 4000) 0.0310 0.2657
(
(
( 0.3323

0.1528 2.3749
0.0858 1.1228
0.0335 0.5277

0.8041
0.5852
0.4776

0.1609 2.5926
0.0640 1.0948
0.0332 0.5602

0.7337
0.5789
0.5140

1.3191
0.0522
0.0267

5.6142
1.6282
0.6405

9.6182
0.5101
0.3429

EMSPE

a=0.8

$=-08

$=-05

$=05

$=038

M1 M2 M3

M1 M2

M3

M1 M2

M3

M1

M2 M3

n__ (n,p)
1 (100, 1000) 0.9335 3.7597 14.6948
200, 2000) 0.0598 1.2985 0.3585
400,4000) 0.0303 0.4977 0.0693

0.1845 1.6253
0.0750 0.6996
0.0374 0.3174

0.9614
0.2331
0.0230

0.2225 1.2694
0.0807 0.4857
0.0362 0.2508

2.1679
0.2549
0.0281

2.4628
0.0620
0.0309

2.5611 16.1690
0.7099 0.3885
0.2997 0.0671

200,2000) 0.0569 2.4468 0.4382

(
(
(
2 (100,1000) 1.4416 7.6038 42.5595
(
(400, 4000) 0.0266 0.9251 0.3533

0.1753 3.1684 1
0.0726 1.3914
0.0397 0.6386

5.8637
0.5536
0.4703

0.1792 2.6573
0.0806 1.0938
0.0398 0.5764

2.6631
0.6285
0.4867

1.1706
0.0625
0.0308

5.7290 18.0536
1.6736 0.3374
0.7217 0.0824

EMSPE

a=—0.7

$=-038

$=-05

$=05

$=038

M1 M2 M3

M1 M2

M3

M1 M2

M3

M1

M2 M3

n_ (n,p)
1 (100, 1000) 1.5272 2.6511 13.7363
200, 2000) 0.0651 0.7409 0.3473
400, 4000) 0.0316 0.2900 0.0866

0.1978 1.2996
0.0772 0.4967
0.0383 0.2411

1.7059
0.2240
0.0288

0.1878 1.5092
0.0834 0.6907
0.0397 0.3484

1.8538
0.2669
0.0394

1.5593
0.0592
0.0301

3.3836 13.1523
1.3005 0.3997
0.6243 0.0812

200, 2000) 0.0613 1.7077 0.4350

(
(
(
2 (100, 1000) 1.9373 6.3218 16.9112
(
(400, 4000) 0.0300 0.6915 0.2209

0.1730 2.7961
0.0709 1.1145
0.0421 0.5516

2.1322
0.5607
0.5122

0.1801 2.9404
0.0787 1.3475
0.0397 0.6976

12.9745
0.6728
0.5253

1.9536
0.0568
0.0306

6.8037 35.9484
2.3924 0.5076
1.0985 0.3441

S3.2. Proof of (S3.5). Let A(z) =Y o, a;z" # 0forall |z| < 1, where
ap =1 and )2 |a;| < co. Denote by B the backshift operator. In this
section, (S3.5) is proved under the ARX model,

(S3.7)

P
AB)y: =Y aze + e,

j=1
which includes (S3.1) as a special case. We also relax (53.2) to

(83.8) v =" by
=0
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where ¢g =1 and Y ,° |¢y| < co. On the other hand, the assumptions
on &4, dij, wy and € remain unchanged. In view of (S3.3) and (S3.8), it
is easy to show that

2 00 2 . )
(S3.9) E(xgi)xgj)) _ { " Dm0 9 . Z # ‘7.,
M), ¢ 0=,
and
— 2 2 . .
(53.10) corr(z®, 200) = { 1 1
i=7.

Moreover, straightforward calculations give for ¢ > 0,
(8311) E(yt—ixtj) = Ozj‘/;' -+ Gi)

where V; = Y00 csdspi and Gy = n? (D1 ou) Vi with ¢y = > 7 ds—iby
and Y po bpzF = ¢71(2). Let x¢ = (Yi-1s- -+ Ytom, xgl), o ,xi”))T and
3 = E(x;x, ), where m is any positive integer. Then,

)T 35 3wt SR |
S3.12 Y07 = 11 122499 221 Omscp )
( ) @@ ( Opxm 99
where
1 SIS e
S3.13 — [ fmxm 122499 ’
( ) Q <0pxm Ly )

0, denotes the r x s matrix of zeros, I,, denotes the r-dimensional
identity matrix, 31; = E(y,_1(m)y,_,(m)) with y,(m) = (ys, - -, Ys—ms1) |,
i = By (m)x],,) with x/, = (z”,...,2"), Sy = =], and

t,ex }
Y = E(X¢.e0X/,, ). Since {¢} is independent of {9 forall 1 < j < p,
it follows that

<S314) 211 — 2122521221 2 E('rt,l(m)rll(m)),

with 7, (m) = (¢~ (B)ei_1, ..., ¢ 1 (B)€_m). Moreover, one has
(S3.15) )\mm(E(rt,l(m)rll(m))) > 1,

and

<8316> )\min(222) Z ﬂ27
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for some positive constants 17, and 7,. Combining (53.12)-(S3.16) gives

(S3.17) Auin(2) 2 17,77, M00x(Q T Q).

Let v = (v],vy)", where v; € R™ vy € RP and |lv|| = 1. By
(S3.9), (S3.10), (S3.11), (S3.13) and some algebraic manipulations, it
holds that

Qu — (Vl — 21222_211/2)

vy

(53.18) 21 = (aVi+1Gi=1,...,m),
o0 p
1 S5 (Vi + 1G] < (3 ) (" ad) 2Vl + o(p2),

=0 Jj=1

where a = (ay,...,a,)" and 1 = (1,...,1)". The first and the third
equations of (S3.18) and >°7" | V2 <m(3°72) #7) doacy €2 further imply

s=0 s

that there exists 0 < C' < oo such that for any ||v|| = 1,

o) P o)
IQuI* <2+4m(> _¢}) "> ol
(S?)lg) 1=0 j=1 s=0

+o(p~) < C.
By (83.17) and (S3.19), it holds that
Amin(2) > 1,7,071,
which, together with (S3.9) and

B2 = {>_ ot + ()i} 3 e + B0 (Blerr)?

< for some 0 < C < o0,
yields the desired conclusion (S3.5). O
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