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Abstract

We establish negative moment bounds for the minimum eigenvalue of the nor-
malized Fisher information matrix in a stochastic regression model with a deter-
ministic time trend. This result enables us to develop an asymptotic expression
for the mean squared prediction error (MSPE) of the least squares predictor in the
aforementioned model. Our asymptotic expression not only helps better understand

how the MSPE is affected by the deterministic and random components, but also



inspires an intriguing proof of the formula for the sum of elements in the inverse of
the Cauchy/Hilbert matrix from a prediction perspective.
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1 Introduction

The stochastic regression model is one of the most widely used statistical models due to its
broad applications in engineering, economics, medicine, and many other scientific fields.
In their seminal paper, Lai and Wei (1982) laid the theoretical foundations of parameter
estimation in such a model. In particular, they proposed a set of weakest possible condi-
tions under which the linear least squares estimate achieves strong consistency. Lai and
Wei’s (1982) paper inspired a great deal of exciting work, bringing insights into prediction,
model selection, non-linear estimation, stochastic approximation, and adaptive control;
see, e.g., Chen and Guo (1986), Lai and Wei (1986), Wei (1987, 1992), Lai (1994), Lai
and Lee (1997), Chen et al. (1999), and Gerencsér et al. (2009).

One of the most important purposes of statistical modeling is to predict future values.
The performance of a prediction method is usually evaluated by two different measures:
the accumulated prediction error (APE) and the mean squared prediction error (MSPE).
Model selection based on these two types of errors also attracted a lot of attention from
researchers and practitioners. Wei (1987) provided asymptotic expressions for the APEs
of the least squares predictors in stochastic regression models. Model selection based on

the APE was explored by Rissanen (1986), Wax (1988), Hannan et al. (1989), Hemerly



and Davis (1989), Wei (1992), Speed and Yu (1994), West (1996), Lai and Lee (1997),
Ing (2004, 2007), Ing et al. (2009), and Ing and Yang (2014). Asymptotic expressions
for the MSPEs of least squares predictors were derived in a variety of time series models;
see, e.g., Fuller and Hasza (1981), Kunitomo and Yamamoto (1985), Gerencsér (1992),
Ing (2003), Ing et al. (2009), Chan and Ing (2011), and Chan et al. (2013). There are
also quite a few model selection methods proposed based on minimizing the MSPE; see
Shibata (1980), Bhansali (1996), Lee and Karagrigoriou (2001), Ing and Wei (2005), Ing
et al. (2012), and Hsu et al. (2019).

Since many time series data exhibit polynomial or other deterministic time trends,
parameter estimation and hypothesis testing in time series models with drifts have been
considered by a number of authors; see, e.g., Chan (1989), Hamilton (1994), and Stock
(1994). On the other hand, most existing studies on the MSPE have focused on the case
where the underlying time series model has a constant mean. Although Ing (2003) derived
an asymptotic expression for the MSPE of the least squares predictor in an autoregressive
(AR) model around a polynomial trend, it seems difficult to apply his result to more
general time series models. In addition, his derivation heavily relied on a negative moment
bound for the minimum eigenvalue of the normalized Fisher information matrix of a non-
constant mean, whose proof, however, was not rigorously given. In this paper, we fill this
gap by investigating the MSPEs of the least squares predictors in autoregressive exogenous
(ARX) models (an important class of stochastic regression models) with deterministic
trends satisfying general conditions. We first establish negative moment bounds for the

minimum eigenvalue of the normalized Fisher information matrix, R,,, associated with



this model in a rigorous manner. With the help of these bounds, we provide an asymptotic
expression for the MSPE of the least squares predictor, which is the sum of two terms
accounting for the variations due to estimating the time trend and ARX components,
respectively. This result helps us better understand how the MSPE is affected by the
model’s deterministic and random components.

Our asymptotic expression shows that the MSPE due to estimating the polynomial
time trend is related to the sum of elements in the inverse of the Hilbert matrix, which,
in turn, is a special case of the symmetric Cauchy matrix. The formula for the sum of
elements in the latter matrix’s inverse was given by Schechter (1959) through Lagrange’s
interpolation method. The connection between the MSPE and Cauchy/Hilbert matrix
triggers us to ask if there is an alternative proof of the formula from a prediction perspec-
tive. By establishing an intriguing link between the MSPE and APE, we show that the
answer to this question is affirmative.

