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Abstract

Although existing literature on high-dimensional regression models is rich, the vast
majority of studies have focused on independent and homogeneous error terms. In this
article, we consider the problem of selecting high-dimensional regression models with
heteroscedastic and time series errors, which have broad applications in economics,
quantitative finance, environmental science, and many other fields. The error term
in our model is the product of two components: one time series component, allow-
ing for a short-memory, long-memory, or conditional heteroscedasticity effect, and a
high-dimensional dispersion function accounting for exogenous heteroscedasticity. By
making use of the orthogonal greedy algorithm and the high-dimensional information
criterion, we propose a new model selection procedure that consistently chooses the rel-
evant variables in both the regression and the dispersion functions. The finite sample
performance of the proposed procedure is also illustrated via simulations and real data
analysis.
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1 Introduction

Consider a multiple-input transfer function model,

; s geeey T,
Yt ~ 5J<B) t,7 t
where 7 is the sample size, C'is a constant, {{;;},7 = 1,..., k, are input series (or exogenous

variables), {y;} is the output series, {7;} is a mean-zero stationary noise series independent
of {5}, the polynomials in B, §;(B) = 1-01 jB—---—6,, ;B and w;(B) = wo j —w1 ;B —
-+ —ws; ;B%, are of degrees r; and s, respectively, and B denotes the backshift operator.
Model encompasses not only the classical regression and time series models, but also
the celebrated intervention model proposed by Box and Tiao (1975); see Tsay (1984) and
Tiao (1985) for a more detailed discussion. When §;(2) # 0 for all |2| <1, w;(2)/d;(2) can
be approximated by Zf 70 clvjzl, where p; is a sufficiently large integer and {c; ;} satisfies
S 2ozt =w;j(2)/8;(2). Therefore, model can be approximated by

k Pj
ye=C+ Y ajb;+m (2)

j=11=0

which, in turn, is a special case of the linear regression model,

pL
ye = Po + Z Bjtj + ne, (3)

J=1

where pr,, corresponding to Z?Zl(pj +1) in model , can be large compared to n, x4, j =
1,...,pL, are exogenous variables, and 3;,0 < j < pr,, are regression coefficients. In the case
of pr, > n, there are computational and statistical difficulties in estimating the regression
coefficients by standard regression methods. In particular, it is no longer feasible to use the
classical model selection techniques to estimate Ny, , = {1 < j < py, : 5; # 0}, the set of
relevant variables. However, by imposing sparsity conditions on f3;, eigenvalue conditions
on the covariance (correlation) matrix of z;;, and distributional conditions on 1, or zy;, it
has been shown that Ny, can still be consistently estimated either using penalized least
squares methods (see, e.g.,Basu and Michailidis, [2015; Wu and Wu, |2016]) or greedy forward
selection algorithms (see, e.g., Ing and Lail 2011; |Hsu et al., [2019; [Ing, [2019).
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Fig. 1. The left panel is the time plot of the monthly growth rate of the semiconductor
worldwide market billings defined in , and the right one is the time plot of the estimated
residuals, 7, obtained from OGA+HDIC+Trim of Ing and Lai (2011).

On the other hand, model , assuming homogenous errors, can be restrictive in terms
of economic applications. To illustrate the need to consider heteroscedastic errors, we
provide a preliminary analysis of the monthly growth rate of the semiconductor industry
based on model . In our analysis, the output variable, {y;}, is the monthly growth rate
of the semiconductor world market billings from the dataset of the World Semiconductor
Trade Statistics (see ) and the sample size is n = 240. The input variables include quite
a large number of macroeconomic, financial, and semiconductor variables and their lagged
values, leading to pr, = 1584 > n. The time plot of {y;} given in the left panel of
offers a clear indication of heteroscedasticity. Using the high-dimensional model selection
method suggested in Ing and Lai (2011)), we select and estimate the non-zero §;; the time
plot of the resultant residuals, {7;}, is provided in the right panel of revealing that
the heterogeneity in variance of {y;} carries over to that of {#;}. Since the heteroscedastic

variance may result from the exogenous variables, we are led to consider

PD
ne = over and  oF = exp{ ag + Zajztj , (4)

j=1
in which 25,1 < 7 < pp, denote the exogenous variables that may influence the variance of
¢, pp is allowed to be larger than n, and o;,0 < j < pp, are unknown coefficients. In fact,
in the case of independent observations, model with the error term satisfying has



been used in several studies on expression quantitative trait loci (eQTLs) and production
engineering where heteroscedasticity is present in the data; see Daye et al.| (2012) and |Chien
et al.[(2016]). The {¢} in , playing a role similar to the stationary error in , is modeled
by

€= bwij, (5)
=0

where {w;} is a sequence of i.i.d. random variables independent of {x; = (@¢1,... 24, )" }
and {zr = (211, ... 2tpp) |}, E(w1) =0, E(w?) =1, 9 = 1, and {1;} obeys either

ZWJ” < oo and Z@b]zj #0, 2] <1, (6)
j=0 J=0
or
;= O(j7 1), for some 0 < d < 1/2. (7)

Condition (6] implies that {€;} is a short-memory process, whereas allows {€;} to be
long-memory.

An alternative way to model the monthly growth rate of the semiconductor world market
billings is to include the past values of y; as explanatory variables, that is, y;—;,1 < 7 < g,
are included in x;, for some prescribed positive integer ¢q. Since endogenous variables have
entered the regression function, Sy + Z§i1 Bjxtj, instead of assuming that {e:} in is a

short- or long-memory process, we now postulate that
{e, Fi} is a martingale difference sequence, (8)

where {F;} is an increasing sequence of o-fields and E(e?) = 1 for all . While implies
that {e;} is no longer serially correlated, it permits {¢;} to have the ARCH/GARCH effects.

In addition, we assume that
(@, z¢) is Fy—1-measurable and {z;} is independent of {e;}. 9)
When Np, = {1 < j < pp : a; # 0} is an empty set (or o} is a constant), these

specifications include as the special case the high-dimensional autoregressive exogenous



(ARX) model with GARCH/ARCH errors; see Han and Tsay|(2019). When Np ,, # 0, these
specifications allow heteroscedasticity of n; to arise either from the exogenous variables z; or
from the ARCH/GARCH effects of ¢;. Since the assumptions considered in this paragraph

are somewhat different from those in the previous one, in the sequel, we refer to

model with @y, ¢, 2¢, and ¢ satisfying , , and @ (or ) as Model I,
model with @, n¢, 2¢, and € satisfying , , and @ as Model II.

Our goal is to consistently estimate the relevant sets Ny, ,, and Np, in the regression
function and the dispersion function, respectively, when Model I or IT holds true, noting that
the dispersion function is defined by o? = exp{ag + Z?il a;z;}. As mentioned previously,
when it is known that o7 is a constant (or Np , is an empty set), the problem of estimating
N1, has been tackled in the literature. More specifically, Basu and Michailidis| (2015])
and Wu and Wul (2016) show that Ni,, can be consistently estimated via Lasso if {x;}
is independent of {n;} = {e;} and {e:} is a short-memory process. In addition, Han and
Tsay| (2019)) show that the same property holds for Lasso in high-dimensional ARX models
with GARCH errors. Instead of using Lasso, |Hsu et al.| (2019) propose identifying Ny, ,, in
high-dimensional ARX models using the orthogonal greedy algorithm (OGA, |Temlyakov,
2000)), together with the high-dimensional information criterion (HDIC, Ing and Lai), [2011)
and Trim (a backward elimination method based on HDIC). Their method, referred to
as the OGA+HDIC+Trim, was originally introduced by [Ing and Lai| (2011)), who establish
OGA-+HDIC+Trim’s selection consistency in high-dimensional regression models with i.i.d.
observations. Hsu et al.| (2019)) show that OGA+HDIC+Trim’s consistency carries over to
high-dimensional ARX models. However, when Np, is non-empty, to the best of our
knowledge, no consistent estimate of Np, or Ny, is available in the literature.

In this paper, a variable selection method intended to fill this gap is proposed. This
method, modified from OGA+HDIC+Trim, is called two-stage OGA+HDIC+Trim (Twohit).
Twohit contains two parts. In the first part, OGA+HDIC+Trim is used to select Ny, , by
ignoring the heteroscedasticity of 7;. In the second part, a natural log transformation is
first taken for the least squares residuals of the regression function selected in the first part
(subject to left truncation). Then, the transformed data is modeled by a linear combination
of the dispersion variables (see (17)), and OGA+HDIC+Trim is used again to select Np,.

The key contribution of this work is to show that Twohit consistently estimates Np , and



N1, n, regardless of whether Model I or II is assumed. The rest of the paper is organized
as follows. The details of Twohit are described in Section The consistency of Twoit
in estimating Np,, and Np, is reported in Section and Section respectively. In
Section [4] simulation results are given to corroborate our theoretical findings. In Section
we analyze the aforementioned monthly growth rate data using Twohit. We conclude in
Section[6] The proofs of the results in Section[3.1]are provided in the Appendix, whereas the
proofs of the results in Section along with additional details on our real data analysis,
are deferred to the supplemental material.

We end this section with some notation used throughout the paper. For vector a, ||al|;
and ||a||2 denote its L1-norm and L2-norm, respectively. For matrix A, ||A[2 and Apin(A)
denote its spectral norm and minimum eigenvalue, respectively. The cardinality of set A
is denoted by #(A). In addition, for sequences of positive numbers {a,} and {b,}, a,, < by,

means C} I < bn/a, < C for all large n, where C} is some positive constant.

2 Methodology

Ing and Lai (2011) consider high-dimensional regression models with i.i.d. observations,
and propose using OGA+HDIC+Trim to select input variables. This method consists of (a)
OGA: an iterative forward inclusion of input variables in a “greedy” manner, (b) HDIC:
a stopping rule to terminate forward inclusion of variables, and (c) Trim: a backward
elimination of variables according to HDIC. Ing and Lai (2011) establish the selection
consistency of OGA+HDIC+Trim, which is subsequently generalized by Hsu et al. (2019)
to high-dimensional ARX models.

By ignoring the heteroscedasticity of 7;, Twohit begins with choosing Ny, through
OGA+HDIC+Trim. Define

y=(n —g,...,yn—g)T, X, = (z1; —i"j,...jxnj—ij)—r, i=1,...,pL, (10)
and
6t.;=n""y (I - Hy,)y,
where (yi, @i, 2;),i = 1,...,n are data available up to time n, § = n= >0 |y, & =

n S @, J C{L,...,pL}, I is the n x n identity matrix, and Hy, s is the orthogonal



projection matrix onto the subspace spanned by {X; : j € J}. The method is described in

detail as follows.

Algorithm 1 : OGA+HDIC+Trim

1. (OGA). Let K1, be an upper bound for the number of iterations to be specified in Sections [3.1] and
Initialize the algorithm by setting R o = y and jL,O =0. Fori=1to K1, n, define

5L ; = arg max |R1T,i71Xj|
"’ 1<, | X2

and update iji_l and Ry, ;—1 by JAL,Z- = jL,i—l U{ﬁLz} and Ry; = (I — HLajL,i)y7 respectively.
2. (HDIC). Set
kin = argminlSkSKmHDIC(jL,k),
where for J C {1,...,pL},
HDIC(J) = nlog st ; + #(J)GL(pL, n), (11)
and Gy (pL,n) is a penalty term to be specified in Sections and
3. (Trim). Output

e {jri: HDIC(Jy ;= {jua}) > HDIC(J 5, ), 1 <1<kia}, ifkin>1;
L,n = “ ! ! ~
{7L1}s if ko = 1.

