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Abstract

This paper studies an important sequential decision making problem known as the multi-
armed stochastic bandit problem with covariates. Under a linear bandit framework with
high-dimensional covariates, we propose a general multi-stage arm allocation algorithm
that integrates both arm elimination and randomized assignment strategies. By employing
a class of high-dimensional regression methods for coefficient estimation, the proposed algo-
rithm is shown to have near optimal finite-time regret performance under a new study scope
that requires neither a margin condition nor a reward gap condition for competitive arms.
Based on the synergistically verified benefit of the margin, our algorithm exhibits adaptive
performance that automatically adapts to the margin and gap conditions, and attains op-
timal regret rates simultaneously for both study scopes, without or with the margin, up
to a logarithmic factor. Besides the desirable regret performance, the proposed algorithm
simultaneously generates useful coefficient estimation output for competitive arms and is
shown to achieve both estimation consistency and variable selection consistency. Promis-
ing empirical performance is demonstrated through extensive simulation and two real data
evaluation examples.

Key Words: contextual bandits, exploration-exploitation tradeoff, high-dimensional regression
model, sequential decision making, stepwise regression procedure

1. Introduction

Sequential decision making problems are commonly encountered optimization tasks with im-

portant modern applications. For example, in medical service, a physician must decide the

appropriate dose level for prescriptions, with the hope of maximizing patients’ well-being and

preventing adverse effects; in online service, a news website must recommend “top” news articles

from multiple candidate news articles to upcoming website visitors to attract more readings;

in financial service, a lending firm seeks to decide whether and under what terms they should
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approve upcoming applicants’ loan requests and to reduce overall default rates. These decision

making problems can be formulated as the multi-armed stochastic bandit problem: at each user

visit, an agent must choose one of the candidate decision arms (e.g., news articles) and then

observe a reward (e.g., 1 for reading and 0 for non-reading) from the chosen arm, where the

reward follows some unknown distribution; the primary target is to maximize the overall reward

over a certain number of visits.

The classic settings (Robbins, 1954; Lai and Robbins, 1985; Berry and Fristedt, 1985; Lai,

1987; Gittins, 1989; Auer et al., 2002) typically assume that the reward distribution of each arm

is homogeneous. See, e.g., Bubeck and Cesa-Bianchi (2012), Lattimore and Szepesvári (2020),

Chan (2020), and references therein for a recent overview on algorithm efficiencies under related

settings. In many real applications, we have access to extra covariate information from users

of the service, which holds promise for personalized service. In personalized medical service,

for example, the treatment effect can be dependent on a patient’s medical profiles such as age,

medical history, and genetic information; in personalized online service, a reader’s interest in

news article contents may also be associated with information such as location and browsing

history. This promising variation of sequential decision making problems that incorporate user-

space covariates is known as the multi-armed bandit problem with covariates.

Initialized by Woodroofe (1979), bandit problems with covariates tend to be classified into two

categories according to assumptions on the mean reward functions. The first category is referred

to as the nonparametric bandit problem with covariates, in which the mean reward functions are

assumed to satisfy mild smoothness conditions. Notably, Yang and Zhu (2002) studied strong

consistency properties of a class of randomized allocation algorithms. Rigollet and Zeevi (2010)

and Perchet and Rigollet (2013) proposed arm-elimination type algorithms and established their

near minimax rates for cumulative regrets. Some related recent work in this category can also

be found in Qian and Yang (2016a,b), Guan and Jiang (2018), and Reeve et al. (2018).

The second category is called the parametric linear bandit problem with covariates, where

the mean reward functions take a linear form with unknown arm-specific parameters. In this

category, Goldenshluger and Zeevi (2009, 2013) and Bastani and Bayati (2020) considered fixed

dimensions and high-dimensional covariates, respectively, and showed that their forced sampling

algorithms with exploitation achieve (near) minimax rates when a margin condition (Tsybakov,

2004) and a constant gap condition are imposed. However, the performance of their algorithms

remains unknown in more general scenarios where these two conditions are possibly violated.
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A detailed discussion involving these conditions is given in Section 6 to exhibit the valuable

connection and critical difference between our work and the literature.

In this paper, we propose a multi-stage arm allocation algorithm with arm elimination and

randomized allocation to solve the linear bandit problem with high-dimensional covariates. We

particularly study the integration of a class of stepwise-type high-dimensional regression methods

into the proposed approach and develop new technical tools to analyze non-i.i.d. samples inherited

from arm allocation of the bandit algorithm. Our work significantly extends the theoretical

understanding under the parametric framework; the main contribution is outlined as follows.

First, this paper investigates a new study scope that does not necessarily require the margin

condition or the constant gap condition of competitive arms (the arms with positive probabilities

of being optimal), and demonstrates a finite-time regret analysis that shows near minimax opti-

mal performance of the proposed algorithm (Section 5.2). To our knowledge, no other existing

algorithm is known to work under this new study scope (see also the discussion in Section 6.1).

By the discovery of an intriguing connection between the margin and the gap conditions, our

new results on regret analysis also synergistically complement the existing literature and to-

gether verify the “benefit” of margin conditions in a minimax sense that, if satisfied, can lead

to significantly improved regret rates. Second, our algorithm enjoys adaptive performance, in

that it automatically captures the regret benefit under the margin and the constant gap condi-

tions and always maintains near-optimal performance regardless of whether these conditions are

satisfied (Section 6). This seems to be the first study to exhibit such an adaptive phenomenon

for linear bandits with high-dimensional covariates. Third, we show that the outputs of our

bandit algorithm possess desired statistical properties, including parameter estimation consis-

tency and variable selection consistency for competitive arms (Section 5.3). Note that variable

selection consistency with simultaneous optimal regret guarantees (without or with the margin

and constant gap conditions) has not been reported elsewhere in the literature. Also, promising

applications of our proposal are demonstrated through two real data examples on drug dose

assignment and news article recommendation.

It is worth noting that bandit problems have been studied under other related settings.

The examples include best policy matching (e.g., Langford and Zhang, 2008; Agarwal et al.,

2014), arm-space (with or without user-space) contextual bandits (e.g., Auer et al., 2007; Abbasi-

Yadkori et al., 2011), difficulty links on simple and cumulative regret minimization (Bubeck et al.,

2011), the multi-class banditron (e.g., Kakade et al., 2008; Beygelzimer et al., 2017), Bayesian-
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type approaches (e.g., May et al., 2012; Laber et al., 2018), and bandits with delayed feedback

(e.g., Bistritz et al., 2019; Arya and Yang, 2020), among many others (see, e.g., Cesa-Bianchi and

Lugosi, 2006; Bubeck and Cesa-Bianchi, 2012; Zhou, 2015; Lattimore and Szepesvári, 2020 for

bibliographic remarks, surveys and references therein). However, these alternative settings and

the corresponding algorithms do not address the main issue of this study. For example, Lattimore

and Szepesvári (2020, Ch.23) studied a general arm-space setting for sparse contextual linear

bandits, where the (possibly infinitely many) arms share the same unknown sparse coefficient

vector. The cumulative regret of the algorithm designed for this setting increases at a polynomial

rate with respect to the arm feature dimension. In constrast, our study framework focuses on

a user-space setting with a finite and relatively small number of arms, which have their own

individual sparse coefficients. As will be seen, the optimal arm depends on the user covariates,

and the corresponding cumulative regret has the desirable logarithmic rate in terms of the user

covariate dimension.

