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Estimating the orders of the autoregressive fractionally integrated mov-
ing average (ARFIMA) model has been a long-standing problem in time se-
ries analysis. This paper tackles this challenge by establishing the consistency
of the Bayesian information criterion (BIC) for ARFIMA models with inde-
pendent errors. Since the memory parameter of the model can be any real
number, this consistency result is valid for short-memory, long-memory, and
non-stationary time series. This paper further extends the consistency of the
BIC to ARFIMA models with conditional heteroscedastic errors, thereby ex-
tending its applications to encompass many real-life situations. Finite-sample
implications of the theoretical results are illustrated via numerical examples.

1. Introduction. Model selection has always been one of the most important problems
in statistical analysis. A correctly specified model not only fulfills the principle of parsimony,
but also provides efficient prediction of future values thereby achieving the ultimate goal of
model building. In the time series context, such a goal is manifested through the issue of order
selection of a particular class of time series models. In particular, the class of autoregressive
fractionally integrated moving average (ARFIMA) models has played an important role over
the past several decades because of its applicability in disciplines as diverse as economics,
finance, hydrology, telecommunications, network engineering, and environmental sciences.
For a comprehensive discussion about ARFIMA models, see the seminal monograph of Be-
ran (1994). One of the key challenges in using ARFIMA models is consistently estimating
its AR order pyp and MA order gy. As aforementioned, a correct model with the fewest num-
ber of parameters enhances both estimation efficiency and prediction accuracy. Due to the
non-identifiability problem of over-parameterized candidates, the consistency issue of order
selection has been only partially resolved, however. This issue becomes even more compli-
cated when dealing with short-memory, long-memory, and non-stationary time series simul-
taneously, in which case the memory parameter dy in an ARFIMA model is allowed to take
any (unknown) real value between —oo and oo.

In the special case when dy = 0 is known, an ARFIMA model reduces to a stationary
ARMA model; the problem of estimating pg and gg was pursued by Hannan (1980), Hannan
and Rissanen (1982), and Hannan and Kavalieris (1984), among many others. These authors
showed that pg and gy can be consistently estimated by means of the Bayesian information
criterion (BIC) or its variants. If dg is known to be a positive integer, then an ARFIMA model
becomes a well-known ARIMA model, which further simplifies to an ARI model when ¢ is
zero. When the integration component of the model is treated as part of the AR component,
it can be shown that the BIC-type criterion still boasts consistency in estimating pg + do
for ARI models; see Tsay (1984), Paulsen (1984), Wei (1992), and Ing, Sin and Yu (2012).
Likelise, estimating (po + do, qo) for ARIMA models, see Guo, Chen and Zhang (1989) and
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Huang and Guo (1990). Arguably, Beran, Bhansali and Ocker (1998) established the first
result on order selection consistency without assuming dy to be an integer. When qq is zero,
these authors further proved that py can be consistently estimated using BIC, provided d is
an unknown real number satisfying

(1.1) do > —0.5, dy ¢ {—0.5,0.5,1.5,2.5,...}.

Their results, however, preclude ARFIMA models with non-trivial MA components (that
is, qo # 0). In addition, the condition (1.1) for dg seems restrictive in practice. In fact, ow-
ing to identifiability problems when ¢g > 0 (see, e.g., Hannan (1980)), consistent estimates
of (po,qo) are yet to be established, even under the best scenario in which dj belongs to
the stationarity region (—0.5,0.5). One of the main objectives of this article is to fill this
long-standing gap by establishing the consistency of BIC for ARFIMA models with few
restrictions imposed on dg and the error terms.
To fix ideas, suppose that {y, } is generated according to the ARFIMA model,

(1.2) (1—ag1B— - —agp,B”)(1 - B)%y, = (1 - Bo1B — - — Bo,g BL)es,

where po and ¢o are unknown non-negative integers; B is the back-shift operator; {¢;} is a
sequence of random disturbances with mean 0 and variance ag; and «g i, Po,j, and do are
unknown coefficients satisfying dy € R,

Po qo
(1.3) 1= agz2? #0, 1= fo;z #0for|z| <1,

j=1 j=1

in which 320 - = 0/if a > b,

Po qo

(1.4) 1-— Z Oé[]’jzj and 1 — Z 50yjzj have no common zeros,
j=1 j=1

and

(1.5) |Oé07p0| >0, |BO7QO| >0,

for non-zero pg and ¢qg. Following Hualde and Robinson (2011) and Chan, Huang and Ing
(2013), the initial conditions are set to i = & = 0 for ¢ < 0. Let P and @) be prescribed upper
bounds for pg and gq. Having observed y1, . . ., y,, we are interested in choosing the unknown
pair, (po, qo), from the set {(p,q)|0 <p < P,0 < ¢ < @Q}. In the sequel, (p, q) is referred to
as the candidate model.

For a given candidate (p,q), we estimate the vector formed by its AR, MA, and long-
memory parameters using the conditional-sum- of—squares (CSS) estimate, 1)y, 54, Which is

the minimizer of Y7 €7(nq) over g = (0, d) " = (o1,...,ap, B1, ..., Bg,d) T in Tl X
D c RPta+1 where

(1.6) et(Thpg) = Avp,,(B)Azg (B)(1 - B)'y,

with

A, ( —1—20@ ; Azg,,( —1—253 ;

and IL,, x D is the parameter space to be specified in the next section. Note that 8),, vanishes
if p=¢=0,and 0,, = (av1,...,0,)" if p>1and ¢ =0, and (B1,...,5,)" if ¢ > 1 and
p = 0. Consider a BIC-type criterion,

(1.7) ¢(p,q) =nlogéo, + (p+ q)p(n),
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where
n
A2 1 2/
Opg =N E &t (Thn.pq)
t=1

is the CSS estimate of o2 when model (p, q) is postulated, and p(n) is a penalty term obeying

(1.8) lim p(n) =ocand lim p(n) =0.

n—oo n—oo n
Note that nlog &2, in (1.7) is not exactly —210g L(#),pq), Where L(1)pq) = L(1pq|y1, - - - yn)
is the Gaussian conditional likelihood. However, their difference, depending only on n, has
no impact on order selection results. Let

(1.9) (Pns Gn) :argogpgrg’longqngﬁ(n q).

The main goal of this paper is to show that
(1.10) lim P{(pn,Gn) = (po,q0)} = 1.
n—oo

The major difficulty in proving (1.10) is to handle the asymptotic behavior of &gq in the
case of p > pg and ¢ > qo, which we call the two-sided overfitted candidate. In this case,
the true parameters are not identifiable because there are infinitely many elements in the
parameter space satisfying
(1.11) Azp,,()ATp (2)= Az, ()ATg (2).

P090

Therefore, 7),, pq does not possess a probability limit, and hence &gq is difficult to analyze
using standard methods that rely on the differences between the estimated parameters and

their limits. We conquer this dilemma by establishing the intriguing result that
(112) d('f’n,pqv S(ipq) = Op(n_1/2)a Do < D S Pa q0 < q S Q7

where S(I pq C RP+4+1 defined in Section 2, contains all points in the parameter space satis-
fying (1.11), and d(z, S) := inf,cg||z — w||, with ||-|| denoting the Euclidean norm. Equa-
tion (1.12) essentially says that while 7, ,,; does not have a probability limit, its distance to
a set of parameters equivalent to the true parameter converges to 0 at a rate of 1/y/n. This
property enables us to show that for any two-sided overfitted candidate,

(1.13) 6oy = 0mgo = Op(n™1),

which, in turn, becomes the key ingredient in proving (1.10).

After obtaining (1.10) in ARFIMA models with independent errors, we focus on extending
the result to ARFIMA models with conditional heteroscedastic errors. Our assumptions on
the error terms are fairly general and easily satisfied by the generalized autoregressive con-
ditional heteroskedasticity (GARCH) model (Bollerslev (1986)) as well as the GIR-GARCH
model (Glosten, Jagannathan and Runkle (1993)). We show that (1.12) and (1.13) are still
true, and hence (1.10) remains valid. Since we allow dy € R and {e;} to be conditionally
heteroscedastic, this is one of the most comprehensive results to date on order selection con-
sistency established for the ARFIMA model.

The rest of the paper is organized as follows. In Section 2, (1.10) is developed under the as-
sumption that {e;} is a sequence of independent random variables. In Section 3, we establish
(1.10) when {¢, } is conditionally heteroscedastic and satisfies the conditions described at the
beginning of the section. Also, a refinement of our order selection method is proposed in this
section to reduce the computational burden. The finite sample performance of the proposed
methods is illustrated using simulations in Section 4. The proofs of all theorems are provided
in Section 5. We conclude in Section 6. Further technical details are relegated to Appendix A
and the supplementary material.