It is worth mentioning that the major difference between HDIC and conventional con-
sistent information criteria such BIC and HQ is that the penalty terms in the latter criteria
depend only on the sample size n, whereas the penalty term G, (pr,n) in the former de-
pends not only on n but also on the number of candidate variables pr,, and hence can be
much larger than those in BIC and HQ when pr, > n; see Section for details. The larger
penalty term in HDIC is used to adjust for potential spuriousness of the variables greedily
chosen by OGA from among py, candidate variables. Although OGA+HDIC+Trim selects
input variables without taking the heteroscedasticity of 1. = o€ into account, we show in
Section B.1] that

lim P(Ny, = Np,) =1 (12)

n—00



still follows if, among other assumptions, o; has finite higher-order moments (see Assump-
tion (A1l)) and Gy (pr,n) diverges to co at a suitable rate.

The second part of Twohit is to select dispersion variables using OGAp+HDICp+Trimyp,
where OGAp, HDICp, and Trimp, respectively, are counterparts to OGA, HDIC, and Trim.
Define

ﬁtQ = maX{ﬁ?in}v e = log ﬁtQ’ (13)
— = T — 5 AL
r=r1—7...,tn—7) ,Z; = (21— Zj,-- 1205 — %) , j=1,...,pD, (14)
and
6p.y=n"'r"(I - Hpj)r,
where (71,...,7,) " = (I — H; . )y are the ordinary least squares residuals of the model

selected by OGA+HDIC+Trim, ¢, is a small positive constant, 7 = n~! Sopi Tt Zj =
n~tS % 2, J € {1,...,pp}, and Hp ; is the orthogonal projection matrix onto the
subspace spanned by {Z; : j € J}. OGAp+HDICp+Trimp is described as follows.



Algorithm 2 : OGAp+HDICp+Trimp

1. (OGAp). Let Kp,» be an upper bound for the number of iterations to be specified in Sections
and Initialize the algorithm by setting Rp,o = r and JAD,O =0. Fori=1 to Kp n, define

jD , = arg max |R1-|3—,¢71Zj|
"’ 1<i<pp || Zj]]2

and update jD,i_l and Rp;—1 by JAD,i = jDﬂ'_l U{jDz} and Rp,; = (I — HD,jD i)r, respectively.
(Note that the choice of ¢,, in 77 will be discussed in Sections and .

2. (HDICp). Set
ED,n = argminlgkgKDmHDICD(jD,k)7
where
HDICp (J) = nlog D s + #(J)Go(pp,n), (15)
and Gp(pp,n) is a penalty term to be specified in Sections and

3. (Trimp). Output

{jp,i s HDICp (Jp, 4 — {jpa}) > HDICD(Jp, ) )1 <1< kpn}, if kpn > 1;

ND’” = o p §
{]D,1}7 if ka,n =1.




We now briefly explain why 7 is used in OGAp+HDICp+Trimp. In view of , it is
clear that

PD
log(n?) :dg—I—Zajztj—i—st, t=1,2,...,n, (16)
j=1
where ag = ag + E(loge?) and &; = loge? — E(loge?). While 1, on the left-hand side of
is unobservable, it can be estimated by 7;. However, log7? may face numerical and
statistical difficulties when 7 is very close to 0. We therefore adopt a left-truncated version,
77,52, of 771&2 to estimate 77,52, and reexpress as
PD
Tt:d0+zajztj+€t+et7n, t:1,2,...,7’l, (17)
j=1
where ©;,, = log(77?) —log(n?). When ¢, in (Gp(pp,n) in (15)) converges (diverges) to
0 (00) at a suitable rate and the distributions of ? satisfy some smoothness conditions at the
origin (see ), it is argued in Sectionthat the impact of ©;, vanishes asymptotically,
and

lim P(Np,, = Np,,) = 1. (18)

n—oo

3 Theoretical Properties

This section aims to develop the selection consistency of T'wohit when pr, and pp are allowed
to be much larger than n. In particular, the selection consistency of OGA+HDIC+Trim
in selecting N, ,, and that of OGAp-+HDICp+Trimp in selecting Np , is established in

Sections [3.1] and respectively.

3.1 Consistency of OGA4+HDIC+Trim in Selecting Ny,

In this section, we assume that Sy = 0 and {x;} is a covariance stationary time series
satisfying E(x;) = 0 and E(:v?]) = 1 for all j. We only show that OGA+HDIC+Trim
is consistent when ¢ and Z; in are set to 0. However, our argument can be easily
generalized to prove the consistency of OGA+HDIC+Trim in situations where £y, E(x;),

or £ (ZL’?J) is unknown.

10



Let & = (z1,... ,a:pL)T be independent of and have the same covariance structure as
{x}, y(x) = "B, and T(J) = E(xi(J)x] (J)), where B = (B1,...,8p.) " and x4(J) =
(w45, € J)T. Recall that jL,m is the index set determined by OGA at the m-th iteration.

We start by investigating the convergence rate of
Enl(y(®) = 9j, . ()],
which plays a crucial role in proving (12). Here, §,;(z) = wT(J)B(J), x(J) = (x5, € J)T,
BUI) = iy xe( D)z (1)~ iy (S)yr, and
E.(-) = E(‘ly1,®1, 21, -+ s Yn, Tny Zn)-
The following assumptions are needed in our analysis.

(A1) (a) For ModelI, there exists q; > 2 such that E|w; ["*{0:4} < oo, sup_ ;oo Elo¢|?® <

oo, and maxi<t<n,1<i<pr, E|xti|2m = O(l)

(b) For Model II, (i) there exists ¢1 > 2 such that sup_. ;oo Ele?? < o0,

sup,oo<t<ooE|at\3‘J1 < 00, and maxi<¢<n,1<i<py, E|1:n-\3‘ﬂ = 0O(1); (i) ef is a

stationary process satisfying limy_, o cov(e?, €7 1) =0.

(A2) For some g2 > 2,

n 2q2
max FE |n /2 Z(mtixtj — E(zyzy))| = O(1). (19)
t=1

1<i,j<pL

(A3) For some 0 < ¢ < min{q1, g2}, pi/g/nlﬁd, where 0 < d < 1/2 is defined in and
d=0if @ or follows.

(Ad) sup,>, Z?L |8j] < o0.

(A5) There are some 61, > 0 and My, > 0 such that for all larger n,

i >\min I'y(J)) >0 5 20
1<ty (PL(])) > o (20)
max T (Ngri( D)l < My,

1<H(J)<KL,n,i¢J

where gi(J) = E(wy(J)zr).

11



Some comments are in order.

(1). Assumptions (Al)(a) (or (Al)(b)(i)) and (A2)—(A5) resemble (F1)—(F5) of Hsu
et al. (2019), which are made to ensure that OGA has the desired asymptotic property
in high-dimensional time series models with homogeneous errors. In particular, (A2),
(A4), and (A5) are almost the same as (F1), (F4), and (F5) of Hsu et al. (2019),
respectively. Condition (Al)(a) (or (Al)(b)(i)) is the key assumption leading to

o Z TtiMt

see Lemma in the Appendix for details. Hence, (Al)(a) (or (Al)(b)(i)) is sim-

ilar in spirit to (F2) of Hsu et al. (2019), which imposes a moment condition on
nt D i Tri€s.

(2). In some cases, assumptions like

max
1<i<pr,

_ 1
1/2+dpL/Q1);

Elzy|* = 0(1),q > 2 o1
1<t NS ey, Bl (1),q =2, (21)

used in (A1) can imply that in (A2) holds with go = ¢/2. For example, assume

that {z;;} admits an infinite moving-average representation
T = Z b Vt J (22)

where {14(7)} is a martingale difference sequence with respect to an increasing se-
quence of o-fields {G¢} and maxi<i<p, > ;2 (4 + 1)bj(é)] < Cp for some positive

constant Cy. Also assume

oo

Vtz(l) 29] i)m—j (23)

§=0

where {n:(i),G¢} is a martingale difference sequence and maxi<;<p, > 72 [0;(i)| +
maxi<i<p, MY 5, 07(i) < Cg for some positive constant Cj. Then, by Burkholder’s
inequality, (21] . ., and some algebraic manipulations, it can be shown that (A2)
holds with g2 = ¢/2. Note that and are satisfied not only by linear pro-
cesses with i.i.d. innovations, but also by linear processes with stationary GARCH

innovations.

12



(3). To illustrate the flexibility of (A2), we consider the following high-dimensional
ARX model,

k P Ty
y= i+ > > ns + e, 1, n,
j=1 v=1 j=0

where p is a positive integer which can be larger than n, k£ and r,,1 < v < p, are
positive integers bounded from above, 1 — 25:1 $;27 # 0 for |2| < 1, Z§:1 loj| +

e Il < oo, st = 02wl with 52 (08)2 < oo and &y(p) =
(6t(1), e ,6t(p ))T being independent random vectors satisfying E (8;(p)d, (p)) = %,
(a p-dimensional positive definite matrix) and E(d;(p)) = 0, {e:} is a stationary
GARCH(ry,r2) process independent of {d;(p)}, with 1 < r; + 12 < oo, and {0y}
is a sequence of positive random variables independent of {¢;}. It is clear that the
input vectors at time ¢ is ; = (Y41, . - . ,yt_k,sgl), . sgl)Tl, ... ,sip), .. .,sgli)rp)—r
the number of input variables is pr, = k+ >0 _(ry, +1). Let v;(v),i = 1,2,..., be

v

and

the autocovariance function of {sgv)}. Then by the First Moment Bound Theorem
of Findley and Wei (1993)), the Burkholder inequality, and some algebraic manipula-
tions, it can be shown that (A2) holds true, provided maxi<y<p > o V2(v) < Cy,

SUP _so<t<oo MaAX1<v<p E|5§v)‘4q2 + Ele|*® < Oy, and

0.0
o? =exp{ ap + Z ijTIt—j , (24)

j=0
where C7 and Cy are some positive constants, {n:} is a sequence of ii.d. pp-
dimensional sub-Gaussian random vectors in which pp can be larger than n, and

w; are pp-dimensional coefficient vectors satisfying Zjoio w1 < oo.

(4). By (A3), py, is allowed to be larger than n if min{q;, ¢2} > 2/(1—2d). This implies
that the stronger the dependence of €, the more stringent moment assumptions are
needed for OGA to handle the case of p;, > n. Note that (A3) is more restrictive than
(F3) of [Hsu et al.| (2019)), which is (A3) with d = 0. However, if we assume that o?
is a constant and {¢;} is a stationary fractionally integrated process of order d (i.e.,
(1 — B)%; = wy, where B is a back-shift operator) with 0 < d < 1/4, then (A3) can

be weakened to the latter one.

13



(5). Conditions (A4) and (A5) introduce mild restrictions on the regression coeffi-
cients and the correlations among regressors. They are frequently made to analyze
the performance of OGA in high-dimensional regression or time series models with
homogeneous errors; see Ing and Lai| (2011)), Hsu et al.| (2019), and Ingf (2019).

