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Abstract
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high-dimensional dispersion function accounting for exogenous heteroscedasticity. By
making use of the orthogonal greedy algorithm and the high-dimensional information
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performance of the proposed procedure is also illustrated via simulations and real data
analysis.
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1 Introduction

Consider a multiple-input transfer function model,

yt = C +
k∑
j=1

wj(B)

δj(B)
ξt,j + ηt, t = 1, . . . , n, (1)

where n is the sample size, C is a constant, {ξt,j}, j = 1, . . . , k, are input series (or exogenous

variables), {yt} is the output series, {ηt} is a mean-zero stationary noise series independent

of {ξt,j}, the polynomials in B, δj(B) = 1−δ1,jB−· · ·−δrj ,jBrj and wj(B) = w0,j−w1,jB−
· · · −wsj ,jBsj , are of degrees rj and sj , respectively, and B denotes the backshift operator.

Model (1) encompasses not only the classical regression and time series models, but also

the celebrated intervention model proposed by Box and Tiao (1975); see Tsay (1984) and

Tiao (1985) for a more detailed discussion. When δj(z) 6= 0 for all |z| ≤ 1, wj(z)/δj(z) can

be approximated by
∑pj

l=0 cl,jz
l, where pj is a sufficiently large integer and {cl,j} satisfies∑∞

l=0 cl,jz
l = wj(z)/δj(z). Therefore, model (1) can be approximated by

yt = C +
k∑
j=1

pj∑
l=0

cl,jξt−l,j + ηt, (2)

which, in turn, is a special case of the linear regression model,

yt = β0 +

pL∑
j=1

βjxtj + ηt, (3)

where pL, corresponding to
∑k

j=1(pj +1) in model (2), can be large compared to n, xtj , j =

1, . . . , pL, are exogenous variables, and βj , 0 ≤ j ≤ pL, are regression coefficients. In the case

of pL � n, there are computational and statistical difficulties in estimating the regression

coefficients by standard regression methods. In particular, it is no longer feasible to use the

classical model selection techniques to estimate NL,n = {1 ≤ j ≤ pL : βj 6= 0}, the set of

relevant variables. However, by imposing sparsity conditions on βj , eigenvalue conditions

on the covariance (correlation) matrix of xtj , and distributional conditions on ηt or xtj , it

has been shown that NL,n can still be consistently estimated either using penalized least

squares methods (see, e.g., Basu and Michailidis, 2015; Wu and Wu, 2016) or greedy forward

selection algorithms (see, e.g., Ing and Lai, 2011; Hsu et al., 2019; Ing, 2019).
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Fig. 1. The left panel is the time plot of the monthly growth rate of the semiconductor

worldwide market billings defined in (36), and the right one is the time plot of the estimated

residuals, η̂t, obtained from OGA+HDIC+Trim of Ing and Lai (2011).

On the other hand, model (3), assuming homogenous errors, can be restrictive in terms

of economic applications. To illustrate the need to consider heteroscedastic errors, we

provide a preliminary analysis of the monthly growth rate of the semiconductor industry

based on model (3). In our analysis, the output variable, {yt}, is the monthly growth rate

of the semiconductor world market billings from the dataset of the World Semiconductor

Trade Statistics (see (36)) and the sample size is n = 240. The input variables include quite

a large number of macroeconomic, financial, and semiconductor variables and their lagged

values, leading to pL = 1584 � n. The time plot of {yt} given in the left panel of Fig. 1

offers a clear indication of heteroscedasticity. Using the high-dimensional model selection

method suggested in Ing and Lai (2011), we select and estimate the non-zero βj ; the time

plot of the resultant residuals, {η̂t}, is provided in the right panel of Fig. 1, revealing that

the heterogeneity in variance of {yt} carries over to that of {η̂t}. Since the heteroscedastic

variance may result from the exogenous variables, we are led to consider

ηt = σtεt and σ2t = exp

α0 +

pD∑
j=1

αjztj

 , (4)

in which ztj , 1 ≤ j ≤ pD, denote the exogenous variables that may influence the variance of

ηt, pD is allowed to be larger than n, and αj , 0 ≤ j ≤ pD, are unknown coefficients. In fact,

in the case of independent observations, model (3) with the error term satisfying (4) has
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been used in several studies on expression quantitative trait loci (eQTLs) and production

engineering where heteroscedasticity is present in the data; see Daye et al. (2012) and Chien

et al. (2016). The {εt} in (4), playing a role similar to the stationary error in (1), is modeled

by

εt =
∞∑
j=0

ψjwt−j , (5)

where {wt} is a sequence of i.i.d. random variables independent of {xt = (xt1, . . . xtpL)>}
and {zt = (zt1, . . . ztpD)>}, E(w1) = 0, E(w2

1) = 1, ψ0 = 1, and {ψj} obeys either

∞∑
j=0

|ψj | <∞ and

∞∑
j=0

ψjz
j 6= 0, |z| ≤ 1, (6)

or

ψj = O(j−1+d), for some 0 < d < 1/2. (7)

Condition (6) implies that {εt} is a short-memory process, whereas (7) allows {εt} to be

long-memory.

An alternative way to model the monthly growth rate of the semiconductor world market

billings is to include the past values of yt as explanatory variables, that is, yt−j , 1 ≤ j ≤ q,
are included in xt, for some prescribed positive integer q. Since endogenous variables have

entered the regression function, β0 +
∑pL

j=1 βjxtj , instead of assuming that {εt} in (4) is a

short- or long-memory process, we now postulate that

{εt,Ft} is a martingale difference sequence, (8)

where {Ft} is an increasing sequence of σ-fields and E(ε2t ) = 1 for all t. While (8) implies

that {εt} is no longer serially correlated, it permits {εt} to have the ARCH/GARCH effects.

In addition, we assume that

(xt, zt) is Ft−1-measurable and {zt} is independent of {εt}. (9)

When ND,n = {1 ≤ j ≤ pD : αj 6= 0} is an empty set (or σ2t is a constant), these

specifications include as the special case the high-dimensional autoregressive exogenous
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(ARX) model with GARCH/ARCH errors; see Han and Tsay (2019). WhenND,n 6= ∅, these

specifications allow heteroscedasticity of ηt to arise either from the exogenous variables zt or

from the ARCH/GARCH effects of εt. Since the assumptions considered in this paragraph

are somewhat different from those in the previous one, in the sequel, we refer to

model (3) with xt, ηt, zt, and εt satisfying (4), (5), and (6) (or (7)) as Model I,

model (3) with xt, ηt, zt, and εt satisfying (4), (8), and (9) as Model II.

Our goal is to consistently estimate the relevant sets NL,n and ND,n in the regression

function and the dispersion function, respectively, when Model I or II holds true, noting that

the dispersion function is defined by σ2t = exp{α0 +
∑pD

j=1 αjztj}. As mentioned previously,

when it is known that σ2t is a constant (or ND,n is an empty set), the problem of estimating

NL,n has been tackled in the literature. More specifically, Basu and Michailidis (2015)

and Wu and Wu (2016) show that NL,n can be consistently estimated via Lasso if {xt}
is independent of {ηt} = {εt} and {εt} is a short-memory process. In addition, Han and

Tsay (2019) show that the same property holds for Lasso in high-dimensional ARX models

with GARCH errors. Instead of using Lasso, Hsu et al. (2019) propose identifying NL,n in

high-dimensional ARX models using the orthogonal greedy algorithm (OGA, Temlyakov,

2000), together with the high-dimensional information criterion (HDIC, Ing and Lai, 2011)

and Trim (a backward elimination method based on HDIC). Their method, referred to

as the OGA+HDIC+Trim, was originally introduced by Ing and Lai (2011), who establish

OGA+HDIC+Trim’s selection consistency in high-dimensional regression models with i.i.d.

observations. Hsu et al. (2019) show that OGA+HDIC+Trim’s consistency carries over to

high-dimensional ARX models. However, when ND,n is non-empty, to the best of our

knowledge, no consistent estimate of ND,n or NL,n is available in the literature.

In this paper, a variable selection method intended to fill this gap is proposed. This

method, modified from OGA+HDIC+Trim, is called two-stage OGA+HDIC+Trim (Twohit).

Twohit contains two parts. In the first part, OGA+HDIC+Trim is used to select NL,n by

ignoring the heteroscedasticity of ηt. In the second part, a natural log transformation is

first taken for the least squares residuals of the regression function selected in the first part

(subject to left truncation). Then, the transformed data is modeled by a linear combination

of the dispersion variables (see (17)), and OGA+HDIC+Trim is used again to select ND,n.

The key contribution of this work is to show that Twohit consistently estimates ND,n and
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NL,n, regardless of whether Model I or II is assumed. The rest of the paper is organized

as follows. The details of Twohit are described in Section 2. The consistency of Twoit

in estimating NL,n and ND,n is reported in Section 3.1 and Section 3.2, respectively. In

Section 4, simulation results are given to corroborate our theoretical findings. In Section

5, we analyze the aforementioned monthly growth rate data using Twohit. We conclude in

Section 6. The proofs of the results in Section 3.1 are provided in the Appendix, whereas the

proofs of the results in Section 3.2, along with additional details on our real data analysis,

are deferred to the supplemental material.

We end this section with some notation used throughout the paper. For vector a, ‖a‖1
and ‖a‖2 denote its L1-norm and L2-norm, respectively. For matrix A, ‖A‖2 and λmin(A)

denote its spectral norm and minimum eigenvalue, respectively. The cardinality of set A

is denoted by ](A). In addition, for sequences of positive numbers {an} and {bn}, an � bn
means C−11 ≤ bn/an ≤ C1 for all large n, where C1 is some positive constant.

2 Methodology

Ing and Lai (2011) consider high-dimensional regression models with i.i.d. observations,

and propose using OGA+HDIC+Trim to select input variables. This method consists of (a)

OGA: an iterative forward inclusion of input variables in a “greedy” manner, (b) HDIC:

a stopping rule to terminate forward inclusion of variables, and (c) Trim: a backward

elimination of variables according to HDIC. Ing and Lai (2011) establish the selection

consistency of OGA+HDIC+Trim, which is subsequently generalized by Hsu et al. (2019)

to high-dimensional ARX models.

By ignoring the heteroscedasticity of ηt, Twohit begins with choosing NL,n through

OGA+HDIC+Trim. Define

y = (y1 − ȳ, . . . , yn − ȳ)>, Xj = (x1j − x̄j , . . . , xnj − x̄j)>, j = 1, . . . , pL, (10)

and

σ̂2L,J = n−1y>(I −HL,J)y,

where (yi,xi, zi), i = 1, . . . , n are data available up to time n, ȳ = n−1
∑n

t=1 yt, x̄j =

n−1
∑n

t=1 xtj , J ⊆ {1, . . . , pL}, I is the n × n identity matrix, and HL,J is the orthogonal
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projection matrix onto the subspace spanned by {Xj : j ∈ J}. The method is described in

detail as follows.

Algorithm 1 : OGA+HDIC+Trim

1. (OGA). Let KL,n be an upper bound for the number of iterations to be specified in Sections 3.1 and

4.1. Initialize the algorithm by setting RL,0 = y and ĴL,0 = ∅. For i = 1 to KL,n, define

ĵL,i = arg max
1≤j≤pL

|R>L,i−1Xj |
‖Xj‖2

,

and update ĴL,i−1 and RL,i−1 by ĴL,i = ĴL,i−1

⋃
{ĵL,i} and RL,i = (I −HL,ĴL,i

)y, respectively.

2. (HDIC). Set

k̂L,n = argmin1≤k≤KL,n
HDIC(ĴL,k),

where for J ⊂ {1, . . . , pL},

HDIC(J) = n log σ̂2
L,J + ](J)GL(pL, n), (11)

and GL(pL, n) is a penalty term to be specified in Sections 3.1 and 4.1.

3. (Trim). Output

N̂L,n =

{ĵL,l : HDIC(ĴL,k̂L,n
− {ĵL,l}) > HDIC(ĴL,k̂L,n

), 1 ≤ l ≤ k̂L,n}, if k̂L,n > 1;

{ĵL,1}, if k̂L,n = 1.