2. The Case of Independent Errors. Let the parameter space of the full model (P, Q)
be denoted by IIpg x D, where

2.1 D =I[L,U], for some — oo < L <U < 00,

and IIpg is a compact set in RP*Q with element 0pg = (a1,...,ap,b,... ,BQ)T satisfy-
ing the stationarity condition,

(2.2) A1,0,,(2) #0,A420,,(2) #0forall |z| <1.

For candidate model (p, ¢), the parameter space is II,, x D, where

My = {0pg = (a1, ..., B1s -, By) (1, ooy, 0,...,0,B1, ..., B, 0,...,0) T €TIpgl,

with the convention that the AR (MA) components vanish when p = 0 (¢ = 0). It is clear that
IToo = 0 and IT,; x D is a compact set in RP*Ta+1 The CSS estimate of the coefficient vector
in model (p, ¢) is given by

n
AT T_ 4 . 2
(Gn,pqu dn,pq) = Tn,pq = arg npqé%lpr:xD tz_; &t ("7pq)~
Recall the BIC-type criterion introduced in (1.7). The goal of this section is to establish (1.10)
when ¢; are independent random variables satisfying E(g;) = 0 and E(¢?) = 02 > 0 for all ¢.
Equation (1.10) is ensured by

(2.3) lim P(p, <po or ¢, < qp) =0
n—oo
and
(2.4) lim P(p,, > po,Gn > qo OF Pr, > Po,Gn > qo) =0.
n—oo

Throughout the paper, we assume that
(2.5) (0153000550, 8015804050, - - -,0,do) T €int T pg x D,

and denote No = (93—, do)T with 08— = (a071, ey OO po ﬂ071, .. ,,307(10).
The proof of (2.3) is relatively easy. To see this, note that in the case of p < pg or ¢ < qo,
(1.5) implies that there exists a small positive constant § for which

(2.6) Nnpq & Bs(Mo),

where Bj(1)) is the open ball of radius J centered at 19, and with a slight abuse of notation,
Tin,pq and 7o in (2.6) are viewed as (max{p,po} + max{q,qo} + 1)-dimensional vectors
with undefined entries set to 0. By (2.6) and an argument similar to that used in the proof of
Theorem 2.1 of Hualde and Robinson (2011), we show in (5.11)—(5.13) that for p < pg or ¢ <

q0,

2.7) lim P(62, — 62, <c)=0,

where c is some positive constant. Thus, (2.3) follows.
On the other hand, the proof of (2.4) is much more complicated owing to the aforemen-
tioned identifiability problem. Let

I} = {0pg € RPT(0v1,...,0p,0,...,0,B1,...,84,0,...,0) " satisfies (2.2)}
and

(2.8) Sipg ={(0p4:d) " €LY, x {do}|6p obeys (1.11)},

pg’
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noting that II,, C H+ and S+pq contains all points in II,, x D that generate the true
model (1.2). The key step in the proof of (2.4) is to establish that

2.9) d(Tin.pg Sipg) = Op(n™'/?), o <p< P, g0 < q<Q,

which is a slightly stronger version of (1.12). Indeed, for the case of p = pg and ¢ = qg, p = po
and g > qg, or p > pg and q = qq, S+pq only contains one point and (2.9) has already been
established by Hualde and Robinson (2011) and Chan, Huang and Ing (2013). Their proofs,
however, are not applicable to the two-sided over fitted model, in which S +pq contains un-
countably many points and 7),, ,,, does not possess a probability limit. We tackle this difficulty
by implementing the bijective parameter transformation of Hannan (1980) and Hannan and
Kavalieris (1984), which was originally designed for the special case of dy = 0. The trans-
formed parameter, n;,, = F (1pq)» contains max{po + ¢, go + p} + 1 identifiable components
in the sense that the first max{po + ¢, qo + p} components, T,pq’ and the last component, d,
of n;,, are the same for all i, € S+ . Note that Fy(+) is a one-to-one linear transformation
depending on 19, which is defined in (5 18) of Section 5.2. Denote 717 ,, = (Oqu, d)" by
770 1,pq When npq € SO pg- Also, let the subvector of 75, = Fo (TIn,pq) corresponding to 776714)(1
be denoted by 77 ,,,. The uniqueness of n{ ; ,, allows one to obtain

(210) H’flqu - n671,pq” =0 (n_1/2)7 Do Sp S P7 q0 S q < Q7

by analyzing Y, V17 (Fy (npq)) S Viei(Fy (npq)) based on the mean value the-
orem, and establishing unlform moment/probability bounds (see (5.30)—(5.33)) for

_1/QZV1€t Ympg))ee n 1/2ZV1€t Ymp))ets
@2.11)

‘IZHV@ )1, ‘IZtr{vlet )P

where tr(-) stands for the trace operator and, for a twice differentiable function f(-) on

]Rp-i—q-‘rl \4 f(npq) 87’1 f(npq) and v f(npq) M?)Wf(n;q) Equation (210)
serves as an important vehicle for deriving (2.9). By making use of (2.9), we obtain

62 52 —p-1
q ~ Tpoqo — E :5t Thn.pg) — E 5t (Phnpogo)

=0p(n 1), po<p<P q<q<Q,

leading immediately to (2.4). For the details on the proofs of (2.3), (2.4), (2.9), and (2.10),
see Sections 5.1 and 5.2. We are now in a position to state the main result of this section.

(2.12)

THEOREM 2.1.  Assume (1.2)—(1.5), (2.1), (2.2), (2.5), €;’s are independent, and

(2.13) sup E\5t|4 < 00.
—oo<t<oo

Then, (1.10) holds.

REMARK 2.1. Baillie, Kapetanios and Papailias (2014) have proposed a modified infor-
mation criterion for choosing ARFIMA models in situations where —oo < dy < co. However,
to establish the criterion’s selection consistency, they have imposed an assumption that for
each candidate (p, q), with known dy, the CSS estimators (or the maximum likelihood esti-
mators) of the AR and MA parameters converge to non-random limits at a rate of Op(n_l/ 2).
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As explained previously, this assumption is obviously violated by any two-sided overfitted
candidate owing to the non-identifiability issue. Moreover, they have assumed a high-level
assumption similar to (2.12), whose justification, as shown in this study, is far from being
trivial.

3. The Case of Conditional Heteroscedastic Errors. In this section, we assume that
{e¢} is a martingale difference sequence with respect to {F;}, an increasing sequence of o-
fields. We further assume that {2} admits an infinite-order moving average representation,

3.1 6,52 — E(e%) = Zazwt_s,
s=0

in which ag are [-dimensional real vectors for some [ > 1,
(3.2) llas|| = O((s+1)7*), for some ¢ > 1,

and {wy, F;} is an L'-bounded martingale difference sequence. Assumptions (3.1) and (3.2)
include stationary GARCH and GJR-GARCH processes as special cases. To see this, con-
sider a stationary GJR-GARCH(p,, q(’)) model,

(3.3) &1 =012, 0f = <P00+Z<P0z€t z+z¢0,]0t J+ZC0 ket-il (e, <0}
i=1 j=1 k=1

where p(, and ¢(, are some positive integers, ¢oo > 0, 2; are i.i.d. and symmetric random
variables with zero mean and common variance 1, and g ;, 1 ;, and (o are non-negative
constants obeying

(3.4) Zmz - Zwo,] Z ok

According to (3.3), we express £7 as

CO z

(3.5) & = oo+ Z <P0@+¢02+7 e7- 1+w1t_zw0jwlt g"FZCOkU&t k>

where wy; = &7 — 07, way = €7 Iz, <01 — 32, and @4, Co,i» and ¢ j are set to O when i > p))
and j > ¢(. By (3.4), (3.5), and the fact that {(w , w27t) }is an L!-bounded martingale dif-
ference sequence with respect to {o(zs, s <t)}, where o(zs, s <t) is the o-field generated
by {zt,2¢-1,...}, it can be shown that (3.1) and (3.2) hold with [ = 2, w; = ('LULt,'UJQ’t)T,
and as = (bs, cs)T, where b; and c;, respectively, satisfy

ib-zj _ -3 o 2
J B X 6, 6 0,i 1
1— Y maphaod (o0 4y s + 0420

and

N 251 G0
Z C]Z - max{p,q5 } Co.i i
= 1= (po,i + %0, + 25*)27
Moreover, since |b;| and |c;| decay exponentially as j increases, (3.2) is valid for arbitrarily

large values of «. When (g j, = 0 for all £, (3.3) reduces to a stationary GARCH process. By
the same argument, (3.1) and (3.2) hold with [ = 1, w; = w1 4, and a, = b,.
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Due to their nonparametric nature, (3.1) and (3.2) are much more flexible than assuming
that {¢,} is a stationary GJR-GARCH or GARCH model of finite order. The next theorem
shows that the consistency of BIC established in the previous section carries over to condi-
tional heteroscedastic errors obeying (3.1), (3.2), and a mild moment condition.