(6). Finally, we remark that (Al)(b)(ii) is satisfied by a broad class conditional
heteroscedastic time series. In particular, it is shown in Proposition 3.1 of |Giraitis et
al.| (2000) that (A1)(b)(ii) is fulfilled by the stationary ARCH(co) process,

o0
& = pike, pe="bo+ Z bie;_j, (25)
j=1
where & are ii.d. nonnegative random variables satisfying E(£3) = 1 and b; are

nonnegative numbers obeying >, b; < 1.

Theorem 1 Assume that Model I (Model II), (Al)(a) ((A1)(b)(i)), and (A2)-(Ab) hold.
Suppose

g —1
Ky, < n'/? dpL 43 (26)

Then

Eul(y(z) — g5 ()]
max 2}’“” = 0,(1). (27)
1Sm<Kin -1 4 mpy Q/nlde

Theorem 1 reveals that Ey,[(y(z) — 4;, m(m))Q] is uniformly bounded by the sum of two

1

2 . . .
terms, m~! and mpL/g / n'=24 The first term, m~!, caused by approximating the regression

function using OGA, decreases as the number of iterations increases. The second term,

2/q, 1_
mpy, */nl 2d

, is associated with the estimation error. While this term decreases with the
sample size, it increases with the numbers of OGA iterations as well as the candidate
variables. It also becomes larger as d increases or ¢ decreases. When m grows to oo at

-1
a rate not exceeding nt/ 27dpL /e

, the aforementioned sum converges to 0, suggesting that
7 jL,m(ac) provides a good approximation of y(x). This feature, together with the following
‘beta-min’ condition (see (A6)) and an assumption on the penalty term, G1,(pr,, n), of HDIC
(see (29)), ensures the selection consistency of OGA+HDIC+Trim, as detailed in Theorem

2

14



(A6) There exists 71, satisfying 0 < 1, < 1/2 —d and n"= = 0(n1/2*d/pi/g) such that
liminf n" min Bf >0,
n—o00 jGNL,n

where 0 < d < 1/2 is defined in (7) and d = 0 if (6]) or (8) follows.

Theorem 2 Assume that Model I (Model II), (A1)(a) ((A1)(b)), (A2)—(A6), (26), and

1 « 1 «
- > (07 = E(0})) = 0p(1) and liminf —>" E(of) >0 (28)
t=1 t=1

n—oo n

hold. In addition, suppose that Gr,(pr,n) in satisfies

2/q
GL (pLa n) n2dpL
n1—2'yL ( ) and GL(pLﬂl) o ) ( 9)

Then follows.

We close this section by noting that is a high-level assumption fulfilled by a wide
range of time series models. For example, it can be shown that satisfies . Moreover,
Theorem 1 in the supplement of Gao and Ling (2019) shows that if J; = (07 — E(0?)) is
’L

a stationary process satisfying sup_, ;oo E|Vi|* < 00 for some 1 < ¢ < 2 and a strong

mixing condition, then for some § € (0, 1),

n
p =110 Zyt — 0 a.s.,
t=1

yielding .

3.2 Consistency of OGAp+HDICp+Trimp in Selecting Np,

This section is concerned with the performance of OGAp+HDICp+Trimp. In order to
simplify the exposition, we assume in that &p is known, E(z;) = 0, and E(z?j) =1.
Our goal is to establish the selection consistency of OGAp+HDICp+Trimp when 7 and
Zj in are replaced by &g and 0, respectively. Our argument can be easily generalized

to show the consistency of the method in situations where &g is unknown, E(z;) # 0,
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or E(zfj) # 1. Note that the major difference between and the conventional high-
dimensional regression model is the presence of ©;, = log(f?) — log(n?). Therefore, the
issue here is to control the local behavior of ©;, when n? is near the origin. To this end,

we impose the following condition.

(A0") There exist positive constants §; (which can be arbitrarily small) and 7 such that for
all 0 < s < 41,

sup P(n? < s) < ¢r7, (30)
t>1

where ¢, is a positive constant that may depend on 7.

If ¢, satisfies with sup;>; P(§ < s) < cs” for some ¢ > 0, and sup;>, E(lo7]) < oo,
then follows. Moreover, when ¢; is a stationary Gaussian process and sup;~; £(|o; <
00, it can be shown that holds with 7 = 1/2. Although it is possible to verify under
more general conditions, we leave this issue for future research. In addition to (A0), we
also need a series assumptions parallel to (A1)-(A6). Throughout this section, we assume
that (Al) is true for a sufficiently large ¢; and (A6) holds for 71, = 0 in order to avoid

excessive technicalities. Define z(J) = (25,5 € J) .

(A1) There is g3 > 4 such that

sup E|log €|% < oo, (31)

t>1
and

n q3 n q3/2

. < 2
1%2;(17 E Z gtztz = Cq3 (Z §t> ) (32)

t=1 t=1

where &1, ..., &, are any real numbers.

(A2') {2} is a covariance stationary time series satisfying

2q4

max F
1<4,5<pp

n
n V2N 2z — E(zizg)
t=1

where ¢4 > 2.

16



(A3") pQD/q/n% = o(1), where 0 < d < 1/2 is defined in (7)), and d = 0 if (6) or follows.

(Ad) sup,>1 3252 |ay| < oo,

(A5") There are some 6p > 0 and Mp > 0 such that for all larger n,
i Awpin(Tp(J)) > dp, 33
1t iy, in (TP () = 0 ()

I ())gp.i(J)lh < Mp.
1§ﬁ(J)I£%}]§m,i¢J|| p (Hgpi(J)[1 < Mp

where I'p(J) = E(2z:(J)z (J)) and gpi(J) = E(z:(J)2).
(A6') There exists 0 < yp < & such that n"™ = o(n”/p]g/q) and

liminf n"® min 04]2 > 0,
n—o00 JENDn

where & is defined in (A3").

It can be shown that holds when ¢, is a stationary Gaussian process or when ¢, is a
stationary ARCH (o0) process (see (25))) with a finite second moment and with & obeying

sup>1 Ellog &|% < oo. Equations and imply

n

1
— E Zti€t
n —

t=1

max

— O, (n~1/2,}/ 9 7
1<i<pp b rp )

which is crucial for proving the consistency of OGAp+HDICp+Trimp; see the supplemen-
tary material for details. By using Lemma 2 of \Wei| (1987)) and Theorem 2.1 of Ing and Wei
(2006, holds true, provided {z;} is a linear process generated by an i.i.d. sequence
{61} satistying maxi<ij<p, E|0|® = O(1), and has a square summable autocovariance
function. Assumptions (A2'), (A4'), and (A5') play the same roles as those played by (A2),
(A4), and (A5) in the analysis of OGA+HDIC+Trim. Assumptions (A3") and (A6') appear
to be more stringent than (A3) and (A6) because of k < 1/2 — d. However, (A3") does not
preclude pp > n if ¢ is sufficiently large, and (A6') still allows that minjeny, , || converges

to 0 slowly. The main result of this section is given in the next theorem.
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Theorem 3 Assume that the same assumptions as in Theorem |4 and (A0")—(A6") hold.

Also assume that Kp p =< n“/pllg/q,

12 2 el 2
— e; — E(ef)) = 0p,(1), liminf — Eer) > 0, 34
2 D =) = o0). Hmint D E() (34)

¢, =< nol/2td gy , and Gp(pp,n) in obeys

Gp(pp,n) ”1_2Kp§)/q _
nlfz’YD - 0(1)’ GD (pD’ ’I’L) - 0(1) (35)

Then holds true.

Condition , playing a role similar to (28) in Theorem 2| is also easily satisfied in
practice. For example, under and @ (or ), holds, provided w; obeys mild
moment conditions and its distribution follows some smoothness conditions at the origin.
In addition, follows when ¢; is a stationary GARCH process satisfying mild moment
conditions and the logarithms of the absolute values of its corresponding innovations are

i.i.d. random variables having a finite second moment.

4 Simulation Studies

We carry out simulation studies to evaluate the finite sample performance of Twohit. Sec-
tion provides a guideline for choosing tuning parameters in Twohit. In Section we
compare Twohit with the doubly regularized approach of Daye et al.| (2012), Lasso, and

adaptive Lasso using simulated data from Models I and II.
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4.1 Selection of Tuning Parameters in Twohit
Consider K7, ,, and Gi,(p1,,n), ¢,, KD n, and Gp(pp,n) in Twohit. In our simulation study,
we set

Kip = min{|[Crin'p. /™|, pL},

G(pL,n) = C’L,gnlfmpi/qL loglog n,
KD,n = HllIl{ LCD,anplgl/qDJupD}v

Gp(pp,n) = Cp an' =) ™ loglog n,
where C1, 1, CL 2,41, 9D, t, ¥, Cp 1, and Cp 2 are tuning parameters. For a given

9 = (C11,01L2,qL,qDs 1, ¥, Cp1,Cpa) |

)

we use Twohit in Section 2 to determine NL,n = NL,H(ﬂ) and ND,n = ND,n(ﬁ). We then

minimize the loss function

2
i ap + Z iz | + i (yt —Bo— Zje]\?L,n(g) Bjﬁtg)

t=1 i€ND o (9) t=1 €Xp {ao + ZiGND!n(ﬂ) aizti}

9

with respect to oy and f;, and denote the corresponding minimum value by L(19). Let ©

be a range of ¥ depending on the user’s choice. Define

v = argmin L(9) + (4(NLn(9)) + §(Np,n(9))) Pa,
where P, is a prescribed positive number that may vary with n. Then NL,n(ﬂ*) and
Np.n(9*) are the final outputs of Twohit.

Note that L(9)+ (f( Ny n(9)) +4(Np. . (9))) P, is nothing but a conventional information
criterion (with penalty P,) when {¢;} is assumed to be a sequence of i.i.d. AM(0,1) random
variables. In the next section, we set P,, = 2loglogn and ® = 9 X ¥4 X 199 X ¥ X ¥3 X ¥3 X
Y1 x Yy, where ¥, = {5,10}, 92 = {4,5}, ¥3 = {0.05,0.2,0.35,0.5}, and ¥4 = {0.25,0.5}.
We have tried to use different P, and ©, but those given here usually lead to better

performance.
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4.2 Performance Evaluation

As mentioned previously, in addition to T'wohit, this section also considers the performance
of the doubly regularized approach of Daye et al| (2012) (denoted by HHR), Lasso, and
adaptive Lasso. To implement HHR, we use the source code from https://sites.google.
com/site/zhongyindaye/software, and follow the suggestion of Daye et al.| (2012) to
select tuning parameters therein by the Akaike information criterion (AIC). To perform
Lasso (adaptive Lasso) under Model I or Model II, whose corresponding negative log-
likelihood function is not jointly convex in «; and f; even when {¢} is a sequence of
i.i.d. standard normal random variables, we use TwLasso (TwAdaLasso), which is Twohit
with OGA+HDIC+Trim and OGAp+HDICp+Trimp replaced by Lasso (adaptive Lasso).
Moreover, the Lasso and adaptive Lasso in TwLasso and TwAdalLasso are implemented
through the glmnet and parcor packages in R, respectively.

The performance of the aforementioned methods is evaluated on Examples 1-3, each
containing several data sets generated by Model I (Examples 1 and 2) or Model II (Ex-
ample 3). The performance measures are given by the average (over 100 replications) true
positive rates (ATPR), the average (over 100 replications) false positive rates (AFPR), E
(the frequency, in 100 replications, of selecting exactly the relevant variables), and E* (the
frequency, in 100 replications, of including all relevant variables). All sample sizes in these

examples are 400.