It is worth mentioning that the major difference between HDIC and conventional con-

sistent information criteria such BIC and HQ is that the penalty terms in the latter criteria

depend only on the sample size n, whereas the penalty term GL(pL, n) in the former de-

pends not only on n but also on the number of candidate variables pL, and hence can be

much larger than those in BIC and HQ when pL � n; see Section 3.1 for details. The larger

penalty term in HDIC is used to adjust for potential spuriousness of the variables greedily

chosen by OGA from among pL candidate variables. Although OGA+HDIC+Trim selects

input variables without taking the heteroscedasticity of ηt = σtεt into account, we show in

Section 3.1 that

lim
n→∞

P (N̂L,n = NL,n) = 1 (12)
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still follows if, among other assumptions, σt has finite higher-order moments (see Assump-

tion (A1)) and GL(pL, n) diverges to ∞ at a suitable rate.

The second part of Twohit is to select dispersion variables using OGAD+HDICD+TrimD,

where OGAD, HDICD, and TrimD, respectively, are counterparts to OGA, HDIC, and Trim.

Define

η̃2t = max{η̂2t , cn}, rt = log η̃2t , (13)

r = (r1 − r̄, . . . , rn − r̄)>,Zj = (z1j − z̄j , . . . , znj − z̄j)>, j = 1, . . . , pD, (14)

and

σ̂2D,J = n−1r>(I −HD,J)r,

where (η̂1, . . . , η̂n)> = (I −HL,N̂L,n
)y are the ordinary least squares residuals of the model

selected by OGA+HDIC+Trim, cn is a small positive constant, r̄ = n−1
∑n

t=1 rt, z̄j =

n−1
∑n

t=1 ztj , J ⊆ {1, . . . , pD}, and HD,J is the orthogonal projection matrix onto the

subspace spanned by {Zj : j ∈ J}. OGAD+HDICD+TrimD is described as follows.

8



Algorithm 2 : OGAD+HDICD+TrimD

1. (OGAD). Let KD,n be an upper bound for the number of iterations to be specified in Sections 3.2

and 4.1. Initialize the algorithm by setting RD,0 = r and ĴD,0 = ∅. For i = 1 to KD,n, define

ĵD,i = arg max
1≤j≤pD

|R>D,i−1Zj |
‖Zj‖2

,

and update ĴD,i−1 and RD,i−1 by ĴD,i = ĴD,i−1

⋃
{ĵD,i} and RD,i = (I −HD,ĴD,i

)r, respectively.

(Note that the choice of cn in η̃2t will be discussed in Sections 3.2 and 4.1).

2. (HDICD). Set

k̂D,n = argmin1≤k≤KD,n
HDICD(ĴD,k),

where

HDICD(J) = n log σ̂2
D,J + ](J)GD(pD, n), (15)

and GD(pD, n) is a penalty term to be specified in Sections 3.2 and 4.1.

3. (TrimD). Output

N̂D,n =

{ĵD,l : HDICD(ĴD,k̂D,n
− {ĵD,l}) > HDICD(ĴD,k̂D,n

), 1 ≤ l ≤ k̂D,n}, if k̂D,n > 1;

{ĵD,1}, if k̂D,n = 1.
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We now briefly explain why r is used in OGAD+HDICD+TrimD. In view of (4), it is

clear that

log(η2t ) = α̃0 +

pD∑
j=1

αjztj + εt, t = 1, 2, . . . , n, (16)

where α̃0 = α0 + E(log ε2t ) and εt = log ε2t − E(log ε2t ). While ηt on the left-hand side of

(16) is unobservable, it can be estimated by η̂t. However, log η̂2t may face numerical and

statistical difficulties when η̂t is very close to 0. We therefore adopt a left-truncated version,

η̃2t , of η̂2t to estimate η2t , and reexpress (16) as

rt = α̃0 +

pD∑
j=1

αjztj + εt + Θt,n, t = 1, 2, . . . , n, (17)

where Θt,n = log(η̃2t )− log(η2t ). When cn in (13) (GD(pD, n) in (15)) converges (diverges) to

0 (∞) at a suitable rate and the distributions of η2t satisfy some smoothness conditions at the

origin (see (30)), it is argued in Section 3.2 that the impact of Θt,n vanishes asymptotically,

and

lim
n→∞

P (N̂D,n = ND,n) = 1. (18)

3 Theoretical Properties

This section aims to develop the selection consistency of Twohit when pL and pD are allowed

to be much larger than n. In particular, the selection consistency of OGA+HDIC+Trim

in selecting NL,n and that of OGAD+HDICD+TrimD in selecting ND,n is established in

Sections 3.1 and 3.2, respectively.

3.1 Consistency of OGA+HDIC+Trim in Selecting NL,n

In this section, we assume that β0 = 0 and {xt} is a covariance stationary time series

satisfying E(xt) = 0 and E(x2tj) = 1 for all j. We only show that OGA+HDIC+Trim

is consistent when ȳ and x̄j in (10) are set to 0. However, our argument can be easily

generalized to prove the consistency of OGA+HDIC+Trim in situations where β0, E(xt),

or E(x2tj) is unknown.

10



Let x = (x1, . . . , xpL)> be independent of and have the same covariance structure as

{xt}, y(x) = x>β, and ΓL(J) = E(xt(J)x>t (J)), where β = (β1, . . . , βpL)> and xt(J) =

(xtj , j ∈ J)>. Recall that ĴL,m is the index set determined by OGA at the m-th iteration.

We start by investigating the convergence rate of

En[(y(x)− ŷĴL,m
(x))2],

which plays a crucial role in proving (12). Here, ŷJ(x) = x>(J)β̂(J), x(J) = (xi, i ∈ J)>,

β̂(J) = (
∑n

t=1 xt(J)x>t (J))−1
∑n

t=1 xt(J)yt, and

En(·) = E(·|y1,x1, z1, . . . , yn,xn, zn).

The following assumptions are needed in our analysis.

(A1) (a) For Model I, there exists q1 ≥ 2 such that E|w1|max{q1,4} <∞, sup−∞<t<∞E|σt|2q1 <
∞, and max1≤t≤n,1≤i≤pL E|xti|2q1 = O(1).

(b) For Model II, (i) there exists q1 ≥ 2 such that sup−∞<t<∞E|εt|3q1 < ∞,

sup−∞<t<∞E|σt|3q1 < ∞, and max1≤t≤n,1≤i≤pL E|xti|3q1 = O(1); (ii) ε2t is a

stationary process satisfying limk→∞ cov(ε21, ε
2
1+k) = 0.

(A2) For some q2 ≥ 2,

max
1≤i,j≤pL

E

∣∣∣∣∣n−1/2
n∑
t=1

(xtixtj − E(xtixtj))

∣∣∣∣∣
2q2

= O(1). (19)

(A3) For some 0 < q < min{q1, q2}, p
2/q

L /n1−2d, where 0 < d < 1/2 is defined in (7) and

d = 0 if (6) or (8) follows.

(A4) supn≥1
∑pL

j=1 |βj | <∞.

(A5) There are some δL > 0 and ML > 0 such that for all larger n,

min
1≤](J)≤KL,n

λmin(ΓL(J)) > δL, (20)

max
1≤](J)≤KL,n,i/∈J

‖Γ−1L (J)gL,i(J)‖1 ≤ML,

where gL,i(J) = E(xt(J)xti).

11



Some comments are in order.

(1). Assumptions (A1)(a) (or (A1)(b)(i)) and (A2)–(A5) resemble (F1)–(F5) of Hsu

et al. (2019), which are made to ensure that OGA has the desired asymptotic property

in high-dimensional time series models with homogeneous errors. In particular, (A2),

(A4), and (A5) are almost the same as (F1), (F4), and (F5) of Hsu et al. (2019),

respectively. Condition (A1)(a) (or (A1)(b)(i)) is the key assumption leading to

max
1≤i≤pL

∣∣∣∣∣ 1n
n∑
t=1

xtiηt

∣∣∣∣∣ = Op(n
−1/2+dp

1/q1
L );

see Lemma A.1 in the Appendix for details. Hence, (A1)(a) (or (A1)(b)(i)) is sim-

ilar in spirit to (F2) of Hsu et al. (2019), which imposes a moment condition on

n−1
∑n

t=1 xtiεt.

(2). In some cases, assumptions like

max
1≤t≤n,1≤i≤pL

E|xti|2q = O(1), q ≥ 2, (21)

used in (A1) can imply that (19) in (A2) holds with q2 = q/2. For example, assume

that {xti} admits an infinite moving-average representation

xti =
∞∑
j=0

bj(i)νt−j(i), (22)

where {νt(i)} is a martingale difference sequence with respect to an increasing se-

quence of σ-fields {Gt} and max1≤i≤pL
∑∞

j=0 |(j + 1)bj(i)| < C0 for some positive

constant C0. Also assume

ν2t (i)− E(ν2t (i)) =
∞∑
j=0

θj(i)ηt−j(i), (23)

where {ηt(i),Gt} is a martingale difference sequence and max1≤i≤pL
∑∞

j=0 |θj(i)| +
max1≤i≤pL n

∑
j≥n θ

2
j (i) < C∗0 for some positive constant C∗0 . Then, by Burkholder’s

inequality, (21)–(23), and some algebraic manipulations, it can be shown that (A2)

holds with q2 = q/2. Note that (22) and (23) are satisfied not only by linear pro-

cesses with i.i.d. innovations, but also by linear processes with stationary GARCH

innovations.
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(3). To illustrate the flexibility of (A2), we consider the following high-dimensional

ARX model,

yt =
k∑
j=1

φjyt−j +

p∑
v=1

rv∑
j=0

η
(v)
j s

(v)
t−j + σtεt, 1, . . . , n,

where p is a positive integer which can be larger than n, k and rv, 1 ≤ v ≤ p, are

positive integers bounded from above, 1 −
∑k

j=1 φjz
j 6= 0 for |z| ≤ 1,

∑k
j=1 |φj | +∑p

v=1

∑rv
j=0 |η

(v)
j | < ∞, s

(v)
t =

∑∞
j=0 ψ

(v)
j δ

(v)
t−j with

∑∞
j=0(ψ

(v)
j )2 < ∞ and δt(p) =

(δ
(1)
t , . . . , δ

(p)
t )> being independent random vectors satisfying E

(
δt(p)δ

>
t (p)

)
= Σp

(a p-dimensional positive definite matrix) and E(δt(p)) = 0, {εt} is a stationary

GARCH(r1, r2) process independent of {δt(p)}, with 1 ≤ r1 + r2 < ∞, and {σt}
is a sequence of positive random variables independent of {εt}. It is clear that the

input vectors at time t is xt = (yt−1, . . . , yt−k, s
(1)
t , . . . s

(1)
t−r1 , . . . , s

(p)
t , . . . , s

(p)
t−rp)> and

the number of input variables is pL = k +
∑p

v=1(rv + 1). Let γi(v), i = 1, 2, . . ., be

the autocovariance function of {s(v)t }. Then by the First Moment Bound Theorem

of Findley and Wei (1993), the Burkholder inequality, and some algebraic manipula-

tions, it can be shown that (A2) holds true, provided max1≤v≤p
∑∞

i=−∞ γ
2
i (v) < C1,

sup−∞<t<∞max1≤v≤pE|δ(v)t |4q2 + E|εt|4q2 < C2, and

σ2t = exp

α0 +

∞∑
j=0

w>j ηt−j

 , (24)

where C1 and C2 are some positive constants, {ηt} is a sequence of i.i.d. pD-

dimensional sub-Gaussian random vectors in which pD can be larger than n, and

wj are pD-dimensional coefficient vectors satisfying
∑∞

j=0 ‖wj‖1 <∞.

(4). By (A3), pL is allowed to be larger than n if min{q1, q2} > 2/(1−2d). This implies

that the stronger the dependence of εt, the more stringent moment assumptions are

needed for OGA to handle the case of pL > n. Note that (A3) is more restrictive than

(F3) of Hsu et al. (2019), which is (A3) with d = 0. However, if we assume that σ2t
is a constant and {εt} is a stationary fractionally integrated process of order d (i.e.,

(1 − B)dεt = wt, where B is a back-shift operator) with 0 ≤ d < 1/4, then (A3) can

be weakened to the latter one.
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(5). Conditions (A4) and (A5) introduce mild restrictions on the regression coeffi-

cients and the correlations among regressors. They are frequently made to analyze

the performance of OGA in high-dimensional regression or time series models with

homogeneous errors; see Ing and Lai (2011), Hsu et al. (2019), and Ing (2019).