In fact, our study is in line with the very fruitful research topic known as dynamic treatment

regimes (DTR; e.g., Murphy, 2003; Qian and Murphy, 2011; Goldberg and Kosorok, 2012; McK-

eague and Qian, 2014; Laber et al., 2014; Shi et al., 2018, and many important others). Rather

than considering an i.i.d. sample with multi-time point decision rules, this paper focuses on the

single-time point decision for sequentially coming users and intends to achieve guaranteed near

optimal cumulative rewards for all these users as a whole.

In the remainder of the paper, we provide the basic settings of the bandit problem with

high-dimensional covariates in Section 2. The main algorithm and the integrated stepwise-type

coefficient estimation are described in Sections 3 and 4, followed by a theoretical investigation

in Section 5. The benefit of the margin condition and the algorithm’s adaptive performance

are studied in Section 6. Simulation and real data evaluation are given in Sections 7 and 8,

respectively. The proofs of propositions and main theorems as well as technical lemmas, an-

cillary expositions, and additional numerical results are all relegated to the Supplement. In

particular, we provide the general reader with an illustrative exposition in Supplement A for a

multi-stage algorithm and its analysis under the classical stochastic bandits, which may yield

a better intuition of the main contents of our high-dimensional counterparts (see Remark 7 in

Supplement A).

We close this section by briefly summarizing the notation consistently used in this article: n

for the user visit index and N for the total number of visits; k for the stage index and K for the
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total number of stages; i for the arm index, I for a chosen arm, and l for the total number of

arms.

2. Setting for linear bandits with high-dimensional covariates

In many applications, as opposed to the classical setting with homogeneous distributions, the

reward from a decision arm often depends on many user covariates. In the following, we propose

developing a new algorithm to solve the sequential decision making problem with linear mean

reward structures in high-dimensional settings. Suppose there are l candidate decision arms

(l ≥ 2) and let N be the total number of user visits. Given user covariate vector X ∈ Rp

and arm i (1 ≤ i ≤ l), we consider linear model structures in which the observed reward Yi

has the conditional mean fi(X) := E(Yi |X) = XTβi, where βi = (βi1, βi2, · · · , βip)T ∈ Rp is

the true coefficient vector for arm i. We assume the sparsity condition in which only a subset

of elements in X is associated with Yi. Define the set of relevant variables for arm i to be

Vi = {1 ≤ j ≤ p : |βij| > 0} and its size qi := |Vi| < p.

Our problem of interest works like the classical setting but with the necessary incorporation

of the covariates. At each user visit n (1 ≤ n ≤ N), a user covariate vector Xn ∈ Rp is first

revealed, where the Xn’s are i.i.d. from some unknown distribution (same as X) with domain

X ⊂ Rp. Let Ij be the chosen arm at each visit point j (1 ≤ j < N), and let Yi,j be the reward

if arm i is chosen. Then given the observable information {(Xj, Ij, YIj ,j), 1 ≤ j ≤ n − 1} and

current covariate vector Xn, a bandit algorithm is applied to choose an arm In and receive the

corresponding reward YIn,n = XT
nβIn + εIn,n, where εi,n is the random error of arm i and is not

necessarily independent of Xn.

2.1. Definitions and assumptions

Before introducing the algorithm evaluation, we first give key assumptions. For x ∈ X , define

the optimal mean reward f ∗(x) = max1≤i≤l x
Tβi. Assume that the set I = {1, · · · , l} of all

candidate arms can be partitioned into a set of competitive arms Io and a set of non-competitive

arms Iu. Let Ti be the competitive region where arm i ∈ I is optimal:

Ti = {x ∈ X : xTβi −max
j 6=i

xTβj > 0}. (1)

As given in Assumption 1, we define that arm i is a competitive arm in Io if it is an optimal arm

with a positive probability bounded away from zero.
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Assumption 1. (Competitive arms) There is a positive constant c1 such that for each arm

i ∈ Io, P (X ∈ Ti) > c1.

As given in Assumption 2, we define that arm i is a non-competitive arm in Iu if it is always

a sub-optimal arm with a gap of ζ̃N from the optimal reward. Here we allow Iu to be an empty

set. If Iu = ∅, then Assumption 2 simply reduces to a null assumption, which is also the case

in the settings of Goldenshluger and Zeevi (2013). If Iu 6= ∅, ζ̃N is allowed to approach zero as

N →∞.

Assumption 2. (Non-competitive arms) Each arm i ∈ Iu satisfies that with probability 1,

max1≤j≤l X
Tβj −XTβi > ζ̃N , where ζ̃N ≥ c2

Nψ∨(logN)1/2
for some constants c2 > 0 and 0 ≤ ψ ≤

1/4.

We also assume in Assumption 3 that the covariates satisfy a version of the restricted isometry

property (RIP; Candes and Tao, 2005). The RIP condition and its related variants have often

been used in the analysis of high-dimensional linear regression methods (e.g., Meinshausen and

Yu, 2009; Zhang, 2010, 2011b). By the nature of our targeted bandit problem with covariates,

an “oracle” allocation strategy (the benchmark in regret definition that knows the competitive

regions for all the competitive arms) is to always deliver a competitive arm at this arm’s own

competitive region; it is then natural to have conditions that use the arms’ own competitive

regions, since under the “oracle” benchmark, each competitive arm’s data points must all fall

within its own competitive region. Specifically, for each arm i ∈ Io, define the conditional second

moment on the competitive region in which Σi = E(XXT |X ∈ Ti); for each arm i ∈ Iu, define

Σi = Σ = E(XXT ). Given any arm i ∈ I and positive integer s, define λi(s) = min{vTΣiv :

‖v‖2 = 1, ‖v‖0 ≤ s}.

Assumption 3. There exists a constant c∗ > 0 such that for each arm i ∈ I, λi(q∗) > c∗, where

q∗ := C1 max1≤i≤l qi for some constant C1 > 1.

In Assumption 3, q∗ serves as an upper bound of all qi’s at the same order of maxi∈I qi; a

sufficient condition of Assumption 3 is that the minimum eigenvalues of the Σi’s, denoted by

λmin(Σi), are bounded away from zero.