The rest of the paper is organized as follows. In Section 2, we establish negative
moment bounds for the minimum eigenvalue of a matrix associated with R,,. In Section
3.1, asymptotic expressions for the MSPEs of the least squares predictors in ARX models
with general time trends are given. We further illustrate the results using the polynomial
and periodic time trends. In Section 3.2, a statistical proof of the formula for the sum of
elements in the inverse of the Cauchy matrix is provided. We conclude in Section 4. All
proofs of the theorems in Sections 2 and 3.1 and other technical details are relegated to

the Appendix.



2 Negative Moment Bounds

Let k and m be positive integers. We start by considering a km-dimensional time series,

o0
}’; = ZCjet’j7 (21)
=0
where ;5 = (8, ... ,5:_( ik )", {8} is a sequence of m-dimensional independent

random vectors satisfying E(d;) = 0 and E(8,6, ) = X > 0, Cjs are km x km coefficient

matrices, Cy is invertible, and

> I < oo. (2.2)
§=0

Here, ||A||r denotes the Frobenius norm of matrix A. Many time series regression models

have explanatory vectors satisfying (2.1). Here, we give two examples.

Example 2.1 Let z; = Z;io D;é;_; be an m-dimensional stationary time series, where

Z?io | D13 < o0, Dq is invertible, and {8,} is defined as in model (2.1). Then,

2z . Dy, o Dkt Otk
-y : : : : (2.3)
=0

Zi—k+1 Dg-1yrpr - D 5t*(j+1)k+1



where D; =0 if | < 0. Hence (2.1) holds with Y, = (2, , 2z ,.1)",

D o Dk
Cj - 5
DG iyk41 - D,
and € j = (5;_%, s, 80 (G+1) k+1) . One may use the following vector AR model to make
prediction,
Ziy1 = Z ©;zi1-j + €1, (2.4)

Jj=1

where © ;s are mxm coefficient matrices and €., is the model error, which can be serially
correlated if (2.4) is misspecified. It is clear that the explanatory vector of model (2.4) is
given on the left-hand side of (2.3).

Example 2.2 Consider an autoregressive exogenous (ARX) model,

d
Za]vt]+229 )2i—; (1) + &4, (2.5)

=1 j=1
where d, ko, . .., kq are positive integers, a; and 0;(l) are unknown coefficients,
L —aiz— - —ap2™ #0, 2| <1, (2.6)
(ze1(l), -z (D) T,1 = 1,...,d, are ezogenous variables admitting the following



MA () representation,
) = b0 (0, 1)
=0

with bo(l) = 1 and Y772 b3 (1) < oo, and §; = (e, ee(1),...,ei(d)",t = 1,...,n, are
independent noises satisfying E(8;) = 0 and (0ij)1<i j<ar1 = E(6;8;) > 0. By (2.6) and

(2.7), there exist 15,7 > 0, with o = (1,0,...,0)" and 372, [n;||* < oo, such that
Uy = an—'r(st—jv (28)
=0
noting that || - || denotes the Euclidean norm. Let k = max{ko, ..., ks}. Then

Y = (v (1), 2(d) v 2k (D 2 (d) (2.9)

can be viewed as an explanatory vector of model (2.5) containing possibly redundant com-

ponents. It follows from (2.7) and (2.8) that

o0
Y, = E Cjet,jy
j=0



where g,; = (8 ..., 8] )" and

t—jk’ P (1) k+1
Cj,ll T Cj,u}
CJ - )
Cj,fcl T Cj,kk
i which
Nik—t+1,1  Njk—t+1,2 T o Mjk—t41,d+1
0 bjl%—t+l(1) 0 T 0
Ciu = : 0 bit_1a(2) 0
0
0 0 T 0 bjl::—t-i—l(d)

is a (d+1)x (d+1) matriz with (411, - Dji—trrdr1) = Mja_tr and npg, = bp(la) =0
if h < 0. Since Y32 [|Cjll3 < oo and Cy is invertible due to Coy = Iy (the (d +1)-
dimensional identity matriz) and Cyy = 0 if t > |, we conclude that the Yy in (2.9) fulfills

(2.1) with k =k and m = d + 1.

Assuming that (2.1) holds and there exist d, M, « > 0 such that for any 0 < w—u < 4,

sup  sup P(u<v'd <w) < M(w—u)?, (2.10)

—co<t<oo ||v|=1

Findley and Wei (2002) showed that for any ¢ > 1,

E (A;?nm—l thYJ)) — o), (2.11)
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where n is the sample size and A\yin(A) denotes the minimum eigenvalue of matrix A.
With the help of (2.11), they presented the first mathematically complete derivation of
an analogous property of AIC for comparing vector autoregressions fit to weakly stationary
series. Using (2.11) and an argument in Findley and Wei (2002), one can also obtain an
asymptotic expression for the MSPE of the least squares predictors in model (2.4) (or
(2.5)) in terms of the sample size, the variance of the model error, and the number of the
estimated parameters.