(6). Finally, we remark that (A1)(b)(ii) is satisfied by a broad class conditional

heteroscedastic time series. In particular, it is shown in Proposition 3.1 of Giraitis et

al. (2000) that (A1)(b)(ii) is fulfilled by the stationary ARCH(∞) process,

ε2t = ρtξt, ρt = b0 +
∞∑
j=1

bjε
2
t−j , (25)

where ξt are i.i.d. nonnegative random variables satisfying E(ξ20) = 1 and bj are

nonnegative numbers obeying
∑∞

j=1 bj < 1.

Theorem 1 Assume that Model I (Model II), (A1)(a) ((A1)(b)(i)), and (A2)–(A5) hold.

Suppose

KL,n � n1/2−dp
−1/q
L . (26)

Then

max
1≤m≤KL,n

En[(y(x)− ŷĴL,m
(x))2]

m−1 +mp
2/q

L /n1−2d
= Op(1). (27)

Theorem 1 reveals that En[(y(x) − ŷĴL,m
(x))2] is uniformly bounded by the sum of two

terms, m−1 and mp
2/q

L /n1−2d. The first term, m−1, caused by approximating the regression

function using OGA, decreases as the number of iterations increases. The second term,

mp
2/q

L /n1−2d, is associated with the estimation error. While this term decreases with the

sample size, it increases with the numbers of OGA iterations as well as the candidate

variables. It also becomes larger as d increases or q decreases. When m grows to ∞ at

a rate not exceeding n1/2−dp
−1/q
L , the aforementioned sum converges to 0, suggesting that

ŷĴL,m
(x) provides a good approximation of y(x). This feature, together with the following

‘beta-min’ condition (see (A6)) and an assumption on the penalty term, GL(pL, n), of HDIC

(see (29)), ensures the selection consistency of OGA+HDIC+Trim, as detailed in Theorem

2.
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(A6) There exists γL satisfying 0 ≤ γL < 1/2− d and nγL = o(n1/2−d/p
1/q

L ) such that

lim inf
n→∞

nγL min
j∈NL,n

β2j > 0,

where 0 < d < 1/2 is defined in (7) and d = 0 if (6) or (8) follows.

Theorem 2 Assume that Model I (Model II), (A1)(a) ((A1)(b)), (A2)–(A6), (26), and

1

n

n∑
t=1

(σ2t − E(σ2t )) = op(1) and lim inf
n→∞

1

n

n∑
t=1

E(σ2t ) > 0 (28)

hold. In addition, suppose that GL(pL, n) in (11) satisfies

GL(pL, n)

n1−2γL
= o(1) and

n2dp
2/q

L

GL(pL, n)
= o(1). (29)

Then (12) follows.

We close this section by noting that (28) is a high-level assumption fulfilled by a wide

range of time series models. For example, it can be shown that (24) satisfies (28). Moreover,

Theorem 1 in the supplement of Gao and Ling (2019) shows that if Yt ≡ (σ2t − E(σ2t )) is

a stationary process satisfying sup−∞<t<∞E|Yt|ι < ∞ for some 1 < ι < 2 and a strong

mixing condition, then for some δ ∈ (0, 1),

n−1+δ
n∑
t=1

Yt → 0 a.s.,

yielding (28).

3.2 Consistency of OGAD+HDICD+TrimD in Selecting ND,n

This section is concerned with the performance of OGAD+HDICD+TrimD. In order to

simplify the exposition, we assume in (17) that α̃0 is known, E(zt) = 0, and E(z2tj) = 1.

Our goal is to establish the selection consistency of OGAD+HDICD+TrimD when r̄ and

z̄j in (14) are replaced by α̃0 and 0, respectively. Our argument can be easily generalized

to show the consistency of the method in situations where α̃0 is unknown, E(zt) 6= 0,
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or E(z2tj) 6= 1. Note that the major difference between (17) and the conventional high-

dimensional regression model is the presence of Θt,n = log(η̃2t ) − log(η2t ). Therefore, the

issue here is to control the local behavior of Θt,n when η2t is near the origin. To this end,

we impose the following condition.

(A0
′
) There exist positive constants δ1 (which can be arbitrarily small) and τ such that for

all 0 < s < δ1,

sup
t≥1

P (η2t < s) ≤ cτsτ , (30)

where cτ is a positive constant that may depend on τ .

If εt satisfies (25) with supt≥1 P (ξt < s) ≤ csτ for some c > 0, and supt≥1E(|σ−2τt |) < ∞,

then (30) follows. Moreover, when εt is a stationary Gaussian process and supt≥1E(|σ−1t |) <
∞, it can be shown that (30) holds with τ = 1/2. Although it is possible to verify (30) under

more general conditions, we leave this issue for future research. In addition to (A0
′
), we

also need a series assumptions parallel to (A1)–(A6). Throughout this section, we assume

that (A1) is true for a sufficiently large q1 and (A6) holds for γL = 0 in order to avoid

excessive technicalities. Define zt(J) = (ztj , j ∈ J)>.

(A1
′
) There is q3 ≥ 4 such that

sup
t≥1

E| log ε2t |q3 <∞, (31)

and

max
1≤i≤pD

E

∣∣∣∣∣
n∑
t=1

ξtzti

∣∣∣∣∣
q3

≤ Cq3

(
n∑
t=1

ξ2t

)q3/2
, (32)

where ξ1, . . . , ξn are any real numbers.

(A2
′
) {zt} is a covariance stationary time series satisfying

max
1≤i,j≤pD

E

∣∣∣∣∣n−1/2
n∑
t=1

(ztiztj − E(ztiztj))

∣∣∣∣∣
2q4

= O(1),

where q4 ≥ 2.
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(A3
′
) p

2/q
D /n2κ = o(1), where 0 < d < 1/2 is defined in (7), and d = 0 if (6) or (8) follows.

(A4
′
) supn≥1

∑pD
j=1 |αj | <∞.

(A5
′
) There are some δD > 0 and MD > 0 such that for all larger n,

min
1≤](J)≤KD,n

λmin(ΓD(J)) > δD, (33)

max
1≤](J)≤KD,n,i/∈J

‖Γ−1D (J)gD,i(J)‖1 ≤MD.

where ΓD(J) = E(zt(J)z>t (J)) and gD,i(J) = E(zt(J)zi).

(A6
′
) There exists 0 ≤ γD < κ such that nγD = o(nκ/p

1/q
D ) and

lim inf
n→∞

nγD min
j∈ND,n

α2
j > 0,

where κ is defined in (A3
′
).

It can be shown that (31) holds when εt is a stationary Gaussian process or when εt is a

stationary ARCH (∞) process (see (25)) with a finite second moment and with ξt obeying

supt≥1E| log ξt|q3 <∞. Equations (31) and (32) imply

max
1≤i≤pD

∣∣∣∣∣ 1n
n∑
t=1

ztiεt

∣∣∣∣∣ = Op(n
−1/2p

1/q3
D ),

which is crucial for proving the consistency of OGAD+HDICD+TrimD; see the supplemen-

tary material for details. By using Lemma 2 of Wei (1987) and Theorem 2.1 of Ing and Wei

(2006), (32) holds true, provided {zti} is a linear process generated by an i.i.d. sequence

{δti} satisfying max1≤i≤pD E|δti|q3 = O(1), and has a square summable autocovariance

function. Assumptions (A2
′
), (A4

′
), and (A5

′
) play the same roles as those played by (A2),

(A4), and (A5) in the analysis of OGA+HDIC+Trim. Assumptions (A3
′
) and (A6

′
) appear

to be more stringent than (A3) and (A6) because of κ < 1/2− d. However, (A3
′
) does not

preclude pD � n if q is sufficiently large, and (A6
′
) still allows that minj∈ND,n

|αj | converges

to 0 slowly. The main result of this section is given in the next theorem.

17



Theorem 3 Assume that the same assumptions as in Theorem 2 and (A0
′
)–(A6

′
) hold.

Also assume that KD,n � nκ/p1/qD ,

1

n

n∑
t=1

(ε2t − E(ε2t )) = op(1), lim inf
n→∞

1

n

n∑
t=1

E(ε2t ) > 0, (34)

cn � n−1/2+d in (13), and GD(pD, n) in (15) obeys

GD(pD, n)

n1−2γD
= o(1),

n1−2κp
2/q
D

GD(pD, n)
= o(1). (35)

Then (18) holds true.

Condition (34), playing a role similar to (28) in Theorem 2, is also easily satisfied in

practice. For example, under (5) and (6) (or (7)), (34) holds, provided wt obeys mild

moment conditions and its distribution follows some smoothness conditions at the origin.

In addition, (34) follows when εt is a stationary GARCH process satisfying mild moment

conditions and the logarithms of the absolute values of its corresponding innovations are

i.i.d. random variables having a finite second moment.

4 Simulation Studies

We carry out simulation studies to evaluate the finite sample performance of Twohit. Sec-

tion 4.1 provides a guideline for choosing tuning parameters in Twohit. In Section 4.2, we

compare Twohit with the doubly regularized approach of Daye et al. (2012), Lasso, and

adaptive Lasso using simulated data from Models I and II.
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4.1 Selection of Tuning Parameters in Twohit

Consider KL,n and GL(pL, n), cn, KD,n, and GD(pD, n) in Twohit. In our simulation study,

we set

KL,n = min{bCL,1n
ιp
−1/qL
L c, pL},

GL(pL, n) = CL,2n
1−2ιp

2/qL
L log log n,

cn = 10−8n−ι,

KD,n = min{bCD,1n
νp
−1/qD
D c, pD},

GD(pD, n) = CD,2n
1−2νp

2/qD
D log logn,

where CL,1, CL,2, qL, qD, ι, ν, CD,1, and CD,2 are tuning parameters. For a given

ϑ = (CL,1, CL,2, qL, qD, ι, ν, CD,1, CD,2)
>,

we use Twohit in Section 2 to determine N̂L,n = N̂L,n(ϑ) and N̂D,n = N̂D,n(ϑ). We then

minimize the loss function

n∑
t=1

α0 +
∑

i∈N̂D,n(ϑ)

αizti

+
n∑
t=1

(
yt − β0 −

∑
j∈N̂L,n(ϑ)

βjxtj

)2
exp

{
α0 +

∑
i∈N̂D,n(ϑ)

αizti

} ,

with respect to αi and βj , and denote the corresponding minimum value by L(ϑ). Let Θ

be a range of ϑ depending on the user’s choice. Define

ϑ∗ = argmin
ϑ∈Θ

L(ϑ) + (](N̂L,n(ϑ)) + ](N̂D,n(ϑ)))Pn,

where Pn is a prescribed positive number that may vary with n. Then N̂L,n(ϑ∗) and

N̂D,n(ϑ∗) are the final outputs of Twohit.

Note that L(ϑ)+(](N̂L,n(ϑ))+](N̂D,n(ϑ)))Pn is nothing but a conventional information

criterion (with penalty Pn) when {εt} is assumed to be a sequence of i.i.d. N (0, 1) random

variables. In the next section, we set Pn = 2 log log n and Θ = ϑ1×ϑ4×ϑ2×ϑ2×ϑ3×ϑ3×
ϑ1 × ϑ4, where ϑ1 = {5, 10}, ϑ2 = {4, 5}, ϑ3 = {0.05, 0.2, 0.35, 0.5}, and ϑ4 = {0.25, 0.5}.
We have tried to use different Pn and Θ, but those given here usually lead to better

performance.
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4.2 Performance Evaluation

As mentioned previously, in addition to Twohit, this section also considers the performance

of the doubly regularized approach of Daye et al. (2012) (denoted by HHR), Lasso, and

adaptive Lasso. To implement HHR, we use the source code from https://sites.google.

com/site/zhongyindaye/software, and follow the suggestion of Daye et al. (2012) to

select tuning parameters therein by the Akaike information criterion (AIC). To perform

Lasso (adaptive Lasso) under Model I or Model II, whose corresponding negative log-

likelihood function is not jointly convex in αi and βj even when {εt} is a sequence of

i.i.d. standard normal random variables, we use TwLasso (TwAdaLasso), which is Twohit

with OGA+HDIC+Trim and OGAD+HDICD+TrimD replaced by Lasso (adaptive Lasso).

Moreover, the Lasso and adaptive Lasso in TwLasso and TwAdaLasso are implemented

through the glmnet and parcor packages in R, respectively.

The performance of the aforementioned methods is evaluated on Examples 1–3, each

containing several data sets generated by Model I (Examples 1 and 2) or Model II (Ex-

ample 3). The performance measures are given by the average (over 100 replications) true

positive rates (ATPR), the average (over 100 replications) false positive rates (AFPR), E

(the frequency, in 100 replications, of selecting exactly the relevant variables), and E∗ (the

frequency, in 100 replications, of including all relevant variables). All sample sizes in these

examples are 400.

