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Abstract

We establish negative moment bounds for the minimum eigenvalue of the nor-

malized Fisher information matrix in a stochastic regression model with a deter-

ministic time trend. This result enables us to develop an asymptotic expression

for the mean squared prediction error (MSPE) of the least squares predictor in the

aforementioned model. Our asymptotic expression not only helps better understand

how the MSPE is affected by the deterministic and random components, but also
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inspires an intriguing proof of the formula for the sum of elements in the inverse of

the Cauchy/Hilbert matrix from a prediction perspective.

Keywords: Cauchy matrix, Hilbert matrix, mean squared prediction error, mini-

mum eigenvalue, negative moment bound, stochastic regression model

1 Introduction

The stochastic regression model is one of the most widely used statistical models due to its

broad applications in engineering, economics, medicine, and many other scientific fields.

In their seminal paper, Lai and Wei (1982) laid the theoretical foundations of parameter

estimation in such a model. In particular, they proposed a set of weakest possible condi-

tions under which the linear least squares estimate achieves strong consistency. Lai and

Wei’s (1982) paper inspired a great deal of exciting work, bringing insights into prediction,

model selection, non-linear estimation, stochastic approximation, and adaptive control;

see, e.g., Chen and Guo (1986), Lai and Wei (1986), Wei (1987, 1992), Lai (1994), Lai

and Lee (1997), Chen et al. (1999), and Gerencsér et al. (2009).

One of the most important purposes of statistical modeling is to predict future values.

The performance of a prediction method is usually evaluated by two different measures:

the accumulated prediction error (APE) and the mean squared prediction error (MSPE).

Model selection based on these two types of errors also attracted a lot of attention from

researchers and practitioners. Wei (1987) provided asymptotic expressions for the APEs

of the least squares predictors in stochastic regression models. Model selection based on

the APE was explored by Rissanen (1986), Wax (1988), Hannan et al. (1989), Hemerly
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and Davis (1989), Wei (1992), Speed and Yu (1994), West (1996), Lai and Lee (1997),

Ing (2004, 2007), Ing et al. (2009), and Ing and Yang (2014). Asymptotic expressions

for the MSPEs of least squares predictors were derived in a variety of time series models;

see, e.g., Fuller and Hasza (1981), Kunitomo and Yamamoto (1985), Gerencsér (1992),

Ing (2003), Ing et al. (2009), Chan and Ing (2011), and Chan et al. (2013). There are

also quite a few model selection methods proposed based on minimizing the MSPE; see

Shibata (1980), Bhansali (1996), Lee and Karagrigoriou (2001), Ing and Wei (2005), Ing

et al. (2012), and Hsu et al. (2019).

Since many time series data exhibit polynomial or other deterministic time trends,

parameter estimation and hypothesis testing in time series models with drifts have been

considered by a number of authors; see, e.g., Chan (1989), Hamilton (1994), and Stock

(1994). On the other hand, most existing studies on the MSPE have focused on the case

where the underlying time series model has a constant mean. Although Ing (2003) derived

an asymptotic expression for the MSPE of the least squares predictor in an autoregressive

(AR) model around a polynomial trend, it seems difficult to apply his result to more

general time series models. In addition, his derivation heavily relied on a negative moment

bound for the minimum eigenvalue of the normalized Fisher information matrix of a non-

constant mean, whose proof, however, was not rigorously given. In this paper, we fill this

gap by investigating the MSPEs of the least squares predictors in autoregressive exogenous

(ARX) models (an important class of stochastic regression models) with deterministic

trends satisfying general conditions. We first establish negative moment bounds for the

minimum eigenvalue of the normalized Fisher information matrix, R̂n, associated with
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this model in a rigorous manner. With the help of these bounds, we provide an asymptotic

expression for the MSPE of the least squares predictor, which is the sum of two terms

accounting for the variations due to estimating the time trend and ARX components,

respectively. This result helps us better understand how the MSPE is affected by the

model’s deterministic and random components.

Our asymptotic expression shows that the MSPE due to estimating the polynomial

time trend is related to the sum of elements in the inverse of the Hilbert matrix, which,

in turn, is a special case of the symmetric Cauchy matrix. The formula for the sum of

elements in the latter matrix’s inverse was given by Schechter (1959) through Lagrange’s

interpolation method. The connection between the MSPE and Cauchy/Hilbert matrix

triggers us to ask if there is an alternative proof of the formula from a prediction perspec-

tive. By establishing an intriguing link between the MSPE and APE, we show that the

answer to this question is affirmative.

The rest of the paper is organized as follows. In Section 2, we establish negative

moment bounds for the minimum eigenvalue of a matrix associated with R̂n. In Section

3.1, asymptotic expressions for the MSPEs of the least squares predictors in ARX models

with general time trends are given. We further illustrate the results using the polynomial

and periodic time trends. In Section 3.2, a statistical proof of the formula for the sum of

elements in the inverse of the Cauchy matrix is provided. We conclude in Section 4. All

proofs of the theorems in Sections 2 and 3.1 and other technical details are relegated to

the Appendix.
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2 Negative Moment Bounds

Let k and m be positive integers. We start by considering a km-dimensional time series,

Yt =
∞∑
j=0

Cjεt,j, (2.1)

where εt,j = (δ>t−jk, . . . , δ
>
t−(j+1)k+1)>, {δt} is a sequence of m-dimensional independent

random vectors satisfying E(δt) = 0 and E(δtδ
>
t ) = Σ > 0, Cjs are km× km coefficient

matrices, C0 is invertible, and

∞∑
j=0

‖Cj‖2
F <∞. (2.2)

Here, ‖A‖F denotes the Frobenius norm of matrix A. Many time series regression models

have explanatory vectors satisfying (2.1). Here, we give two examples.

Example 2.1 Let zt =
∑∞

j=0 Djδt−j be an m-dimensional stationary time series, where∑∞
j=0 ‖Dj‖2

F <∞, D0 is invertible, and {δt} is defined as in model (2.1). Then,



zt
...

zt−k+1


=

∞∑
j=0


Djk · · · D(j+1)k−1

...
...