In addition, we assume bounded reward coefficients such that ‖βi‖1 ≤ b for some constant

b > 0, and the sub-Gaussian condition for random errors such that E(evεi,n |Xn) ≤ exp(v2σ2/2)

for all v ∈ R. For simplicity, we consider bounded domain X with ‖Xn‖∞ ≤ θ for some constant

θ > 0, but it may be extended to covariates with a sub-Gaussian distribution.
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2.2. Algorithm evaluation

Let i∗(x) = argmaxi∈I fi(x) be the arm that has the maximum mean reward given x, and define

f ∗(x) = fi∗(x). Without knowledge of random error, the “oracle” (but clearly not applicable)

benchmark is to choose the optimal arm I∗n := i∗(Xn) at each visit point n. To evaluate the algo-

rithm performance, define the cumulative regret RN that measures the shortfall of the algorithm

in cumulative mean reward compared to the “oracle” benchmark:

RN =
N∑
n=1

(
f ∗(Xn)− fIn(Xn)

)
. (2)

It is desirable for an allocation strategy to have a guaranteed finite-time upper bound on cumu-

lative regret. Note that for each visit point n, only the reward of the chosen arm can be observed

while the rewards of all the other arms are not observable: we inevitably encounter incomplete

information under the bandit settings.

In addition, a useful but less discussed question of interest in the linear bandit problem is

whether the devised algorithm outputs meaningful variable selection results for the competitive

arms. Suppose at the end of running an allocation strategy, the algorithm output gives a set

of estimated competitive arms Îo, and for each arm i ∈ Îo, there is an associated estimate

β̂i = (β̂i1, β̂i2, · · · , β̂ip) for βi; the estimated set of important variables is defined as V̂i = {1 ≤

j ≤ p : |β̂ij| > 0}. Then we say an algorithm is variable selection consistent if

P (Îo = Io)→ 1 and P (V̂i = Vi for all i ∈ Io)→ 1 as N →∞. (3)

It is also desirable to establish that the algorithm is coefficient estimation consistent. That is, for

each competitive arm i ∈ Io, ‖β̂i−βi‖2 = Op(ϑN), where ϑN is the (preferably fast) convergence

rate with ϑN → 0 as N → ∞. Both variable selection consistency and coefficient estimation

consistency (e.g., Zou, 2006; Meinshausen and Yu, 2009; Fan and Lv, 2010; Qian et al., 2019a and

references therein) are widely studied in the statistics literature for high-dimensional regression

problems. In our bandit problem setting, these results provide some asymptotic theoretical

guarantees on the algorithm output for an analyst who may want to subsequently use the output

for understanding relevant variables and designing new offline policies.

2.3. A useful example

In our following study, we will first focus on the study scope from Section 2.1, that is, the

class of l-armed bandit reward function (or coefficient) sets with joint distributions PX,ε of
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(Xn, ε1,n, · · · , εl,n) that satisfy all the conditions in Section 2.1. Each member in the class is

characterized by a set of coefficients {β1, · · · ,βl} with a distribution PX,ε. Later on in Section 6,

we will present another study scope that imposes two additional assumptions including a margin

condition and a constant gap condition of competitive arms. In general, more assumptions lead

to smaller class size and a potentially lower (minimax) optimal regret rate; as will be seen, the

different study scopes lead to different optimality results (and different algorithmic design).

To facilitate an appreciation of the generality and challenges of the study scope in Section 2.1,

we next present a useful example. Given l = 2 and q, define a subclass consisting of all the two-

armed bandit pairs of coefficients {β1,β2} with PX,ε that satisfy the following scenarios. Treating

the first elements in β1 and β2 as intercept terms, we define β1 = (0, κ√
q
, · · · , κ√

q
, · · · , 0)T ∈ Rp,

β2 = (ω,− κ√
q
, · · · ,− κ√

q
, · · · , 0)T ∈ Rp, where β1 and β2 have q nonzero elements besides the

intercept, κ > 0, ω ∈ (−κ, κ), and κ
√
q is upper bounded by a positive constant. Also denote

the covariates by X = (1, X1, · · · , Xp−1), where X1, · · · , Xp−1 are i.i.d. with Uniform[−1, 1];

conditioning on Xn, the random errors ε1,n and ε2,n satisfy the sub-Gaussian condition. This gives

the simple scenarios in which f1(X) = κ√
q

∑q
j=1 Xj and f2(X) = ω− κ√

q

∑q
j=1Xj; the competitive

region for arm i (i = 1, 2) is Ti = {x ∈ X : fi(x) − fj(x) > 0, j 6= i}. For convenience,

we denote this bandit subclass as P . Then all the members in P satisfy the assumptions in

Section 2.1 and indeed fall within the intended study scope (as shown by Propositions 10 and

11 in Supplement B.2). We can then construct a sequence of its members with both coefficient

parameters κ and ω indexed by N : let κ = κN = N−α for some constant α > 0 and ω = ωN ∈

(−κN , κN); we denote the corresponding mean reward function pairs as {f1,N(·), f2,N(·)}. This

example gives the properties in Proposition 1.

Proposition 1. Consider the sequence of the class members constructed above from P. Then

given any constants α > α′ > 0 with δ̃N = N−α
′
, we have

P (0 < f ∗N(X)− f ]N(X) < δ̃N)→ 1 as N →∞, (4)

where f ∗N(X) = max(f1,N(X), f1,N(X)) f ]N(X) = min(f1,N(X), f2,N(X)); equivalently,

P (f2,N(X)− f1,N(X) > δ̃N) + P (f1,N(X)− f2,N(X) > δ̃N)→ 0 as N →∞. (5)

Proposition 1 reflects a philosophy for our proposed study in which a newly designed algorithm

may ideally be able to handle increasingly closer competitive arms as N gets larger, so that to

some extent, it parallels the statistical thinking that larger sample size allows for the finding of

increasingly smaller treatment effects. The class P will also be helpful to establish a regret lower
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bound (to be shown in Section 5.2).

Noting the polynomially decreasing δ̃N in (4) and (5), it will be seen in Section 6.1 that the

study scope of Section 2.1 and the associated algorithm design are deemed different from the

existing literature. On one hand, Bastani and Bayati (2020) novelly designed algorithms that

are well-suited with provable optimality under the additional margin condition and constant gap

condition for competitive arms. On the other hand, neither of these two additional conditions

are necessarily satisfied for Section 2.1, and the literature has not yet shown how to design a

generally near optimal algorithm. We will defer the detailed discussion to Section 6.1 on the

connection between the different study scopes, without or with the two conditions.

Furthermore, it would be interesting for a newly designed algorithm to simultaneously perform

optimally when these additional conditions are imposed: that is, can an algorithm adaptively

achieve near optimality in both worlds of the different study scopes, and attain potential regret

“benefit” if the additional conditions are satisfied? The efforts to address this issue will be

presented in Section 6.2.

3. A multi-stage algorithm in high dimensions

Our proposed algorithm divides the total visit points into K + 1 stages, with stage 0 being

the initial forced sampling stage. Here Ñk (1 ≤ k ≤ K) is the end visit point of stage k,

and Nk = Ñk − Ñk−1 is the sample size of stage k. Set N0 = lτ0, τ0 = c0q
2
∗ log pN(N2ψ ∨ logN),

Nk = 2Nk−1, and K = dlog2(1+N/N0)−1e, where pN = p∨N , c0 is some positive constant, d·e is

the ceiling function, and stage K may have a sample size less than 2NK−1. We set c0 = 32θ2cρc
−2
2

(or its upper bound) for Section 5, where cρ > 0 is a constant (to be given in Theorem 1). Given

stage k, define Ak,i = {n : Ñk−1 + 1 ≤ n ≤ Ñk, In = i} to be the set of visit points where arm i

is chosen; similarly, define Bk,i = {n : 1 ≤ n ≤ Ñk, In = i}.