Example 1

Let x1,...2x, be ii.d. pp-dimensional normal random vectors with zero mean and covari-
ance matrix ¥ = (hl"=7l);; i<, | where h € {0.1,0.3,0.5,0.7,0.9}, pr, = 4000. We also
set Bp = 0.5, (B1,...,615) = (7.5,7.5,7.5,0,0,0,10,10,10,0,0,0,12.5,12.5,12.5), (1 =
<o = PByoo0 = 0, z¢ = x; (yielding pp = pr, = 4000), ap = 0.1, (1, a2, a3, a4, a5) =
(0,2.5,0,0,—2.5), and ag = -+ = o0 = 0. Moreover, {¢;} is generated by one of the

following time series models (TSM):
TSM 1: €t = Wg, TSM 2: €t = O.66t_1 + wy,

TSM 3: ¢ = w; + 0.6w;_1, TSM 4: (1 — B)%3¢; = wy,

20


https://sites.google.com/site/zhongyindaye/software
https://sites.google.com/site/zhongyindaye/software

where B is the backshift operator and {w;} is a sequence of i.i.d. standard normal ran-
dom variables. Under these specifications, the ATPR, AFPR, E, and E* of Twohit, HHR,
TwLasso, and TwAdaLasso are summarized in

Note that Var(3"x;)/E(c?) =1.88, 2.84, 6.85, 38.8, and 827.7 when h = 0.1,0.3,0.5,0.7,
and 0.9, respectively. Therefore, a larger h leads to a larger signal-to-noise ratio, which
may enhance the chance of identifying the relevant variables and excluding the irrelevant
ones. As shown in for each TSM i,1 < i < 4, the ATPR (AFPR) of Twohit
tends to increase (decrease) as h increases from 0.1 to 0.9. On the other hand, because
E(xyizey) = pli=il a large h also introduces high correlations between the relevant variables
and a few irrelevant ones. Once these irrelevant variables are included by OGA or OGAp,
they are often not easily eliminated by Trim or Trimp, thereby worsening the performance
of Twohit on E. Indeed, reveals that although the E* of Twohit appears to increase
with h, the lowest E of T'wohit also occurs at the highest value of h.

When h < 0.9, TwAdaLasso is comparable with Twohit in terms of ATPR and E*, but
is worse than the latter in terms of AFPR and E. When h = 0.9, TwAdalLasso is inferior
to Twohit on all performance measures. For all values of h, TwLasso suffers from a small
ATPR and a large AFPR compared to TwAdaLasso. The performance of TwLasso on E*
and E is also much worse than TwAdaLasso. HHR works slightly better than TwLasso on
ATPR and E* when h = 0.1. The method, however, faces a severe false positive problem.
As a result, its AFPR values are extremely large and its E values are zero at h = 0.1. When
h grows to 0.9, the ATPR of HHR substantially deteriorates and its AFPR remains large,
yielding the smallest E* and E among all methods. Finally, we mention that there is no
systematic change in the performance of the methods considered when {¢;} varies from an
i.i.d. process (TSM 1) to a short-memory process (TSM 2 or 3) to a long-memory process
(TSM 4).

Example 2

Let {x; = (z41,. .., 2mo00) ' } be a sequence of i.i.d. random vectors, where 1, . .., 2412 are

i.i.d. standard normal random variables and

12
2y =dy + Y au, j=13,...,4000,
=1
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Table 1: The ATPR, AFPR, E, and E* of Twohit, HHR, TwLasso, and TwAdaLasso in
Example 1.

TSM 1 TSM 2 TSM 3 TSM 4
Method ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E*
Twohit 0.969 1.73e-4 72 83 0.941 2.94e-4 64 82 0.924 1.99e-4 67 79 0.937 1.78e-4 60 78
HHR 0.925 5.14e-2 0 53 0.925 5.13e-2 0 56 0.940 5.18e-2 0 63 0.934 5.16e-2 0 60
TwLasso  0.925 9.20e-3 0 52 0.922 884e-3 0 52 0.900 9.33e-3 0 55 0.911 9.02e-3 0 45
TwAdaLasso 0.965 4.09e-4 20 80 0.950 4.02e-4 17 79 0.925 3.35e-4 17 78 0.937 4.06e-4 14 72

TSM 1 TSM 2 TSM 3 TSM 4
Method ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E*
Twohit 0.956 1.70e-4 71 85 0.948 2.19e-4 65 83 0.949 2.49e-4 55 79 0.940 1.58e-4 65 79
HHR 0.890 4.97e-2 0 32 0.917 5.05e-2 0 50 0.913 5.05e-2 0 45 0.907 5.04e-2 0 39
TwLasso  0.941 7.86e-3 0 65 0.945 7.76e-3 0 61 0940 7.69¢e-3 0 61 0.939 8.07e-3 0 62
TwAdaLasso 0.963 2.39e-4 29 85 0.958 3.18e-4 30 79 0.961 3.14e-4 21 79 0.955 4.12¢-4 19 82

TSM 1 TSM 2 TSM 3 TSM 4
Method ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E*
Twohit 0.969 9.01le-5 72 87 0.960 2.04e-4 64 82 0.964 8.89e-5 79 92 0.959 1.97e-4 59 85
HHR 0.837 4.08¢-2 0 6 0.845 4.39¢e-2 0 9 0830 4.24e-2 0 6 0836 4322 0 6
TwLasso  0.950 7.15e-3 0 69 0.965 7.85e-3 0 77 0948 7.19¢e-3 0 72 0.952 6.86e-3 0 62
TwAdaLasso 0.976 2.72e-4 29 87 0.975 2.90e-4 35 87 0.975 2.69¢e-4 40 93 0.976 2.72¢-4 28 86

h=0.7

TSM 1 TSM 2 TSM 3 TSM 4
Method ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E*
Twohit 0.992 4.76e-5 87 98 0.971 1.29e-4 70 89 0.992 7.64e-5 73 96 0.983 1.18e-4 73 92
HHR 0.820 1.42e-2 0 0O 0.819 2.06e-2 0 0O 0819 1.80e2 0 0 0818 1.7le2 0 O
TwLasso 0.983 6.54e-3 0 88 0.978 6.93e-3 0 84 0975 5.87e-3 0 82 0.978 6.54e-3 0 83
TwAdaLasso 0.993 1.39e-4 60 96 0.986 1.84e-4 53 94 0.995 1.84e-4 38 96 0.990 1.97e-4 37 93

h=0.9

TSM 1 TSM 2 TSM 3 TSM 4
Method ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E*
Twohit 0.993 1.04e-4 64 92 0.984 1.59e-4 46 90 0.980 1.69e-4 42 88 0.990 1.54e-4 45 90
HHR 0.818 5.19¢e-3 0 0O 0.818 4.98e-3 0 0 0818 564e-3 0 O 0.818 5.2le3 0 O
TwLasso  0.929 3.59e-3 0 51 0.961 4.55e-3 69 0.949 4.25e-3 65 0.944 4.88e-3 0 61
TwAdaLasso 0.955 3.53e-4 17 73 0.982 2.87e-4 21 84 0.967 3.15e-4 21 75 0.963 3.25e-4 16 75

]
]
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with (0.25)*1/ 2(dy13, - . ., diaooo) T following a 3988-dimensional standard normal distribu-
tion. Set z = x;, By = 0.2, (B1,...,B10) = (3,3.75,4.5,5.25,6,6.75,7.5,8.25,9,9.75),
Bir = = Baoo =0, ap = 0.1, a3 = =1, ay2 = 1, and o = 0 if j ¢ {0,11,12}.
Moreover, {€;:} is generated by TSM 1, 2, 4, or

TSM 5: (1 — B)%45¢; = wy,

where w; is defined as in Example 1. Note that the serial dependence of {¢;:} in TSM 5 is
much stronger than in TSM 4, although both are long-memory processes. The performance
of Twohit, HHR, TwLasso, and TwAdaLasso on ATPR, AFPR, E, and E* are presented in
[Table 21

In this example, Lasso-type methods, HHR, TwLasso, and TwAdalasso, may encounter
the intrinsic difficulty that the irrepresentable condition (Zhao and Yu, [2006) fails to hold;
see Example 3 of Ing and Lail (2011) for further discussion. As observed in the
ATPR of TwLasso is around 0.92, which is much larger than that of HHR and TwAdalasso,
but much smaller than that of Twohit. The performance of TwAdaLasso in terms of AFPR
is much better than TwLasso and HHR, but is obviously inferior to Twohit. Moreover, the
E* and E values of the Lasso-type methods are all (close to) zero. In contrast, Twohit
works perfectly on E* when {¢} is generated by TSM 1, 2 or 4, and the corresponding E
value, ranging from 71 to 86, is also reasonably large. However, when {¢;} is generated
by TSM 5, Twohit becomes relatively unsatisfactory. This, together with the simulation
results obtained in Example 1, suggests that the performance of Twohit deteriorates under

a very strong serial dependence.

Table 2: The ATPR, AFPR, E, and E* of Twohit, HHR, TwLasso, and TwAdaLasso in
Example 2.

TSM 1 TSM 2 TSM 4 TSM 5

Method ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E*

Twohit 1.000 0.91e-4 86 100 1.000 1.19¢-4 75 100 1.000 1.38e-4 71 100 0.983 1.93e-4 43 81
HHR 0.805 8.31e-3 O 1 0.732 6.62¢e-3 0 0 0.804 7.89%-3 0 1 0635 7383 0 1
TwLasso 0.916 1.05e-2 0 0 0917 8.56e-3 0 0 0917 9.79-3 0 0 0916 846e-3 0 O
TwAdaLasso 0.793 1.06e-3 0 0 0.844 1.07e-3 O 0 0815 1.10e-3 O 0 0824 1.05e-3 0 O
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Example 3

Let z; be the same as that in Example 2 and x; = (241, ..., :z:t4050)T, where z;; = z; for
J=1,...,4000 and x¢ 4000+; = y¢—; for j = 1,...,50. In addition, y; is set to zero for ¢ < 0.

We generate {€;} according to the following GARCH(1, 1) model,
€ = VtWy,

where v2 = 1+ 0.5¢2_; + 0.3v2 ; and {w;} is a sequence of i.i.d. standard normal random
variables. The coefficients By, ..., Bagoo and ag,...,as000 are also the same as those in
Example 2. On the other hand, we consider three different cases for (84001, - - -, S1050) (the
AR coefficients corresponding to (yi—1,--.,Yt—50)):

Case 1: (54001, 54002) = (0.5, 0.25), and ,Bj =0 lfj = 4003, e ,4050.
Case 2: (64001, e ,54003) = (0.5, 0.25, 0.125), and ,Bj =0 ifj = 4004, NP ,4050.
Case 3: (Baoot, - - - » Bao04) = (0.5,0.25,0.125,0.0625), and 3; = 0 if j = 4005, ..., 4050.

The simulation results are reported in Like Example 2, the irrepresentable con-
dition does not hold in this example; hence Lasso-type methods (HHR, TwLasso, and
TwAdalLasso) do not work well on all performance measures. However, Twohit performs
quite satisfactorily, in particular in terms of E. We also notice that the larger the smallest

non-zero AR coefficient, the higher the value of Twohit on E.