D(j−1)k+1 · · · Djk




δt−jk
...

δt−(j+1)k+1

 , (2.3)
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where Dl = 0 if l < 0. Hence (2.1) holds with Yt = (z>t , · · · , z>t−k+1)>,

Cj =


Djk · · · D(j+1)k−1

...
...

D(j−1)k+1 · · · Djk

 ,

and εt,j = (δ>t−jk, · · · , δ>t−(j+1)k+1)>. One may use the following vector AR model to make

prediction,

zt+1 =
k∑
j=1

Θjzt+1−j + εt+1, (2.4)

where Θjs are m×m coefficient matrices and εt+1 is the model error, which can be serially

correlated if (2.4) is misspecified. It is clear that the explanatory vector of model (2.4) is

given on the left-hand side of (2.3).

Example 2.2 Consider an autoregressive exogenous (ARX) model,

vt =

k0∑
j=1

ajvt−j +
d∑
l=1

kl∑
j=1

θj(l)zt−j(l) + εt, (2.5)

where d, k0, . . . , kd are positive integers, aj and θj(l) are unknown coefficients,

1− a1z − · · · − ak0zk0 6= 0, |z| ≤ 1, (2.6)

(zt−1(l), . . . , zt−kl+1(l))>, l = 1, . . . , d, are exogenous variables admitting the following

6



MA(∞) representation,

zt(l) =
∞∑
j=0

bj(l)εt−j(l), (2.7)

with b0(l) = 1 and
∑∞

j=0 b
2
j(l) < ∞, and δt = (εt, εt(1), . . . , εt(d))>, t = 1, . . . , n, are

independent noises satisfying E(δt) = 0 and (σij)1≤i,j≤d+1 = E(δtδ
>
t ) > 0. By (2.6) and

(2.7), there exist ηj, j ≥ 0, with η0 = (1, 0, . . . , 0)> and
∑∞

j=1 ‖ηj‖2 <∞, such that

vt =
∞∑
j=0

η>j δt−j, (2.8)

noting that ‖ · ‖ denotes the Euclidean norm. Let k̄ = max{k0, . . . , kd}. Then

Yt = (vt, zt(1), . . . , zt(d), . . . , vt−k̄+1, zt−k̄+1(1), . . . , zt−k̄+1(d))> (2.9)

can be viewed as an explanatory vector of model (2.5) containing possibly redundant com-

ponents. It follows from (2.7) and (2.8) that

Yt =
∞∑
j=0

Cjεt,j,
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where εt,j = (δ>
t−jk̄, . . . , δ

>
t−(j+1)k̄+1

)> and

Cj =


Cj,11 · · · Cj,1k̄

...
...

Cj,k̄1 · · · Cj,k̄k̄

 ,

in which

Cj,tl =



ηjk̄−t+l,1 ηjk̄−t+l,2 · · · · · · ηjk̄−t+l,d+1

0 bjk̄−t+l(1) 0 · · · 0

... 0 bjk̄−t+l(2) 0
...

...
...

. . . 0

0 0 · · · 0 bjk̄−t+l(d)


is a (d+1)×(d+1) matrix with (ηjk̄−t+l,1, . . . , ηjk̄−t+l,d+1)> = ηjk̄−t+l and ηh,l1 = bh(l2) = 0

if h < 0. Since
∑∞

j=0 ‖Cj‖2
F < ∞ and C0 is invertible due to C0,tt = Id+1 (the (d + 1)-

dimensional identity matrix) and C0,tl = 0 if t > l, we conclude that the Yt in (2.9) fulfills

(2.1) with k = k̄ and m = d+ 1.

Assuming that (2.1) holds and there exist δ,M, α > 0 such that for any 0 < w−u ≤ δ,

sup
−∞<t<∞

sup
‖ν‖=1

P (u < ν>δt ≤ w) ≤M(w − u)α, (2.10)

Findley and Wei (2002) showed that for any q ≥ 1,

E

(
λ−qmin(n−1

n∑
t=1

YtY
>
t )

)
= O(1), (2.11)
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where n is the sample size and λmin(A) denotes the minimum eigenvalue of matrix A.

With the help of (2.11), they presented the first mathematically complete derivation of

an analogous property of AIC for comparing vector autoregressions fit to weakly stationary

series. Using (2.11) and an argument in Findley and Wei (2002), one can also obtain an

asymptotic expression for the MSPE of the least squares predictors in model (2.4) (or

(2.5)) in terms of the sample size, the variance of the model error, and the number of the

estimated parameters.

When a deterministic trend (containing p variables with p ≥ 1) is taken into account,

a natural generalization of (2.11) is

E

(
λ−qmin(n−1

n∑
t=1

ωtω
>
t )

)
= O(1), (2.12)

where ωt = (x
(n)>

t ,Y >t )> and x
(n)
t ∈ Rp, possibly depending on n, is the normalized time

trend variables satisfying

sup
1≤t≤n

‖x(n)
t ‖ < M1, (2.13)

for some positive constant M1. One would expect that (2.12) holds under the additional

assumption,

lim inf
n→∞

λmin(n−1

n∑
t=1

x
(n)
t x

(n)>

t ) > 0, (2.14)

which is commonly made on the fixed design matrix. The proof of (2.12), however, is far
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from being trivial. The main reason is that the proof of (2.11) is built on the property that

for any a ∈ Rkm with ‖a‖ = 1, the conditional distribution of (a>Yt)
2 given information

up to time t − l is sufficiently smooth at the origin as long as l is large enough. This

property is ensured by (2.10), but is no longer valid when Yt is replaced by ωt. With the

appearance of x
(n)
t , it is easy to find a unit vector a ∈ Rkm+p such that a>ωt = 0. In

Lemma A.2, we provide a characterization of (2.14). This characterization is not only of

independent interest, but it also inspires a proof strategy to bypass the above difficulty.

The main result of this section is given in the following theorem.

Theorem 2.1 Assume (2.1), (2.2), (2.10), (2.13), (2.14), and

sup
−∞<t<∞

max
1≤i≤m

E|δt,i|2γ <∞, (2.15)

where γ > 1 and (δt,1, . . . , δt,m)> = δt. Then, for 0 < q < γ, (2.12) follows.