Let XN = (X1,X2, · · · ,XN)T be the N × p matrix containing all the user covariates, and

let yN = (y1, y2, · · · , yN)T be the vector containing the reward responses from the chosen arms

with yn = YIn,n (1 ≤ n ≤ N). Then given any visit index set A = {j1, j2, · · · , j|A|} with

1 ≤ j1 < · · · < j|A| ≤ N , define XA ∈ R|A|×p and yA ∈ R|A| to be the corresponding covariate

design sub-matrix from XN and the reward response sub-vector from yN , respectively; that is,

rown(XA) = rowjn(XN) and rown(yA) = rowjn(yN) for 1 ≤ n ≤ |A|. We can apply a specified

high-dimensional linear regression method with tuning parameter ξ to obtain the coefficient

estimator β̂(XA,yA, ξ). In our following discussion, unless stated otherwise we will use the
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Algorithm 1 Stage-wise arm elimination with randomized allocation.

1. Set initial sampling stage with sample size N0. Choose each arm an equal number of times
τ0. For each arm i ∈ I, compute the initial estimated coefficient β̃i. Set k = 1.

2. At stage k, perform the following substeps at n = Ñk−1 + 1, · · · , Ñk.

� Reveal covariate Xn ∈ Rp.

� Pre-screen arms using the initial sampling data to generate the arm set

S̃n := {i ∈ I : max
j∈I

XT
n β̃j −XT

n β̃i ≤ δN}. (6)

� If k > 1, eliminate arms on S̃n to generate the set of “promising” arms

Ŝn := {i ∈ S̃n : max
j∈S̃n

XT
n β̂j,k −XT

n β̂i,k ≤ ∆k}; (7)

otherwise, set Ŝn = S̃n.

� Define În = argmaxi∈Ŝn XT
n β̂i,k. Perform randomized allocation to choose an arm In

from Ŝn with h ≥ 1 and receive reward YIn,n:

In =

{
În, with probability h

h+|Ŝn|−1
,

i, with probability 1

h+|Ŝn|−1
, i 6= În, i ∈ Ŝn.

3. Find the estimated coefficient for next stage by computing β̂i,k+1 for each i ∈ I.

4. Set k = k + 1. Repeat steps 2–4 until the end of N user visits.

5. Obtain an estimated set of competitive arms ÎN =
⋃N
n=ÑK−2+1 Ŝn and output the estimated

coefficient β̂i = β̂i,K for all i ∈ ÎN .

high-dimensional Interactive Greedy Algorithm (IGA, Qian et al., 2019b), which is a generalized

method from stepwise-type regression (e.g., Zhang, 2011a,b; Ing and Lai, 2011). Here, ξ represents

the tuning parameter for IGA and regulates the estimator sparsity from the solution path. It is

closely related to the penalty term of the high-dimensional information criterion (Ing and Lai,

2011), which is used to overcome potential overfitting problems associated with the orthogonal

greedy algorithm. We offer a brief description of the coefficient estimation by IGA in Section 4.

Then, given arm i, β̃i := β̂(XA0,i
,yA0,i

, ξ0) are the estimated coefficients from stage 0; we set

β̂i,k := β̂(XAk−1,i
,yAk−1,i

, ξk) to be the coefficients used by stage k and estimated from the data

of its previous stage, where the ξk’s are their respective tuning parameters. If Ak−1,i = ∅, we

set β̂i,k := β̂(XBk−1,i
,yBk−1,i

, ξk), where the alternative choice of estimated coefficients with the

larger sample Bk−1,i (that includes all historical data of arm i) is given in Remark 2 of Section 4.

We are now ready to describe the details of the proposed multi-stage algorithm as shown in
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Algorithm 1. Specifically, Step 1 is the initial sampling of stage 0 that allocates each arm an equal

number of times. Step 2 shows that for each visit point n of a given stage k, after the observation

of covariate Xn ∈ Rp, there are two substeps of arm screening procedures: (6) pre-screens out

uncompetitive arms, and (7) performs an extra elimination step to generate “promising” arms

for use in the subsequent randomized allocation substep. We set the parameters δN = 2θb0 and

∆k = 2θbk with b0 = q∗
√

2cρ log pN/τ0 and bk = q∗
√

2c̃ρ log pN/Nk, k ≥ 2, for Section 5, where

cρ and c̃ρ are positive constants (to be given in Theorems 1 and 2). Here q∗ can also be replaced

by a general upper bound s∗ (s∗ ≥ q∗); its implication w.r.t. the analysis is given in Remark 6

of Section 6.2.

In the last substep of Step 2, define În = argmaxi∈Ŝn XT
n β̂i,k where any tie-breaking rule

may apply. Let h ≥ 1 be a randomization parameter. Then, under the randomized allocation

scheme, we choose an arm i from Ŝn with probability 0 < pn,i ≤ 1, where
∑

i∈Ŝn pn,i = 1 and
pn,În
pn,i

= h for all i 6= În; that is, pn,În = h

h+|Ŝn|−1
and pn,i = 1

h+|Ŝn|−1
for i 6= În in Ŝn. In particular,

h = 1 corresponds to simple randomization among arms in Ŝn. We use h = 1 in theoretical

development for simplicity.

Step 3 updates the coefficient estimation after the current stage. In Step 4, the algorithm

moves to the next stage, and continues in a stage-wise fashion until the end of N user visits. Then

Step 5 outputs the estimated set of competitive arms and their associated coefficient estimates.

Considering the scenario in which the last stage K has a small sample size, we use the last two

stages to estimate ÎN .

Remark 1. Algorithm 1 includes the arm pre-screening substep (6) for all stages. If Iu = ∅, the

algorithm can be further simplified by removing this substep. However, if Iu 6= ∅, the optimal

arm may be eliminated by a non-competitive arm, and the analysis argument (to be outlined

in Section 5.1 and Proposition 3 for having “good” events) may not hold without this substep.

The use of randomized allocation with h > 1 (as opposed to h = 1) is mainly motivated by the

potentially more efficient exploitation of the estimated promising arms in practice. A similar

empirical idea for randomization has also been used for the nonparametric bandit problem with

covariates (e.g., Qian and Yang, 2016b); the feature of (non-uniform) randomized allocation,

together with the embedded key arm-elimination technique (Perchet and Rigollet, 2013), can be

practically useful to provide additional flexibility for an algorithm to further utilize the reward

function estimation; all theoretical results of our proposed algorithm remain the same for upper

bounded h; we will demonstrate its empirical performance with h > 1 in the numerical studies.
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Algorithm 2 Stepwise coefficient estimation.