When a deterministic trend (containing p variables with p > 1) is taken into account,

a natural generalization of (2.11) is

E (Am?nm—l 3wl )) — o), (2.12)

where w; = (mi")T, Y,")" and mi") € RP| possibly depending on n, is the normalized time

trend variables satisfying

sup =™ < My, (2.13)

1<t<n

for some positive constant M;. One would expect that (2.12) holds under the additional

assumption,

n—oo

lim inf A (n Y 2P ) > 0, (2.14)
t=1

which is commonly made on the fixed design matrix. The proof of (2.12), however, is far



from being trivial. The main reason is that the proof of (2.11) is built on the property that
for any a € R*™ with ||a|| = 1, the conditional distribution of (a'Y;)? given information
up to time t — [ is sufficiently smooth at the origin as long as [ is large enough. This
property is ensured by (2.10), but is no longer valid when Y; is replaced by w;. With the

)

appearance of :cﬁ" , it is easy to find a unit vector @ € R¥"*P such that a'w, = 0. In

Lemma A.2, we provide a characterization of (2.14). This characterization is not only of
independent interest, but it also inspires a proof strategy to bypass the above difficulty.

The main result of this section is given in the following theorem.

Theorem 2.1 Assume (2.1), (2.2), (2.10), (2.13), (2.14), and

|27
7£1<1tpioo 1?%)51]3’&’1’ < 00, (2.15)

where v > 1 and (841, ..,0m)" = 8. Then, for 0 < q <7, (2.12) follows.

3 Applications

3.1 Mean squared prediction errors

In this section, we focus on the ARX model around a deterministic time trend,

p ko d kl
ye=Y Bisui+ Y ai+ > 0Dz () +e (3.1)
j=1 j=1

=1 j=1

10



where p, d, and ko, . .., kq are positive integers, §;, a;, and 6;(1) are unknown coefficients,

with a; satisfying (2.6), z:_1(1) = (z-1(0), ..., 2-%,(1))",1 < I < d, are exogenous vari-
ables admitting the MA(oco) representations described in (2.7), 8; = (s¢1,...,5,) are
deterministic variables, and &; = (g, &,(1),...,&/(d))" are the same as the one in Exam-

ple 2.2. Let P, = (s8], vy, ;,2z'1(1),...,2}1(d)", where y; = (¥, ..., Ys_ry+1) . Having
observed y1,...,y, and Py,..., P,.1, we are interested in predicting v, 1 using the least

squares predictor,

i1 = PL()_BPT)'Y Py, (3.2)
t=1 t=1

provided the inverse of > 1 | P,P,’ exists.
To analyze the MSPE, E(y,11 — Uns1)?, of §ns1, we impose the following conditions

on the deterministic terms s;: there exists a p X p matrix D such that for any ¢,
St—1 = DSt, (33)
and
ko

I, — Y a;D’ is invertible. (3.4)

j=1
By (3.3) and (3.4), it can be shown that

ye =B s+ v, (3.5)

11



where v, is defined in (2.8) and B8*' = B7(I, — 250:1 a; D7)t with B8 = (B1,...,8,)".
Many commonly used deterministic trends fulfill (3.3) and (3.4). For example, in the case

of the polynomial trend,
s;=(1,t,... .7 HT p>1, (3.6)

we have D = (Dj;)1<ij<p, where Di; = 0if 1 <i < j <p,and C;_}(-1)"7if 1 < j <i <
p, where C/—; = (i — 1)!/[(i — j)!(j — 1)!]. Since D7, j > 1, are lower triangular matrices

with diagonal entries 1, (3.4) holds when (2.6) is assumed. For the periodic trend,

s, = (1,sinuvt,cos it ... sinvpt, cosvpt) ', (3.7)
where h > 1and 0 <1y < --- <1, <7, we have D = Diag(1,vy,...,vy), where
cosv; —sinv;
V; —

S V; COs Vj

Also, (3.4) follows from (2.6). By (3.3) and (3.5), the trend in y;—; can be removed

through a linear transformation of P;,
Y1 —Gsp=v, 1 = (Ut—la e ,Ut—k:o)T, (3~8)

where GT = (D73*--- DkOT,B*). Suppose that there exists a p X p non-random matrix
Q.. such that (2.13) and (2.14) hold with 2\ = Q,s,. Then, this assumption and (3.8)