3 Applications

3.1 Mean squared prediction errors

In this section, we focus on the ARX model around a deterministic time trend,

yt =

p∑
j=1

βjst,j +

k0∑
j=1

ajyt−j +
d∑
l=1

kl∑
j=1

θj(l)zt−j(l) + εt (3.1)
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where p, d, and k0, . . . , kd are positive integers, βj, aj, and θj(l) are unknown coefficients,

with aj satisfying (2.6), zt−1(l) = (zt−1(l), . . . , zt−kl(l))
>, 1 ≤ l ≤ d, are exogenous vari-

ables admitting the MA(∞) representations described in (2.7), st = (st,1, . . . , st,p)
> are

deterministic variables, and δt = (εt, εt(1), . . . , εt(d))> are the same as the one in Exam-

ple 2.2. Let Pt = (s>t ,y
>
t−1, z

>
t−1(1), . . . ,z>t−1(d))>, where yt = (yt, . . . , yt−k0+1)>. Having

observed y1, . . . , yn and P1, . . . ,Pn+1, we are interested in predicting yn+1 using the least

squares predictor,

ŷn+1 = P>n+1(
n∑
t=1

PtP
>
t )−1

n∑
t=1

Ptyt, (3.2)

provided the inverse of
∑n

t=1PtP
>
t exists.

To analyze the MSPE, E(yn+1 − ŷn+1)2, of ŷn+1, we impose the following conditions

on the deterministic terms st: there exists a p× p matrix D such that for any t,

st−1 = Dst, (3.3)

and

Ip −
k0∑
j=1

ajD
j is invertible. (3.4)

By (3.3) and (3.4), it can be shown that

yt = β∗
>
st + vt, (3.5)
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where vt is defined in (2.8) and β∗
>

= β>(Ip −
∑k0

j=1 ajD
j)−1 with β = (β1, . . . , βp)

>.

Many commonly used deterministic trends fulfill (3.3) and (3.4). For example, in the case

of the polynomial trend,

st = (1, t, . . . , tp−1)>, p ≥ 1, (3.6)

we have D = (Dij)1≤i,j≤p, where Dij = 0 if 1 ≤ i < j ≤ p, and Ci−1
i−j (−1)i−j if 1 ≤ j ≤ i ≤

p, where Ci−1
i−j = (i− 1)!/[(i− j)!(j − 1)!]. Since Dj, j ≥ 1, are lower triangular matrices

with diagonal entries 1, (3.4) holds when (2.6) is assumed. For the periodic trend,

st = (1, sin ν1t, cos ν1t . . . , sin νht, cos νht)
>, (3.7)

where h ≥ 1 and 0 < ν1 < · · · < νh < π, we have D = Diag(1,ν1, . . . ,νh), where

νj =

 cos νj − sin νj

sin νj cos νj

 .

Also, (3.4) follows from (2.6). By (3.3) and (3.5), the trend in yt−1 can be removed

through a linear transformation of Pt,

yt−1 −Gst = vt−1 = (vt−1, . . . , vt−k0)
>, (3.8)

where G> = (D>β∗ · · ·Dk>0 β∗). Suppose that there exists a p × p non-random matrix

Qn such that (2.13) and (2.14) hold with x
(n)
t = Qnst. Then, this assumption and (3.8)
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together suggest a linear transformation, Fn, of Pt that depends on G andQn and satisfies

FnPt = (x
(n)>

t ,v>t−1, z
>
t−1(1), . . . ,z>t−1(d))>,

in which each component has the same order of magnitude and the deterministic and ran-

dom components are completely separated. DefineG
(n)
t = FnPt and R̂n = n−1

∑n
t=1G

(n)
t G

(n)>

t .

Since (v>t−1, z
>
t−1(1), . . . ,z>t−1(d))> is a subvector of Yt−1 defined in (2.9), it follows from

Theorem 2.1 that for 0 < q < γ,

E
(
λ−qmin(R̂n)

)
= O(1), (3.9)

provided (2.10) holds with m = d+ 1 and

sup
−∞<t<∞

E|εt|2γ + sup
−∞<t<∞

max
1≤l≤d

E|εt(l)|2γ <∞, (3.10)

for some γ > 1. Equation (3.9) plays an indispensable role in dealing with E(yn+1− ŷn+1)2

because it is not possible to rigorously analyze

n(E(yn+1 − ŷn+1)2 − σ11) = E
(
G

(n)>

n+1 R̂
−1
n n−1/2

n∑
t=1

G
(n)
t εt

)2
, (3.11)

without recourse to the moment bounds associated with R̂−1
n or λ−1

min(R̂n). Recall σ11 =

E(ε2
t ) defined after (2.7). The main result of this paper is stated in the next theorem.

Theorem 3.1 Assume (3.1), (3.3), (3.4), (2.10), with m = d+1, and (3.10), with γ > 4.
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Also assume that there exists a p× p non-random matrix Qn such that (2.13) and (2.14)

hold with x
(n)
t = Qnst. Then,

n
[
E(yn+1 − ŷn+1)2 − σ11

]
+ o(1) = x

(n)>

n+1 (n−1

n∑
t=1

x
(n)
t x

(n)>

t )−1x
(n)
n+1σ11

+ σ11

d∑
j=0

kj.

(3.12)

Ignoring the o(1) term, the centered MSPE, E(yn+1 − ŷn+1)2 − σ11, multiplied by the

sample size, can be expressed as the sum of two terms. The second term, accounting for

the variation due to estimating the ARX part of the model, is linearly proportional to

the number of the estimated parameters. On the other hand, the first term (due to the

error arising from estimating the deterministic trend) has asymptotic behavior varying

appreciably, depending on the time trend’s feature. The following examples provide more

illustrations of Theorem 3.1.

Example 3.1 Consider the polynomial trend (3.6). Set Qn = Diag(1, n−1, . . . , n−p+1).