1. Initialize r = 0, β(r) = 0, G(0) = ∅, 0 < ρ ≤ 1 and ξ > 0. Set φ(0) = Q(β(r)) −
min1≤j≤p, α∈RQ(β(r) + αej).

2. Perform forward selection with the following substeps.

(a) Find candidate variable set

Gρ = {g 6∈ G(r) : Q(β(r))−min
α∈R

Q(β(r) + αeg) ≥ ρφ(r)}. (8)

(b) Select element g(r) ∈ Gρ and set G(r+1) = G(r) ∪ {g(r)}.

(c) Compute β(r+1) = arg minsupp(β)∈G(r+1) Q(β), and find ξ(r+1) = Q(β(r))−Q(β(r+1)).

(d) Set r = r + 1.

3. Set φ̃(r) = minj∈G(r) Q(β(r) − eTj β
(r)ej) − Q(β(r)). If φ̃(r) < ξ(r)/2, perform backward

selection with following substeps.

(a) Find g(r) = arg minj∈G(r) Q(β(r) − eTj β
(r)ej).

(b) Set r = r − 1 and G(r) = G(r+1)\{g(r+1)}.
(c) Compute β(r) = arg minsupp(β)∈G(r) Q(β).

(d) Update φ̃(r) = minj∈G(r) Q(β(r) − eTj β
(r)ej)−Q(β(r)).

(e) If φ̃(r) < ξ(r)/2, repeat backward selection substeps above.

4. Find φ(r) = Q(β(r))−min1≤j≤p, α∈RQ(β(r) + αej). If φ(r) ≥ ξ, repeat Steps 2–4; otherwise,

output β(r).

4. Coefficient estimation

As IGA is embedded into Algorithm 1 and plays an important role in coefficient estimation,

we next briefly describe main steps of IGA summarized in Algorithm 2 to keep the paper self-

contained.

Given the input design matrix X ∈ Rm×p and response vector y ∈ Rm, define the objective

function Q(β) = 1
m
‖y−Xβ‖2

2. Let ej ∈ Rp be the unit vector with the j-th element being zero.

Then from Algorithm 2, following initialization (Step 1), the forward selection in Step 2 selects

one variable into the active set G(r) and drives down the objective function Q(β) in a stepwise

fashion, that is, (8) essentially considers all the candidate variables one by one and finds those

that rank high in reduction of Q(β). Alternatively, to avoid repeated optimization tasks on the

objective function and to significantly reduce computation time, we can also replace (8) and φ(r)
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by gradient-based criterion:

φ(r) = ‖∇Q(β(r))‖∞ and Gρ = {g 6∈ G(r) : |∇gQ(β(r))| ≥ ρφ(r)}, (9)

where ∇Q(β) is the gradient vector and ∇gQ(β) is its g-th element. Without additional in-

formation on true variables, it suffices that we set ρ = 1. Step 3 is the backward elimination

step that checks if some variables may become redundant after the new variable is included from

forward selection. This forward-backward iteration scheme continues until the addition of any

new variables does not significantly reduce the objective function as shown in Step 4.

Remark 2. Given X, y, and ξ, the output of Algorithm 2 gives the coefficient estimator β̂(X,y, ξ).

The parameter ξ regulates the solution sparsity: a larger ξ tends to provide a sparser solution. In

empirical studies, instead of giving explicit values for ξ, we use the number of steps to determine

solution sparsity, which is automatically selected by ten-fold cross validation (CV) on (X,y)

under the mean square error criterion. The package that implements the IGA method with

CV is publicly available on GitHub. Also, in the description of Algorithm 1, we use the stage-

specific sample Ak,i for coefficient estimation to make the proofs more concise and express the

algorithm description as parallel as possible with Algorithm 3 of Supplement A. In practice, we

recommend using the sample choice of including all historical data from previous stages so that

β̂i,k+1 := β̂(XBk,i ,yBk,i , ξk+1).

5. Understanding algorithm performance

To understand the performance of the proposed algorithm, it is helpful to study how the algo-

rithm estimates the conditional mean rewards and the coefficients and how these estimates are

associated with “good” events on arm selection. In Section 5.1, we outline the analysis strategy

for the cumulative regret upper bounds, which consist of four main steps. We provide the upper

and lower bounds on the cumulative regret in Section 5.2, and establish the variable selection

and coefficient estimation consistency properties in Section 5.3.

5.1. Outline of main analysis steps

The first main step is regret decomposition via the partitioning of the sample space into

properly defined events. Specifically, let RN0 and RN1 be the regrets accumulated in Stage 0 and

the following stages, respectively. Then we see that RN = RN0 +RN1. Also define the following
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events on coefficient estimation errors. For 2 ≤ k ≤ K, define

F0 = U1 = {∀i ∈ I, ‖β̃ − βi‖1 ≤ b0}, Fk = {∀i ∈ Io, ‖β̂i,k − βi‖1 ≤ bk}, (10)

and Uk = F0 ∩
(⋂k

j=2 Fj

)
. The whole sample space can be partitioned into the events

U c
1 , Uk ∩ F c

k+1, UK for 1 ≤ k ≤ K − 1 (11)

to further decompose the cumulative regret, so that

RN1 = RN1I(U c
1) +

K−1∑
k=1

RN1I(Uk ∩ F c
k+1) +RN1I(UK) =: R0 +

K−1∑
k=1

Rk +RK . (12)

To provide upper bounds for the decomposed regrets, we need to understand the properties and

implications of these associated events to be shown in the next two main steps.

In the second main step, we intend to achieve the following specific objective (1): un-

der “good” events, via connection with coefficient/reward estimation errors, the regret can be

upper-bounded. We further divide the analysis effort of this step into two substeps, which in-

clude studying (1a) arm pre-screening behavior and (1b) arm elimination behavior. Steps (1a)

and (1b) are summarized in Propositions 2 and 3, respectively, whose proofs are relegated to

Supplement B.3.

Proposition 2. Given stage k (k ≥ 1), if the event Uk holds, then at any visit point n (Ñk−1+1 ≤

n ≤ Ñk), the optimal arm I∗n remains in S̃n, and any non-competitive arm i ∈ Iu is excluded

from S̃n.

Proposition 3. Given stage k (k ≥ 2), if the event Uk holds, then at any visit point n (Ñk−1+1 ≤

n ≤ Ñk), the optimal arm I∗n remains in Ŝn; in addition, any “promising” arm i ∈ Ŝn belongs to

the arm set Un,k = {j ∈ Io : XT
nβI∗n −XT

nβj ≤ 2∆k}.

The two propositions above suggest that with the arm pre-screening and elimination proce-

dures, the event Uk regarding the coefficient estimation errors leads to the “good” event that the

algorithm always keeps the optimal arm while all the other remaining arms must be in the arm

set Un,k, thereby restricting the regret of each step within 2∆k to achieve objective (1). There-

fore, to study the maintenance of “good” events for arm selection, it is important to understand

the coefficient estimation errors.

Due to the nature of necessarily evolving arm allocation in sequential decision making, only

one response from the selected arm is revealed while responses from all the other arms are not

available; the accumulated data for each arm are not i.i.d. random samples anymore (as opposed

to regular settings in high-dimensional regression problems), which poses unique challenges in
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studying the statistical properties of the estimated coefficients. With the multi-stage approach

and stage-wise arm elimination, we also employ randomized arm allocation to help partly over-

come the technical issues (besides empirical performance considerations, to achieve a balance

between exploration and exploitation).