12



together suggest a linear transformation, F;,, of P, that depends on G and Q,, and satisfies
n T
FTLB = (CUE ) 71)7117 le(l), LR zzll(d))Tu

in which each component has the same order of magnitude and the deterministic and ran-
dom components are completely separated. Define G\ = F, P, and R,, = n™" S ng)ng)T
Since (v, 1,2, ((1),...,2] (d))" is a subvector of Y;_; defined in (2.9), it follows from

Theorem 2.1 that for 0 < ¢ < v,

E (A\L(R)) = 0(1), (3.9)
provided (2.10) holds with m = d + 1 and

sup Elg[* + sup max Ele,(D)]*" < oo, (3.10)

—00<t<00 —oco<t<oo 1<I<d

for some v > 1. Equation (3.9) plays an indispensable role in dealing with E(y, 11— n1)>

because it is not possible to rigorously analyze

n) 7 A — a n
n(E(Yn1 — Qn+1)2 — o) = E(anﬂzl Rnln 12 Z G,S )Et)2, (3.11)

t=1

without recourse to the moment bounds associated with R; ' or A\ZL (R,). Recall oy, =

min

E(e?) defined after (2.7). The main result of this paper is stated in the next theorem.

Theorem 3.1 Assume (3.1), (3.3), (3.4), (2.10), withm = d+1, and (3.10), with v > 4.

13



Also assume that there exists a p X p non-random matriz Q,, such that (2.13) and (2.14)

hold with \™ = Q,.s;. Then,

A~ n T —
N [E(Ynt1 — Ins1)” — o] +0(1) = 33221 Zwt t 7(1421011

d
+ 011 ZI{J]
j=0

(3.12)

Ignoring the o(1) term, the centered MSPE, E(y, 11 — §ni1)® — 011, multiplied by the
sample size, can be expressed as the sum of two terms. The second term, accounting for
the variation due to estimating the ARX part of the model, is linearly proportional to
the number of the estimated parameters. On the other hand, the first term (due to the
error arising from estimating the deterministic trend) has asymptotic behavior varying
appreciably, depending on the time trend’s feature. The following examples provide more

illustrations of Theorem 3.1.

Example 3.1 Consider the polynomial trend (3.6). Set Q,, = Diag(1l,n™t, ... n7Pt).
Then, n=' >0, mt”)mﬁ”)T — H, = (1/(i+7—1))1<ij<p, the p-dimensional Hilbert matriz,
and a:ﬁ[fﬁl — 1, the p-dimensional vector of ones. Since H " exists (see Choi (1983)),

Theorem 3.1 implies

d
lim n [E(yn+1 — :&n+1)2 — 0'11] = 0'11<1;H;11p + Z kj) (313)

n—00 -
Jj=0

14



Example 3.2 For the periodic trend (3.7), set Q,, = Iopy1. Then,

. - & n TLT .
nll_{lolon Ing V(™ = Diag(1,1/2,...,1/2),

t=1

and a:fﬁgl = (1,sinvy(n + 1),cosvi(n + 1)...,sinyy(n + 1),cosvy(n + 1))T. Therefore,

ccfﬁzz(n_l S, wgn)wE")T)_lwﬁl — 2h + 1, and hence by Theorem 3.1,

d
nhHIgoTL [E(yn—i—l — Qn—l—l)Z — 0'11} = 0'11(2h + 1 + Z k']) (314)
7=0

Example 3.2 reveals that the impact of the periodic trend aligns with that of the ARX
component. That is, it is linearly proportional to the number of parameters. On the
other hand, Example 3.1 shows that this is not the case for the polynomial trend since
1) H;'1,/p is not a constant. We will explore this issue further in the next section.
When d = 0 (no exogenous variables in the model), (3.13) was given in Ing (2003) under
the stringent condition that E|e;|? < oo for any ¢ > 0. His derivation depends on Lemma
B.1, which claims that (3.9) holds for any ¢ > 0, provided the time trend satisfies (3.6).
However, a rigorous proof of this result seems to be missing.

Before closing this section, we note that the relevance of our asymptotic results in finite
samples has been investigated through a limited simulation study, which concentrates on
several AR(2) models with polynomial or periodic trends. Our simulations show that the
empirical MSPEs, obtained based on 10,000 replications, are quite close to their limiting
values given on the right-hand sides of (3.13) and (3.14) even for n = 100. Further details

are available upon request from the authors.
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3.2 Statistical predictions and Cauchy matrices