THEOREM 3.1.  Assume (1.2)—(1.5), (2.1), (2.2), (2.5), (3.1), (3.2), and

(3.6) sup  Efw? < oc.
—oo<t<o0

Then, (1.10) follows.

A few comments are in order regarding Theorem 3.1. To start with, note that (3.1) and (3.2)
are fulfilled when {;} satisfies the assumptions of Theorem 2.1 or {e;, F;} is a martingale
difference sequence obeying

(3.7) E(e2|Fi_1) =E(e?) = 02 as.

Moreover, since (3.6) and (2.13) are equivalent under these assumptions on {e;}, Theo-
rem 3.1 includes Theorem 2.1 as a special case. Next, for stationary GARCH and GJR-
GARCH models, it is easy to see that (3.6) holds when

(3.8) E|oy|* < oo,

a condition commonly made in the literature on GARCH-type models; see Ling and McAleer
(2002a) and Ling and McAleer (2002b). In addition, under (3.1), (3.2), and (3.6), the uniform
moment/probability bounds, (5.30)—(5.33), established for (2.11) in the case of independent
errors are no longer applicable. To alleviate this difficulty, Lemma 5.2 extends the uniform
moment bounds in Lemma B.1 of Chan and Ing (2011) to linear processes driven by con-
ditionally heteroscedastic errors, thereby generalizing (5.30)—(5.33) to error terms satisfying
(3.1), (3.2), and (3.6). These generalizations enable us to establish (2.9) under the assump-
tions of Theorem 3.1. Once (2.9) is obtained, Theorem 3.1 can be proved in a similar fash-
ion as in the proof of Theorem 2.1. Last, Bardet, Kamila and Kengne (2020) have recently
proposed a BIC-type criterion and proved its selection consistency for stationary ARMA-
GARCH models of finite order. However, similar to the result of Baillie, Kapetanios and
Papailias (2014), their result also relies on an identifiability condition, which is inevitably
violated by a two-sided over fitted candidate.

In fact, when an identifiability condition is postulated, there is no fundamental difference
between parameter estimation consistency and variable selection consistency. More specifi-
cally, when this type of condition is assumed, one can easily establish model selection con-
sistency by applying hard thresholds on the consistent estimates of the parameters in the full
model (the largest candidate model). This approach, however, is not proper when the param-
eters in the full model are not identifiable, and hence no consistent estimates are available.
This difficulty becomes more severe in situations where dy is allowed to be any real number
and {e;} can be conditionally heteroscedastic. The main advantage delivered by Theorem 3.1
is that BIC still works well for such a challenging situation.

Although Theorem 3.1 shows that (1.9) is consistent, it involves computing ¢(p,q) for
all candidate models, which can be time consuming because &gq in ¢(p, q) is obtained by a
nonlinear optimization. Inspired by Hannan and Rissanen (1982), we introduce a refinement
of (1.9), referred to as a refinement of BIC (RBIC), that can substantially reduce the number
of searches for the best candidate, in particular when P and () are large. The details of the
proposed method are as follows.



Algorithm 1 : RBIC
1: Define

(1) _ .
i =arg min o(r,7),
where R = max{P,Q}.
2: Estimate py and gg using
pY =arg min_o(p, 7))
0<p<7‘(l)

and

Gy =arg min (7, q).
0<q<r

The consistency of RBIC is confirmed in the next corollary.

COROLLARY 3.1.  Under the same assumptions as in Theorem 3.1,
(3.9) Tim P{(p},45) = (po,q0)} = 1.

Corollary 3.1 can be proved in the same manner as that in the proof of Theorem 3.1; details
are omitted.

4. Simulation Studies. In this section, we illustrate the finite-sample performance of
RBIC using simulations. The performance of BIC ((1.9)) is not reported here because both
methods are asymptotically equivalent (see Theorem 3.1 and Corollary 3.1), and the latter is
more time-consuming.

We first generate data from the following ARFIMA models,

M (1+0.7B)(1 — B)%y; = ¢,
D) (1—0.8B)(1 — B)%y, = (14 0.5B)¢,
(M) (1 —1.8B+0.98B2)(1 — B)%y, = (1 — 1.42B + 0.73B?)ey,

in which ¢, are i.i.d. standard normal random variables and dy € {—0.5,0,0.25,0.5,0.75, 1,
1.5}. The number of observations, n, is set to 250 or 500, and the number of replications is
given by M = 1000. To implement RBIC, we let P = Q = 4 and p(n) = log n, recalling that
p(n) is the penalty term of RBIC. Denote by P@y» 4@y, and cz(l) the estimators of pg, qo, and
dp obtained in the [-th simulation, where 1 <[ < M. Note that cz(l) is derived from model
(P@)»4ay)- We compute the following performance measures,

M
Frequency of overfitting (Over) =Y [1(p)y > po, 4u) = q0) — 1(Ba) = po. duy = D)),
=1
M
Frequency of exact selection (Ext) = Z 1(pay = po, 4oy = ),

=1
Frequency of underfitting (Under) = Z 1(py < po or 4y < qo),
M

. 1 .
Mean absolute error (MAE) of {d(;)} (d-MAE) = i ZZ; |y — dol,
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TABLE 1
Simulation results of RBIC in model (I) with independent errors.
n d=-0.5 0 0.25 0.5 0.75 1 1.5
250 Over 65 34 36 56 26 28 60
Ext 935 962 958 941 970 966 937
Under 0 4 6 3 4 6 3
d-MAE 0.076  0.060 0.065 0.072 0.054 0.061 0.076
500 Over 62 16 22 62 14 19 78
Ext 938 984 978 938 986 981 922
Under 0 0 0 0 0 0 0

d-MAE 0.055 0.036 0.039 0.053 0.036 0.041 0.061

TABLE 2
Simulation results of RBIC in model (1I) with independent errors.
n d=-0.5 0 0.25 0.5 0.75 1 1.5
250 Over 4 3 3 3 5 6 0
Ext 852 910 904 898 919 915 905

Under 144 87 93 99 76 79 95
d-MAE 0.198 0.150 0.154 0.157 0.146 0.152 0.161

500 Over 2 2 0 2 2 1 2
Ext 976 985 987 978 984 986 976
Under 22 13 13 20 14 13 22

d-MAE 0.143 0.103 0.103 0.110 0.102 0.108 0.135

and summarize the results in Tables 1-3 for Models (I)—(III), respectively. These tables show
that the performance of RBIC is quite satisfactory because for all models and all dy values,
the Ext values of RBIC are not less than 852 when n = 250 and 922 when n = 500. The
d-MAE values in these tables also reveal that dj is accurately estimated by our method.

Next, we focus on model (II), but with {¢;} generated by the following conditionally
heteroscedastic models,

ARCH (1) : ¢ = 02, 07 = 0.4+ 0.5¢7_1,

GARCH (1,1) : &; = 042, 02 = 0.4+ 0.267_, +0.702_|,

GARCH (2,2): e, = 042, 0f = 0.4+ 0.3¢7_; +0.2¢7_5 + 0.207 | +0.107_,,
GIR-GARCH (1,1) 16 = 02, 07 =0.4+0.267 ; +0.607 | +0.17_ I, <o},

where z; are i.i.d. standard normal random variables. All other settings are the same as those
in the case of independent errors. The performance of RBIC in model (II) with these four
different errors is summarized in Table 4—7. As shown in Tables 2 and 4-7, the performance
of RBIC is slightly deteriorated by the conditional heteroscedasticity. However, the method’s
Ext values are still maintained at a range of 791-875 when n = 250, and 8§99-962 when
n = 500.

As seen from these simulated scenarios, RBIC identifies the true orders near or over 80%
of the time when n = 250, and increases to near or over 90% when n is 500; we conclude that
the finite-sample behavior of RBIC concurs with the asymptotic results developed in Section
3.