Example 1

Let x1, . . .xn be i.i.d. pL-dimensional normal random vectors with zero mean and covari-

ance matrix Σ = (h|i−j|)1≤i,j≤pL , where h ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, pL = 4000. We also

set β0 = 0.5, (β1, . . . , β15) = (7.5, 7.5, 7.5, 0, 0, 0, 10, 10, 10, 0, 0, 0, 12.5, 12.5, 12.5), β16 =

· · · = β4000 = 0, zt = xt (yielding pD = pL = 4000), α0 = 0.1, (α1, α2, α3, α4, α5) =

(0, 2.5, 0, 0,−2.5), and α6 = · · · = α4000 = 0. Moreover, {εt} is generated by one of the

following time series models (TSM):

TSM 1: εt = wt, TSM 2: εt = 0.6εt−1 + wt,

TSM 3: εt = wt + 0.6wt−1, TSM 4: (1−B)0.3εt = wt,
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where B is the backshift operator and {wt} is a sequence of i.i.d. standard normal ran-

dom variables. Under these specifications, the ATPR, AFPR, E, and E∗ of Twohit, HHR,

TwLasso, and TwAdaLasso are summarized in Table 1.

Note that Var(β>xt)/E(σ2t ) =1.88, 2.84, 6.85, 38.8, and 827.7 when h = 0.1, 0.3, 0.5, 0.7,

and 0.9, respectively. Therefore, a larger h leads to a larger signal-to-noise ratio, which

may enhance the chance of identifying the relevant variables and excluding the irrelevant

ones. As shown in Table 1, for each TSM i, 1 ≤ i ≤ 4, the ATPR (AFPR) of Twohit

tends to increase (decrease) as h increases from 0.1 to 0.9. On the other hand, because

E(xtixtj) = h|i−j|, a large h also introduces high correlations between the relevant variables

and a few irrelevant ones. Once these irrelevant variables are included by OGA or OGAD,

they are often not easily eliminated by Trim or TrimD, thereby worsening the performance

of Twohit on E. Indeed, Table 1 reveals that although the E∗ of Twohit appears to increase

with h, the lowest E of Twohit also occurs at the highest value of h.

When h < 0.9, TwAdaLasso is comparable with Twohit in terms of ATPR and E∗, but

is worse than the latter in terms of AFPR and E. When h = 0.9, TwAdaLasso is inferior

to Twohit on all performance measures. For all values of h, TwLasso suffers from a small

ATPR and a large AFPR compared to TwAdaLasso. The performance of TwLasso on E∗

and E is also much worse than TwAdaLasso. HHR works slightly better than TwLasso on

ATPR and E∗ when h = 0.1. The method, however, faces a severe false positive problem.

As a result, its AFPR values are extremely large and its E values are zero at h = 0.1. When

h grows to 0.9, the ATPR of HHR substantially deteriorates and its AFPR remains large,

yielding the smallest E∗ and E among all methods. Finally, we mention that there is no

systematic change in the performance of the methods considered when {εt} varies from an

i.i.d. process (TSM 1) to a short-memory process (TSM 2 or 3) to a long-memory process

(TSM 4).

Example 2

Let {xt = (xt1, . . . , xt4000)
>} be a sequence of i.i.d. random vectors, where xt1, . . . , xt12 are

i.i.d. standard normal random variables and

xtj = dtj +

12∑
l=1

xtl, j = 13, . . . , 4000,
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Table 1: The ATPR, AFPR, E, and E∗ of Twohit, HHR, TwLasso, and TwAdaLasso in

Example 1.

h = 0.1

TSM 1 TSM 2 TSM 3 TSM 4

Method ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗

Twohit 0.969 1.73e-4 72 83 0.941 2.94e-4 64 82 0.924 1.99e-4 67 79 0.937 1.78e-4 60 78

HHR 0.925 5.14e-2 0 53 0.925 5.13e-2 0 56 0.940 5.18e-2 0 63 0.934 5.16e-2 0 60

TwLasso 0.925 9.20e-3 0 52 0.922 8.84e-3 0 52 0.900 9.33e-3 0 55 0.911 9.02e-3 0 45

TwAdaLasso 0.965 4.09e-4 20 80 0.950 4.02e-4 17 79 0.925 3.35e-4 17 78 0.937 4.06e-4 14 72

h = 0.3

TSM 1 TSM 2 TSM 3 TSM 4

Method ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗

Twohit 0.956 1.70e-4 71 85 0.948 2.19e-4 65 83 0.949 2.49e-4 55 79 0.940 1.58e-4 65 79

HHR 0.890 4.97e-2 0 32 0.917 5.05e-2 0 50 0.913 5.05e-2 0 45 0.907 5.04e-2 0 39

TwLasso 0.941 7.86e-3 0 65 0.945 7.76e-3 0 61 0.940 7.69e-3 0 61 0.939 8.07e-3 0 62

TwAdaLasso 0.963 2.39e-4 29 85 0.958 3.18e-4 30 79 0.961 3.14e-4 21 79 0.955 4.12e-4 19 82

h = 0.5

TSM 1 TSM 2 TSM 3 TSM 4

Method ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗

Twohit 0.969 9.01e-5 72 87 0.960 2.04e-4 64 82 0.964 8.89e-5 79 92 0.959 1.97e-4 59 85

HHR 0.837 4.08e-2 0 6 0.845 4.39e-2 0 9 0.830 4.24e-2 0 6 0.836 4.32e-2 0 6

TwLasso 0.950 7.15e-3 0 69 0.965 7.85e-3 0 77 0.948 7.19e-3 0 72 0.952 6.86e-3 0 62

TwAdaLasso 0.976 2.72e-4 29 87 0.975 2.90e-4 35 87 0.975 2.69e-4 40 93 0.976 2.72e-4 28 86

h = 0.7

TSM 1 TSM 2 TSM 3 TSM 4

Method ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗

Twohit 0.992 4.76e-5 87 98 0.971 1.29e-4 70 89 0.992 7.64e-5 73 96 0.983 1.18e-4 73 92

HHR 0.820 1.42e-2 0 0 0.819 2.06e-2 0 0 0.819 1.80e-2 0 0 0.818 1.71e-2 0 0

TwLasso 0.983 6.54e-3 0 88 0.978 6.93e-3 0 84 0.975 5.87e-3 0 82 0.978 6.54e-3 0 83

TwAdaLasso 0.993 1.39e-4 60 96 0.986 1.84e-4 53 94 0.995 1.84e-4 38 96 0.990 1.97e-4 37 93

h = 0.9

TSM 1 TSM 2 TSM 3 TSM 4

Method ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗

Twohit 0.993 1.04e-4 64 92 0.984 1.59e-4 46 90 0.980 1.69e-4 42 88 0.990 1.54e-4 45 90

HHR 0.818 5.19e-3 0 0 0.818 4.98e-3 0 0 0.818 5.64e-3 0 0 0.818 5.21e-3 0 0

TwLasso 0.929 3.59e-3 0 51 0.961 4.55e-3 0 69 0.949 4.25e-3 0 65 0.944 4.88e-3 0 61

TwAdaLasso 0.955 3.53e-4 17 73 0.982 2.87e-4 21 84 0.967 3.15e-4 21 75 0.963 3.25e-4 16 75
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with (0.25)−1/2(dt13, . . . , dt4000)
> following a 3988-dimensional standard normal distribu-

tion. Set zt = xt, β0 = 0.2, (β1, . . . , β10) = (3, 3.75, 4.5, 5.25, 6, 6.75, 7.5, 8.25, 9, 9.75),

β11 = · · · = β4000 = 0, α0 = 0.1, α11 = −1, α12 = 1, and αj = 0 if j /∈ {0, 11, 12}.
Moreover, {εt} is generated by TSM 1, 2, 4, or

TSM 5: (1−B)0.45εt = wt,

where wt is defined as in Example 1. Note that the serial dependence of {εt} in TSM 5 is

much stronger than in TSM 4, although both are long-memory processes. The performance

of Twohit, HHR, TwLasso, and TwAdaLasso on ATPR, AFPR, E, and E∗ are presented in

Table 2.

In this example, Lasso-type methods, HHR, TwLasso, and TwAdaLasso, may encounter

the intrinsic difficulty that the irrepresentable condition (Zhao and Yu, 2006) fails to hold;

see Example 3 of Ing and Lai (2011) for further discussion. As observed in Table 2, the

ATPR of TwLasso is around 0.92, which is much larger than that of HHR and TwAdaLasso,

but much smaller than that of Twohit. The performance of TwAdaLasso in terms of AFPR

is much better than TwLasso and HHR, but is obviously inferior to Twohit. Moreover, the

E∗ and E values of the Lasso-type methods are all (close to) zero. In contrast, Twohit

works perfectly on E∗ when {εt} is generated by TSM 1, 2 or 4, and the corresponding E

value, ranging from 71 to 86, is also reasonably large. However, when {εt} is generated

by TSM 5, Twohit becomes relatively unsatisfactory. This, together with the simulation

results obtained in Example 1, suggests that the performance of Twohit deteriorates under

a very strong serial dependence.

Table 2: The ATPR, AFPR, E, and E∗ of Twohit, HHR, TwLasso, and TwAdaLasso in

Example 2.

TSM 1 TSM 2 TSM 4 TSM 5

Method ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗

Twohit 1.000 0.91e-4 86 100 1.000 1.19e-4 75 100 1.000 1.38e-4 71 100 0.983 1.93e-4 43 81

HHR 0.805 8.31e-3 0 1 0.732 6.62e-3 0 0 0.804 7.89e-3 0 1 0.635 7.38e-3 0 1

TwLasso 0.916 1.05e-2 0 0 0.917 8.56e-3 0 0 0.917 9.79e-3 0 0 0.916 8.46e-3 0 0

TwAdaLasso 0.793 1.06e-3 0 0 0.844 1.07e-3 0 0 0.815 1.10e-3 0 0 0.824 1.05e-3 0 0

23



Example 3

Let zt be the same as that in Example 2 and xt = (xt1, . . . , xt4050)
>, where xtj = ztj for

j = 1, . . . , 4000 and xt,4000+j = yt−j for j = 1, . . . , 50. In addition, yt is set to zero for t ≤ 0.

We generate {εt} according to the following GARCH(1, 1) model,

εt = νtwt,

where ν2t = 1 + 0.5ε2t−1 + 0.3ν2t−1 and {wt} is a sequence of i.i.d. standard normal random

variables. The coefficients β0, . . . , β4000 and α0, . . . , α4000 are also the same as those in

Example 2. On the other hand, we consider three different cases for (β4001, . . . , β4050) (the

AR coefficients corresponding to (yt−1, . . . , yt−50)):

Case 1: (β4001, β4002) = (0.5, 0.25), and βj = 0 if j = 4003, . . . , 4050.

Case 2: (β4001, . . . , β4003) = (0.5, 0.25, 0.125), and βj = 0 if j = 4004, . . . , 4050.

Case 3: (β4001, . . . , β4004) = (0.5, 0.25, 0.125, 0.0625), and βj = 0 if j = 4005, . . . , 4050.

The simulation results are reported in Table 3. Like Example 2, the irrepresentable con-

dition does not hold in this example; hence Lasso-type methods (HHR, TwLasso, and

TwAdaLasso) do not work well on all performance measures. However, Twohit performs

quite satisfactorily, in particular in terms of E. We also notice that the larger the smallest

non-zero AR coefficient, the higher the value of Twohit on E.

Table 3: The ATPR, AFPR, E, and E∗ of Twohit, HHR, TwLasso, and TwAdaLasso in

Example 3.

Case 1 Case 2 Case 3

Method ATPR AFPR E E∗ ATPR AFPR E E∗ ATPR AFPR E E∗

Twohit 0.985 2.12e-5 94 95 0.983 3.48e-5 89 93 0.971 3.73e-5 88 90

HHR 0.389 1.53e-2 0 5 0.209 2.82e-3 0 0 0.205 2.54e-3 0 0

TwLasso 0.924 7.80e-3 0 2 0.923 7.47e-3 0 0 0.909 7.09e-3 0 0

TwAdaLasso 0.873 1.06e-3 0 0 0.841 1.06e-3 0 0 0.801 1.15e-3 0 0
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5 Real Data Analysis

In this section, we use Twohit to choose important explanatory variables for the monthly

growth rate of the semiconductor world market billings (WMB) from among a large number

of candidate variables. We collect the monthly semiconductor WMB, denoted by WMBt,

and other 66 monthly variables (suggested by Liu and Weng (2018) as candidate predictor

variables) from the World Semiconductor Trade Statistics; see Tables S2.1 and S2.2 in the

supplement for the description of these variables. Following Liu and Weng (2018), we define

the monthly growth rate of the semiconductor WMB by

yt = log(WMBt)− log(WMBt−12), (36)

and take a two-step transformation procedure for the candidate variables (except for CLI,

CS, UTL, ISR, Bill, PPI, and PPI3) in order to obtain (possibly) stationary series.