To get a better understanding of the impact of the polynomial time trend on the corre-
sponding MSPE, it is of interest to calculate the value of lgHgllp in (3.13). In fact,
H,, is a special case of the symmetric Cauchy matrix C, = ((I; +1; — 1)7!)1<; j<p, where
ly...1l, are distinct real numbers with ; +[; # 1 for all 1 < 4,5 < p. In this section,
we assume minj<;<,l; > 1/2 to ensure that C, is positive definite; see Fiedler (2010).
Obviously, when [; = 4,2 =1,...,p, C, = H,. By making use of Lagrange’s interpolation
formula, Schechter (1959) showed that

p
1L,C'1, = () 20) —p, (3.15)
j=1
which can be applied to aerodynamics. Equation (3.15) leads immediately to
1, H'1, = p*, (3.16)

showing that estimating the polynomial trend yields a prediction error quadratically pro-
portional to the number of parameters associated with the trend. This is in contrast to the
prediction error contributed by estimating the ARX part, which is linearly proportional
to the number of parameters. In view of the connection between 1;H » 11, and statistical
prediction, it is intriguing to explore if there exists a statistical proof of (3.16) or even
(3.15). In the rest of this section, we show that the answer to this question is affirmative.

Our proof of (3.15) ((3.16)) is reliant on a novel link between the MSPE and APE.

16



To begin with, let us focus on the following regression model,

p
yt225jtlj71+€t, tzl,...,n (317)

=1
where [; > 1/2,i = 1,...,p, and &, are independent standard normal random variables.

The least squares predictor, g, 1, of yn41 is given by x| +1Bn, where

Z‘I"J ijyw

with @, = (th~1, ..., t»=)T. Define D, = Diag(n'*='/2,... nl»=%/2). Then, by the posi-
tive definiteness of C), it can be shown that

lim n{E(yn—H - ?)n+1)2 - 1} = lim n{E(yn+1 — Uny1 — 5n+1)2}

n—o0

(3.18)
nll_>m nmnﬂ Z xx, DY D, = IJCP_IIP,

which establishes a connection between the left-hand side of (3.15) and the MSPE. The
key idea is to further associate the MSPE in (3.18) with the APE, ™7/ (ye — G — &¢)*

More specifically, it follows from

wZ(Z z,x,) '@, — 0, liminf Ay, (D;* Z z,x, D) >0,

n—oo

17



Theorem 3 of Wei (1987), and the positive definiteness of C,, that

Z?:M—i—l(yt — Y — Et)z — lim Z?:M—&-l(yt — U — 5t)2

=1 a.s. 1
n—oo logdet > " | x,x,) neo (S0, 21;) — pllogn a.s., (3.19)

where M is the smallest integer t such that ,ét is uniquely defined. By Minkowski’s
inequality, it can be shown that {>°;" ;. (v — § — &;)*/logn} is uniformly integrable,

which, together with (3.19), implies

n

lim Y Ew—gi—e) = (Z 21;) — p. (3.20)

n—00 log n Myl

Denote E(y; — 9 — &;)* by v;. Then, (3.18) and (3.20) ensure

n

1 P
lim nv, =1,C,'1, and lim Z v = (Z 21;) — p, (3.21)
=1

n—o0 n—oo logn
t=M+1

respectively. Moreover, it follows from the first identity of (3.21) that

1 n 1 n n
= t ity —1'C11 1'C 11 tt
log 1 t_%;rl Vi log 1 {t—%1 ( Vi pp p) +1,6, pt:%:ﬂ

=1,C, "1, +0(1),

which, together with the second identity of (3.21), yields (3.15).

18



4 Conclusion

In this paper, we provide a rigorous analysis of the MSPE of the least squares predictor
in ARX models with deterministic time trends satisfying some general conditions. Due to
the difficulty in proving moment bounds for A;?H(Rn), g > 1, the asymptotic expression,
(3.12), has not been reported elsewhere to the best of our knowledge. In the polynomial
time trend, (3.12) inspires an intriguing proof of the formula for 1;0; 11, from a predic-
tion perspective. However, there are still several issues that require further investigation.
For example, both the polynomial and periodic time trends, (3.6) and (3.7), are precluded
by (3.4) if 1 —ayz — - - - — ag, 2™ has roots on the unit circle. This leads to the question on
how to modify (3.13) and (3.14) in the presence of unit-roots. The techniques developed
in Chan (1989) may be helpful to answer this question. Also, since the models imposed on
the exogenous variables z;(1)s are very general, the multistep prediction based on a finite
number of lags of z;(l) may result in model misspecification. Therefore, an extension of

(3.12) to the case of multistep prediction or model misspecification is another interesting

topic for future research.

A Appendix

A.1 Proof of Theorem 2.1

To prove Theorem 2.1, we need some technical lemmas to characterize (2.14).