5. Proofs. Throughout the rest of the paper, C' denotes a generic positive constant inde-
pendent of n.

5.1. Proof of Theorem 2.1.
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TABLE 3
Simulation results of RBIC in model (III) with independent errors.

n d=-0.5 0 0.25 0.5 0.75 1 1.5
250 Over 29 27 38 28 33 35 34
Ext 969 971 959 971 967 964 964

Under 2 2 3 1 0 1 2

d-MAE 0.068 0.107 0.116 0.076 0.097 0.113 0.079

500 Over 3 10 8 6 7 15 15
Ext 997 990 992 994 993 985 985

Under 0 0 0 0 0 0 0

d-MAE 0.049 0.062 0.065 0.051 0.060 0.068 0.056

TABLE 4
Simulation results of RBIC in model (1I) with ARCH(1) errors.
n d=-0.5 0 0.25 0.5 0.75 1 1.5
250 Over 13 16 15 13 11 12 8
Ext 808 869 858 854 875 875 868

Under 179 115 127 133 114 113 124
d-MAE 0215 0.179 0.184 0.183 0.175 0.179 0.184

500 Over 4 7 6 8 7 8 5
Ext 939 958 962 948 952 954 946
Under 57 35 32 44 41 38 49

d-MAE 0.162 0.121 0.120 0.129 0.124 0.130 0.154

TABLE 5
Simulation results of RBIC in model (1I) with GARCH(1,1) errors.
n d=-0.5 0 0.25 0.5 0.75 1 1.5
250 Over 17 17 15 14 18 19 15
Ext 813 856 853 848 863 865 858

Under 170 127 132 138 119 116 127
d-MAE 0.218 0.180 0.185 0.187 0.177 0.180 0.189

500 Over 11 12 12 12 12 12 10
Ext 933 954 955 944 954 950 946
Under 56 34 33 44 34 38 44

d-MAE 0.164 0.123 0.123 0.133 0.123 0.132  0.153

TABLE 6
Simulation results of RBIC in model (1I) with GARCH(2,2) errors.
n d=-0.5 0 0.25 0.5 0.75 1 1.5
250 Over 29 26 25 29 28 28 24

Ext 791 818 806 800 820 828 821
Under 180 156 169 171 152 144 155
d-MAE 0229 0.189 0.193 0.200 0.188 0.186 0.196

500 Over 27 33 29 30 38 29 30
Ext 899 908 910 905 903 910 904
Under 74 59 61 65 59 61 66

d-MAE 0.178 0.138 0.142 0.146 0.138 0.146 0.170

PROOF. We first prove (2.4). Let pg < p < P and gy < ¢ < @ be given. For any ¢ > 0,
define

Ss,pq = {Mpq € Hpg X Dld(npq, Sa:pq) <4}

Let N pg = argmin,, g+ 11n.pq — Tpq|- Then,

(5.1) lim P(;, ,q exists) =1,

n—oo
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TABLE 7
Simulation results of RBIC in model (1I) with GIR-GARCH(1,1) errors.
n d=-0.5 0 0.25 0.5 0.75 1 1.5
250 Over 14 15 16 12 15 13 10
Ext 809 853 837 840 853 857 856

Under 177 132 147 148 132 130 134
d-MAE 0217 0.175 0.180 0.183 0.176 0.178 0.181

500 Over 11 15 11 13 14 16 9
Ext 924 943 945 937 946 947 940
Under 65 42 44 50 40 37 51

d-MAE 0.172 0.129 0.130 0.139 0.130 0.134  0.158

which is ensured by Lemma 5.1 and the compactness of IL,,. In the rest of the section,
we abbreviate 1), pg, Tn.pg> Mpg> So+, - and S5 ,q as T, Mo, N, Sar , and Sy for notational
simplicity.

On Q,, = {0, exists},

A2 Az -1 -1
Tpoqo — Z & (Mn.pogo) Z e;(no)
n

- (n_l 253 (1) — nt Z 5? )
t=1

t=1

(5.2)

Let Vei(n) = 0e¢(n)/0n = (Vei(n)1,...,Ver(n)r) ', with 7 = p + ¢ + 1. By the mean
value theorem,

1D et () = Y et (i)l
t=1 t=1

<3 <2 Zetwt (tn + (A — 70))dr} T (A — 7))
t=1

+2‘{ Z vgt(nt T)VTEt(ﬁn"i_T(ﬁn _ﬁn))dr}('f)n _":In)‘7
0 =1
where 0}, satisfies |0}, — 7n || < |71 — 7 ||. Given M > 0, define A, (M) = {d(f1n, S ) <
vy}, where v, = min{MY*n=125,}, for some 0 < &§; < 1/2. It follows from (5.3),
Jensen’s inequality, and the Cauchy—Schwarz inequality that

P(| ZE%(/ﬁn) - Z5§(ﬁn)| >M,Q, N An(M))
t=1

t=1

< P(71/2 )il |7 — 7 47 Q. N A, (M
<P(F lrgflgrnseurjn\;atva )il — | > QN AL (M)

(5.4) +P(7 max sup {Z (Ver(n)i)? Hfm — nl)® > 471 M, Q, N A, (M))
1§z<rnesvn P

1/2 12-1/2 5 r3/4
< P(lrg?écrnsetgp |n~ Z&Vﬁt )il >4~ M°7*.Q)
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n

+P(max sup {n~ Ve )2 >4_177_1M1/2,Qn.
(s, s (7' 3 (Ve ()} )

By virtue of (2.13), Lemma B.1 of Chan and Ing (2011), and Markov’s inequality, it is shown
in Section S1 of the supplementary material that

1/2 12y —
(5.5) E(lrggénselgp In~ tz_:atV&?t(n)z] )=0(1)
and
(5.6) P(max sup {n~ Ve )Y > M =o0(1),
(g, s (07 S > ¥ =of1)

for some M > 0. Combining (5.4)—(5.6) yields that for any e > 0, there exist My, N7 > 0
such that for all n > Ny,

(5.7) P(I> et (fn) = > et (iin)| > M1, QN Ap(M)) < /2.

t=1

Moreover, Lemma 5.1 ensures that for any € > 0, there exist My, No > 0 such that for all
n > No,

(5.8) P(A7(M2)) <e/2.

Thus, by (5.7) and (5.8), for any € > 0, there exists M = max{Mi, My} such that for all
n > max{Nj, Na},

(5.9) P(ID et (fm) = &b (fn)] > M, Q) <e
t=1

t=1
Similarly, for any € > 0, there exist M3, N3 > 0 such that for all n > N3,

(5.10) P(1> et (finposs) — Y _c1(m0)| > Ms) < e
t=1 t=1

Combining (5.1), (5.2), (5.9), and (5.10) yields (2.4).
It remains to prove (2.3). For a given (p, q), with p < pg or ¢ < qo, we can treat (1.2) as an
ARFIMA(p*, dg, ¢*) model,

511 (1—ao1B—- —agp B )1 —B)Py,=(1—Bo1B—---— Bog B e,
where p* = max{p,po}, ¢* = max{q,qo}, and ap; = fo ; = 0 for i > py and j > qo. Define
Moprq- = (015,005 0y 50,8015+ B0.ges 05 - - -, 0,dp) € RP"FTI L which is 1y ex-

tended by adding zeros to the overﬁtted entries. It follows from (1.4), (5.11), and the proofs
of (2.8), (2.9), and (2.18) of Hualde and Robinson (2011) that for any § > 0, there exists a
small number c§ > 0 such that

n n
512) P inf nIN (Mg ) —n Y (Mo ) < 8 = o(1).
612 (np*q*enp*q*xz)fBa(no,p*q*) ; t(a) g tmara) <65) 1)
Using (1.5) and (5.12) with a small enough ¢, we obtain for some small constant ¢ > 0 that
(5.13)

n

P(n™' Y ef(fin) —n~! Z e (mo) < c)

t=1

<P inf n~t € -1 e: (no <c)=o(1
(np*q*eﬂp*q*xD—Bs(no,p*q* z i (Mprq Z i (Moprq) <) =o(1).



ORDER SELECTION FOR ARFIMA PROCESSES 13

As a result, (2.3) follows from (5.10), (5.13), and 63, — 62, ="' 371 €2 (Anpogy) —

nES R et (no) — (n Y €2 () — YR €2(no)). Equation (1.10) now is a
straightforward consequence of (2.3) and (2.4). ]

5.2. Proof of (2.9) in the case of independent errors.
LEMMA 5.1.  Under the assumptions of Theorem 2.1, (2.9) holds.

PROOF OF LEMMA 5.1. For given pg < p < P and ¢p < ¢ < @, denote II,,, H;q, én,pq,
Jn,pq, and 6, by II, I+, 9n, c?n, and 6. First, we show that for any § > 0,

(5.14) P(f), € I x D — S5) = o(1),
which is, in turn, ensured by

n n
. . -1 2 1 2 < —
(5.15) Jim P(nenlfzf)_ 5" ;1 gi(m) —n ;1 ei(mo) < cs5) =0,

where cg is a small positive constant depending on §. Note that for np € Il x D — Sy,
(5.16) (1— Z)didoAl,g(Z)Aié(Z)Al_’éo(Z)AQ’QO(Z) # 1.