We begin by analyzing yt based on Model II, in which the dispersion variables, ztj ,

are the aforementioned 66 variables (after the two-step transformation) and their lagged

values (up to 24 months) and the regression variables, xtj , contain all ztj and yt−1,. . . ,

yt−24, yielding n = 240, pL = 1608, and pD = 1584. We use Twohit to select regression and

dispersion variables and obtain the estimates of εt, denoted by ε̂t(II), based on the selected

model. The time plot, ACF plot, and partial ACF (PACF) plot of ε̂t(II), along with the

ACF and PACF plots of ε̂2t (II), are given in Fig. 2. These plots suggest that there is no

serial correlation and ARCH/GARCH effect in ε̂t(II). The estimated coefficients and their

standard errors are presented in Table S2.3.

We next analyze {yt} based on Model I, in which ztj are the same as those of Model II

and xtj = ztj for all j. Therefore, pL = pD = 1584 > n = 240. We select regression and

dispersion coefficients using Twohit, and obtain the estimates of εt, ε̂t(I). According to the

ACF and PACF plots of ε̂t(I), we postulate an AR(2) model for {εt},

(1− φ1B − φ2B2)εt = wt,

and then simultaneously estimate φ1, φ2, and the selected regression and dispersion coef-

ficients. These estimates and their standard errors are reported in Table S2.4. Moreover,

the time plot, ACF plot, and PACF plot of estimates of wt, ŵt, are given in Fig. 3, showing

that there is no serial correlation in ŵt.
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Fig. 2. Residual analysis for Model II: (a) the time plot of ε̂t(II), (b) the ACF plot of

ε̂t(II), (c) the PACF plot of ε̂t(II), (d) the ACF plot of ε̂2t (II), (e) the ACF plot of ε̂2t (II),

and the blue dashed lines in (b)–(e) are two-standard-deviation limits.

Fig. 3. Residual analysis for Model I: (a) the time plot of ŵt, (b) the ACF plot of ŵt, (c)

the PACF plot of ŵt, and the blue dashed lines in (b) and (c) are two-standard-deviation

limits.
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Although Fig. 2 and Fig. 3 indicate that the two models built upon Models I and II are

adequate, it is shown in Tables S2.3 and S2.4 that the model built upon Model II has the

smaller AIC and BIC values, and hence seems to be more recommendable than the model

built upon Model I. It is worth pointing out that the former model does not include the

three most crucial determinants (NO, TI, and UTL) of the semiconductor industry cycles

suggested by industry practitioners (see Table 2 in Liu (2005)), whereas its competitor

does. One possible explanation of this phenomenon is that yt−1 is included by the former

model at the first OGA iteration owing to its high correlation with the response variable

yt. Once yt−1 is chosen by OGA, it is difficult for the aforementioned crucial determinants

to enter the regression equation because they are statistically confounded with yt−1.

6 Concluding Remarks

This paper has addressed the important problem of selecting high-dimensional regression

models with heteroscedastic and serially correlated errors. When the serial correlation

or heteroscedasticity does not exist in the error terms, this type of problem has been

undertaken in the past; see, e.g., Belloni et al. (2014), Basu and Michailidis (2015), Wu and

Wu (2016), Gu and Zou (2016), Han and Tsay (2019), and Hsu et al. (2019). Their results,

however, are not directly applicable to situations where both heteroscedasticity and serial

correlation occur. We fill this gap by proposing a two-part selection procedure, Twohit, and

proving its consistency in selecting regression and dispersion variables in situations where

the model error contains a short-memory, long-memory, or conditionally heteroscedastic

component. We also show that Twohit works well in finite samples compared to other

competing methods.

While Twohit focuses on the dispersion function σ2t = exp{α0 +
∑pD

j=1 αjztj}, it is

possible to extend the consistency result of Twohit to another popular dispersion function

σ∗
2

t = (α0 +
∑pD

j=1 αjztj)
2, which has been considered by many authors either with fixed pD

or with pD � n; see, e.g., Efron (1991), Koenker and Bassett (1982), Koenker and Zhao

(1994), and Gu and Zou (2016). Let η∗t = σ∗t εt. Then, it holds that

η∗
2

t =

α0 +

pD∑
j=1

αjztj

2

+ σ∗
2

t (ε2t − 1), (37)
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where, without loss of generality, we assume E(ε2t ) = 1. When pD � n, (37) is a high-

dimensional interaction model with heteroscedastic and time series error σ∗
2

t (ε2t − 1). Since

the interaction model obeys the strong heredity condition (see Hao and Zhang, 2014), it is

expected that Twohit (with a suitable modification for OGAD+HDICD+TrimD) can still

achieve selection consistency when σ2t (or (16)) is replaced by σ∗
2

t (or (37)). However, this

extension requires a detailed study and is left for future work.
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Appendix A Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we need some supporting lemmas. Recall that we assume that β0 = 0,

E(xt) = 0 and E(x2tj) = 1, and set ȳ and x̄j in (10) to 0. Throughout this appendix, C stands for

a generic positive constant independent of n.

Lemma A.1 Assume that either

(i) (5), (6) or (7), and (A1)(a), or

(ii) (8), (9), and (A1)(b)(i)

holds. Then

max
1≤i≤pL

∣∣∣∣∣n−1
n∑
t=1

ηtxti

∣∣∣∣∣ = Op(n
−1/2+dp

1/q1
L ),

recalling that 0 < d < 1/2 is defined in (7) and d = 0 if (6) or (8) is assumed.

proof. It suffices to show that

max
1≤i≤pL

E

(∣∣∣∣∣n−1/2−d
n∑
t=1

ηtxti

∣∣∣∣∣
)

= O(1). (A.1)
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We first prove (A.1) under (i). Let Γε,n = (γε(i−j))1≤i,j≤n, where γε(s) = E(ε1ε1+s). In view of (7),

γε(s) =
∑∞
j=0 ψjψj+|s| = O(|s + 1|−1+2d), which, together with (6), yields

∑n
j=0 |γε(j)| = O(n2d).

Since for any n-dimensional unit vector a, a>Γε,na ≤ C
∑n
j=0 |γε(j)|, it holds that

‖Γε,n‖2 ≤ sup
‖a‖2=1

a>Γε,na = O(n2d). (A.2)

By (A.2), (A1)(a), independence of {ws} and {(xs, zs)}, Lemma 2 of Wei (1987), Jensen’s inequality,

and Cauchy-Schwarz inequality, one has for all 1 ≤ i ≤ pL,

E

∣∣∣∣∣n−1/2−d
n∑
t=1

ηtxti

∣∣∣∣∣
q1

= n−q1(1/2+d)E

E
∣∣∣ n∑

s=−∞

( n∑
t=max{1,s}

σtxtiψt−s
)
ws

∣∣∣q1
∣∣∣∣∣∣xs, zs,−∞ < s <∞


≤ Cn−q1(1/2+d)E

 n∑
s=−∞

 n∑
t=max{1,s}

σtxtiψt−s

2

q1/2

= Cn−q1(1/2+d)E

∣∣∣∣∣∣
n∑
k=1

n∑
l=1

σkxkiσlxli

min{k,l}∑
s=−∞

ψk−sψl−s

∣∣∣∣∣∣
q1/2

≤ Cn−q1d‖Γε,n‖q1/22 E

∣∣∣∣∣n−1
n∑
k=1

σ2
kx

2
ki

∣∣∣∣∣
q1/2

≤ Cn−1
n∑
k=1

E|σkxki|q1 ≤ C
(

max
1≤t≤n

E|σt|2q1
)1/2(

max
1≤t≤n,1≤i≤pL

E|xti|2q1
)1/2

,

yielding (A.1). We next show that (A.1) holds true under (ii). Note first that for each i = 1, . . . , pL,

{σtεtxti,Ft} is a martingale difference sequence. By (A1)(b)(i), Burkholder’s inequality, Jensen’s

inequality, and Hölder’s inequality, one has for all 1 ≤ i ≤ pL,

E

∣∣∣∣∣n−1/2
n∑
t=1

ηtxti

∣∣∣∣∣
q1

= n−q1/2E

∣∣∣∣∣
n∑
t=1

σtεtxti

∣∣∣∣∣
q1

≤ CE

(
n−1

n∑
t=1

(σtεtxti)
2

)q1/2

≤ Cn−1
n∑
t=1

E|σtεtxti|q1

≤ C

(
max
1≤t≤n

E|εt|3q1
)1/3(

max
1≤t≤n

E|σt|3q1
)1/3(

max
1≤t≤n,1≤i≤pL

E|xti|3q1
)1/3

,
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and hence (A.1) follows. 2

Lemma A.2 Assume that (A2) holds. Then

max
1≤i,j≤pL

∣∣∣∣∣n−1
n∑
t=1

xtixtj − E(xtixtj)

∣∣∣∣∣ = Op(n
−1/2p

1/q2
L ).

proof. The proof of this lemma is elementary and is therefore omitted. 2

Lemma A.3 Under (A2) and (20),

max
1≤](J)≤KL,n

‖Γ̂L,n(J)− ΓL(J)‖2 = Op(KL,nn
−1/2p

1/q2
L ), (A.3)

where Γ̂L,n(J) = n−1
∑n
t=1 xt(J)x>t (J). Moreover, if KL,n = o(n1/2p

−1/q2
L ), then

max
1≤](J)≤KL,,n

‖Γ̂−1L,n(J)− Γ−1L (J)‖2 = op(1). (A.4)

proof. Since

max
1≤](J)≤KL,n

‖Γ̂L,n(J)− ΓL(J)‖2 ≤ KL,n max
1≤i,j≤pL

∣∣∣∣∣n−1
n∑
t=1

xtixtj − E(xtixtj)

∣∣∣∣∣ ,
(A.3) follows directly from Lemma A.2. Moreover, (A.4) is ensured by (20), (A.3), KL,n =

o(n1/2p
−1/q2
L ),

‖Γ̂−1L,n(J)− Γ−1L (J)‖2 ≤ (‖Γ̂−1L,n(J)− Γ−1L (J)‖2 + ‖Γ−1L (J)‖2)‖Γ̂L,n(J)− ΓL(J)‖2‖Γ−1L (J)‖2,

and some algebraic manipulations. 2

Proof of Theorem 1. Note first that

En[(y(x)− ŷĴL,m(x))2] = En[(y(x)− yĴL,m(x))2] + En[(ŷĴL,m(x)− yĴL,m(x))2].

Therefore, (27) is ensured by

max
1≤m≤KL,n

En[(y(x)− yĴL,m(x))2]

m−1
= Op(1), (A.5)

and

max
1≤m≤KL,n

En[(ŷĴL,m(x)− yĴL,m(x))2]

mp
2/q

L /n1−2d
= Op(1), (A.6)
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where yJ(x) = x>(J)Γ−1L (J)E(x(J)y(x)).

Let (ŷ1;J , . . . , ŷn;J)> = HL,Jy and (x̂1i;J , . . . , x̂ni;J)> = HL,JXi, x̂
⊥
ti;J = xti − x̂ti;J , and x⊥i;J =

xi − xi;J , where HL,J is defined after (10) and xi;J = x>(J)Γ−1L (J)gL,i(J). By (A1)–(A3), (A5),

Lemmas A.1–A.3, KL,n = O(n1/2−dp
−1/q
L ), and an argument similar to that used to prove of (3.8)

of Ing and Lai (2011), we obtain

max
1≤i≤pL,n

∣∣∣∣∣n−1
n∑
t=1

x2ti − 1

∣∣∣∣∣ = op(1),

max
1≤](J)≤KL,n

‖Γ̂−1L,n(J)‖2 = Op(1), (A.7)

max
](J)≤KL,n−1,i/∈J

∣∣∣∣∣n−1
n∑
t=1

ηtx̂
⊥
ti;J

∣∣∣∣∣ = Op(n
−1/2+dp

1/q1
L ), (A.8)

max
](J)≤KL,n−1,i,j /∈J

∣∣∣∣∣n−1
n∑
t=1

xtj x̂
⊥
ti;J − E(xjx

⊥
i;J)

∣∣∣∣∣ = Op(n
−1/2p

1/q2
L ), (A.9)

which further imply

max
{(J,i):](J)≤KL,n−1,i/∈J}

|µ̂L,J,i − µL,J,i| = Op(n
−1/2+dp

1/q

L ), (A.10)

where µL,J,i = E[(y(x)− yJ(x))xi] and

µ̂L,J,i =
n−1

∑n
t=1(yt − ŷt;J)xti

(n−1
∑n
t=1 x

2
ti)

1/2
.