Lemma A.1 Assume (2.13). Then, (2.14) holds if and only if there ezists a subset, G,,

19



of X, ={1,...,n}, with liminf, . #(G,)/n > 0 and liminf,,_,,, mineq, ||£I:§n)|| > 0 such

that

lim inf Ain(H(G) 1 Y 22l ) > 0. (A1)

n—o0
teGn

PROOF. The proof of the ”if” part of Lemma A.1 is easy and hence omitted. To prove

the ”only if” part, we note that (2.14) yields that for all large n,
Awin(n ™'Y M) > s, (A.2)
t=1
where s is some positive constant, and hence

nt Z 351:2,1 > s, (A.3)
t=1

where z,; denotes the ¢th component of a;E”). Therefore, G, :=={t : 1 <t < n, Hwtn)HQ >
s/2} is non-empty for all large n. By (2.13) and (A.3), one has for all large n, ns <
Dt x%,l < #(Gn)M? + ns/2, yielding

4(Gn) = sn/(2M7). (A.4)

n) ()7

Now, the desired conclusion follows from (A.4), (A.2), and A (8(Gn) ™' 2 cqr, " ! ) >

n n T — n n n T — n n
Anin(17! Cieq, @12 ) 2 A0 Sy 22" ) = 07t D g, Il
Lemma A.2 Assume (2.13). Then, (2.14) holds if and only if there exist disjoint subsets,

20



Dy, ...D,,, of X,, where §(D;) =p, i =1,...,¢,, and liminf, . g,/n > 0, such that

ey (n) (m)7
hrrgggf nin Amm(z x, 'z, )>0. (A.5)
teD;
PROOF. The proof of the ”if” part of Lemma A.2 is easy and hence omitted. To prove
the ”only if” part, by Lemma A.1 and (2.13), we can set ||a:§”)|] = 1 for all t. We also
assume without loss of generality that the s in (A.2) is less than 1. Define Dy(n) = 0,

and for i > 1, let D;(n) be any p-element subset of X,, — |Ji_} Di(n) satisfying

Aain( Y 2V2) > Tt (A.6)
teD;(n)

and D;(n) = 0 if no such subset is found. Also define ¢, = 0 if D;(n) = 0, and max{i >
1 : Di(n) # 0} otherwise. For notational simplicity, in what follows we suppress the
dependence of mﬁ”) and D;(n) on n, and write x; and D; instead of :vgn) and D;(n),
respectively. Denote X, — ", D1 by Z,, = {s1,..., Sk, }, where k, =n —pg,. If k, <p,

then

4 >n/p—1. (A7)

For k, > p, choose distinct elements, ci,...,c,, in Z, sequentially as follows. Let ¢;
be any element of Z,,. For 2 < j < p, set ¢; = argmax,ez, ||({, — M;_1)xs,]||, where

M;_; is the orthogonal projection matrix onto C(x.,,...,Z._,), the column space of

(®cy, ... ;). Note that this sequential procedure of choosing ¢; is similar in spirit to

21



the orthogonal greedy algorithm in Ing and Lai (2011). Let M, be the p x p matrix of

zeros. Then,
(I, — M;_1)x.,|| is non-increasing in j, (A.8)

and

P
2 § P 1 E :
H I - J 1 wCJH < )\mln wCJ cj )\max wC] c]

=t (A.9)
)\min(z wcjm;l;)pp—l < (8/2)p7

where A\pax(A) denotes the maximum eigenvalue of A and the last inequality is ensured

by

Sp
max mln E wtwt ~
DCZn 4(D)=p = 2Pp1” L

Equations (A.8) and (A.9) imply there exists 1 < j* < p such that for all j* < j < p and

all large n, ||(I, — M;_1)x.,||* < s/2, and hence for all 1 < i <k, and all large n,

(2, = M)z, || < s/2. (A.10)
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Let v be any unit vector perpendicular to C(M;-_1). Then, (A.10) yields
v (n! Z zox, v <n 'Y (@) (I, — Mj_1)v]* < /2,

and hence Ay, (n~! zf; @z, ) < s/2. This, together with (A.2) and

n dn kn
-1 T -1 T, -1 T
Amin (72 g T, ) = Anin(n g E X, +n g T, T,)
i=1 j=1

1=0 leD;
kn
anp -1 Z T
S n + )\min(n wsj-msj)a
Jj=1
gives

for all large n. Consequently, the desired conclusion follows from (A.7) and (A.11).