Thus, (5.15) follows from the same arguments as those in the proofs of (2.8), (2.9), and (2.18)
in Hualde and Robinson (2011) except that the open ball centered at the true parameter 7 is
replaced by S;.

Next, consider the linear transformation introduced in Theorem 1 of Hannan (1980) (or
Section 3 of Hannan and Kavalieris (1984)), which asserts that there exists a (p+¢) X (p+q)
full rank matrix A, depending only on «; and 3y, ;, such that

Qaq Qg1
_ Qp Qo,p _ (07
(5.17) A0 —0p,,) =A{ g | 7| sox = <0§>
5q BO,q

where 67 is the max{p + qo, ¢ + po }-dimensional vector formed by the coefficients of the
polynomial A g(2)As2.,(2) — A1,6,(2)A2,6(2), and 5 is a min{p — pg, ¢ — go } -dimensional
vector. Let 0* = (07,05 )7, st = max{p + qo,q + po}, s5 = min{p — po,q — @}, M =
(BTT, d)", and Fy be the one-to-one linear transformation depending on A and 6y ,, such
that

(5.18) n*:=Fy(n)=(0"",d)".

Denote by 83, 7j},,. and 7}, the vectors corresponding to 83, n*, and * when 7 is replaced
by 7},. Equation (5.14) immediately leads to

(519) ,f,fn _776,1 :Op(l)a

where 75, = (07,do)".
Define IT* = {6* € RP*4|@ € 1} and 11} = {07 € R%1 : @* € IT*}. It follows from (2.5)
and (5.17) that

(5.20) npq € int I} x D.
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Relation (5.20) ensures that there is a small constant 0 < 6% < min{dy, 7+ *(M3)~2} such
that Bs; (n5,1) C int ITf x D, where r7 = s7 + 1 and ¢; and M3 are positive constants to be
specified later. Also, define

th ) and &(n*) =&(Fy ' (n*)),

noting that &,(F, ' (n*)) = (1 — B)*~ doAlG 16+ )(B)A . CE )(B)Ai (B)A2,6,(B)et,

with Gy 1(6%) = A=10* + 0y ,,. For ease of exposition, we wrlte Sn(n*) = Sp(n3,05) and
€t(n*) = &(ny,03). For 6 > 0, define S} = {n* € II* x D|ny € Bs(ng 1)} Then, by the
mean value theorem for vector-valued functions, one obtains on set A,, = {nn € 55: [N

0= vlSﬂ(,fﬁnv Hgn) = VISn(TIah egn)
(5.21) 1 .
[ VRS 7 500,050} (5 =),

where the integral of a matrix is to be understood component-wise. In view of (5.21),
V1S (") = 251 &(0")Vig(n®), and ViSn(n*) = 2350, Vig(n")(Vig(n*) " +
231 & (n*)ViE(n*), it holds that

(522 ) eVid(ng,.05,) = —{L(#i,,05,) + Q(At,, 03,) (A%, —n51) on Ay,
t=1

where

L(#,, 63,) /0 Zvl5t M1+ (A, —16,41),65,)
t—1
x (Viée(mg 1 + 705 —m61), 93,)) " dr,
nlnv 5n) /0 Zét(né,l + (0 —m51), 9§)V%5t(n(*),1 + (07 —m51), 95) dr.
t—1

Define S5 = Sy U{An* + (1 - AN)(07,6057,do)"|n* € S5, 0 <A< 1}. Choose a small
enough 4; € (0,1/2). Then, by the compactness of 5’* , (the closure of S* . )» there exists

a set of finite points {nj,...,n;'} C 5'(’5*1 and a small posmve number 0 < (52 <1/2 -0,
depending possibly on IT* (and II), such that

l
(5.23) Sy < U Bs,(p).
k=1

Moreover, for all |z| < 1 and all 8* for which (6*",d)" e Ui,:l Bs (m3),
(5.24) Ay G104 (2) # 0 and Ay 1. (2) # 0.

Direct algebraic manipulation gives

(525)  Amin(L(71},,,65,)) > N 1n% Amin Zvlst Y V1& ()T on An,
n* k=13, (m3)
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where A\pin (M) denotes the minimum eigenvalue of matrix M. It is shown in Appendix A
that for some M7 >0,

(5.26) P{  sup AL (Ti(n") > M} =o(1),
n*€Uj=, Bs, (n7)

where I'; (n*) = n~? Yoy Vig(n )(Vlst( *))T. In view of (5.25) and (5.26), we can as-
sume without loss of generality that L~1(#)7, 02) exists on A,,. Therefore, by (5.22),

(5.27)

n
In'2 (it = 6.0 1, < L (i, 03,02 D" eV 1, 05, |1,
t=1

L i 05 / W23 e T + (it — 1), O3 )]

t=1

% 1At — 1l s,
n

L i, 0311 / SIS r(@g, — ) ViE,)
t=1

X v%ét<fr,6,l + T(ff]fn - 776,1)7 é(n)drH
><||”1/2(771n "76,1)||IAnv

where n{,t,r satisfies HnitW - 776,1 ” < r”ﬁfn - 776,1 H
It follows from the Cauchy—Schwarz inequality and Jensen’s inequality that on the set A,,,

|| / WS e VR iy 4 (it — )85, dr |

t=1
(5.28) )
1/2 2 (kY. .
=i 1<Stg 2t nsgg In” th(vlﬁt(n )ij)l
and

n

1
\/0 0=ty (i, —m5a) T ViE () Vigd g, + (i, —16.1),85,) dr |
t=1

(5.29) <rillng, — "’701”( SUP n IZHVPS )||2)1/2
€55; t=1

n
x{ max sup n 1Z(V25t(77*)z‘,j)2}1/2-
1<4,5<r} n* ES* =1

By Lemma B.1 of Chan and Ing (2011), (2.13), (A.7)-(A.10), and an argument similar to
that used to prove (A.6), there exists My > M7 > 0 such that

(5.30) P( sup 12Wm )? > Mz) =o(1),
"I*GU;:1 BSQ (m)
(5.31) P( max sup n~t Z Vi&(n 2> Mj)=o(1),

1<t,5<
Shjsri *EUk 1352(nk) t=1
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(5.32) E( sup |n~1/2 ZEtVﬁt ) =0(1),
ﬂ*€U§<=1Bsz(le)

and

(5.33) E( max sup T2 e (Vg (nt)iy))) = O(1),

1<4,j<rs .
SUIST el 1 Bs, (n5) t=1

noting that (A.6)—(A.10) are given in Appendix A. Using (5.19) and (5.26)—(5.33), we obtain
that for any € > 0, there exist M*, N* > 0 such that for all n > N*,

(5.34) P(||n"/? (A7, — m,0)ll > M*) <e,
Let 6,, = Gy ((OT 9 T)T). Since when 7),, (defined in (5.1)) exists,
d(7pn, Sg) < (H‘§ — 0, + |dy — do|*)"/?

(5.35) <(JAY21(85, .05, )T — (07,05, ) TI? + |du — do[*)'/
< maX{HAiluv 1}H7A71n -
the desired conclusion (2.9) is ensured by (5.1), (5.34), and (5.35). ]

5.3. Proof of Theorem 3.1. The proof of Theorem 3.1 relies heavily on Lemmas 5.2
and 5.3, whose proofs are given in the supplementary material and Appendix A, respec-
tively. Lemma 5.2 establishes uniform moment bounds for linear/quadratic forms of a linear
process driven by conditional heteroscedastic errors, which are of independent interest. To
state Lemma 5.2, for any 1 < m < k, define J(m, k) = {(j1,.. ., Jm)|71 < < Jm,Ji €
{1,...,k},1 < i < m}. Moreover, for j = (j1,...,jm) € J(m,k) and a smooth function
w=w(1,...,&), let Dyw = 0"w/0¢;,,...,0¢,.