Then, n−1
∑n

t=1 x
(n)
t x

(n)>

t →Hp = (1/(i+j−1))1≤i,j≤p, the p-dimensional Hilbert matrix,

and x
(n)
n+1 → 1p, the p-dimensional vector of ones. Since H−1

p exists (see Choi (1983)),

Theorem 3.1 implies

lim
n→∞

n
[
E(yn+1 − ŷn+1)2 − σ11

]
= σ11(1>pH

−1
p 1p +

d∑
j=0

kj). (3.13)
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Example 3.2 For the periodic trend (3.7), set Qn = I2h+1. Then,

lim
n→∞

n−1

n∑
t=1

x
(n)
t x

(n)>

t = Diag(1, 1/2, . . . , 1/2),

and x
(n)
n+1 = (1, sin ν1(n + 1), cos ν1(n + 1) . . . , sin νh(n + 1), cos νh(n + 1))>. Therefore,

x
(n)>

n+1 (n−1
∑n

t=1 x
(n)
t x

(n)>

t )−1x
(n)
n+1 → 2h+ 1, and hence by Theorem 3.1,

lim
n→∞

n
[
E(yn+1 − ŷn+1)2 − σ11

]
= σ11(2h+ 1 +

d∑
j=0

kj). (3.14)

Example 3.2 reveals that the impact of the periodic trend aligns with that of the ARX

component. That is, it is linearly proportional to the number of parameters. On the

other hand, Example 3.1 shows that this is not the case for the polynomial trend since

1>pH
−1
p 1p/p is not a constant. We will explore this issue further in the next section.

When d = 0 (no exogenous variables in the model), (3.13) was given in Ing (2003) under

the stringent condition that E|εt|q <∞ for any q > 0. His derivation depends on Lemma

B.1, which claims that (3.9) holds for any q > 0, provided the time trend satisfies (3.6).

However, a rigorous proof of this result seems to be missing.

Before closing this section, we note that the relevance of our asymptotic results in finite

samples has been investigated through a limited simulation study, which concentrates on

several AR(2) models with polynomial or periodic trends. Our simulations show that the

empirical MSPEs, obtained based on 10,000 replications, are quite close to their limiting

values given on the right-hand sides of (3.13) and (3.14) even for n = 100. Further details

are available upon request from the authors.
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3.2 Statistical predictions and Cauchy matrices

To get a better understanding of the impact of the polynomial time trend on the corre-

sponding MSPE, it is of interest to calculate the value of 1>pH
−1
p 1p in (3.13). In fact,

Hp is a special case of the symmetric Cauchy matrix Cp = ((li + lj − 1)−1)1≤i,j≤p, where

l1 . . . lp are distinct real numbers with li + lj 6= 1 for all 1 ≤ i, j ≤ p. In this section,

we assume min1≤i≤p li > 1/2 to ensure that Cp is positive definite; see Fiedler (2010).

Obviously, when li = i, i = 1, . . . , p, Cp = Hp. By making use of Lagrange’s interpolation

formula, Schechter (1959) showed that

1>pC
−1
p 1p = (

p∑
j=1

2lj)− p, (3.15)

which can be applied to aerodynamics. Equation (3.15) leads immediately to

1>pH
−1
p 1p = p2, (3.16)

showing that estimating the polynomial trend yields a prediction error quadratically pro-

portional to the number of parameters associated with the trend. This is in contrast to the

prediction error contributed by estimating the ARX part, which is linearly proportional

to the number of parameters. In view of the connection between 1>pH
−1
p 1p and statistical

prediction, it is intriguing to explore if there exists a statistical proof of (3.16) or even

(3.15). In the rest of this section, we show that the answer to this question is affirmative.

Our proof of (3.15) ((3.16)) is reliant on a novel link between the MSPE and APE.
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To begin with, let us focus on the following regression model,

yt =

p∑
j=1

βjt
lj−1 + εt, t = 1, . . . , n (3.17)

where li > 1/2, i = 1, . . . , p, and εt are independent standard normal random variables.

The least squares predictor, ŷn+1, of yn+1 is given by x>n+1β̂n, where

β̂t = (
t∑

j=1

xjx
>
j )−1

t∑
j=1

xjyj,

with xt = (tl1−1, . . . , tlp−1)>. Define Dn = Diag(nl1−1/2, . . . , nlp−1/2). Then, by the posi-

tive definiteness of Cp, it can be shown that

lim
n→∞

n{E(yn+1 − ŷn+1)2 − 1} = lim
n→∞

n{E(yn+1 − ŷn+1 − εn+1)2}

= lim
n→∞

nx>n+1D
−1
n (D−1

n

n∑
t=1

xtx
>
t D

−1
n )−1D−1

n xn+1 = 1>pC
−1
p 1p,

(3.18)

which establishes a connection between the left-hand side of (3.15) and the MSPE. The

key idea is to further associate the MSPE in (3.18) with the APE,
∑n

t=M+1(yt− ŷt− εt)2.

More specifically, it follows from

x>n (
n∑
t=1

xnx
>
n )−1xn → 0, lim inf

n→∞
λmin(D−1

n

n∑
t=1

xnx
>
nD

−1
n ) > 0,
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Theorem 3 of Wei (1987), and the positive definiteness of Cp that

lim
n→∞

∑n
t=M+1(yt − ŷt − εt)2

log det
∑n

t=1 xnx
>
n

= lim
n→∞

∑n
t=M+1(yt − ŷt − εt)2

[(
∑p

j=1 2lj)− p] log n
= 1 a.s., (3.19)

where M is the smallest integer t such that β̂t is uniquely defined. By Minkowski’s

inequality, it can be shown that {
∑n

t=M+1(yt − ŷt − εt)2/ log n} is uniformly integrable,

which, together with (3.19), implies

lim
n→∞

1

log n

n∑
t=M+1

E(yt − ŷt − εt)2 = (

p∑
j=1

2lj)− p. (3.20)