Equation (A.10) ensures that for any small % > 0, there exists a large constant V% for which

P

(
max

{(J,i):](J)≤KL,n−1,i/∈J}
|µ̂L,J,i − µL,J,i| > V%n

−1/2+dp
1/q

L

)
< %. (A.11)

For 1 ≤ m ≤ KL,n, define

AL,n(m) =
{

max{(J,i):](J)≤m−1,i/∈J} |µ̂L,J,i − µL,J,i| ≤ V%n−1/2+dp
1/q

L

}
,

and

BL,n(m) =

{
min

0≤i≤m−1
max

1≤j≤pL
|µL,ĴL,i,j

| > ξ̃V%n
−1/2+dp

1/q

L

}
,

where 2 < ξ̃ < ∞. By an argument similar to that used to prove (3.11) and (3.12) of Ing and Lai

(2011), it holds that

En[{y(x)− yĴL,m(x)}2] ≤ Cξ̃,V%

 pL∑
j=1

|βj |

2

m−1 on AL,n(m) ∩BL,n(m), (A.12)
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and

En[{y(x)− yĴL,m(x)}2] ≤

 pL∑
j=1

|βj |

 ξ̃V%n
−1/2+dp

1/q

L on BcL,n(m), (A.13)

where Cξ̃,V% is some positive constant depending on ξ̃ and V%. Consequently, (A.5) follows from

AL,n(m) ⊆ AL,n(KL,n), (A.11)–(A.13), KL,n = O(n1/2−dp
−1/q
L ), and (A4). Moreover, by (A4),

(A5), (A.7), and Lemmas A.1–A.3, (A.6) also holds true. Thus, the proof is complete. 2

To prove Theorem 2, we also need the following lemma.

Lemma A.4 Assume that Model I (Model II), (A1)(a) ((A1)(b)), (A2), (A3), (A5), (20), and the

first relation of (28) hold. Suppose KL,n � n1/2−dp
−1/q
L . Then

max
1≤](J)≤KL,n

∣∣∣∣∣n−1η>(I −HL,J)η − n−1
n∑
t=1

E(η2t )

∣∣∣∣∣ = op(1), (A.14)

where η> = (η1, . . . , ηn).

proof. The left-hand side of (A.14) is bounded above by∣∣∣∣∣n−1
n∑
t=1

(η2t − E(η2t ))

∣∣∣∣∣+ max
1≤](J)≤KL,n

‖Γ̂−1L,n(J)‖2

∥∥∥∥∥n−1
n∑
t=1

xt(J)ηt

∥∥∥∥∥
2

2

. (A.15)

By (A2), (A3), (A5), (A.7), Lemma A.1, and KL,n = O(n1/2−dp
−1/q
L ), it follows that

max
1≤](J)≤KL,n

‖Γ̂−1L,n(J)‖2

∥∥∥∥∥n−1
n∑
t=1

xt(J)ηt

∥∥∥∥∥
2

2

= op(1). (A.16)

The first term of (A.15) is bounded above by∣∣∣∣∣n−1
n∑
t=1

σ2
t (ε2t − E(ε2t ))

∣∣∣∣∣+

∣∣∣∣∣n−1
n∑
t=1

(σ2
t − E(σ2

t ))E(ε2t )

∣∣∣∣∣ . (A.17)

Since {εt} is independent of {zt}, it follows from (A1)(a) ((A1)(b)(i)) and Cauchy-Schwarz inequality

that

E

(
n−1

n∑
t=1

σ2
t (ε2t − E(ε2t ))

)2

= n−2
n∑
t=1

n∑
s=1

E(σ2
t σ

2
s)E[(ε2t − E(ε2t ))(ε

2
s − E(ε2s))]

≤ n−2
n∑
t=1

n∑
s=1

[E(σ4
t )E(σ4

s)]1/2E[(ε2t − E(ε2t ))(ε
2
s − E(ε2s))]

≤ CE

(
n−1

n∑
t=1

(ε2t − E(ε2t ))

)2

. (A.18)
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For Model I, by (A1)(a) and the moment bounds for quadratic forms of linear processes (see Findley

and Wei, 1993), one obtains

E

(
n−1

n∑
t=1

(ε2t − E(ε2t ))

)2

≤ Cn−2E

(
n∑
t=1

n∑
s=1

γ2ε (t− s)

)
= o(1). (A.19)

For Model II, by (A1)(b)(i) and (A1)(b)(ii), we have

E

(
n−1

n∑
t=1

(ε2t − E(ε2t ))

)2

= n−2
n−1∑

t=−n+1

(n− |t|)Cov(ε21, ε
2
1+|t|) = o(1). (A.20)

Moreover, the first relation of (28) implies∣∣∣∣∣ 1n
n∑
t=1

(σ2
t − E(σ2

t ))E(ε2t )

∣∣∣∣∣ = op(1). (A.21)

Consequently, (A.14) is ensured by (A.15)–(A.21). 2

Proof of Theorem 2. It follows from Theorem 1, (A6), and an argument used in Theorem 3 of

Ing and Lai (2011) that

lim
n→∞

P (DL,n) = 1, (A.22)

where DL,n = {NL,n ⊆ ĴL,banγLc} and a is a large constant. Define k̃L,n = min{k : 1 ≤ k ≤
KL,n, NL,n ⊆ ĴL,k} and KL,n + 1 if NL,n − ĴL,KL,n 6= ∅. We first show that

lim
n→∞

P (k̂L,n = k̃L,n) = 1, (A.23)

which is guaranteed by

P (k̂L,n < k̃L,n) = o(1), (A.24)

and

P (k̂L,n > k̃L,n) = o(1). (A.25)

Straightforward calculations yield that

{k̂L,n < k̃L,n, DL,n} ⊆ Mn

≡

{
2βĵL,k̃L,n

ÛL,2,n − λ$L,n|ÛL,3,n| ≤ −β2
ĵL,k̃L,n

ÛL,1,n + λ$L,n

(
n−1

n∑
t=1

E(η2t )

)}
,

(A.26)
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where λ is some positive constant,

ÛL,1,n = n−1X>
ĵL,k̃L,n

(I −HL,ĴL,k̃L,n−1
)XĵL,k̃L,n

,

ÛL,2,n = n−1X>
ĵL,k̃L,n

(I −HL,ĴL,k̃L,n−1
)η,

ÛL,3,n = σ̂2
L,ĴL,k̃L,n

− n−1
n∑
t=1

E(η2t ),

and $L,n = banγLcGL(pL, n)/n. By (20) and (A.3),

ÛL,1,nIDL,n ≥ λmin(Γ̂L,n(ĴL,banγLc))

≥ λmin(ΓL(ĴL,banγLc))− ‖Γ̂L,n(ĴL,banγLc)− ΓL(ĴL,banγLc)‖2
≥ vL,n + op(1),

(A.27)

where vL,n = min1≤](J)≤banγLc λmin(ΓL(J)) > δL for all large n. By (A.8) and KL,n/n
γL →∞,

|ÛL,2,n|IDL,n
≤ max
](J)≤banγLc−1,i/∈J

∣∣∣∣∣ 1n
n∑
t=1

ηtx̂
⊥
ti;J

∣∣∣∣∣ = Op(n
−1/2+dp

1/q1
L ) = op(n

−γL/2). (A.28)

Moreover, it follows from Lemma A.4 that

|ÛL,3,n|IDL,n
= op(1). (A.29)

By making use of (28), (29), (A.22), (A.27)–(A.29), one obtained P (Mn) = o(1), which, together

with (A.26), leads to (A.24).

To show (A.25), we note that by (28) and some algebraic manipulations,

{k̂L,n > k̃L,n} ⊆ Qn
≡
{

2(k̂L,n − k̃L,n)(âL,n + b̂L,n) + n$̃L,n|ÛL,3,n| ≥ δ0n$̃L,n

}
,

(A.30)

where δ0 is some positive constant, $̃L,n = 1− exp{−n−1(k̂L,n − k̃L,n)GL(pL, n)}, and

âL,n = ‖Γ̂−1L,n(ĴL,KL,n
)‖2 max

1≤j≤pL

(
n−1/2

n∑
t=1

ηtxtj

)2

,

b̂L,n = ‖Γ̂−1L,n(ĴL,KL,n)‖2 max
1≤](J)≤k̃L,n,i/∈J

(
n−1/2

n∑
t=1

ηtx̂ti;J

)2

.

Since k̂L,n ≤ KL,n = O(n1/2−dp
−1/q
L ), there exists λ > 0 such that

(n$̃L,n)/(k̂L,n − k̃L,n) ≥ λmin{n1/2+dp1/qL , GL(pL, n)} on {k̂L,n > k̃L,n}. (A.31)
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Moreover, straightforward calculations give âL,n + b̂L,n = Op(n
2dp

2/q

L ), which, in conjunction with

(A3), (A.22), and (A.29)–(A.31), implies P (Qn) = o(1). In view of this and (A.30), (A.25) follows.

Thus, the proof of (A.23) is complete.

For k̃L,n > 1, define

δ̃L,l =

1, if HDIC(ĴL,k̃L,n − {ĵL,l}) > HDIC(ĴL,k̃L,n);

0, otherwise.

Then

P (N̂L,n 6= NL,n) ≤ P (G̃L,n) + P (H̃L,n) + P (k̂L,n 6= k̃L,n)

+P (N̂L,n 6= NL,n, k̂L,n = 1) + P (NL,n * ĴL,k̂L,n), (A.32)

where G̃L,n = {δ̃L,l = 0 and βĵL,l 6= 0 for some 1 ≤ l ≤ k̃L,n, k̃L,n = k̂L,n > 1, NL,n ⊆ ĴL,k̂L,n} and

H̃L,n = {δ̃L,l = 1 and βĵL,l = 0 for some 1 ≤ l ≤ k̃L,n, k̃L,n = k̂L,n > 1, NL,n ⊆ ĴL,k̂L,n}. By an

argument similar to that used to prove (A.23), it holds that

P (G̃L,n) ≤ P (GL,n) = o(1) and P (H̃L,n) ≤ P (HL,n) = o(1), (A.33)

where with ζ denoting any positive constant and XJ = (Xi, i ∈ J),

GL,n = {ŨL,1,n < vL,n/2} ∪ {|ŨL,2,n| > ζn−γL/2} ∪ {|ÛL,3,n| > ζ},

HL,n = {|ÛL,3,n| > ζ} ∪ {(ãL,n + b̃L,n) ≥ ζGL(pL, n)},

ŨL,1,n = n−1X>
ĵL,l

(I −HL,ĴL,k̃L,n
−{ĵL,l})XĵL,l

,

ŨL,2,n = n−1X>
ĵL,l

(I −HL,ĴL,k̃L,n
−{ĵL,l})η,

ãL,n = ‖Γ̂−1L,n(ĴL,k̃L,n)‖2 max
1≤j≤pL

(
n−1/2

n∑
t=1

ηtxtj

)2

,

b̃L,n = ‖Γ̂−1L,n(ĴL,k̃L,n)‖2 max
1≤](J)≤k̃L,n−1,i/∈J

(
n−1/2

n∑
t=1

ηtx̂ti;J

)2

.

In addition, (A.23) gives

P (k̂L,n 6= k̃L,n) + P (N̂L,n 6= NL,n, k̂L,n = 1) + P (NL,n * ĴL,k̂L,n) = o(1). (A.34)

By (A.32)–(A.34), (12) follows. 2
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Appendix B Supplementary Appendix

The supplementary material contains the proof of Theorem 3 and some auxiliary

lemmas used to prove it.
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S1 Proofs of Theorem 3

Recall that we assume in (17) that α̃0 is known, E(zt) = 0, and E(z2tj) = 1. In addition, r̄ and z̄j
in (14) are set to α̃0 and 0, respectively. For the sake of convenience, we may assume, without loss
of generality, that α̃0 = 0. Throughout this supplement, C stands for a generic positive constant
independent of n. We start by several useful lemmas.