With the help of Lemma A.2, we are now in a position to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Consider

I, o 1115”) a:ﬁ")

where Y, = €4 + Z;’;l Ciej, CF = CoC}, and the dependence of wy on n is suppressed
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in this proof. It follows from (2.2) that

> lICsIF < oo (A.12)
j=1

In the rest of the proof, we shall show that

E (A;‘gn (n! iijf)) = 0(1), (A.13)

which leads immediately to the desired result (2.12). By Lemma A.2, one has for all large

n,

min Apin (Z w§“’x§">T> > p1, (A.14)

1<i<gn
teD;

where p; is some positive constant, D;s are disjoint subsets of X,, with §(D;) = p, for
all 1 < i < ¢, and ¢, satisfies liminf, ., ¢,/n > 0. Let d; denote the largest integer
in D; and {d(;} be the decreasing rearrangement of {d;}. Set ¢; = d() and for i > 2,
define ¢; = max{d),1 <1 < ¢, : ¢i_1 — dgy > k}, and 0 if no such dy) exists. Let
s, = max{i > 1:¢; > 1}. Then, it is easy to see that lim inf,_, s,/n > 0. Let D; denote

the set D;,1 < j < g,, containing c¢;, L be an integer satisfying

2+ (¢t + ’7*71)L

L> =
g™t =)

: (A.15)

and ¢, = |s,/L], where ¢ < v* <, ¢ = p+ km, a is defined in (2.10), and |a] is the

largest integer < a. Then, by the convexity of =% = > 0, and liminf, ., g,/n > 0, we
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obtain for all large n,

the left-hand side of (A.13) <E(A L (n" Z Z B,))

=1 teD)
- . (A.16)
<Cg,' Y EMNLO. D BY),
7=0 =1 teD;-t,-jL

where B; = wjw; " and C here and hereafter represents a generic positive constant which
is independent of n, but may vary from place to place. In view of (A.16), (A.13) follows
if we can show that for all large n,

)<C,j=0,...,9,—1 (A.17)

mln

IIMh

z+]L

In the following, we only prove (A.17) for the case of j = 0 because the proofs of other

cases can be obtained similarly.
Let k* = max{kj, k3}, where ki and k} are positive constants to be specified later.

Then, the left-hand sides of (A.17) (with j = 0) is bounded by

v [ PGV [PV

= k“r/ I(M)du+/ (p)dp,
k* k*

Glu ||:1/rulf1 Z 2 e

veRr: =1 teD)

(A.18)

where
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and

v<u>:{t ma o < s/ }
=14

in which s is small enough such that

2Mipy/s + ps < p1/4, (A.19)

where M, is defined in (2.13). By (2.15), (A.12), and Lemma 2 of Wei (1987), it can be

shown that
/ II(p)dp < C’/ w7 dp = O(1). (A.20)
k*

*

To deal with the first integration in (A.18), note that

G (Vn) C ﬂ { inf > (/wp)? <Y el < psut V)

lvl=1 f
= veR* tED teD;

w (V)

By an argument similar to that used in Ing and Wei (2003, page 137), it can be shown
1t .
that there exist a positive integer m* < C4 "+ )/2 and unit vectors, Iy, .. . 0, in R

such that
C U{Hlj\lzteD,_ < @ypsi+ D i=1, . Ly = 10 (w)
j=1 ‘ J=1

where C) is some positive constant independent of n and u and ||z||% = ' Az for non-
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negative definite matrix A. Since |I]w} | < HleZteD’ By

I(p) < Z P (\l;rw;] < (2ypse+ DV =1, .. ,L)
j=1

1Lj,201>p= /7

Y, PVWMew) = Y, L) (a21)
I1Lj,2ll<p=1/ 7™ 1L 2|21/ 27"
> Vi),

j=1

[[8j,2]l<p=1/ 7

where I} 5 is the vector consisting of I;’s last km elements. Denote Lj» by (1],(1),...,1],(k))",

where each of 1;5(i) is m-dimensional. Then, for ||l;2] > g V@) and p > ki =

{2Vk(2\/pst + 1) /6}/ @

*

, it holds that

L
III ( {H I{‘lTw* |<(2\/E+1 —1/2q}P(A1( >|5cl—j7j Z ]{j)}

—1_ _— a
< M{2VEQ2ypst+ =" PR (H I{|l;—wgi|§(2\/ﬁ+1)pl/2q}>
where As(1) = {~2y/F+ =1 < S5 U (0601 < Cy/FT+ D117},
with 7} = lTlmcl) +1;. 2> -1 Ciee, j and (1]1,1},)" = 1;, and the first inequality follows

from ||1;2(h)|| > k=2~ @) for some 1 < h <k, (2.10), and the independence among
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{0;}. Repeat the same argument L — 1 times, one gets,