LEMMA 5.2. Assume (3.1) and (3.2). Let 6, = (0q.1,...,04%)" be some point in RF,
k > 1, and § be a positive number. For t > 2, define K;(0) = Zf;% ci(0)et—; and Q:(0) =
Zf;} d;(0)ei—;, where ¢;(0) and d;(0) are real-valued functions on B3(8,). Assume for any
i>1j=(1,-.,dm) " €J(m,k), and 1 <m <k, Djc;(0) are continuous on Bs(0,) and
(5.36) sup  E|w;|[|™ < oo,
—oo<i<00

for some m1 > 2. Then, there exists C > 0 such that for all n > 2,

E( sup 3 K (@)el™)

0cB;(6,,) —2
n t—1
5.37 n! max sup (Djci(0))? ma/2
( ) ;;JEJ (m,k), 1<m<k9635(9 )( J ( )) }
n t—1
+{n_1ZZc o) /2.
t=2 i=1

Furthermore, ifforanyi,j > 1,j= (j1,...,jm) € J(m,k), and 1 <m <k, D;{c:(0)d;(8)}
are continuous on Bs(0,), then there exists C' > 0 such that for all n > 3,

E( sup [n” I/QZKt Q+(8) — E(K:(0)Q:(0))[™)

0cB;(6.,) -
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n! Z{ Z |ct—i(8a)dr—i (0 a)|}2}m1/2

=1 t=i+1
n—11-1 n

(538) DDA leri(8a)di-1(Ba) + ci1(Ba)di-i(8a) [}

=2 i=1 t=[+1

12 Z max sup ]Dj{ct—z‘(a)dt—i(e)}]2}ml/2

=1 te 1‘]GJ (m,k),1<m<k gc p; (6.)

n—1I1-1 n

—122 Z max sup |Dj{c—i(0)di—1(0)

=2 im1 =319 J€I(m.k),1<m<k gc B;5(0.,)
+ei-1(0)di—i(8)} 12} /).

Lemma 5.3 plays the same role as Lemma 5.1 in the proof of Theorem 2.1.
LEMMA 5.3. Under the same assumptions as in Theorem 3.1, (2.9) holds.

PROOF OF THEOREM 3.1. It suffices to prove (2.3) and (2.4) under the assumptions of
Theorem 3.1. As indicated in the proof of Theorem 2.1, (2.4) follows from (5.5), (5.6), and
(5.8), whereas (2.3) is ensured by (5.12). By making use of Lemma 5.2, we prove (5.5) and
(5.6) in Section S1 of the supplementary material. Moreover, (5.8) and (5.12) are immediate
consequences of Lemma 5.3 and (5.15), respectively. Note that the proof of (5.15) under the
assumptions of Theorem 3.1 is given in Appendix A. Consequently, the desired conclusion
follows. O

6. Concluding Remarks. In this work, we propose using BIC-type criteria to choose
ARFIMA models of finite order. The major contribution is to show that the proposed criteria
achieve order selection consistency in very challenging situations where the memory param-
eter is allowed to be any real number, the error terms can be conditionally heteroscedastic,
and the candidate models are not necessarily identifiable. This result substantially enhances
the applicability of the BIC, which is further confirmed by numerical simulations.

On the other hand, the performance of Akaike’s information criterion (AIC) in choosing
fractionally integrated AR models of infinite order is yet to be explored. In the case of dg =0,
the asymptotic efficiency of AIC for independent-realization and same-realization predictions
has been proved by Shibata (1980) and Ing and Wei (2005), respectively. The latter result has
been generalized by Ing, Sin and Yu (2012) to the case where dj is a non-negative integer.
However, in the case of —oo < dy < 00, AIC’s asymptotic efficiency has not been established,
which will be dealt with in further research.

APPENDIX A: PROOFS OF (5.26) AND LEMMA 5.3

PROOF OF (5.26). We first show that for all large n and 1 < k <[, there exists ¢ > 0
such that

(A.1) inf )\min(I‘l(n*)) > Ck,
n*€B;, (n})
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where ' (n*) = E(I'; (n*)). To prove (A.1), consider
e (2) =(1 = 2) 70 Ay 20y () A5 (11 9.y (D) ALg, (2) Az, (2)
2

(A2) =(1—2)"%(2)[{4, G‘l(O*)(z)AQ 60(2) = Ay g5 1(6+)(2) Ave,(2) }
X {45 (o1 gy () Azg, (2} + Avg, (2)Ag g, (2)]A] g, (2) Az, (2)-
According to the definition of 0*, we have fori=1,...,s7,
9 - i
(A3) 8,'7,1\,’107]* (Z) 1”;:7]6,1,05:0* _Al 00( )A (0T79$T)(Z)z
and
(A4) 0 Cp+(2) =log(l—2z)
' ot T Inp=ms 03=05 & ’

where (nf’l, ... ,nfﬂ)T = n7. Therefore, (A.1) follows from (A.2)—(A.4) and an argument
similar to (0.3) and (0.4) in the supplementary material of Chan, Huang and Ing (2013).
Write
t—1

(A.5) E(m) = bs(m)ers,

s=0

where bo(n*) = 1. Then V1&,(n%); = Y2120 bei(n*)er_s, where by (%) = dbs(n*) /.
Recall the definition of Dj given in Section 5.3. It is clear that b ;(n*) has continuous partial
derivatives D;b, ;(n*). Combining (A.1) with

inf Awn@i07) > i Awa(Tim) - swp [Ta(n®)— Faln),
n*€B;,(n}) n* €85, (n};) n*€Bs, (nf)

(2.13), Lemma B.1 of Chan and Ing (2011), and Markov’s inequality, one obtains for M7, >
2 / Ck,

B{ sup  Aph(Dum) > M} <P( sup [Ti(n*) = Da(nh)]| > ce/2)

n*€B;5, (n}) n*€Bs, (n};)
§(47”T4/Ci) max E[ sup ™t (Vig(m®)a) (Vié(n*);)
SLISTT mreBs,(np) =1
—E{(Vi&(n)i)(Vié(n™);)}]
n—1 n—u n—1 n—u
(A.6) -2 (k) 1: )2 (B) (1 )2
<o e 12 1<Z:jlsw,w<z,y>> +2_Q V(i)
n—1 u—1 n—u . u—1 n—u .
+ 3 D S a0+ D S (0:4))
u=2 v=1 w=l1 v=1 w=1
u—1 n—u u—l n—u
+ w+u v,w Z ] 2 + +u U(Z’j))Q}L
v= 1 w=1 v=1 w:l
where
SP(i,5) = max sup  |Dj{bui(m")bv,; (1)},

J€I(m,ri),1<m<ry s €B;, (n})

Vil (0..3) = bui (7)o, (7).
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By (5.23), (5.24), the boundedness of || A~!||, and arguments similar to those in the proofs
of Theorem 4.1 of Ling (2007) and Lemma 4 of Hualde and Robinson (2011), we obtain for
any s> land 1 <k <l,

A7) max sup [byi(n")] < Cllog(s + 1),
1SISri e B, (ng)
and
(A.8) max max sup  |[Djbsi(n*)| < C(log(s + 1))28—1+81+S2.

1Si<rt jed(m,r}) 1<m<rt ey, ()

In view of (A.7) and (A.8), it follows that for all 1 < i,j < r*, (3220, SW,(4,4))2
and (> U(Jkl)u(z,j))2 are bounded by some constant C, and ()., Sk) (i,7))2,

w=1 w+u—v,w

o alk - 0o 1,k . S .
(ot St (1) (S Vil o (553))% and (S35 ViShh 4 (i, ))? are bounded
by C(u — v)~1+2(01+02) These bounds together with (A.6) and 01 + d < 1/2 yield

P{ sup AL(Ti(n*) > M} < COn 1 H20040%) — o),

min

T’*GBEQ ("712)
Thus (5.26) holds with M{ = max;<p<; M{ ;. O
REMARK A.l1. Equation (A.5) implies that V%ét(n*)m = Zi;ll Cs,ij(N*)€t—s, Where
cs.i5(n*) = 0%bs(n*) /Onf Onj. By an argument similar to that used to prove (A.7) and (A.8),
we have

(A.9) max  sup  |eeii(n*)] < C(log(s + 1))%s™ 10,
1<ij<rin-eB;, (n;)

and

A.10 max max su Dic.:.:(n)| < C(log(s + 1 3148143
(A0 1§i,jST1*j€J(m,rI),1§m§rfn*eBgi)(n;)| is.i5(1M7)] < C(log(s + 1))

PROOF OF LEMMA 5.3. Let (p,q) satisfy po <p < P and ¢p < ¢ < Q. If (5.15), (5.26),
and (5.30)—(5.33) hold under the assumptions of Theorem 3.1, then the desired conclusion
follows from the same argument as that in the proof of Lemma 5.1. Using Lemma 5.2 to
replace Lemma B.1 of Chan and Ing (2011) in the proofs of (5.26) and (5.30)—(5.33), one
can easily establish these equations under the assumptions of Theorem 3.1. The details are
omitted. Therefore, it remains to prove (5.15).