Table 3: The ATPR, AFPR, E, and E* of Twohit, HHR, TwLasso, and TwAdaLasso in
Example 3.

Case 1 Case 2 Case 3

Method ATPR AFPR E E* ATPR AFPR E E* ATPR AFPR E E*
Twohit 0.985 2.12e¢-5 94 95 0.983 3.48e-5 89 93 0.971 3.73e-5 88 90
HHR 0.389 1.53e-2 0 5 0.209 2.82¢e-3 0 0 0.205 2.54e-3 0 O
TwLasso 0.924 7.80e-3 0 2 0.923 7.47e-3 0.909 7.09e-3
TwAdaLasso 0.873 1.06e-3 0 0 0.841 1.06e-3 0.801 1.15e-3

0 0 0 0
0 0 0 0
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5 Real Data Analysis

In this section, we use T'wohit to choose important explanatory variables for the monthly
growth rate of the semiconductor world market billings (WMB) from among a large number
of candidate variables. We collect the monthly semiconductor WMB, denoted by WMBy,
and other 66 monthly variables (suggested by Liu and Weng (2018) as candidate predictor
variables) from the World Semiconductor Trade Statistics; see Tables S2.1 and S2.2 in the
supplement for the description of these variables. Following|Liu and Weng] (2018), we define
the monthly growth rate of the semiconductor WMB by

yr = log(WMB;) — log(WMB;_12), (36)

and take a two-step transformation procedure for the candidate variables (except for CLI,
CS, UTL, ISR, Bill, PPI, and PPI3) in order to obtain (possibly) stationary series.

We begin by analyzing y; based on Model II, in which the dispersion variables, zi;,
are the aforementioned 66 variables (after the two-step transformation) and their lagged
values (up to 24 months) and the regression variables, x;;, contain all z; and y;—1,...,
Yr—24, yielding n = 240, p;, = 1608, and pp = 1584. We use Twohit to select regression and
dispersion variables and obtain the estimates of €;, denoted by €;(I1I), based on the selected
model. The time plot, ACF plot, and partial ACF (PACF) plot of é(II), along with the
ACF and PACF plots of é2(II), are given in These plots suggest that there is no
serial correlation and ARCH/GARCH effect in é(II). The estimated coefficients and their
standard errors are presented in Table S2.3.

We next analyze {1} based on Model I, in which z;; are the same as those of Model II
and x4; = 2 for all j. Therefore, p;, = pp = 1584 > n = 240. We select regression and
dispersion coefficients using Twohit, and obtain the estimates of ¢, €/(I). According to the
ACF and PACF plots of é&(I), we postulate an AR(2) model for {e},

(1 — ¢1B — ¢2B)er = wy,

and then simultaneously estimate ¢1, ¢2, and the selected regression and dispersion coef-
ficients. These estimates and their standard errors are reported in Table S2.4. Moreover,
the time plot, ACF plot, and PACF plot of estimates of wy, w0, are given in showing

that there is no serial correlation in ;.
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Fig. 2. Residual analysis for Model II: (a) the time plot of &(II), (b) the ACF plot of
é(I1), (c) the PACF plot of &(II), (d) the ACF plot of é2(II), (e) the ACF plot of é2(II),
and the blue dashed lines in (b)—(e) are two-standard-deviation limits.

2 10 . s
+f S+t 1 o [T pe e
LRI R ‘e MR . w© 2]
1 ey .Q‘ hR I ““...o.. 2 S
I AR SRR ] e
0 et ted tat N T e 2gl
.00... e o .d.* ".‘:A.‘".”. 2 ; E g 1 I | T 1 1
LR SOy 5 I I ||’
- d & 0 e
2 ”» e ° 1 1 1 2
. =) T T T S
I I o T 7 e —— 1 T —
0 5 10 15 20 5 10 15 20
Jan 1999 Jan 2004 Jan 2009 Jan 2014 Dec 2018 Lag Lag

Fig. 3. Residual analysis for Model I: (a) the time plot of w, (b) the ACF plot of 1y, (c)

the PACF plot of w;, and the blue dashed lines in (b) and (c) are two-standard-deviation
limits.
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Although [Fig. 2| and [Fig. 3|indicate that the two models built upon Models I and IT are
adequate, it is shown in Tables S2.3 and S2.4 that the model built upon Model II has the

smaller AIC and BIC values, and hence seems to be more recommendable than the model

built upon Model I. It is worth pointing out that the former model does not include the
three most crucial determinants (NO, TI, and UTL) of the semiconductor industry cycles
suggested by industry practitioners (see Table 2 in |Liu| (2005])), whereas its competitor
does. One possible explanation of this phenomenon is that y;—1 is included by the former
model at the first OGA iteration owing to its high correlation with the response variable
y¢. Once y;—1 is chosen by OGA, it is difficult for the aforementioned crucial determinants

to enter the regression equation because they are statistically confounded with ;1.

6 Concluding Remarks

This paper has addressed the important problem of selecting high-dimensional regression
models with heteroscedastic and serially correlated errors. When the serial correlation
or heteroscedasticity does not exist in the error terms, this type of problem has been
undertaken in the past; see, e.g., Belloni et al.|(2014)), Basu and Michailidis (2015)), [Wu and
Wul (2016), |Gu and Zou| (2016)), [Han and Tsay| (2019), and Hsu et al.| (2019). Their results,
however, are not directly applicable to situations where both heteroscedasticity and serial
correlation occur. We fill this gap by proposing a two-part selection procedure, Twohit, and
proving its consistency in selecting regression and dispersion variables in situations where
the model error contains a short-memory, long-memory, or conditionally heteroscedastic
component. We also show that Twohit works well in finite samples compared to other
competing methods.

While Twohit focuses on the dispersion function o? = exp{ag + Z?El a2z}, it is
possible to extend the consistency result of Twohit to another popular dispersion function
or = (ap + Z§21 j2t;)?, which has been considered by many authors either with fixed pp
or with pp > n; see, e.g., Efron| (1991), Koenker and Bassett| (1982), [Koenker and Zhao
(1994), and |Gu and Zou| (2016)). Let n; = o;¢;. Then, it holds that

2

pPD
#2 %2
n, = | oo + Zajztj + (o (6? — ].), (37)
j=1
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where, without loss of generality, we assume F(e?) = 1. When pp > n, is a high-
dimensional interaction model with heteroscedastic and time series error o} ’ (€2 —1). Since
the interaction model obeys the strong heredity condition (see Hao and Zhang, 2014), it is
expected that Twohit (with a suitable modification for OGAp+HDICp+Trimp) can still
achieve selection consistency when o7 (or (16)) is replaced by 02‘2 (or (37)). However, this

extension requires a detailed study and is left for future work.
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Appendix A Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we need some supporting lemmas. Recall that we assume that 5y = 0,
E(x;) = 0 and E(z7;) = 1, and set § and Z; in to 0. Throughout this appendix, C' stands for
a generic positive constant independent of n.

Lemma A.1 Assume that either
1) @). @) or @, and (A1)(a), or
(i) &), @, and (A1)(Db)()

holds. Then

max _ Op(nfl/ﬂdpi/%),

1<i<pL

n
-1
n E NtTs
t=1

recalling that 0 < d < 1/2 is defined in and d =0 if @ or is assumed.

PROOF. It suffices to show that

max F
1<i<pr

n
—1/2—d
n=Y E Nt Ttq
t=1

) = 0(1). (A.1)
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We first prove (A.1) under (i). Let T, = (Ye(i—J))1<i,j<n, where ye(s) = E(e1€145). In view of (),
1e(5) = S 0 sty s = Ol + 1|7129), which, together with (), vields 3"y ()] = O(n??).
Since for any n-dimensional unit vector a, a' ¢ ,a < C Z?:o |ve(4)], it holds that

[Tenllz < sup aTFe,na = O(nzd)- (A.2)

llall2=1

By (A.2), (A1)(a), independence of {ws} and {(xs, z5)}, Lemma 2 of Wei| (1987)), Jensen’s inequality,
and Cauchy-Schwarz inequality, one has for all 1 <14 < pr,,

n
—1/2—d
n~Y E Nt Tti
t=1
n n

_pu(/2+dp )l B ‘ Z ( Z O Thithr—s ) Ws

s=—00 t=max{l,s}

q1

E

q1
Ts,25,—00 < § < 00O

2 l]l/2
< Ccp - a(/2+d g Z Z Ot T4 Pi—s
s=—00 \t=max{l,s}
n n min{k,l} n/2
= Cn - a(/2+d g Z deﬂfkmlxli Z Yr—sWi—s
k=11=1 §=—00
q1/2

<Cn~ Y., |3°E

n
n! g J,%:cii
k=1

n 1/2 1/2
<Cn™! ;Ewkxki\ql <C (1rélta§XnEat|2q1> ( max E|xti2q1> ,

yielding (A.1)). We next show that (A.1]) holds true under (ii). Note first that for each i =1,...,pr,
{otetx4;, Fi} is a martingale difference sequence. By (A1)(b)(i), Burkholder’s inequality, Jensen’s

U, LR

inequality, and Holder’s inequality, one has for all 1 <7 < py,,

n n

—1/2

n~Y E MtTii E Ot€tTti
t=1

t=1

n q1/2
CE <7l1 Z(O’thl'ti)2>
t=1

q1 q1

E = n "/2E

<
n
S CTL_l E E\UtetxtiPI
t=1
1/3 1/3 1/3
< C( max Ele* max E|o > max B> ,
1<t<n 1<t<n 1<t<n,1<i<pr,
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and hence (A.1]) follows. a

Lemma A.2 Assume that (A2) holds. Then

n
-1 _ —1/2,1/q2
max |n"'Y mywy — Bwwyg)| = Op(n~/2p/®).
1<4,5<pL Py

PROOF. The proof of this lemma is elementary and is therefore omitted. o

Lemma A.3 Under (A2) and (20)),

r _ _ —-1/2,1/q2
1gu<%3§XKL,n,||FL’”(J) LL(J)ll2 = Op(KLan™ "p ™), (A.3)

where T'p, () = n S0 @(J)x] (J). Moreover, if Ky, ,, = o(nl/Qijl/qZ’), then
rpl(J)-rgt = 0p(1). A4
B - Tl = o) (A.4)

PROOF. Since

max  |Cpn(J) = TL(J)]2 < K max (07" zuzy — E(zamy)|,
t=1

1<#(J)<Krn 1<i,5<pL

(A.3) follows directly from Lemma Moreover, (A.4)) is ensured by (20), (A3), Ki, =

-1
O(nl/sz /Q2)7

ITLL () =T (D2 < (ITp L () = T Dll2 + ITL (D2)ITLn(J) = TL) |2 TL ()2,
and some algebraic manipulations. |
Proof of Theorem [Il Note first that

Eul(y(®) = j, , ()] = Eul(y(2) —yj, , (®)°] + Ea[(@, (@) —yj,  (€)°]:

Therefore, is ensured by

max v = 0,(1), (A.5)

and




where y;(2) = & (J)T () E(z(])y(=)).