In the third main step, we intend to achieve the specific objective (2): the (conditional)

probabilities of violating the “good” events are relatively small. For this purpose, we establish

Theorems 1 and 2 (see below). These theorems are proved through four substeps (2a) randomized

allocation with “random” samples, (2b) sample size determination, (2c) covariate “design matrix”

properties, and (2d) coefficient estimation upper bounds, details of which are also relegated to

Supplement B.3. Note that ξ0 and the ξk’s correspond to the tuning parameter ξ in Algorithm 2,

which computes β̃i and the β̂i,k’s, respectively; recall that pN = p ∨N .

Theorem 1. Suppose Assumptions 1–3 hold. Then there exists a positive constant cr such that

given ξ0 = cr log pN
τ0

, it holds with probability less than l/N3 that

‖β̃i − βi‖1 >

√
cρq∗(qi + logN + qi,0 log pN)

τ0

for some i ∈ I, where qi,0 = |Ji,0|, Ji,0 = {j ∈ Vi : |βi,j| <
√
cβ log pN/τ0}, and cρ, cβ > 0 are

some constants.

Theorem 2. Suppose Assumptions 1–3 hold. Then there exists a positive constant c′r such that

given ξk+1 = c′r log pN
Nk

and Uk (1 ≤ k ≤ K − 1), it holds with probability less than 3l/N3 that

‖β̂i,k+1 − βi‖1 >

√
c̃ρq∗(qi + logN + qi,k log pN)

Nk

for some i ∈ Io, where qi,k = |Ji,k|, Ji,k = {j ∈ Vi : |βi,j| <
√
c̃β log pN/Nk}, and c̃ρ, c̃β > 0 are

some constants.

These two theorems suggest that with the proposed algorithm, given Uk, the probability of

violating Fk+1 (or Uk+1) on the coefficient estimation errors is small; consequently, since Uk+1

always implies the “good” arm selection events on the next stage as shown in the propositions

for objective (1), the same probability bound applies to violating these “good” events, thereby

achieving objective (2).

As the last main step, we obtain the decomposed regrets by Propositions 2 and 3 from

objective (1) and Theorems 1 and 2 from objective (2), and subsequently assemble the cumulative

regret upper bounds to be shown next in Section 5.2.1.
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5.2. Upper and lower bounds on cumulative regret

We demonstrate here the near minimax optimal regret performance of the proposed algorithm,

where the upper bound and the lower bound are given in Sections 5.2.1 and 5.2.2, respectively.

5.2.1 Upper bound

The analysis efforts briefly summarized in Section 5.1 enable us to provide the following finite-

time regret analysis for (2).

Theorem 3. Suppose Assumptions 1–3 hold. Then there exist positive constants C21 and C22

such that the cumulative regret of Algorithm 1 satisfies

E(RN) ≤ C21lq
2
∗ log pN(N2ψ ∨ logN) + C22q∗

√
N log pN (13)

with C21 = 4θbc0 +6θb and C22 = 8θc̃
1/2
ρ ; in particular, if ψ = 0 and p = o(N ζ) for some constant

ζ > 0 with fixed l and q∗, then for any large enough N ,

E(RN) ≤ 2C22q∗
√
N log pN . (14)

In Theorem 3, the upper bound of (13) consists of two components. Roughly speaking, the

first component is mainly attributed to the initial forced sampling, which generates initial crude

estimates for the coefficients and ensures good performance for the pre-screening of the uncom-

petitive arms; mainly from the much more refined arm elimination stages for the competitive

arms, the second component is usually a dominating term as shown by (14).

Note that under additional conditions (to be introduced in Section 6.1), existing algorithms

(Goldenshluger and Zeevi, 2013; Bastani and Bayati, 2020) indicate that by an exploitation-based

strategy, it is ensured for regret analysis that the optimal arm in its competitive region with a

certain constant reward gap can be exclusively selected with high probability. However, such

analysis argument is not technically feasible here. To overcome this difficulty, we employ arm

elimination and randomized allocation to carefully control regret accumulation in a stagewise

fashion, thereby circumventing the need for these additional conditions. The inherited new

technical challenges in regret analysis are naturally shared with the simultaneous establishment

of variable selection consistency to be shown in Section 5.3.
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5.2.2 Lower bound

We then seek to address whether it is possible for any alternative algorithm to achieve a regret

rate much slower than that of (14). For this purpose, recall the bandit subclass P defined from

the example of Section 2.3, which has been verified to satisfy all the conditions of Section 2.1.

Theorem 4. For any admissible bandit strategy, there is a positive constant C3 such that with

any large enough N , we can always find some class member in P under which its cumulative

regret satisfies

E(RN) > C3

√
N.

The regret lower bound in Theorem 4 implies that the upper bound in Theorem 3 is almost

not improvable for N (up to a logarithmic factor), and that our proposed algorithm has near

minimax optimal performance under the study scope of Section 2.1.

Remark 3. In the upper-bound regret analysis, it is assumed that ‖Xn‖∞ is bounded above by

a constant θ > 0, which is involved in setting the coefficients of algorithm parameters. This con-

dition can be relaxed to allow element-wise sub-Gaussian conditions on the covariates. Specif-

ically, assume that for all covariates Xn = (Xn,1, Xn,2, · · · , Xn,p)
T , there exists some constant

σX > 0 such that E(evXn,j) ≤ exp(v2σ2
X/2) for v ∈ R and 1 ≤ j ≤ p. Define the event

A = {‖Xn‖∞ ≤ cxσX
√

log pN for all 1 ≤ n ≤ N} with some constant cx ≥ 2
√

2. Then the

following Proposition 4 shows that the regret contributed by Ac is relatively negligible.

Proposition 4. Given the sub-Gaussian conditions on covariates, it is satisfied that

E
(
RNI(Ac)

)
≤ 4bcxσXp

−1
N

√
log pN .

By treating Ac as a “bad” event in our regret decomposition, Proposition 4 suggests that we can

just focus on the “good” event in which all covariates are bounded by θ̃N = cxσX
√

log pN and

replace the constant θ by θ̃N instead; as a result, the algorithm analysis under event A can be

performed similarly, with the mild price on regret rate by extra multiplicative factors of log pN .

5.3. Variable selection and coefficient estimation consistency

The proposed algorithm also generates consistently estimated competitive arms ÎN and their

consistently estimated coefficients as shown in Theorem 5. Here, q̄i is the size of variables with

relatively weak signals. Note that the coefficient estimation error bound of β̂i in Theorem 2
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includes the slight price of an extra additive logN term; this reflects the subtle need for the

bandit algorithm to simultaneously achieve the desired finite-time regret guarantees. However,

this extra logN term can be removed for the coefficient estimation consistency in Theorem 5,

which matches a known result of a regular sparse high-dimensional regression setting (that is,

Op(
√

(qi + q̄i log pN)/N)).