Let z; = z(do) = (1 — B)%y,. Assume (A.11)—~(A.18), which are listed as follows:

n
(A.11) E|Y 27 —E(:7)| = O(n'/?),

t=1

k n—j
E > Y {zazrss — E(aizr)}

(A.12) r=j+11=r—j+1
<C(k =) (n—j)Y? forall0<j<n—2,j<k<n,
n

(A.13) E|) e} —E(e})| = O(n'/?),
t=1
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k n—j
El > > {aciri; —Elagi i)}

(A.14) r=j+1l=r—j+1

<Ok =) (n—§)Y2 forall0<j<n—2,j<k<n,

J
(A.15) E|Zzn_k|2§0j, forall0<j<n-—1,
k=1
j
(A.16) E|) e k> <Cj, forall 0<j<s<mn,
k=0
n
(A17) E|) 23| =0(n),
j=1

and for some small £, ¢; > 0,

1
A.18 lim P inf —_
( ) nl—>oo ("hnq EHpq ><1[£,17d0_1/2_§] ( ndo_d+1/2

ZEt(npq))Z >e) =1,
t=1

noting that L is the prescribed lower bound of d. Then, (5.15) follows from these equations,
(5.16), and the argument used in the proof of Theorem 2.1 of Hualde and Robinson (2011).

Since the proofs of (A.11)—(A.17) are similar, we choose to present the proof of (A.12) in
Section S3 of the supplementary material, while omitting the proofs of the others. The proof
of (A.18) is given below.

In view of (2.46) of Hualde and Robinson (2011), (A.18) holds if A(i), A(ii), and A(iii) of
Hosoya (2005) are fulfilled by error terms obeying (3.1), (3.2), and (3.6). Note first that A(i)
clearly holds. In addition, for [,m >t > 1, with [ # m,

(A.19) E(giem|Ft) =0 as. and E(gie,,) = 0.
For [ = m, it follows from (3.1), (3.2), (3.6), Burkholder’s inequality, and Minkowski’s in-
equality that

E[E(e’|F) —E(®)P =EE(Y_ajw_|F)f =

s=0
(A.20) - -
B S alw 20 Y a2 =0(( )72+,
s=l—t s=l—t
Thus, A(ii) is ensured by (A.19) and (A.20).
It remains to prove A(iii). Given any real vector (aj ..., a,), we have
n n n
(A.21) Var(z aey) = E(Z aes)? = o? Z az.
t=1 t=1 t=1

In view of (4) and (5) of Hosoya (2005) and (A.21), A(iii) follows if

(A.22) ED) ael' <) af).
t=1 t=1
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Simple algebraic manipulations give

EY ae* =B aee)® —EOD_ae)* +EO_aiey)?)?
t=1 t=1 t=1 t=1

(A.23) — .
E‘ Zat Et |2 + IE| Z Z atlat2€t1€t2 + (Z a?)Q}
t1—2t2—1 t:1

By (3.1), (3.2), (3.6), Minkowski’s inequality, Burkholder’s inequality, and the Cauchy—
Schwarz inequality, we have

(a2 EIYad(eE - BED)P < (Y (Bl — BE) AR < O )
t=1 t=1 t=1

and
n ti—1
(A.25) E| Y D ananencnl’ <O Zat
t1=2t,=1
Thus, (A.22) follows from (A.23)—(A.25). O
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This supplement contains the proofs of (5.5), (5.6), Lemma 5.2, and (A.12).
S1. Proofs of (5.5) and (5.6) for independent and conditional heteroscedastic errors.
PROOF OF (5.5). The case of independent errors: Let 5’51 be the closure of Sy, .

By the compactness of S, , there exists a set of finite [ points {n;,..., 7} C Ss, and
a small positive number 0 < 0; < 1/2 — d;, depending possibly on I1, such that

l
(S1.1) Ss, € | Bs, (),

k=1
and for each ) € B; () and 1 <k </,

(SIZ) ALB(Z) 7é O,A279(z) 7£ 0, |Z| S 1.
Write

-1
(51.3) ei(n)=) bs(meis,

Il
=)

S

and let by ;(n) = 0bs(n)/0n; and Ve,(n); = Sl b, i(m)es_s. Recall the definition
of D; given in Section 5.3. It is clear that b ;(7) has continuous partial derivatives,
D;b,.i(n), on each B, (n;). By arguments similar to those in the proofs of Theorem
4.1 of Ling (2007) and Lemma 4 of Hualde and Robinson (2011), we have for any
s>land 1 <k </,

(S1.4) max  sup |bi(n)| < Clog(s + 1))s~ 1 Hor+0
1157 neBs, (ni)
(S1.5) max max sup  |Djbsi(n)| < C(log(s + 1))23’1+51+51,

1§i§FjEJ(m,f),1§m§fn€Bgl (%)

where C', here and hereafter, represents a generic positive constants independent of n.
Then, it follows from (S1.1)—(S1.5), (2.13), and Lemma B.1 of Chan and Ing (2011)


http://www.imstat.org/aos/
mailto:
mailto:
mailto:

that
1/2 2
B aup I eiedn)
SZFO[{Z max sup by (m)}
(S1.6) =1 "S5 meUly Bay (i)

+ {Z max max sup (Djl_)sﬂ-(n))Q}]

1<i<r jeJ(m,7),1<m<7F l
J N€Uk—1 Bs, ()

=0(1).
Thus the desired conclusion follows.

The case of conditional heteroscedastic errors: In the above argument, using (3.1),
(3.2), and (3.6) to replace the assumptions on {¢;} in Section 2, and using Lemma 5.2
to replace Lemma B.1 of Chan and Ing (2011), we can still obtain (S1.6), and hence
the desired conclusion follows. [

PROOF OF (5.6). The case of independent errors: It follows from (S1.1)~(S1.5),
(2.13), Lemma B.1 of Chan and Ing (2011), and Markov’s inequality that for M >

2023702, SUPneU_, Bs, (m) b2.:(m),

n

P(max sup {n"' ) (Vei(n);)’} > M)

1<i<r
nESon t=1

<CmaxP(sup [n7' Y (Ver(n),)* = E((Ver(n):)*)* > (

1<i<r 776551

t=1
n—1 n—u n—1 n—u
<C = .2
<O s 35 S+ 30 Vo)
(817) u=1 w=1 u=1 u=1
n—1 u—1 n—u u—1 n—u
220 Suvumvaw (G0 + 30 Swru-olisi)
u=2 v=1 w=l1 v=1 w=1
u—1 n—u u—1 n—u
+Z Vw—i—u UwZ'L 2+Z vaw—f—uvzz }]
v=1 w=1 v=1 w=1
Son—1+2(61+51) =o(1),
where
Suo(ig)=_max  sup  [Dy{bui(m)bu;(m)},
jeI(m,7),1<m<7 UGUL:1 351 ()
and

Vu,v(%]) max ‘bu z(nk)l; (nk)l

1<k<
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Thus the desired conclusion follows.

The case of conditional heteroscedastic errors: In the above argument, using (3.1),
(3.2), and (3.6) to replace the assumptions on {¢;} in Section 2, and using Lemma 5.2
to replace Lemma B.1 of Chan and Ing (2011), we can still obtain (S1.7), and hence
the desired conclusion follows. L]

S2. Proof of Lemma5.2. Let6 = (6;,...,0;)" € B5(0,). By (3.10) of Lai (1994),
the convexity of |z|™!, and Jensen’s inequality, it holds that for all ¢ > 2,

(S2.1)
\Zet{Kt(O) — K,(6.) ™

|Z Z / / (64,0) Z (D Kile;=0,,.5¢5)€t A&y -~ A&, [™

m=1jeJ(m,k)

IS S e[ SOl

m=1jeJ(m,k)

§2k(m1 1) Z Z vol™~ l Haaj))

m=1jeJ(m,k)

X / . / | Z(DjKtlﬁjZOa,j,jij)€t|m1 déjl cee dfjma
Bg(@a,j

) =2
where Q;(0,,0) denotes the rectangle formed by (6, j,, - - ., 0aj) " and (0;,,...,0;)7,
Bg(@a,j)denotesthem—dimensionalsphere{(Sjl,...,§Jm)|( alse s 0 — 1,531, aji+1s
0ao—1:Ejns -3 0aim—15Ejm s Oajm+1s - -, 0k) € B3(0,)}, and vol(-) denotes the
Euclidean volume. From (S2.1), we have

sup th{Kt K(6a)}™)

OEB (64)
(S2.2) () 1=

<C max sup E|Z€tD K.(0)|™.

jeJ(m,k),1<m<k 6cB;(04)

Moreover, it follows from (3.1), (3.2), (5.36), Burkholder s inequality, Minkowski’s
inequality, and the Cauchy—Schwarz inequality that for any j € J(m, k), 1 <m <k
and 0 € B;(0,),

Eln 2y DK, ()™ < CE| Y ef( *WZDQ Jer_i)?|™/?
t=2

t=2

n t—1
CD_AB(le|™ 02 Dje(@)er ™)} ™)™/
t=2 i=1

t—1
20 O3 Ble ™ B Dy @)