I (k) < ML{Q\/E(Q,/pSL + 1)}ULM—(Q’1—7*_1)05L/2’

provided ||| > p~Y/®") and p > k%, As a result, by (A.15),

0o m* 0o R 1, a1
/* Y UL(wdp< C/k* p T T = O(1). g 99
=1

[2j,2]|>p 1/ 27

For ||Lz]] < = V®) and p > k3 = max{2"", {5(2\/pst +1)?/p1 }9}, (A.14) and (A.19)

ensure that on the set V' (u),

: ‘ > : 2 o . 1/2
win i, o5 = (min Hlj’IHEtED'. p g™ ~ 2M1DVS = ps)

> (p1/2 — 2Myip\/s — ps)2 > (pr /42 > (p1/5)"/* > (24/pst + 1)1/,
for all large n. Hence, for all large n,

/k* Z; IV;(p)dp = 0. (A.23)

18,20l <p= /)

Consequently, (A.17) (with j = 0) follows from (A.18), (A.20), (A.21), (A.22), and (A.23).

Thus, the proof is complete.
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A.2 Proof of Theorem 3.1

PROOF OF THEOREM 3.1. We can assume without loss of generality that R; L exists be-
cause (3.9) implies P(R; " exists) = 1 for all large n. Denote (v, (ko), 2 (k1), ..., 2] (kq))T
by Qi = (Qu(1), ..., QX Lo k)" and E(QiQ,) by F = (Fijhi<ijest, k- Then, it fol-
lows from (2.6), (2.7), and the first moment bound theorem of Findley and Wei (1993)

that for any 1 <1, < Zfl:o K

E(n‘IZQt(i)Qt(j) - Z%Q )/n 2%2 o(l),  (A24)

where 7;(7) is the autocovariance function of {Q.(7)} at lag [. In addition, it is easy to see

that for any 1 <i < ZZ:O k;
Eln 'Y 2VQia()|* -0,
=1

which, together with (A.24), yields

. nt £Mz™ 0,
R Zt 1Pt e PX3 o ki = 0,(1). (A.25)

05t k)xp F

In view of (A.25), the desired conclusion follows if

(Gﬁ[‘ﬂ R n~1/? Z G" £t) ? is uniformly integrable , (A.26)

t=1

29



and

n—1 n n 2
. (m§> o Sl S el QL 1/22@_1@)
— t=1 t=1

d
= mn+1 _1Zm(n) x, ) ;jlan +Ullzk’j + o(1).

j=0

(A.27)

Since v > 4, there exists f > 0 small enough such that 4 < 2y(1+0)/(y—2(140)) <

Let 2y(14+0)/(y —2(1 +0)) < ¢* < ~. Then, by Theorem 2.1 and (3.10),

E{\.% (R,)} = O(1). (A.28)

By (A.28), Lemma 2 of Wei (1987), 4¢*(1+0)/(¢* —2(1+0)) < 2v, and Hélder’s inequality,

* 5% .
E(T}*) < <EHG5;;>1 &%) q (EHn_mZG% E
~ 2(1+6)/q*
< (BGL(R) T =00,

leading to (A.26).
To prove (A.27), define Q,, = E(Q.|F.—,,), where g, — 00, g, = o(n), and F; is the
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o-field generated by (8;,8;_1,...). Then,

n 2 n—>gn 2
E (QZ Fin 2 ZQt_let) =E (Q:‘JF—ln—W > Qt_lst>
t=1 t=1
n n 2
+E <QTF T2y Qt15t> <Q DY Qtlgt> (A.29)

t=n—gn+1 t=n—gn+1

n—gn 2
+E <QIF1n1/2 Z Qtlgt) = (I) + (IT) + (III) + (IV),
t=1
where Q) = Q,, — Q... By Lemma 2 of Wei (1987) and the Cauchy-Schwarz inequality,
(IT) 4 (II1) + (IV) = o(1). (A.30)

Straightforward calculations give

d

lim (I) = o1 Y kj, (A.31)

n—00 -
j=0

and

n—1 n 2
nT —_ n TLT — —_ n
E (CUE ) (n 1th )a:§ ) ) n 1/2Zw£ )5t>
t=1

TLT — n n
nJ21 lzm g 1(5 - 51421‘711

(A.32)
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An argument similar to that used to prove (A.30) yields

n—1 n n
n T — n n T — n —
E (n_l{wg ) (n 123;5 )wg ) ) 1Zm§ )Et}(QZF 12Qt—1€t)) =o(1). (A.33)
t=1 t=1 t=1

Consequently, (A.27) follows from (A.29)-(A.33). Thus the proof is complete.
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