Denote E(yt − ŷt − εt)2 by νt. Then, (3.18) and (3.20) ensure

lim
n→∞

nνn = 1>pC
−1
p 1p and lim

n→∞

1

log n

n∑
t=M+1

νt = (

p∑
j=1

2lj)− p, (3.21)

respectively. Moreover, it follows from the first identity of (3.21) that

1

log n

n∑
t=M+1

νt =
1

log n

{
n∑

t=M+1

t−1(tνt − 1>pC
−1
p 1p) + 1>pC

−1
p 1p

n∑
t=M+1

t−1

}

= 1>pC
−1
p 1p + o(1),

which, together with the second identity of (3.21), yields (3.15).
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4 Conclusion

In this paper, we provide a rigorous analysis of the MSPE of the least squares predictor

in ARX models with deterministic time trends satisfying some general conditions. Due to

the difficulty in proving moment bounds for λ−qmin(R̂n), q ≥ 1, the asymptotic expression,

(3.12), has not been reported elsewhere to the best of our knowledge. In the polynomial

time trend, (3.12) inspires an intriguing proof of the formula for 1>pC
−1
p 1p from a predic-

tion perspective. However, there are still several issues that require further investigation.

For example, both the polynomial and periodic time trends, (3.6) and (3.7), are precluded

by (3.4) if 1−a1z−· · ·−ak0zk0 has roots on the unit circle. This leads to the question on

how to modify (3.13) and (3.14) in the presence of unit-roots. The techniques developed

in Chan (1989) may be helpful to answer this question. Also, since the models imposed on

the exogenous variables zt(l)s are very general, the multistep prediction based on a finite

number of lags of zt(l) may result in model misspecification. Therefore, an extension of

(3.12) to the case of multistep prediction or model misspecification is another interesting

topic for future research.

A Appendix

A.1 Proof of Theorem 2.1

To prove Theorem 2.1, we need some technical lemmas to characterize (2.14).

Lemma A.1 Assume (2.13). Then, (2.14) holds if and only if there exists a subset, Gn,
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of Xn = {1, . . . , n}, with lim infn→∞ ](Gn)/n > 0 and lim infn→∞mint∈Gn ‖x
(n)
t ‖ > 0 such

that

lim inf
n→∞

λmin(](Gn)−1
∑
t∈Gn

x
(n)
t x

(n)>

t ) > 0. (A.1)

proof. The proof of the ”if” part of Lemma A.1 is easy and hence omitted. To prove

the ”only if” part, we note that (2.14) yields that for all large n,

λmin(n−1

n∑
t=1

x
(n)
t x

(n)>

t ) > s, (A.2)

where s is some positive constant, and hence

n−1

n∑
t=1

x2
t,1 > s, (A.3)

where xt,i denotes the ith component of x
(n)
t . Therefore, Gn := {t : 1 ≤ t ≤ n, ‖x(n)

t ‖2 >

s/2} is non-empty for all large n. By (2.13) and (A.3), one has for all large n, ns ≤∑n
t=1 x

2
t,1 ≤ ](Gn)M2

1 + ns/2, yielding

](Gn) ≥ sn/(2M2
1 ). (A.4)

Now, the desired conclusion follows from (A.4), (A.2), and λmin(](Gn)−1
∑

t∈Gn x
(n)
t x

(n)>

t ) ≥

λmin(n−1
∑

t∈Gn x
(n)
t x

(n)>

t ) ≥ λmin(n−1
∑n

t=1 x
(n)
t x

(n)>

t )− n−1
∑n

t=1,t/∈Gn ‖x
(n)
t ‖2.

Lemma A.2 Assume (2.13). Then, (2.14) holds if and only if there exist disjoint subsets,
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D1, . . . Dqn, of Xn, where ](Di) = p, i = 1, . . . , qn, and lim infn→∞ qn/n > 0, such that

lim inf
n→∞

min
1≤i≤qn

λmin(
∑
t∈Di

x
(n)
t x

(n)>

t ) > 0. (A.5)

proof. The proof of the ”if” part of Lemma A.2 is easy and hence omitted. To prove

the ”only if” part, by Lemma A.1 and (2.13), we can set ‖x(n)
t ‖ = 1 for all t. We also

assume without loss of generality that the s in (A.2) is less than 1. Define D0(n) = ∅,

and for i ≥ 1, let Di(n) be any p-element subset of Xn −
⋃i−1
l=0 Dl(n) satisfying

λmin

( ∑
t∈Di(n)

x
(n)
t x

(n)>

t

)
>

sp

2ppp−1
, (A.6)

and Di(n) = ∅ if no such subset is found. Also define qn = 0 if D1(n) = ∅, and max{i ≥

1 : Di(n) 6= ∅} otherwise. For notational simplicity, in what follows we suppress the

dependence of x
(n)
t and Di(n) on n, and write xt and Di instead of x

(n)
t and Di(n),

respectively. Denote Xn −
⋃qn
l=0Dl by Zn = {s1, . . . , skn}, where kn = n− pqn. If kn < p,

then

qn > n/p− 1. (A.7)

For kn ≥ p, choose distinct elements, c1, . . . , cp, in Zn sequentially as follows. Let c1

be any element of Zn. For 2 ≤ j ≤ p, set cj = arg maxsi∈Zn ‖(Ip −Mj−1)xsi‖, where

Mj−1 is the orthogonal projection matrix onto C(xc1 , . . . ,xcj−1
), the column space of

(xc1 , . . . ,xcj−1
). Note that this sequential procedure of choosing ci is similar in spirit to
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the orthogonal greedy algorithm in Ing and Lai (2011). Let M0 be the p × p matrix of

zeros. Then,

‖(Ip −Mj−1)xcj‖ is non-increasing in j, (A.8)

and

p∏
j=1

‖(Ip −Mj−1)xcj‖2 ≤ λmin(

p∑
j=1

xcjx
>
cj

)λp−1
max(

p∑
j=1

xcjx
>
cj

)

≤ λmin(

p∑
j=1

xcjx
>
cj

)pp−1 ≤ (s/2)p,

(A.9)

where λmax(A) denotes the maximum eigenvalue of A and the last inequality is ensured

by

max
D⊂Zn,](D)=p

λmin

(∑
t∈D

xtx
>
t

)
≤ sp

2ppp−1
.