Theorem 5. Under the same conditions of Theorem 3, the algorithm output of the estimated

competitive arms satisfies P (ÎN = Io) → 1 as N → ∞. In addition, the output of coefficient

estimation for each arm i ∈ Io satisfies ‖β̂i − βi‖2 = Op(
√

qi+q̄i log pN
N

), where q̄i = |J̄i|, and

J̄i = {j ∈ Vi : |βi,j| <
√

4c̃β log pN
N
}.

Combined with a beta-min condition, we further establish coefficient estimation and variable

selection consistency simultaneously for the competitive arms in Theorem 6. Therefore, the

proposed bandit algorithm also achieves the desired property (3).

Theorem 6. Suppose an arm i ∈ Io satisfies minj∈Vi |βi,j| ≥
√

4c̃β log pN
N

. Then under the same

conditions of Theorem 3, the output of coefficient estimation for arm i ∈ Io satisfies

1) coefficient estimation consistency: ‖β̂i − βi‖2 = Op(
√

qi
N

);

2) variable selection consistency: P (V̂i = Vi)→ 1 as N →∞.

In particular, if mini∈Io, j∈Vi |βi,j| ≥
√

4c̃β log pN
N

, Algorithm 1 is variable selection consistent.

The variable selection consistency of Theorems 5 and 6 also uses results from finite-time

analysis, which shows the desired sparsity recovery with high probability. Indeed, it is shown

in Supplement B.5 that for any large enough N , P (IN 6= Io) ≤ 3K/N and for every i ∈ Io,

P (V̂i 6= Vi) ≤ 4K/N .

Remark 4. From the proofs of Theorems 1 and 2, we can see that the positive constants

c′r, c̃ρ, c̃β, cr, cρ, cβ exist. Given that there are constants cd, cf > 0 associated with the IGA

method as shown in Lemma 1 of Supplement C, we can set

c′r =
128θ2σ2cf

c4
1c∗

(2 +
1

8θ2
), c̃ρ =

64σ2

c4
1c∗

(cd + 4cf ) +
32θ2c′r
c2

1c∗
, c̃β =

512θ2c′r
c2

1c∗
,

cr = 16θ2σ2cfc
−1
∗ (2 +

1

8θ2
), cρ = 8σ2c−1

∗ (cd + 4cf ) + 8θ2crc
−1
∗ , cβ = 128θ2crc

−1
∗ .
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6. Adaptive performance

6.1. Benefit of margin condition

A margin condition is known as an assumption that regulates the complexity and rates of conver-

gence for classification and estimation problems (Mammen and Tsybakov, 1999; Tsybakov, 2004;

Audibert and Tsybakov, 2007). To fully appreciate the contribution of our new algorithm design

in this work and discern its distinction from the existing literature, it is helpful to consider and

discuss a margin condition under linear bandits with covariates. In particular, a margin condition

has been assumed and carefully studied in earlier work under both the fixed-dimension setting

(Goldenshluger and Zeevi, 2013) and the targeted high-dimensional setting (Bastani and Bayati,

2020); their corresponding bandit algorithms are well-designed to optimally solve the problem

under both a margin condition and a constant gap condition.

We next define these conditions. For x ∈ X , let I](x) = {i ∈ Io : fi(x) < f ∗(x)} be the

set of sub-optimal arms. Then define f ](x) = maxi∈I](x) xTβi if I](x) 6= ∅, and f ](x) = f ∗(x)

otherwise.

Assumption 4. There exists a positive constant L such that given any δ > 0,

P
(
0 < f ∗(X)− f ](X) < δ

)
≤ Lδ.

Assumption 4 requires that except for a subset of the domain with small probability close

to the decision boundary, the optimal mean reward can be separated from sub-optimal rewards

by arbitrarily small δ. Alongside the margin condition, earlier work also assumes the following

constant gap condition.

Assumption 5. There are positive constants $, c̃1 > 0 such that for each arm i ∈ Io, P (X ∈

T̃i) > c̃1, where

T̃i = {x ∈ X : xTβi −max
j 6=i

xTβj > $}.

First, we discover that the margin condition of Assumption 4 and the gap condition of As-

sumption 5 are closely related. Indeed, as shown in the following first statement of Proposition 5,

if we impose the margin condition in addition to those of Section 2.1, then the resulting study

scope becomes largely equivalent to that of Bastani and Bayati (2020) since it is guaranteed that

Assumption 5 is also satisfied.

Proposition 5. If Assumption 1 holds, then Assumption 4 implies Assumption 5. On the other

hand, Assumption 5 implies Assumption 1.

19



The second statement of Proposition 5 implies that the study scope of Bastani and Bayati

(2020) is subsumed in (and is smaller than) that of Section 2.1. In particular, neither Assump-

tion 4 nor Assumption 5 are necessarily satisfied under the study scope of Section 2.1 with

Assumption 1: indeed, as an example, the bandit class P of the example in Section 2.3 together

with Proposition 1 implies the following results.

Proposition 6. Assumptions 1–3 are satisfied for all the class members in P, but neither As-

sumption 4 nor Assumption 5 holds for all the members in P.

Consequently, in light of the connection illustrated by Proposition 5, the key difference in

the study scopes and the regret bounds for Section 2.1 from the existing literature lies in the

margin condition. In a synergistic manner, our regret bounds in Section 5.2 complement earlier

results with the margin condition (Goldenshluger and Zeevi, 2013; Bastani and Bayati, 2020),

and together verify the benefit of a margin condition to achieve a significantly improved regret

rate (from polynomial to logarithmic).

Remark 5. The discussion above resolves the seemingly contradictory optimal regret rates for the

bandit problem with high-dimensional covariates: In Section 5.2, we show that the near N1/2 rate

is optimal and is achievable by Algorithm 1, but the existing literature (Bastani and Bayati, 2020)

shows that the near logN rate is optimal and is achievable by an exploitation-based algorithm.

There is no conflict here since the study scope of Section 2.1 imposes no assumption on the margin

(or the related constant gap condition); hence under this more “difficult” situation without

assuming the margin, it is natural that the optimal regret rate is higher than the logarithmic

rate; Theorem 4 has shown that no algorithm is able to give a regret rate lower than N1/2.

To some extent, this observation of different optimal regret rates is reminiscent of the intriguing

debates on the optimal convergence rates (and their associated classifier rules) for nonparametric

classification in the statistics literature as discussed by Tsybakov (2004, p.146):

How fast can the convergence of classifiers be and how does one construct the clas-

sifiers that have optimal convergence rates? ... Yang (1999) claims that the optimal

rates are quite slow (substantially slower than n−1/2) and they are attained with plug-

in rules; Mammen and Tsybakov (1999) claim that the rates are fast (between n−1/2

and n−1) and they are attained by ERM (empirical risk minimization rules) and re-

lated classifiers. ... In fact, there is no contradiction since different classes

of joint distributions of (X, Y ) are considered. Yang (1999) ... do not impose
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assumption on the margin. Therefore, it is not surprising that they get rates slower

than n−1/2: one cannot obtain a rate faster than n−1/2 with no assumptions on the

margin. ... On the contrary, Mammen and Tsybakov (1999) ... show what can be

achieved when ... assumption on the margin holds. In this case the fast rates (up to

n−1) are realizable.