Lemma S1.1 Assume (A2
′
). Then

max
1≤i,j≤pD

∣∣∣∣∣n−1
n∑
t=1

ztiztj − E(ztiztj)

∣∣∣∣∣ = Op(n
−1/2p

1/q4
D ).

proof. The proof of this lemma is elementary and is therefore omitted. 2

Lemma S1.2 Assume (A1
′
). Then

max
1≤i≤pD

∣∣∣∣∣n−1
n∑
t=1

εtzti

∣∣∣∣∣ = Op(n
−1/2p

1/q3
D ).

proof. Since {εt} is independent of {zt}, by (A1
′
) and Jensen’s inequality,

E

∣∣∣∣∣n−1/2
n∑
t=1

εtzti

∣∣∣∣∣
q3

= E

[
E

(∣∣∣∣∣n−1/2
n∑
t=1

εtzti

∣∣∣∣∣
q3 ∣∣∣∣∣ εt, 1 ≤ t ≤ n

)]
≤ Cq3E

(
n−1

n∑
t=1

ε2t

)q3/2
≤ C,

leading to the desired conclusion. 2

Lemma S1.3 Assume (A2
′
) and (33). Then

max
1≤](J)≤KD,n

‖Γ̂D,n(J)− ΓD(J)‖2 = Op(KD,nn
−1/2p

1/q4
D ),

where Γ̂D,n(J) = n−1
∑n
t=1 zt(J)z>t (J). Moreover, if KD,n = o(n1/2p

−1/q4
D ), then

max
1≤](J)≤KD,n

‖Γ̂−1D,n(J)− Γ−1D (J)‖2 = op(1).

1



proof. The proof of this lemma is similar to that of Lemma A.3. The details are omitted. 2

Lemma S1.4 Assume that the same assumptions as in Theorem 2, (30), and (A1
′
)–(A4

′
) hold.

Then, for cn � n−1/2+d,

n−1
n∑
t=1

Θ2
t,n = Op(n

−2κ),

max
1≤i≤pD

∣∣∣∣∣n−1
n∑
t=1

Θt,nzti

∣∣∣∣∣ = Op(n
−κ).

(S1.1)

proof. Note first that (A1) and Lemma S1.1 yield

max
1≤i≤pD

∣∣∣∣∣n−1
n∑
t=1

Θt,nzti

∣∣∣∣∣ ≤
{
n−1

n∑
t=1

(log η̃2t − log η2t )2

}1/2

max
1≤i≤pD

{
n−1

n∑
t=1

z2ti

}1/2

, (S1.2)

and

max
1≤i≤pD

n−1
n∑
t=1

z2ti ≤ max
1≤i≤pD

∣∣∣∣∣n−1
n∑
t=1

(z2ti − E(z2ti))

∣∣∣∣∣+ max
1≤t≤n,1≤i≤pD

E(z2ti) = Op(1). (S1.3)

Since (A1) holds for any q1 > 0 and since 0 < κ < (1 − 2d)/(2 + 8/τ), we may assume, without
loss of generality, that κ = (1 − 2d − 2/q1)/(2 + 8/τ). By Theorem 2, (A1), and some algebraic
manipulations, we obtain

max
1≤t≤n

|η̃2t − η2t | = Op(n
−1/2+d+1/q1). (S1.4)

Let ς1 > 0 be arbitrarily small. By (S1.4), there is a large s (depending on ς1) such that for all
large n,

P (An) < ς1, (S1.5)

where An = {max1≤t≤n |η̃2t − η2t | ≤ sn−1/2+d+1/q1}. Moreover,

n−1
n∑
t=1

(
log η̃2t − log η2t

)2
1An ≤ (S1) + (S2) + (S3), (S1.6)

with δ = 2κ/τ = (1− 2d− 2/q1)/(4 + τ),

(S1) = 2n−1
n∑
t=1

(log η̃2t )21{η2t<n−2δ}1An ,

(S2) = 2n−1
n∑
t=1

(log η2t )21{η2t<n−2δ}1An ,

(S3) = n−1
n∑
t=1

(log(1 + (η̃2t − η2t )/η2t ))21{η2t≥n−2δ}1An .

2



By (A1), (A1
′
), (A3

′
), (A4

′
), (30), (32), (S1.4), Cauchy-Schwarz inequality, and Taylor’s theorem,

it holds that

max
1≤t≤n

P (η2t < n−2δ) = O(n−4κ), (S1.7)

E(S1) ≤ C

n

n∑
t=1

(log n)2P (η2t < n−2δ) = O
(
(log n)2n−4κ

)
, (S1.8)

E(S2) ≤ C

n

n∑
t=1

{
E[(log η2t )4]

}1/2 {
P (η2t < n−2δ)

}1/2
= O

(
n−2κ

)
, (S1.9)

(S3) = Op(n
−2κ). (S1.10)

By (S1.5)–(S1.10) and Markov’s inequality, we obtain the first equation of (S1.1), which, in con-
junction with (S1.2) and (S1.3), leads to the second one. 2

Let z = (z1, . . . , zpL)> be independent of and have the same covariance structure as {zt},
α = (α1, . . . , αpD )>, and r(z) = z>α. Recall that ĴD,m is the index set determined by OGAD at
the m-th iteration. The next lemma investigates the convergence rate of

En[(r(z)− r̂ĴD,m(z))2].

Here, for J ⊂ {1, . . . , pD}, r̂J(z) = z>(J)α̂(J), α̂(J) = (
∑n
t=1 zt(J)z>t (J))−1

∑n
t=1 zt(J)rt, and

z(J) = (zi, i ∈ J)>.

Lemma S1.5 Assume that the same assumptions as in Lemma S1.4 hold and KD,n � nκp
−1/q
D .

Then

max
1≤m≤KD,n

En[(r(z)− r̂ĴD,m(z))2]

m−1 + n−2κmp
2/q
D

= Op(1).

proof. Let (r̂1;J , . . . , r̂n;J)> = HD,Jr, (ẑ1i;J , . . . , ẑni;J)> = HD,JZi, ẑ
⊥
ti;J = zti − ẑti;J , and

z⊥i;J = zi − zi;J , where HD,J is defined after (14) and zi;J = z>(J)Γ−1D (J)gD,i(J). Define

µD,J,i = E[(r(z)− rJ(z))zi] and µ̂D,J,i =
n−1

∑n
t=1(rt − r̂t;J)zti

(n−1
∑n
t=1 z

2
ti)

1/2
,

3



where rJ(z) = z>(J)Γ−1D (J)E(z(J)r(z)). By Lemmas S1.1–S1.4 and an argument similar to that
used to prove (A.7)–(A.9), we obtain

max
1≤](J)≤KD,n

‖Γ̂−1D,n(J)‖2 = Op(1), (S1.11)

max
](J)≤KD,n−1,i/∈J

∣∣∣∣∣ 1n
n∑
t=1

εtẑ
⊥
ti;J

∣∣∣∣∣ = Op(n
−1/2p

1/q3
D ),

max
](J)≤KD,n−1,i/∈J

∣∣∣∣∣ 1n
n∑
t=1

Θt,nẑ
⊥
ti;J

∣∣∣∣∣ = Op(n
−κ),

max
](J)≤KD,n−1,i,j /∈J

∣∣∣∣∣ 1n
n∑
t=1

ztj ẑ
⊥
ti;J − E(zjz

⊥
i;J)

∣∣∣∣∣ = Op(n
−1/2p

1/q4
D ),

which yield

max
{(J,i):](J)≤KD,n−1,i/∈J}

|µ̂D,J,i − µD,J,i| = Op(n
−κp

1/q
D ). (S1.12)

With the help of (S1.12), the rest of the proof can be carried out in the same fashion as that of
Theorem 1. The details are skipped. 2

Lemma S1.6 Assume that the same assumptions as in Lemma S1.5 and (A6
′
) hold. Then

lim
n→∞

P (ND,n ⊂ ĴKD,n
) = 1.

Moreover, there is a sufficiently large a such that

lim
n→∞

P (DD,n) = 1,

where DD,n = {ND,n ⊆ ĴD,banγDc}.

proof. These conclusion follow directly from Lemma S1.5, (A6
′
), and an argument similar to that

used to prove (A.22). 2

Define k̃D,n = min{k : 1 ≤ k ≤ KD,n, ND,n ⊆ ĴD,k}, and KD,n + 1 if ND,n − ĴD,KD,n 6= ∅.

Lemma S1.7 Assume that the same assumptions as in Lemma S1.6 and (34) hold. Then

σ̂2
D,ĴD,k̃D,n

− n−1
n∑
t=1

E(ε2t ) = op(1).

4



proof. Note that σ̂2
D,ĴD,k̃D,n

− n−1
∑n
t=1E(ε2t ) is equal to

n−1‖ε+ Θn‖22 − n−1
n∑
t=1

E(ε2t )− n−2(ε+ Θn)>ZĴD,k̃D,n
Γ̂−1D,n(ĴD,k̃D,n)Z>

ĴD,k̃D,n
(ε+ Θn),

where ZJ = (Zj , j ∈ J), ε = (ε1, . . . , εn)>, and Θn = (Θ1,n, . . . ,Θn,n)>. Thus, σ̂2
D,ĴD,k̃D,n

−

n−1
∑n
t=1E(ε2t ) is bounded above by∣∣∣∣∣n−1

n∑
t=1

ε2t − E(ε2t )

∣∣∣∣∣+

(
n−1

n∑
t=1

Θ2
t,n

)

+2

{(∣∣∣∣∣n−1
n∑
t=1

(ε2t − E(ε2t ))

∣∣∣∣∣+ n−1
n∑
t=1

E(ε2t )

)(
n−1

n∑
t=1

Θ2
t,n

)}1/2

+‖n−1(ε+ Θn)>ZĴD,k̃D,n
‖22‖Γ̂−1D,n(ĴD,k̃D,n)‖2. (S1.13)

By (A3
′
), (S1.11), Lemmas S1.2 and S1.4, KD,n = O(nκp

−1/q
D ), and KD,n/n

γD →∞,

‖n−1(ε+ Θn)>ZĴD,k̃D,n
‖22‖Γ̂−1D,n(ĴD,k̃D,n)‖2IDD,n

≤ max
1≤](J)≤banγDc

‖Γ̂−1D,n(J)‖2 × anγD max
1≤j≤pD

(
n−1

n∑
t=1

(εt + Θt,n)ztj

)2

= op(1). (S1.14)

Hence, the desired conclusion follows from Lemmas S1.4 and S1.6, (A1
′
), (A3

′
), (34), (S1.11),

(S1.13), and (S1.14). 2

Proof of Theorem 3. We first show that

lim
n→∞

P (k̂D,n = k̃D,n) = 1, (S1.15)

which is ensured by

P (k̂D,n < k̃D,n) = o(1), (S1.16)

and

P (k̂D,n > k̃D,n) = o(1). (S1.17)

To show (S1.16), note first that

{k̂D,n < k̃D,n,DD,n} ⊆ M1,n

≡

{
2αĵD,k̃D,n

ÛD,2,n − λ$D,n|ÛD,3,n| ≤ −α2
ĵD,k̃D,n

ÛD,1,n + λ$D,n

(
n−1

n∑
t=1

E(ε2t )

)}
,

(S1.18)
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where λ is some positive constant,

ÛD,1,n = n−1Z>
ĵD,k̃D,n

(I −HD,ĴD,k̃D,n−1
)ZĵD,k̃D,n

,

ÛD,2,n = n−1Z>
ĵD,k̃D,n

(I −HD,ĴD,k̃D,n−1
)(ε+ Θn),

ÛD,3,n = σ̂2
D,ĴD,k̃D,n

− n−1
n∑
t=1

E(ε2t ),

and $D,n = n−1banγDcGD(pD, n). Using Lemmas S1.1–S1.4 and S1.7 and an argument similar to
that used to prove (A.27) and (A.28), one obtains

ÛD,1,nIDD,n
≥ vD,n + op(1), |ÛD,2,n|IDD,n

= op(n
−γD/2), |ÛD,3,n|IDD,n

= op(1), (S1.19)

where vD,n = min1≤](J)≤banγDc λmin(ΓD(J)) > δD for all large n. Now, by making use of (34), (35),
Lemma S1.6, and (S1.19), P (M1,n) = o(1), which, together with (S1.18), leads to (S1.16).