Equations (A.8) and (A.9) imply there exists 1 < j∗ ≤ p such that for all j∗ ≤ j ≤ p and

all large n, ‖(Ip −Mj−1)xcj‖2 ≤ s/2, and hence for all 1 ≤ i ≤ kn and all large n,

‖(Ip −Mj∗−1)xsi‖2 ≤ s/2. (A.10)
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Let v be any unit vector perpendicular to C(Mj∗−1). Then, (A.10) yields

v>(n−1

kn∑
i=1

xsix
>
si

)v ≤ n−1

kn∑
i=1

[x>si(Ip −Mj∗−1)v]2 ≤ s/2,

and hence λmin(n−1
∑kn

i=1 xsix
>
si

) ≤ s/2. This, together with (A.2) and

λmin(n−1

n∑
i=1

xix
>
i ) = λmin(n−1

qn∑
i=0

∑
l∈Di

xlx
>
l + n−1

kn∑
j=1

xsjx
>
sj

)

≤ qnp

n
+ λmin(n−1

kn∑
j=1

xsjx
>
sj

),

gives

qn ≥
sn

2p
, (A.11)

for all large n. Consequently, the desired conclusion follows from (A.7) and (A.11).

With the help of Lemma A.2, we are now in a position to prove Theorem 2.1.

proof of theorem 2.1. Consider

ω∗t =

 Ip 0′

0 C−1
0


 x

(n)
t

Yt

 ≡
 x

(n)
t

Y ∗t

 ,

where Y ∗t = εt,0 +
∑∞

j=1C
∗
j εt,j, C

∗
j = C0Cj, and the dependence of ω∗t on n is suppressed
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in this proof. It follows from (2.2) that

∞∑
j=1

‖C∗j ‖2
F <∞. (A.12)

In the rest of the proof, we shall show that

E

(
λ−qmin

(
n−1

n∑
t=1

ω∗tω
∗>
t

))
= O(1), (A.13)

which leads immediately to the desired result (2.12). By Lemma A.2, one has for all large

n,

min
1≤i≤qn

λmin

(∑
t∈Di

x
(n)
t x

(n)>

t

)
> ρ1, (A.14)

where ρ1 is some positive constant, Dis are disjoint subsets of Xn with ](Di) = p, for

all 1 ≤ i ≤ qn, and qn satisfies lim infn→∞ qn/n > 0. Let di denote the largest integer

in Di and {d(i)} be the decreasing rearrangement of {di}. Set c1 = d(1) and for i ≥ 2,

define ci = max{d(l), 1 ≤ l ≤ qn : ci−1 − d(l) ≥ k}, and 0 if no such d(l) exists. Let

sn = max{i ≥ 1 : ci ≥ 1}. Then, it is easy to see that lim infn→∞ sn/n > 0. Let D
′
i denote

the set Dj, 1 ≤ j ≤ qn, containing ci, L be an integer satisfying

L >
2 + (q−1 + γ∗

−1
)ι

α(q−1 − γ∗−1)
, (A.15)

and gn = bsn/Lc, where q < γ∗ < γ, ι = p + km, α is defined in (2.10), and bac is the

largest integer ≤ a. Then, by the convexity of x−q, x > 0, and lim infn→∞ gn/n > 0, we
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obtain for all large n,

the left-hand side of (A.13) ≤ E
(
λ−qmin(n−1

sn∑
i=1

∑
t∈D′i

Bt)
)

≤ Cg−1
n

gn−1∑
j=0

E
(
λ−qmin(

L∑
i=1

∑
t∈D′i+jL

Bt)
)
,

(A.16)

where Bt = ω∗tω
∗>
t and C here and hereafter represents a generic positive constant which

is independent of n, but may vary from place to place. In view of (A.16), (A.13) follows

if we can show that for all large n,

E
(
λ−qmin(

L∑
i=1

∑
t∈D′i+jL

Bt)
)
≤ C, j = 0, . . . , gn − 1. (A.17)

In the following, we only prove (A.17) for the case of j = 0 because the proofs of other

cases can be obtained similarly.

Let k∗ = max{k∗1, k∗2}, where k∗1 and k∗2 are positive constants to be specified later.

Then, the left-hand sides of (A.17) (with j = 0) is bounded by

k∗ +

∫ ∞
k∗

P (G(µ)
⋂

V (µ))dµ+

∫ ∞
k∗

P (V c(µ)) dµ

:= k∗ +

∫ ∞
k∗

I(µ)dµ+

∫ ∞
k∗

II(µ)dµ,

(A.18)

where

G(µ) =

 inf
‖ν‖=1
ν∈Rι

L∑
i=1

∑
t∈D′i

(ν ′ω∗t )
2 < µ−1/q

 ,
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and

V (µ) =

{
max

t∈
⋃L
i=1D

′
i

‖ω∗t ‖2 ≤ sµ1/γ∗

}
,

in which s is small enough such that

2M1p
√
s+ ps ≤ ρ1/4, (A.19)

where M1 is defined in (2.13). By (2.15), (A.12), and Lemma 2 of Wei (1987), it can be

shown that ∫ ∞
k∗

II(µ)dµ ≤ C

∫ ∞
k∗

µ−γ/γ
∗
dµ = O(1). (A.20)

To deal with the first integration in (A.18), note that

G(µ)
⋂

V (µ) ⊂
L⋂
i=1

{
inf
‖ν‖=1
ν∈Rι

∑
t∈D′i

(ν ′ω∗t )
2 < µ−1/q,

∑
t∈D′i

‖ω∗t ‖2 ≤ psµ1/γ∗
}⋂

V (µ)

:= Q(µ)
⋂

V (µ).