Let (917, 8n.g) | = Hy gy and (£14.7, -+, Znig) | = Hy 1 X, iré;J = Xy — T4, and xl{, =
x; — x4y, where Hy, ; is defined after and z;.; = = (J)TL (J)gr.i(J). By (Al)-(A3), (A5),
Lemmas Ky, = O(nl/Q_dpgl/g), and an argument similar to that used to prove of (3.8)
of Ing and Lai (2011), we obtain

n
-1 E 2
n Ty —
t=1

max [T L ()]l = Op(1), (A7)

1<t(N <KL
-t Z 77t95n J

1
E xt]xm J = i;J)

max

1] = 0,(1
1<i<pr,n op(1),

_1/2-1—dp11_1/¢h>7 (A8)

]i(J)<KL ,,—1 zeJ

= Op(n~"/?p/ ™ A9
ﬂ(J)<KL n712]¢J P(n Dy, ), ( )

which further imply

11,1 — pn,g] = Op(n= /24 /%), A.10
(i P gy Wi = gl = Op () (A.10)

where pur, 7; = E[(y(z) — ys(x))z;] and

fin g = T (Y — ea) T
syt T _
(n=1 3o @)/
Equation (A.10) ensures that for any small p > 0, there exists a large constant V, for which

P [1 P — il >V, —1/2+d l/a < Q. A1l
({(J,n:u(J)Isnf%i(,n—l,ieJ} 1AL = e, gil > Von P ¢ (A.11)

For 1 <m < Ky, define
N _ 1/
Apn(m) = {maX{(Jﬂ)?ﬁ(J)Sm*Li%J} |fin,i — pin,g4] < Von=t/2Hp g} )

and

. : _ 1/q
B m) = min max - > Evyp /2,
Ln(m) {0<i<m1 1555, |/“LL7JLJ-,]‘ &V PL s

where 2 < £ < 0o. By an argument similar to that used to prove (3.11) and (3.12) of Ing and Lai
(2011)), it holds that

2

Eql{y(@) —yj, @< Cey, | I8 ] m™ on Avn(m)nBra(m), (A.12)
j=1
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and
pL
Eul{y(@) —y;, . @1 < [ Y1651 éVen 240" on B, (m), (A.13)
j=1

where Cé,vg is some positive constant depending on ¢ and V,. Consequently, (A.5) follows from

Apn(m) C Ay o (KL), (A11)-(A13), K, = O(nl/g_dpgl/g), and (A4). Moreover, by (A4),
(A5), (A.7), and Lemmas IA.3] (A.6) also holds true. Thus, the proof is complete. ad

To prove Theorem 2, we also need the following lemma.

Lemma A.4 Assume that Model I (Model II), (Al)(a) ((A1l)(b)), (A2), (A3), (A5), (20), and the

q

first relation of hold. Suppose Ki, p, < n1/2*dp;1 =. Then
-1, T(71_ -1 2| _
gl v (- Hin—n Y E@m7)| = 0p(1), (A.14)

t=1
where nT = (N1, ...,0,).
PROOF. The left-hand side of (A.14) is bounded above by

n n 2
Nl ;(nf — E(n?))‘ + . ITL L (Dl ||n~" ; @, (J)n, 2 (A.15)
By (A2), (A3), (A5), (A7), Lemma and K7, , = O(nl/z_dp;l/g)7 it follows that
n 2
e, SR |7 o] = st (A.16)
The first term of is bounded above by
WY o = B()| + Y (oF - Bl E() (A7
t=1 =1

¢
Since {e;} is independent of {z;}, it follows from (Al)(a) ((A1)(b)(i)) and Cauchy-Schwarz inequality
that

¥ ( St - E<e%>>)

n

YN BBl - BE)(e — B(@)

t=1 s=1
< 0 N [E)E@)]PE((E - E(e)(e — E(e))]
t=1 s=1
= CE (”_1 i(e? - E(E?))) : (A.18)

32



For Model I, by (Al)(a) and the moment bounds for quadratic forms of linear processes (see Findley
and Wel, [1993)), one obtains

n 2 n n
E (n_l z_;( - E(e%») <Cn”’E (ZZvE(t - s)) = o(1). (4.19)

t=1 s=1

For Model II, by (A1)(b)(i) and (A1)(b)(ii), we have

n 2 n—1
E (n_l Z(ef - E(ef))) =n"2 Z (n — |t|)Cov(e?, 6?+|t|) =o(1). (A.20)
t=1 t=—n-+1

Moreover, the first relation of implies

1 n
- Y (07 = B(o)E(e})| = 0,(1). (A.21)
t=1
Consequently, (A.14) is ensured by (A.15)—(A.21)). O

Proof of Theorem It follows from Theorem |1} (A6), and an argument used in Theorem 3 of
Ing and Lai (2011)) that
lim P(Dp ) =1, (A.22)
n—oo

where D, = {Np,, C ijtmﬂLJ} and a is a large constant. Define INfL,n =min{k : 1 < k <
Kt n, N C jL’k} and Ky, ,, +1if Ny, — jL7KL,n # (. We first show that

lim Plkr,p = ki) =1, (A.23)
which is guaranteed by
Pk, < kpn) = o(1), (A.24)
and
Py, > kpn) = o(1). (A.25)

Straightforward calculations yield that

{]%L,n < I%L,'ru DL,n} g Mn

) ) ) o (A.26)
= {253&%’" Ur2n = A@Ln|ULsnl < —5?L‘§LynUL,1,n + A@L (n ! ZE(W§)> } ;

t=1
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where X is some positive constant,

2 1T _
ULin = XJL,;;L ) (I-H, T S
3 _ 1w T
Uomn = n X - (I - HL Jr, . 71)"77
n
~ A2 -1 2
Unsn = 067 ; -n E E(n;),
L,J, i
L,n t=1

and oy, , = |an™ |GL(pL,n)/n. By and (A.3),

UL,l,nIDLm Z /\min(f‘L,n(jL,Lan"’LJ))
> Amin(CLOL, jann ) = P20 (T (an ) — TL(Jn, ano ) |l2 (A.27)
> UL,n + Op(1)7

where v, ;, = mini<(5)<|an | Amin(TL(J)) > L for all large n. By (A.8) and Ky, ,,/n" — oo,

— 1 —
Ot2nlloy., < ri(J)<LamLJ LigJ |n Z”t By | = Op(n~V2Hp /1) = o, (n=0/2), (A.28)
Moreover, it follows from Lemma [A7]] that
UL snllp,.,, = 0,(1). (A.29)

By making use of (28), (29), (A-22)), (A-27)—-(A-29), one obtained P(M,) = o(1), which, together

with (A.26)), leads to (A.24).

To show (|A.25)), we note that by and some algebraic manipulations,

{lsz,n > Z3L,n} g Qn

R - R . R A ~ (A.30)
= {2(kL,n - kL,n)(aL,n + bL,n) + nwL,nlUL,3,n| > 50nwL,n}7
where ¢y is some positive constant, @y, , =1 — exp{fnfl(l%Lyn — l~cL7n)GL (pr,n)}, and
2
i = I0EA (o)l max ( -y Zw) ,
<j<pL
n 2
b, = |T7L (] , max n~/? i .
L, H L,n( L,KL,”> 2 L <H(I)< e m i ( ;m tisJ
Since kp,, < Ky, = O(nl/Q*dp]jl/g), there exists A > 0 such that
(n@1n)/ (kLn — k) > Amin{n¥2+4p"% G(pr,n)} on {kLn > kral. (A.31)
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Moreover, straightforward calculations give ar, ., + IA)L’n =0 (n2dpL/ ), which, in conjunction with

(A3), (A.22), and (A.29)—(A.31), implies P(Q,) = o(1). In view of this and (A.30]), (A.25]) follows.

Thus, the proof of (A.23)) is complete.
For l;Lyn > 1, define

1, if HDIC(Jy j,  — {jra}) > HDIC(Jy z, );

O, = _
0, otherwise.

Then

P(NL,n#NL,n) S P(GLn)‘FP(?:[Ln)"‘P(]%Ln?é];Ln)

+P(Nyp # Nipy ki = 1)+ P(Nun € J; (A.32)

kL n

where Q~L7n = {SLJ =0and ;. F#0forsomel << kLn,kLn = kLn >1,Ny, C jL,ch } and

JL,L
7—~lL7n = {514,1 = 1and 53.“ =0forsomel <[ < kL,n,kLﬁn = kLyn > 1,Np, C JL chn}' By an
argument similar to that used to prove (A.23), it holds that
P(QL,n) < P(gL,n) = 0(1) and P(I}:lL,n) < P(HL,n) = 0(1)a (A33)

where with ¢ denoting any positive constant and X ; = (X;,1 € J),

gL,n = {UL,I,n _’YL/Q} U {‘ULB,nl > C}’
HL,n - {|ﬁL,3,n| > C} U {(dL,n + BL,n) 2 CGL(va TL)},
7 _ -1y T . N .
ULin = n X}'L,z (I - HLaJL,ELYn_{jL,l})XjL,l’
= L —1xT . .
Unom = n X5 (I HL,JL,,;L nf{jL,z})n’
2
~ _ ~1/2
av,n ||F ( LkL. n)||2 lin‘?;L ( meu> )
n 2
b n = It (J - max n~1/2 Tt .
- ITeal L’kL’"')||21su(J)gch,n—1,z‘¢J( ;m !

In addition, (A.23)) gives

(kLn #+ kLn) —|—P(NLn #NLn,kLn =1)+ P( NLn )¢_ JLkLn =o(1). (A.34)
By (A32)-(531), (12) follows. 0
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Appendix B Supplementary Appendix

The supplementary material contains the proof of Theorem 3 and some auxiliary
lemmas used to prove it.

References

Basu, S., Michailidis, G., 2015. Regularized estimation in sparse high-dimensional
time series models. The Annals of Statistics 43, 1535-1567.

Belloni, A., Chernozhukov, V., Wang, L., 2014. Pivotal estimation via square-root

Lasso in nonparametric regression. The Annals of Statistics 42, 757-788.

Box, G.E.P., Tiao, G.C., 1975. Intervention analysis with applications to economic
and environmental problems. Journal of the American Statistical Association 70,
70-79.

Chien, C.-F., Chen, Y.-J., Wu, J.-Z., 2016. Big data analytics for modeling WAT
parameter variation induced by process tool in semiconductor manufacturing and

empirical study. In Proceedings of the 2016 Winter Simulation Conference, Piscat-
away, NJ, USA: IEEE Press: 2512-2522.

Daye, Z. J., Chen, J., Li, H., 2012. High-dimensional heteroscedastic regression with
an application to eQTL data analysis. Biometrics 68, 316-326.

Efron, B., 1991. Regression percentiles using asymmetric squared error loss. Statistica
Sinica 1, 93-125.

Findley, D.F., Wei, C.-Z., 1993. Moment bounds for deriving time series CLT’s and
model selection procedures. Statistica Sinica 3, 453-480.

Gao, Z., Ling, S., 2019. Statistical inference for structurally changed threshold au-
toregressive models. Statistica Sinica, to appear.

Giraitis, L., Kokoszka, P., Leipus, R., 2000. Stationary ARCH models: dependence
structure and central limit theorem. Econometric Theory 16, 3-22.

36



Gu, Y., Zou, H., 2016. High-dimensional generalizations of asymmetric least squares
regression and their applications. The Annals of Statistics 44, 2661-2694.

Han, Y., Tsay, R.S., 2019. High-dimensional Linear Regression for Dependent Data
with Applications to Nowcasting. Statistica Sinica, to appear.

Hao, N., Zhang, H.H., 2014. Interaction screening for ultra-high dimensional data.
Journal of the American Statistical Association 109, 1285-1301.