To prove (S1.17), we obtain after straightforward calculations that

{k̂D,n > k̃D,n} ⊆
{

2(k̂D,n − k̃D,n)(âD,n + b̂D,n) + n$̃D,n|ÛD,3,n| ≥ δ2n$̃D,n

}
, (S1.20)

where δ2 is some positive constant, $̃D,n = 1− exp{−n−1(k̂D,n − k̃D,n)GD(pD, n)} and

âD,n = ‖Γ̂−1D,n(ĴD,KD,n
)‖2 max

1≤j≤pD

(
n−1/2

n∑
t=1

(εt + Θt,n)ztj

)2

,

b̂D,n = ‖Γ̂−1D,n(ĴD,KD,n)‖2 max
1≤](J)≤k̃D,n,i/∈J

(
n−1/2

n∑
t=1

(εt + Θt,n)ẑti;J

)2

.

By k̂D,n ≤ KD,n = O(nκp
−1/q
D ), there exists λ > 0 such that

(n$̃D,n)/(k̂D,n − k̃D,n) ≥ λmin{n1−κp1/qD , GD(pD, n)} on {k̂D,n > k̃D,n}. (S1.21)

After some algebraic manipulations, we have

âD,n + b̂D,n = Op(p
2/q
D + n1−2κ),

which, together with (A3
′
), (S1.20), (S1.21), and Lemmas S1.6 and S1.7, gives (S1.17). Thus,

(S1.15) is proved.

For k̃D,n > 1, define δ̃D,l = 1 if HDICD(ĴD,k̃D,n − {ĵD,l}) > HDICD(ĴD,k̃D,n) and δ̃D,l = 0

otherwise. Then,

P (N̂D,n 6= ND,n) ≤P (G̃D,n) + P (H̃D,n)

+ P (k̂D,n 6= k̃D,n) + P (N̂D,n 6= ND,n, k̂D,n = 1) + P (ND,n * Ĵk̂D,n), (S1.22)
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where G̃D,n = {δ̃D,l = 0 and αĵD,l 6= 0 for some 1 ≤ l ≤ k̃D,n, k̃D,n = k̂D,n > 1, ND,n ⊆ Ĵk̂D,n} and

H̃D,n = {δ̃D,l = 1 and αĵD,l = 0 for some 1 ≤ l ≤ k̃D,n, k̃D,n = k̂D,n > 1, ND,n ⊆ ĴD,k̂D,n}. By an

argument similar to that used to prove (S1.15), it holds that P (G̃D,n) = o(1) and P (H̃D,n) = o(1). In

addition, (S1.15) and Lemma S1.6 imply P (k̂D,n 6= k̃D,n) = o(1), P (N̂D,n 6= ND,n, k̂D,n = 1) = o(1),

and P (ND,n * ĴD,k̂D,n) = o(1). These equations and (S1.22) lead immediately to (18). 2
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S2 Tables for Real Data Analysis

Table S2.1: Variable descriptions. “OECD” represents Organisation for Economic Co-
operation and Development; “SEMI” stands for Semiconductor Equipment and Materials
International.

Variable Description Source
Macroeconomic Variables

1 FF Federal Funds Rate Federal Reserve
2 CLI Composite Leading Index OECD
3 IP US Industrial Production Index Federal Reserve
4 CS Consumer Sentiment Index University of Michigan

Financial variables
5 SOX Philadelphia Semiconductor Index Yahoo! Finance
6 NDQ NASDAQ Composite Index Yahoo! Finance
7 DJ Dow Jones Industrial Average Index Yahoo! Finance

Semiconductor Variables
8 CAP Capacity Federal Reserve
9 SIP Industrial Production Index Federal Reserve

10 UTL Capacity Utilization Ratio Federal Reserve
11 ISR Inventories to Shipments Ratios (Computer and Electronic Products) Bureau of Census
12 NO New Orders (Computer and Electronic Products) Bureau of Census
13 FGI Finished Goods Inventories (Computer and Electronic Products) Bureau of Census
14 MSI Materials and Supplies Inventories (Computer and Electronic Products) Bureau of Census
15 VS Value of Shipments (Computer and Electronic Products) Bureau of Census
16 TI Total Inventories (Computer and Electronic Products) Bureau of Census
17 Bill Billings for Semiconductor Manufacturing Equipment SEMI
18 PPI Producer Price Index (Electronic Components and Accessories) Bureau of Labor Statistics
19 ES Retail Sales for Electronics and Appliance Stores Bureau of Census
20 ESA Wholesale Sales for Electrical and Electronic Goods Bureau of Census
21 EIN Wholesale Inventories for Electrical and Electronic Goods Bureau of Census

Industrial Production Index
22 IP1 Computer and Electronic Product Federal Reserve
23 IP2 Computer and Peripheral Equipment Federal Reserve
24 IP3 Communications Equipment Federal Reserve
25 IP4 Audio and Video Equipment Federal Reserve
26 IP6 Electrical Equipment, Appliance, and Component Federal Reserve
27 IP7 Battery Federal Reserve
28 IP8 Communication and Energy Wire and Cable Federal Reserve
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Table S2.2: Variable descriptions (continued).

Variable Description Source
Producer Price Index

29 PPI3 Other Semiconductor Devices (Parts such as Chips, Wafers, and Heat Sinks) Bureau of Labor Statistics
New Orders

30 NO2 Construction Machinery Manufacturing Bureau of Census
31 NO7 Other Electronic Component Manufacturing Bureau of Census
32 NO9 Household Appliance Manufacturing Bureau of Census
33 NO11 Computers and Related Products Bureau of Census
34 NO12 Communication Equipment Bureau of Census
35 NO14 Electrical Equipment Manufacturing Bureau of Census
36 NO15 Search and Navigation Equipment (Nondefense) Bureau of Census

Total Inventories
37 TI1 Farm Machinery and Equipment Manufacturing Bureau of Census
38 TI2 Construction Machinery Manufacturing Bureau of Census
39 TI3 Computer Storage Device Manufacturing Bureau of Census
40 TI4 Other Computer Peripheral Equipment Manufacturing Bureau of Census
41 TI5 Communications Equipment Manufacturing (Nondefense) Bureau of Census
42 TI6 Audio and Video Equipment Bureau of Census
43 TI7 Other Electronic Component Manufacturing Bureau of Census
44 TI8 Electrical Equipment, Appliances, and Components Bureau of Census
45 TI9 Household Appliance Manufacturing Bureau of Census
46 TI10 Battery Manufacturing Bureau of Census
47 TI11 Computers and Related Products Bureau of Census
48 TI12 Communication Equipment Bureau of Census
49 TI13 Information Technology Industries Bureau of Census
50 TI14 Electrical Equipment Manufacturing Bureau of Census
51 TI15 Search and Navigation Equipment (Nondefense) Bureau of Census

Value of Shipments
52 VS1 Farm Machinery and Equipment Manufacturing Bureau of Census
53 VS2 Construction Machinery Manufacturing Bureau of Census
54 VS3 Computer Storage Device Manufacturing Bureau of Census
55 VS4 Other Computer Peripheral Equipment Manufacturing Bureau of Census
56 VS5 Communications Equipment Manufacturing (Nondefense) Bureau of Census
57 VS6 Audio and Video Equipment Bureau of Census
58 VS7 Other Electronic Component Manufacturing Bureau of Census
59 VS8 Electrical Equipment, Appliances, and Components Bureau of Census
60 VS9 Household Appliance Manufacturing Bureau of Census
61 VS10 Battery Manufacturing Bureau of Census
62 VS11 Computers and Related Products Bureau of Census
63 VS12 Communication Equipment Bureau of Census
64 VS13 Information Technology Industries Bureau of Census
65 VS14 Electrical Equipment Manufacturing Bureau of Census
66 VS15 Search and Navigation Equipment (Nondefense) Bureau of Census
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Table S2.3: Variables selected by Twohit under Model II and their coefficient estimates

Regression model (β)
Variable(lag) Est. S.E. Variable(lag) Est. S.E.

intercept 0.00502 0.00223 NO14(4) 0.15633 0.02118
yt(1) 0.82070 0.01146 NO14(20) 0.19847 0.02091

SOX(2) 0.06035 0.01581 NO15(21) -0.03884 0.00643
SOX(6) 0.07574 0.01732 TI3(4) -0.22313 0.03989
SIP(12) -0.89537 0.11948 TI4(2) 0.29334 0.06827
FGI(2) -0.32394 0.07048 TI9(21) 0.71267 0.08566
FGI(16) 0.24811 0.07172 TI10(12) 0.29017 0.05388
MSI(3) 0.67855 0.09244 TI12(10) -0.62192 0.06310
MSI(14) -0.89731 0.09346 VS3(10) 0.08423 0.00913
ES(12) 1.02190 0.09301 VS4(7) -0.15338 0.01769
EIN(10) -0.63792 0.14271 VS6(16) -0.09810 0.01688
IP1(1) 2.01883 0.16786 VS7(12) -0.40061 0.04432
IP3(6) 0.44903 0.06870 VS9(22) 0.37633 0.04783
IP7(21) -0.30576 0.04480 VS12(5) 0.18091 0.02841
IP8(15) 0.26290 0.06454 VS14(12) -0.42075 0.04919
NO7(18) 0.11655 0.02069 IP(18) -2.08027 0.27617
NO9(21) 0.11959 0.02215

Dispersion model (α)
Variable(lag) Est. S.E. Variable(lag) Est. S.E.

intercept -7.38764 0.93013 TI6(19) -13.65783 1.77437
SOX(14) 2.98043 0.82968 VS1(21) 1.28667 0.88379
ISR(17) 0.09709 0.60577 VS4(19) 2.31033 0.95088
NO7(13) -7.20692 1.16834 VS6(10) 1.86396 0.82516
NO7(23) 5.16120 1.14999

Information criterion
AIC -971.3615
BIC -832.1359

Note: Coefficients with absolute values larger than 1.96 standard errors are boldfaced.
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Table S2.4: Variables selected by Twohit under Model I and their coefficient estimates

Regression model (β)
Variable(lag) Est. S.E. Variable(lag) Est. S.E.

intercept 0.63236 0.59236 ES(1) -0.55477 0.12094
FF(5) -0.05186 0.01721 ES(10) 0.49835 0.12103
FF(14) -0.10049 0.02018 IP1(4) 2.59567 0.26452
CLI(16) -0.03054 0.00561 IP3(5) 0.44699 0.08640
CLI(24) 0.02719 0.00380 IP4(24) -0.08947 0.02444
IP(10) -2.05307 0.37445 IP7(14) 0.33045 0.05875
SOX(6) 0.12761 0.02462 TI1(8) 0.30947 0.11051
NDQ(2) 0.23045 0.03694 TI4(21) -0.39709 0.08245
NDQ(4) 0.21216 0.03746 TI6(15) -0.25269 0.04181
NDQ(7) 0.15578 0.03606 TI6(18) -0.43609 0.04561
NDQ(9) 0.25454 0.03385 TI9(14) 0.72934 0.11655
SIP(1) 2.61711 0.16375 TI11(2) 0.62424 0.09295

UTL(12) -0.00561 0.00058 TI13(11) -1.11378 0.21753
NO(2) 0.28929 0.04636 TI13(14) -1.66225 0.24722
FGI(2) -0.42104 0.09951 VS3(10) 0.08848 0.01365
TI(1) 1.20487 0.24303 VS8(1) 0.65022 0.10446
Bill(1) 0.00020 0.00001 VS14(8) 0.34628 0.06484
Bill(10) -0.00011 0.00001

Dispersion model (α)
Variable(lag) Est. S.E. Variable(lag) Est. S.E.

intercept -6.67482 0.14447 NO2(23) 0.92285 0.40358
CAP(11) 19.67328 9.98880 TI1(9) -6.00693 4.11759
ESA(1) -20.31691 4.13612 TI14(14) -22.06525 6.16805
IP2(23) -3.97144 3.57243 VS3(3) 2.03680 0.69172
IP7(9) -12.25308 2.83380 VS5(3) 2.78433 1.77836

The model for εt: εt = φ1εt−1 + φ2εt−2 + wt

Est. S.E. Est. S.E.
φ1 0.34949 0.06296 φ2 0.22457 0.06386

Information criterion
AIC -819.4105
BIC -662.7818

Note: Coefficients with absolute values larger than 1.96 standard errors are boldfaced.
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