By an argument similar to that used in Ing and Wei (2003, page 137), it can be shown

that there exist a positive integer m∗ ≤ C1µ
ι(q−1+γ∗

−1
)/2 and unit vectors, l1, . . . , l

∗
m, in Rι

such that

Q(µ) ⊂
m∗⋃
j=1

{‖lj‖∑
t∈D′

i
Bt ≤ (2

√
psι+ 1)µ−1/2q, i = 1, . . . , L} :=

m∗⋃
j=1

Πj,L(µ),

where C1 is some positive constant independent of n and µ and ‖x‖2
A = x>Ax for non-
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negative definite matrix A. Since |l>j ω∗ci | ≤ ‖lj‖
∑
t∈D′

i
Bt ,

I(µ) ≤
m∗∑
j=1

‖lj,2‖≥µ−1/(2γ∗)

P
(
|l>j ω∗ci | ≤ (2

√
psι+ 1)µ−1/2q, i = 1, . . . , L

)

+
m∗∑
j=1

‖lj,2‖<µ−1/(2γ∗)

P (V (µ),Πj,L(µ)) :=
m∗∑
j=1

‖lj,2‖≥µ−1/(2γ∗)

IIIj(µ)

+
m∗∑
j=1

‖lj,2‖<µ−1/(2γ∗)

IVj(µ),

(A.21)

where lj,2 is the vector consisting of lj’s last km elements. Denote lj,2 by (l>j,2(1), . . . , l>j,2(k))>,

where each of lj,2(i) is m-dimensional. Then, for ‖lj,2‖ ≥ µ−1/(2γ∗) and µ ≥ k∗1 =

{2
√
k(2
√
psι+ 1)/δ}2/(q−1−γ∗−1

), it holds that

IIIj(µ) = E

{
L∏
i=2

I{|l>j ω∗ci |≤(2
√
psι+1)µ−1/2q}P (A1(µ)| δc1−j, j ≥ k)

}

≤M{2
√
k(2
√
psι+ 1)µ−(q−1−γ∗−1

)/2}αE

(
L∏
i=2

I{|l>j ω∗ci |≤(2
√
psι+1)µ−1/2q}

)

whereA1(µ) = {−(2
√
psι+1)µ−1/2q−r∗1 ≤

∑k
h=1 l

>
j,2(h)δc1+1−h ≤ (2

√
psι+1)µ−1/2q−r∗1},

with r∗1 = l>j,1x
(n)
c1 + l>j,2

∑∞
j=1C

∗
j εc1,j and (l>j,1, l

>
j,2)> = lj, and the first inequality follows

from ‖lj,2(h)‖ ≥ k−1/2µ−1/(2γ∗) for some 1 ≤ h ≤ k, (2.10), and the independence among
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{δt}. Repeat the same argument L− 1 times, one gets,

IIIj(µ) ≤ML{2
√
k(2
√
psι+ 1)}vLµ−(q−1−γ∗−1

)αL/2,

provided ‖lj,2‖ ≥ µ−1/(2γ∗) and µ ≥ k∗1. As a result, by (A.15),

∫ ∞
k∗

m∗∑
j=1

‖lj,2‖≥µ−1/(2γ∗)

IIIj(µ)dµ ≤ C

∫ ∞
k∗

µ−[(q−1−γ∗−1
)αL/2−ι(q−1+γ∗

−1
)/2] = O(1).

(A.22)

For ‖lj,2‖ < µ−1/(2γ∗) and µ ≥ k∗2 = max{2γ∗ , {5(2
√
psι+ 1)2/ρ1}q}, (A.14) and (A.19)

ensure that on the set V (µ),

min
1≤i≤L

‖lj‖∑
t∈D′

i
Bt ≥ ( min

1≤i≤L
‖lj,1‖2∑

t∈D′
i
x
(n)
t x

(n)>
t

− 2M1p
√
s− ps)1/2

≥ (ρ1/2− 2M1p
√
s− ps)1/2 ≥ (ρ1/4)1/2 > (ρ1/5)1/2 ≥ (2

√
psι+ 1)µ−1/2q,

for all large n. Hence, for all large n,

∫ ∞
k∗

m∗∑
j=1

‖lj,2‖<µ−1/(2γ∗)

IVj(µ)dµ = 0.
(A.23)

Consequently, (A.17) (with j = 0) follows from (A.18), (A.20), (A.21), (A.22), and (A.23).

Thus, the proof is complete.
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A.2 Proof of Theorem 3.1

proof of theorem 3.1. We can assume without loss of generality that R̂−1
n exists be-

cause (3.9) implies P (R̂−1
n exists) = 1 for all large n. Denote (v>t (k0), z>t (k1), . . . ,z>t (kd))

>

by Qt = (Qt(1), . . . , Qt(
∑d

l=0 kl))
> and E(QtQ

>
t ) by F = (Fi,j)1≤i,j≤

∑d
l=0 kl

. Then, it fol-

lows from (2.6), (2.7), and the first moment bound theorem of Findley and Wei (1993)

that for any 1 ≤ i, j ≤
∑d

l=0 kl,

E
(
n−1

n∑
t=1

Qt(i)Qt(j)− Fi,j
)2 ≤ C

√√√√n−1∑
l=0

γ2
l (i)/n

√√√√n−1∑
l=0

γ2
l (j)/n = o(1), (A.24)

where γl(i) is the autocovariance function of {Qt(i)} at lag l. In addition, it is easy to see

that for any 1 ≤ i ≤
∑d

l=0 kl,

E‖n−1

n∑
t=1

x
(n)
t Qt−1(i)‖2 → 0,

which, together with (A.24), yields

R̂n −

 n−1
∑n−1

t=1 x
(n)
t x

(n)>

t 0p×∑d
l=0 kl

0(
∑d
l=0 kl)×p

F

 = op(1). (A.25)

In view of (A.25), the desired conclusion follows if

Tn :=
(
G

(n)>

n+1 R̂
−1
n n−1/2

n∑
t=1

G
(n)
t εt

)2
is uniformly integrable , (A.26)
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and

E

(
x

(n)>

t (n−1

n−1∑
t=1

x
(n)
t x

(n)>

t )−1n−1/2

n∑
t=1

x
(n)
t εt +Q>nF

−1n−1/2

n∑
t=1

Qt−1εt

)2

= x
(n)>

n+1 (n−1

n∑
t=1

x
(n)
t x

(n)>

t )−1x
(n)
n+1σ11 + σ11

d∑
j=0

kj + o(1).