Hsu, H.-L., Ing, C.-K., Tong, H., 2019. On model selection from a finite family of
possibly misspecified time series models. The Annals of Statistics 47, 1061-1087.

Ing, C.-K., 2019. Model selection for high-dimensional linear regression with depen-
dent observations. The Annals of Statistics, to appear.

Ing, C.-K, Lai, T.L., 2011. A stepwise regression method and consistent model selec-
tion for high-dimensional sparse linear models. Statistica Sinica 21, 1473-1513.

Ing, C.-K., Wei, C.-Z., 2006. A maximal moment inequality for long range dependent
time series with applications to estimation and model selection. Statistica Sinica
16, 721-740.

Koenker, R., Bassett, G., 1982. Robust tests for heteroscedasticity based on regression
quantiles. Econometrica 50, 43—61.

Koenker, R., Zhao, Q., 1994. L-estimation for linear heteroscedastic models. Journal
of Nonparametric Statistics 3, 223-235.

Liu, W.-H., 2005. Determinants of the semiconductor industry cycles. Journal of
Policy Modeling 27, 853-866.

Liu, W.-H., Weng, S.-S., 2018. On predicting the semiconductor industry cycle: a
Bayesian model averaging approach. Empirical Economics 54, 673-703.

Temlyakov, V.N.; 2000. Weak greedy algorithms. Advanced in Computational Math-
ematics 12, 213-227.

37



Tiao, G.C., 1985. Autoregressive moving average models, intervention problems and
outlier detection in time series. In: Hannan, E.J., Krishnaiah, P.R., Rao, M.M.
(Eds.), Handbook of Statistics, vol. 5. North-Holland, Amsterdam, pp. 85-118.

Tsay, R.S., 1984. Regression models with time series errors. Journal of the American
Statistical Association 79, 118-124.

Wei, C.-Z., 1987. Adaptive prediction by least squares predictors in stochastic regres-
sion models with applications to time series. The Annals of Statistics 15, 1667—1682.

Wu, W.-B., Wu, Y.N., 2016. Performance bounds for parameter estimates of high-
dimensional linear models with correlated errors. Electronic Journal of Statistics
10, 352-379.

Zhao, P., Yu, B., 2006. On model selection consistency of Lasso. Journal of Machine
Learning Research 7, 2541-2563.

38



Supplement to “Variable Selection for High-Dimensional Regression
Models with Time Series and Heteroscedastic Errors”
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S1 Proofs of Theorem 3

Recall that we assume in (17) that &g is known, E(z;) = 0, and E(z7;) = 1. In addition, 7 and z;
in (14) are set to Gg and 0, respectively. For the sake of convenience, we may assume, without loss
of generality, that &g = 0. Throughout this supplement, C' stands for a generic positive constant
independent of n. We start by several useful lemmas.

Lemma S1.1 Assume (A2'). Then

n
-1 _ —1/2,1/q4
max |n zrizt; — E(z42¢5)| = Op(n .
1<i5%pn ; tict] (zti%t5) o( pp )
PROOF. The proof of this lemma is elementary and is therefore omitted. a

Lemma S1.2 Assume (A1'). Then

n
> ez
t=1

PROOF. Since {¢;} is independent of {z;}, by (A1") and Jensen’s inequality,

max = Op(nfl/Qp%)/qs).

1<i<pp

n q3 n q3 n q3/2
E|n~1? thzn‘ =F|F ( n~1/2 Zatzti e, 1 <t < n) <CuFE (n_l ZE?) <,
t=1 t=1 t=1
leading to the desired conclusion. O

Lemma S1.3 Assume (A2') and (33). Then

n T _ —1/2, 1/qa
19(%%(13‘”” D.n(J) =Tp(J)|l2 = Op(Kpnn™ 7/ pg™),

where T'p ,(J) =n~! S ze(J)z] (J). Moreover, if Kp, = 0(n1/2p51/q“), then

;b (J) -1t = 0,(1).
L () =T (D)ll2 = 0p(1)



PROOF. The proof of this lemma is similar to that of Lemma A.3. The details are omitted. o

Lemma S1.4 Assume that the same assumptions as in Theorem 2, (30), and (A1)~(A4") hold.
Then, for ¢, < n~'/?*+d,

n
715 : 2 _ —2K
n et,n - Op(n )7
t=1
n
712 :
n @tmzti = Op
t=1

PROOF. Note first that (A1) and Lemma yield

(S1.1)

max
1<i<pp

(n=").

n n 1/2 n 1/2
 max n~! ;@t,nzti < { - ;(bgm 10g77?)2}  Dnax {nl ;Zi} ,  (S1.2)
and
n n
 max nt Zzi < nax |n -1 Z 25— E(22))| + (A E(2%) = 0,(1). (51.3)

Since (A1) holds for any ¢; > 0 and since 0 < & < (1 — 2d)/(2 + 8/7), we may assume, without
loss of generality, that kK = (1 — 2d — 2/q1)/(2 4+ 8/7). By Theorem 2, (Al), and some algebraic
manipulations, we obtain

— - —1/24d+1/q
llgtag( \m 7]t| Op(n ). (S1.4)

Let ¢; > 0 be arbitrarily small. By (S1.4)), there is a large s (depending on ¢;) such that for all
large n,

P(Ap) <<, (S1.5)

where A, = {maxj<;<, |77 — n?| < sn~1/2+d+1/a} Moreover,
01" (log i —logn?) 14, < (S1) + (52) + (53), (S1.6)

with 6 = 2k/7 = (1 —2d — 2/q1) /(4 + 7),

(S1) = 207> (log#i?)*1pcp-2syla,,
t=1

(52) = -1 Z lognt ].{nt2<n725}].An,
t=1

(S3) = n7tY (log(1+ (i — nf)/mi))*1esn-20y1a,.
t=1



By (A1), (A1), (A3'), (A4'), (30), (32), , Cauchy-Schwarz inequality, and Taylor’s theorem,
it holds that

max P(n? <n™ %) = 0(n=*), (S1.7)

E(S1) < %zn:(log n)2P(n} < n=%°) = O((logn)*n=*"), (S1.8)
t=1

B(52) < &S {Blog )} > (P <)} = 0(n~), (S1.9)

(S3) = 0, (n2). (S1.10)

By (S1.5)—(S1.10) and Markov’s inequality, we obtain the first equation of (S1.1)), which, in con-
junction with (S1.2]) and (S1.3)), leads to the second one. a

Let z = (21,...,2,, )" be independent of and have the same covariance structure as {z},

a = (a1,...,ap,)", and r(z) = 2" a. Recall that jD,m is the index set determined by OGAp at
the m-th iteration. The next lemma investigates the convergence rate of

E,[(r(2) ~ 75, ()]

Here, for J C {1,...,pp}, 7y(2) = 2T (N)&(J]), &(J) = O, z(J)z] ()71 Y0, 2¢(J)rs, and
z2(J)=(z,ie )T,

Lemma S1.5 Assume that the same assumptions as in Lemma hold and Kp, =< n"pgl/q.
Then

Bnl(r(z) =75, (2))°]

max = 0,(1).
1<m<Kpn -1 +n*2"‘mp2D/q p(1)
A A T N A T _ Al A
PROOF. Let (’r‘l;J, e ,’I“n;J) = Hpyr, (Zli;J, RN Zni;J) = Hp ;Z;, Zig = Rt T 2tisds and

2: 7 = 2; — 2.7, where Hp j 1s defined after and z;.5 = 2z n gp.; . Define
.y .7, where Hp ; is defined after (14) and z; (NI (J)gp,i(J). Defi

n=t Y (e = Pea) 2
(n—! Z?:l )2

pp,si = El(r(z) —7(2))zi] and fp ;=



where 77(z) = 2" (J)T'5*(J)E(2(J)r(z)). By Lemmas and an argument similar to that
used to prove (A.7)—(A.9), we obtain
. B
L [EL ()] = 0,(0) (s1.11)
n Z stztz J

n § @t nzm J

1
5L 1
n Z Ztjetig — E(iji;J)
t=1

71/2p11)/Q3)7

(J)<KD n71 i¢J

max
#(J)<Kp,n—1,i¢J

= Op(n™"),

=0p (n71/2pllj/q4 );

max
$())<Kp,n—1,i,j¢J
which yield

D g5 — ip.sil = O ey S1.12
{(J,i):ﬁ(J)ISHI%)D{,wLiﬁZJ}‘MD’J” 1D, .1,i] p(n”"pp ") ( )

With the help of (S1.12)), the rest of the proof can be carried out in the same fashion as that of
Theorem 1. The details are skipped. O

Lemma S1.6 Assume that the same assumptions as in Lemma and (A6/) hold. Then

lim P(Np,, C JKDn) =1.

n—oo

Moreover, there is a sufficiently large a such that

lim P(Dp,,) = 1,

n— oo

where Dp ,, = {Np,, C jD,\_an'YDJ}‘

PROOF. These conclusion follow directly from Lemma (A6l), and an argument similar to that
used to prove (A.22). a

Define ];Dfﬂ = mll’l{k 01 S k S KDm,NDm g jD7k}7 and KD,n +1 if ND,n - ijKD,n # @

Lemma S1.7 Assume that the same assumptions as in Lemma and (34) hold. Then

n
~2 -1 2\ _
UD’jD,I.cD’n —-n ;E(Et) = 0,(1).



PROOF. Note that 67 —n~13°0 | E(e?) is equal to

’JD=’5D n

n

t=1

where Z; = (Zj,j € J), € = (e1,...,e5)", and ©,, = (O1,,...,0,,) . Thus, 62 .

n~t Y7 | E(g7) is bounded above by

S| (3,
=1 ) t=1 / . 1/2
12 { ( nt Z(ef —E@E)|+n! ZE(53)> <"1 Z @?"> }

Hin e +01) 25 BT, (n gyl

y (A3), (ST.11), Lemmas and [S1.4] Kp ,, = O(n"pgl/q), and Kp ,/n"™ — oo,
In e+ 0072, BIEsh s, )

QIDD,n

< max
1<g(J)<[an™D |

= 0,(1).

n 2
IE5, ()2 x an™ max (n‘12<st+@t,n>zm>

1<j<pp po

Hence, the desired conclusion follows from Lemmas and (A1), (A3"), (34), (ST.11)),

(ST.13), and (ST.T4).