=1



n t—1
CY ABY o (Dyei(@))%er ™ /]2
t=2 i=1

< O3 LS (Dyes(0) 2l sy 2

t=2 i=1
n t—1

,122 ch m1/2

t=2 1=1

An argument similar to (S2.3) also yields

n n t—1
(S2.4) Eln 2 e Ky(0,)™ < C{n™' > ) " cl(0,))™.
t=2 t=2 1=1

Consequently, (5.37) follows from (S2.2)—(S2.4).
To show (5.38), define r,(0) = K;(0)Q+(0) — E(K;(0)Q+(0)). Then, by the con-
vexity of |x|™,

(S82.5)
E(n~ 1/2 sup Zrt )™

0cB; (6a) t=2

<™ YE(n Y sup |Z{n }rm1>+Eln‘WZn )™y

6€B5(0a) 1o =2

=2 () 4+ (1)},

By an argument similar to (S2.2), it follows that

(526) ([) < C max sup ]E‘TL 1/2 Z Dth ‘ﬂ’u

jeJ(m,k),1<m<k 0cB;(0,)

Straightforward calculations give

n n—1 n—1 [-1
> Dir(0) =Y gni(0)(cF N+ D hnal®)e}e,
t=2 =1 =2 =1

where g,,:(0) = >, Di{ci-i(0)d;—i(6)} and b, (0) = 321, Di{ci—s(0)de—i(6)
+ci1(0)d;—;(0)}. We will show later that

E 1/2 B 211 (1
EJ(mIrkl)af{<m<k0€SBup |TL Zgnl g ( 7,))|
(S2.7) 3
<C{n~1 max su D:{c; :(0)d,_;(0 9 m1/27
<C{ ;[t:ZZJrlJEJ(Mk)1<m<k0€B %)Oa)’ {c—i(0)di—i(0)}]°}
and

n—1 [-1

max sup  Eln Y (> haa(0)eite|™

jeJ(m,k), 1<m<kg€B (6) 2 im1
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n—1101-1 n

(52.8) < C{n’lzz Z max sup |Dj{ci—i(0)d,—i(0)

J(m,k),1<m<k
=2 o1 =119k Ismsk oe B5(04)

+er1(0)di—i ()17},

Hence,
n—1 n

(N<CUn™ DD e, sup [Dy{eei(O)di(O))}™

im1 tmigd S MR ISm<k 0€ B5(0a)

(829) n—-11-1 n
+{n_lzz Z max sup |Dj{ci—i(6)d;—i(0)

jeI(m.k),1<m<k
1= o1 1113 k) Ismsk o B5(04)

+ce1(0)di—i(0) )7} ™ 7).

By an argument similar to that used in proving (S2.9), it can be shown that
(S2.10)

(IT) <C| {n_lz{z l—i(02)dy_i(0,)| Y2 1™ /2

=1 t=i+1
n—1 [—1 n

YOS TEY Jei(Ba)dii(Ba) + ci(8a)di—i(8.)] 12} ™3],

=2 i=1 t=l+1

The desired result, (5.38), now follows from (S2.5), (S2.9), and (S2.10).

PROOF OF (S2.7). By (3.1),(3.2), (5.36), Minkowski’s inequality, and Burkholder’s
inequality, one has for any j € J(m, k), 1 <m <k, and 0 € B;(0,,)

_E|n_1/229n1 5 - ( ))|m1
—E|n~1/? Z gn.i(0) Z alw,;_,|™

< S g (@)l

s=0 =1

(S2.11) Z{E|Z gnl Z'_S>2‘m1/2}1/m1]ml

Z{Z E\n 2gn.i(0)a) w;_, |m1)2/m1}1/2]

s=0 =1

< C{leasl\ ng )2



n—1
C(n~! Zgi,z‘(e))mlﬂ-
i=1
Thus (S2.7) is proved. [

PROOF OF (S2.8). By (3.1), (3.2), (5.36), Minkowski’s inequality, Burkholder’s
inequality, and the Cauchy—Schwarz inequality, we have for any j € J(m, k), 1 <
m <k, and 0 € B;(0,),

n—1 [-1

E|n_1/22 Zh”” 81 51’m1

=2 =1
<0E‘Z _I/QZhnzl 581 |m1/2
SC{Z(H”_I/QZhn,z‘l(e)&fz|m1)2/m1}"“/2

(S2.12) <C{Z E|n—1/22hn a €l|2m1 1/mq (E|€ |2m1)1/m1}m1/2

n—1
OIS B S0 @ P

n—1 [—1

SC{Z Z(E‘n_l/2hnvil (o)gi‘zml ) l/ml]ml/Q

=2 =1
n—1 [—1

Zzhn il m1/27

=2 =1
which immediately leads to (S2.8). [

S3. Proof of (A.12). By (1.2) and (1.3), we have

(S3.1) = i,
s=0

where

(S3.2) las| < Cyexp(—Cas),
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for some positive constants C'; and C5. Therefore, by Minkowski’s inequality,

(S3.3)

Z Z {ZlZl i (lel—r-i-j)}lz
W r=j+11l=r—j+1

n—j l+j—1Nk

*Z > {aa ey —E@ae )}
k j n-— j =2 r=j+1

n—j l+j—1Nk c© oo

=E|WZ Z Z & v (Et—uEi—rtj—v — E(E1-uEi—rtj—))|?

=2 r=j+1 u=0v

=E|

Jl+j—1Nk

ZZ|auav| (E| Z Z El—u€l—rij— v_E(gl—ugl—rﬂ'—v))|2)1/2}27
u=0 v=0 V(k]n']ZQT]—H

where z Ay = min{z, y}. When v > u, by (3.1), (3.2), (3.6), Burkholder’s inequality,
Minkowski’s inequality, and the Cauchy—Schwarz inequality,

I/\

n—j (I4+j—1)Ak

Z Z 5l u<€l7r+jfv_E(517u€lﬂ"+j7v>)’2
V (k—j)(n—7) r=j+1

n—j (+j—1)Ak

<CE|Z T;I ng u€l—r4j—v

)’

n—j (I+5—1)NEk
<CZE| Z 51 uEl—r+4j— v|2
r=j+1 \% k: ]
(83.4)
(I4+j—1)Ak ]
<C IE:|5 —u| 1/2 - .El—r+j—v|4)1/2
zz; r;l V(k=37)(n—17)
(I+j—1)Ak

)2|2}1/2

1
<C§:mﬂ ;;1 G—n—j) 7

n—j (I4+j—1)Ak

1
C El—r4j—v
€2 2 Clmayt




8

When u > v,
(S83.5)

n—j (I4+j—1)Ak

/— E E 5l uEl—r4j—v
k ‘7 n= j r=j+1
n—j (I4+j—1)Ak

,—Z Z (E1-utrij = Blerusiryj)) |
k j n ] =2 r=j+1+u—v

n—j (jHu—v—1)Ak

- E(gl—ugl—r-‘f-j—v)) |2

<C{E|

+ E| — E(e1—u€i—rtj—o))|*

noting that Za -=01ifa>D. By an argument similar to (S3.4), it can be shown that

n—j (I+j—1)Ak

(CEDICE) Z Z (E1-u€iorijv — Bl ueirij)) P < C.
’I’L '] =2 r=j4+14+u—v

Foru—v=meN, withk — 7 >m > 2, we have

(S3.6) E|

n—j jtu—v—1

EDY - Y (eruticrtioo — Bla-utirij))

=2 r=j+1

0 s—1
<CLE| Y ) eawsinf

s=3—mi=2—m

(S3.7) n—jzmtl sl
D B
s=1 i=s+1—m
n—j—1 n—j—m

+E| Z P |

s=n—j—m+2i=s+1-m

=C{(I)+ (II)+ ({I1I)}.

By an argument similar to (S3.4), it can be shown that

(S3.8) (1) < COm?,
(S3.9) (I1) < C(n—j)m
and

(S3.10) (I11) < Cm?.

Similarly, it can be readily shown that for u — v > k — j,

k
S3.11)  E[D Y (et — Ela s ))? <Cln— ) (k- j).

=2 r=j+1
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Combining (S3.7)—(S3.11) yields
(§3.12)

n—j (jHu—v—1)Ak

Z Z <5l—u5l—7’+j—v - E(gl—uel—r+j—v))|2 < C.
V (k= j)(n—7j) r=j+1

By (3.1) and (3.2), we have

E(el)I*

WZ

n—j oo

=E|
VIk=3)(n—j) ==

An argument similar to (S3.4) also leads to

(S3.13)

T 2
a, Wy_qy—s|°.
0

n—j oo

Tw, P <C
V (k=) (n—7) ;;agwl |

(S3.14) E|

Now, the desired conclusion, (A.12), is an immediate consequence of (S3.2)—(S3.6)

and (S3.12)~(S3.14).
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