(A.27)

Since γ > 4, there exists θ > 0 small enough such that 4 < 2γ(1+θ)/(γ−2(1+θ)) < γ.

Let 2γ(1 + θ)/(γ − 2(1 + θ)) ≤ q∗ < γ. Then, by Theorem 2.1 and (3.10),

E{λ−q
∗

min(R̂n)} = O(1). (A.28)

By (A.28), Lemma 2 of Wei (1987), 4q∗(1+θ)/(q∗−2(1+θ)) ≤ 2γ, and Hölder’s inequality,

E(T 1+θ
n ) ≤

(
E‖G(n)

n+1‖
4q∗(1+θ)
q∗−2(1+θ)

) q∗−2(1+θ)
2q∗

(
E‖n−1/2

n∑
t=1

G
(n)
t εt‖

4q∗(1+θ)
q∗−2(1+θ)

) q∗−2(1+θ)
2q∗

×
(
Eλ−q

∗

min(R̂n)
)2(1+θ)/q∗

= O(1),

leading to (A.26).

To prove (A.27), define Q̃n = E(Qn|Fn−gn), where gn →∞, gn = o(n), and Ft is the
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σ-field generated by (δt, δt−1, . . .). Then,

E

(
Q>nF

−1n−1/2

n∑
t=1

Qt−1εt

)2

= E

(
Q∗

>

n F
−1n−1/2

n−gn∑
t=1

Qt−1εt

)2

+ E

(
Q̃>nF

−1n−1/2

n∑
t=n−gn+1

Qt−1εt

)2

+ E

(
Q∗

>

n F
−1n−1/2

n∑
t=n−gn+1

Qt−1εt

)2

+ E

(
Q̃>nF

−1n−1/2

n−gn∑
t=1

Qt−1εt

)2

:= (I) + (II) + (III) + (IV),

(A.29)

where Q∗n = Qn − Q̃n. By Lemma 2 of Wei (1987) and the Cauchy-Schwarz inequality,

(II) + (III) + (IV) = o(1). (A.30)

Straightforward calculations give

lim
n→∞

(I) = σ11

d∑
j=0

kj, (A.31)

and

E

(
x

(n)>

t (n−1

n−1∑
t=1

x
(n)
t x

(n)>

t )−1n−1/2

n∑
t=1

x
(n)
t εt

)2

= x
(n)>

n+1 (n−1

n∑
t=1

x
(n)
t x

(n)>

t )−1x
(n)
n+1σ11

(A.32)
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An argument similar to that used to prove (A.30) yields

E

(
n−1{x(n)>

t (n−1

n−1∑
t=1

x
(n)
t x

(n)>

t )−1

n∑
t=1

x
(n)
t εt}(Q>nF−1

n∑
t=1

Qt−1εt)

)
= o(1). (A.33)

Consequently, (A.27) follows from (A.29)–(A.33). Thus the proof is complete.
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Gerencsér, L., Hjalmarsson, H., and Mårtensson, J. (2009). Identification of ARX sys-

tems with non-stationary inputs–asymptotic analysis with application to adaptive

input design. Automatica 45 623–633.

Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press, Princeton.

33



Hannan, E.J., Mcdougall, A.J. and Poskit, D.S. (1989). Recursive estimation of autore-

gressions. Journal of the Royal Statistical Society: Series B (Methodological) 51

217–233.

Hemerly, E.M. and Davis, M.H.A. (1989). Strong consistency of the PLS criterion for

order determination of autoregressive processes. Annals of Statistics 17 941–946.

Hsu, H.-L., Ing, C.-K., and Tong, H. (2019). On model selection from a finite family of

possibly misspecified time series models. Annals of Statistics 47 1061–1087.

Ing, C.-K. (2003). Multistep prediction in autoregressive processes. Econometric Theory

19 254–279.

Ing, C.-K. (2004). Selecting optimal multistep predictors for autoregressive processes of

unknown order. Annals of Statistics 32 693–722.

Ing, C.-K. (2007). Accumulated prediction errors, information criteria and optimal fore-

casting for autoregressive time series. Annals of Statistics 35 1238–1277.

Ing, C.-K and Lai, T.L. (2011). A stepwise regression method and consistent model

selection for high-dimensional sparse linear models. Statistica Sinica 21 1473–1513.

Ing, C.-K., Lin, J.-L, and Yu, S.-H. (2009). Toward optimal multistep forecasts in non-

stationary autoregressions. Bernoulli 15 402–437.

Ing, C.-K., Sin, C. Y. and Yu, S.-H. (2012). Model selection for integrated autoregressive

processes of infinite order. Journal of Multivariate Analysis 106 57–71.

Ing, C.-K. and Wei, C.-Z. (2003). On same-realization prediction in an infinite-order

autoregressive process. Journal of Multivariate Analysis 85 130-155.

Ing, C.-K. and Wei, C.-Z. (2005). Order selection for same-realization predictions in

autoregressive processes. Annals of Statistics 33 2423–2474.

34



Ing, C.-K. and Yang, C.-Y. (2014). Predictor selection for positive autoregressive pro-

cesses. Journal of the American Statistical Association 109 243–253.

Kunitomo, N. and Yamamoto, T. (1985). Properties of predictors in misspecified autore-

gressive time series. Journal of the American Statistical Association 80 941–950.

Lai, T.L. (1994). Asymptotic properties of nonlinear least squares estimates in stochastic

regression models. Annals of Statistics 22 1917–1930.

Lai, T.L. and Lee, C.P. (1997). Information and prediction criteria for model selection

in stochastic regression and ARMA models. Statistica Sinica 7 285–309.

Lai, T.L. and Wei, C.-Z. (1982). Least squares estimates in stochastic regression mod-

els with applications to identification and control of dynamic systems. Annals of

Statistics 10 154–166.

Lai, T.L. and Wei, C.-Z. (1986). Extended least squares and their applications to adap-

tive control and prediction in linear systems. IEEE Transactions on Automatic

Control AC-31 898–906.

Lee, S. and Karagrigoriou, A. (2001). An asymptotically optimal selection of the order
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