Proof of Theorem 3. We first show that
lim P(kp,, = kpn) =1,

n—o0

which is ensured by
P(kp,n < kpn) = o(1),
and
P(kp > kp.n) = o(1).
To show , note first that
{kp.n < kpm, P} € My,

(S1.13)

(S1.14)

(S1.15)

(S1.16)

(S1.17)

. R . & (S1.18)
= {20&3]3’,;&" UD’Q’n — /\WD,n|UD,3,n| S _Oé?D.chm UD,LTL + )‘WD,n (n 1 Z E(E?)) } )

t=1



where X is some positive constant,

Upin = ntZ! (I-Hp; .
D.kp D kp -1 ID,kp p
J —1,T
U = n 'z I-H, e+ 0O
D.2n _— Dup gy, o) (€T On);
n
2 ~2 —1 2
Upzn = Opj . —-n E E(Et)’
"D kp p

t=1

and wp,, = n~!|an™ |Gp(pp,n). Using Lemmas [S1.1HS1.4 and |[S1.7] and an argument similar to
that used to prove (A.27) and (A.28), one obtains

Up,nlpy., > vpm +0p(1), [Up2nllpy,, = 0p(n~ /%), |Upsn

Ip,, = o0,(1), (S1.19)

where vp ;, = mini <4()<|anw | Amin(T'p(J)) > 0p for all large n. Now, by making use of (34), (35),

Lemma [ST.6] and (S1.19), P(M1,) = o(1), which, together with (SI.18)), leads to (ST1.16).
To prove (S1.17), we obtain after straightforward calculations that

{]%D,n > I;'D,n} - {2(];3]37” — 'I;D,n)(dD,n + ED,H) + n?ﬁD,n|UD,3,n| > 5271@]3,”}, (S1.20)

where J5 is some positive constant, wp, =1 — exp{fn’l(lAvan — l;D,n)GD (pp,n)} and

2
n
R PSS —1/2 .
ap . ||FD7n(JD,KD,n) 2 1%%);]3 (Tl ;(Et + @t,n)%g) )
. 2
o = 5, (oK.l max nTVEY (et Oun)uis | -
1<8(J)<kp,n,i¢J t=1

By EDJL < Kpn= O(n"“pgl/q), there exists A > 0 such that

(n@p.n)/(kpm — kpn) > Amin{n'*pl/? Gp(pp,n)}  on {kp. > kpn}- (S1.21)

After some algebraic manipulations, we have
o 2 _ 2/q 1-2k
apn + bD,n = Op(pD +n )7

which, together with (A3/), , , and Lemmas and gives . Thus,
is proved.

For INcD’n > 1, define SDJ =1if HDICD(jD’,;Dm — {jD,z}) > HDICD(jD),;D,n) and SD,Z =0
otherwise. Then,

P(ND,TL 7& ND,n) S P(QD,n) + P(;':[D,n)
+ P(kpn # kpn) + P(Np # Nopskpn = 1) + P(Npw & i) ), (S1.22)



where QND,n = {SDJ =0and a;_ , # 0 forsome 1 <1 < IED,H,I;:D,TL = l;:D,n > 1,Np,, C jngn} and
ﬁD,n = {SD,I =1 and a = 0 for some 1 <[ < ];}Dm,];‘]j,n = ]%D,n >1,Np, C jD o "}. By an

argument similar to that used to prove (S1.15), it holds that P(Gp.n) = o(1) and P(Hp ) = o(1). In
addition, (S1.15)) and Lemma imply P(kp.n # kpn) = 0(1), P(Np.n # Npn,kpn = 1) = o(1),
and P(Np,, € Jp ;) = o(1). These equations and (S1.22) lead immediately to (18). ad



S2 Tables for Real Data Analysis

Table S2.1: Variable descriptions. “OECD” represents Organisation for Economic Co-
operation and Development; “SEMI” stands for Semiconductor Equipment and Materials
International.

Variable Description Source
Macroeconomic Variables
1 FF Federal Funds Rate Federal Reserve
2 CLI Composite Leading Index OECD
3 IP US Industrial Production Index Federal Reserve
4 CS Consumer Sentiment Index University of Michigan
Financial variables
5 SOX Philadelphia Semiconductor Index Yahoo! Finance
6 NDQ NASDAQ Composite Index Yahoo! Finance
7 DJ Dow Jones Industrial Average Index Yahoo! Finance
Semiconductor Variables
8 CAP Capacity Federal Reserve
9 SIP Industrial Production Index Federal Reserve
10 UTL Capacity Utilization Ratio Federal Reserve
11 ISR Inventories to Shipments Ratios (Computer and Electronic Products) Bureau of Census
12 NO New Orders (Computer and Electronic Products) Bureau of Census
13 FGI Finished Goods Inventories (Computer and Electronic Products) Bureau of Census
14 MSI Materials and Supplies Inventories (Computer and Electronic Products) Bureau of Census
15 VS Value of Shipments (Computer and Electronic Products) Bureau of Census
16 TI Total Inventories (Computer and Electronic Products) Bureau of Census
17 Bill Billings for Semiconductor Manufacturing Equipment SEMI
18 PPI Producer Price Index (Electronic Components and Accessories) Bureau of Labor Statistics
19 ES Retail Sales for Electronics and Appliance Stores Bureau of Census
20 ESA Wholesale Sales for Electrical and Electronic Goods Bureau of Census
21 EIN Wholesale Inventories for Electrical and Electronic Goods Bureau of Census
Industrial Production Index
22 IP1 Computer and Electronic Product Federal Reserve
23 IP2 Computer and Peripheral Equipment Federal Reserve
24 1P3 Communications Equipment Federal Reserve
25 IP4 Audio and Video Equipment Federal Reserve
26 IP6 Electrical Equipment, Appliance, and Component Federal Reserve
27 1P7 Battery Federal Reserve
28 IP8 Communication and Energy Wire and Cable Federal Reserve




Table S2.2: Variable descriptions (continued).

Variable Description

Source

Producer Price Index

PPI3 Other Semiconductor Devices (Parts such as Chips, Wafers, and Heat Sinks)
New Orders

NO2 Construction Machinery Manufacturing

NO7 Other Electronic Component Manufacturing

NO9 Household Appliance Manufacturing

NO11 Computers and Related Products

NO12 Communication Equipment

NO14 Electrical Equipment Manufacturing

NO15 Search and Navigation Equipment (Nondefense)
Total Inventories

TI1 Farm Machinery and Equipment Manufacturing

TI2 Construction Machinery Manufacturing

TI3 Computer Storage Device Manufacturing

TI4 Other Computer Peripheral Equipment Manufacturing
TI5 Communications Equipment Manufacturing (Nondefense)
TI6 Audio and Video Equipment

TI7 Other Electronic Component Manufacturing

TI8 Electrical Equipment, Appliances, and Components
TI9 Household Appliance Manufacturing

TI10 Battery Manufacturing

TI11 Computers and Related Products

TI12 Communication Equipment

TI13 Information Technology Industries

TI14 Electrical Equipment Manufacturing

TI15 Search and Navigation Equipment (Nondefense)
Value of Shipments

VS1 Farm Machinery and Equipment Manufacturing

VS2 Construction Machinery Manufacturing

VS3 Computer Storage Device Manufacturing

VsS4 Other Computer Peripheral Equipment Manufacturing
VS5 Communications Equipment Manufacturing (Nondefense)
VS6 Audio and Video Equipment

VST Other Electronic Component Manufacturing

VS8 Electrical Equipment, Appliances, and Components
VS9 Household Appliance Manufacturing

VS10 Battery Manufacturing

VS11 Computers and Related Products

VS12 Communication Equipment

VS13 Information Technology Industries

VS14 Electrical Equipment Manufacturing

VS15 Search and Navigation Equipment (Nondefense)

Bureau of Labor Statistics

Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census

Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census

Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census
Bureau of Census




Table S2.3: Variables selected by T'wohit under Model II and their coefficient estimates

Regression model ()

Variable(lag) Est. S.E. Variable(lag) Est. S.E.

intercept 0.00502 0.00223 NO14(4 0.15633 0.02118
ye(1) 0.82070 0.01146 NO14(20) 0.19847 0.02091
SOX(2) 0.06035 0.01581 NO15(21) -0.03884 0.00643
SOX(6) 0.07574 0.01732 TI3(4) -0.22313  0.03989
SIP(12)  -0.89537 0.11948 TI4(2) 0.29334 0.06827
FGI(2)  -0.32394 0.07048 TI9(21) 0.71267 0.08566
FGI(16) 0.24811 0.07172 TI10(12) 0.29017 0.05388
MSI(3) 0.67855 0.09244 T112(10) -0.62192 0.06310
MSI(14) -0.89731 0.09346 VS3(10) 0.08423 0.00913
ES(12) 1.02190 0.09301 VS4(7) -0.15338 0.01769
EIN(10) -0.63792 0.14271 VS6(16) -0.09810 0.01688
IP1(1) 2.01883 0.16786 VS7(12) -0.40061  0.04432
1P3(6) 0.44903 0.06870 VS9(22) 0.37633 0.04783
IP7(21) -0.30576 0.04480 VS12(5) 0.18091 0.02841
IP8(15) 0.26290 0.06454 VS14(12) -0.42075 0.04919
NO7(18) 0.11655 0.02069 IP(18) -2.08027 0.27617

NO9(21) 0.11959 0.02215
Dispersion model ()

Variable(lag) Est. S.E. Variable(lag) Est. S.E.
intercept -7.38764 0.93013 TI6(19) -13.65783 1.77437
SOX(14) 2.98043 0.82968 VS1(21) 1.28667 0.88379
ISR(17) 0.09709 0.60577 VS4(19) 2.31033 0.95088
NO7(13) -7.20692 1.16834 VS6(10) 1.86396 0.82516

NO7(23) 5.16120 1.14999
Information criterion

AIC -971.3615
BIC -832.1359

Note: Coefficients with absolute values larger than 1.96 standard errors are boldfaced.
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Table S2.4: Variables selected by T'wohit under Model I and their coefficient estimates

Regression model ()

Variable(lag) Est. S.E. Variable(lag) Est. S.E.

intercept 0.63236 0.59236 ES(1) -0.55477 0.12094
FF(5) -0.05186 0.01721 ES(10) 0.49835 0.12103
FF(14) -0.10049 0.02018 IP1(4) 2.59567 0.26452
CLI(16) -0.03054 0.00561 IP3(5) 0.44699 0.08640
CLI(24) 0.02719 0.00380 1P4(24) -0.08947 0.02444
IP(10) -2.05307 0.37445 1P7(14) 0.33045 0.05875
SOX(6) 0.12761 0.02462 TIL(8) 0.30947 0.11051

NDQ(2) 0.23045 0.03694 T14(21) -0.39709 0.08245

NDQ(4) 0.21216 0.03746 TI6(15) -0.25269 0.04181

NDQ(7) 0.15578 0.03606 T16(18) -0.43609 0.04561

NDQ(9) 0.25454 0.03385 T19(14) 0.72934 0.11655
SIP(1) 2.61711 0.16375 TI11(2) 0.62424 0.09295

UTL(12) -0.00561 0.00058 TI13(11) -1.11378 0.21753
NO(2) 0.28929 0.04636 TI13(14) -1.66225 0.24722
FGI(2) -0.42104 0.09951 VS3(10) 0.08848 0.01365
TI(1) 1.20487 0.24303 VS8(1) 0.65022 0.10446
Bill(1) 0.00020 0.00001 VS14(8) 0.34628 0.06484
Bill(10) -0.00011 0.00001

Dispersion model (a)

Variable(lag) Est. S.E. Variable(lag) Est. S.E.
intercept -6.67482 0.14447 NO2(23) 0.92285 0.40358
CAP(11) 19.67328 9.98880 TI1(9) -6.00693 4.11759
ESA(1) -20.31691 4.13612 TI14(14) -22.06525 6.16805
1P2(23) -3.97144  3.57243 VS3(3) 2.03680 0.69172

IP7(9) -12.25308 2.83380 VS5(3) 2.78433 1.77836
The model for €:: € = pre1—1 + Pp2et—_2 + wr
Est. S.E. Est. S.E.
b1 0.34949 0.06296 P2 0.22457 0.06386
Information criterion
AlIC -819.4105
BIC -662.7818

Note: Coefficients with absolute values larger than 1.96 standard errors are boldfaced.
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