Therefore, the results presented in this subsection for the targeted bandit problem with covariates

pleasantly join the celebrated group of known benefits by margin conditions (if satisfied) as

exhibited in nonparametric estimation and nonparametric bandit problems (Tsybakov, 2004;

Audibert and Tsybakov, 2007; Rigollet and Zeevi, 2010; Perchet and Rigollet, 2013).

6.2. Achieving regret benefit adaptively

An important question naturally arises from our discussion in Section 6.1: since it is usually

unknown whether the margin condition (or the closely related constant gap condition) holds, is

it possible to design a bandit algorithm to adaptively achieve the regret benefit from the margin

condition? That is, does there exist an algorithm that can simultaneously perform optimally

under both of the study scopes, without or with assuming the margin, and automatically take

advantage of the desirable regret benefit if the margin condition is satisfied? To a large ex-

tent, this question also resembles the spirit of adaptive performance to the margin proposed for

classical classification and estimation problems (Tsybakov, 2004). In the following, we provide

an affirmative answer and show that our proposed algorithm indeed adapts to the two different

study scopes, and always attains near optimal regret rates (up to a logarithmic factor) regardless

of whether the margin condition holds.

Assumption 6. If Iu 6= ∅, Assumption 2 holds with ψ = 0.

Like Assumptions 4 and 5, Assumption 6 above for non-competitive arms was also used in

Bastani and Bayati (2020), which considers a special case of Assumption 2. Now our study scope

in this subsection, similar to that of Bastani and Bayati (2020), is devised to be the bandit class

that imposes Assumptions 4 and 6 in addition to those of Section 2.

Theorem 7. Suppose Assumptions 4 and 6 and the conditions of Theorem 3 hold. Then there

exists a positive constant C̃2 such that the cumulative regret of Algorithm 1 satisfies

E(RN) ≤ C̃2lq
2
∗ log pN logN, (15)

with C̃2 = 4θbc0 + 6θb+ 32θ2c̃ρ.
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Using the same algorithm designed in Section 3, Theorem 7 shows that under the margin

condition, our algorithm also enjoys a nearly optimal regret rate up to a logarithmic factor (the

lower bound is given by Goldenshluger and Zeevi, 2013); for example, if l and q∗ are upper

bounded and p = o(N ζ) with some constant ζ > 0, then the regret upper bound in Theorem 7

is simplified to O((logN)2). The upper bound here slightly improves on the result in Bastani

and Bayati (2020) by removing an additive term of O((log p)2). This result together with Theo-

rem 3 and Theorem 4 confirms that our proposed algorithm simultaneously enjoys near optimal

performance under both study scopes given in Section 2.1 and Section 6.

In addition, as the conditions of Theorem 3 are still satisfied here, the variable selection

consistency results of Theorem 6 for the proposed algorithm continue to hold under the margin.

Remark 6. For studying Algorithm 1 in the previous two sections, to help maintain the “good”

events of arm elimination and selection required by Propositions 2 and 3 with high probabilities,

the coefficients used in parameters τ0, δN , and ∆k involve q∗, an upper bound of maxi∈I qi at

the same order. We can also replace q∗ with a general upper bound s∗ (s∗ ≥ q∗) in setting these

coefficients; then the proofs remain largely the same, although as a mild compromise, in the regret

upper bounds of Theorems 3 and 7, q∗ should be replaced by s∗ as well. We note that the use of

a general upper bound s∗ in setting algorithm parameter coefficients for theoretical development

was also required in the related literature; for example, the regret bound in Theorem 7 becomes

O(ls2
∗ log pN logN), and the quadratic rate of s∗ matches the result of Bastani and Bayati (2020),

which required both Assumption 4 and Assumption 5. In addition, the regret lower bounds with

the margin (Goldenshluger and Zeevi, 2013) and without the margin (Theorem 4) are both in

respect of N only. It remains unclear whether s∗ can be unknown to an algorithm and whether a

matching bound for s∗ can be obtained. We leave these as open challenging questions for future

investigation.

7. Simulation

We next evaluate the performance of the proposed bandit algorithms on simulated data. For

brevity, the multi-stage type algorithms described in Section 3 are abbreviated as “MS”. We

considered IGA and lasso as the methods for coefficient estimation and denote the corresponding

bandit algorithms by MS-IGA and MS-lasso. For comparison, we used the MS algorithm without

any covariates (denoted by MS-simple), that is, the mean reward estimates in Algorithm 1

were replaced by the simple average of the accumulated response values of each arm. We also
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considered the bandit algorithm in Bastani and Bayati (2020) as a useful benchmark (denoted by

B-lasso). Due to the page limit, all simulation settings and results are relegated to Supplement D,

where we evaluate the performance of the proposed algorithms in Supplement D.1 and perform

a sensitivity analysis on parameter choice in Supplement D.2.

8. Real data evaluation

We next use two real data sets to evaluate the performance of the proposed algorithm. One

challenge naturally arises due to the incomplete nature of the data sets for the bandit setting:

unlike simulation, for each user visit, we only observe the user response to one selected arm.

To account for such limited feedback, the following two data sets require different evaluation

strategies, which will be described in their respective subsections. In addition, to achieve faster

computation for MS-IGA, we used the gradient-version of Algorithm 2 that replaces criterion (8)

with (9). The parameters were chosen the same way as discussed in Supplement D.2.

8.1. Warfarin dose assignment

Warfarin is a widely used anticoagulant, and its appropriate dosing is important for the pre-

vention of adverse events (International Warfarin Pharmacogenetics Consortium, 2009). The

warfarin data set (available from https://www.pharmgkb.org) contains 6922 patient records,

each of which has covariate information including demographic variables (e.g., gender, ethnicity,

age), clinical background variables (e.g., height, weight, comorbidities, medication, smoking),

and genotypic variables (CYP2C9 and VKORC1 genetic variants). We converted categorical

variables to corresponding binary indicators and replaced missing values by the respective sam-

ple means, which resulted in 127 covariates for each patient. In addition, the continuous outcome

variable was the stable therapeutic dose of warfarin, and we included 6037 patients for bandit

algorithm evaluation after removing records with missing dose values.

To generate bandit arms, we categorized the outcome variable by grouping it to l (l = 2, 3, 4)

categories, using the l-quantiles as breaking points (that is, we used median for l = 2, tertiles

for l = 3, and quartiles for l = 4) so that each arm (or category) in the data set corresponds to

approximately the same number of patients. Since the outcome variable is the doctor-prescribed

steady-state dose values that gave stable anticoagulation levels, if the therapeutic dose value fell

in the category of an arm i∗, we set this arm i∗ to be the patient’s optimal arm with reward

1, while all the other arms j (j 6= i∗) were considered sub-optimal with reward 0. This setting
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allowed us to evaluate any bandit algorithm: an algorithm incurs no regret if it chooses i∗ for the

patient, and incurs unit regret otherwise. We randomized the order of patient visits and ran the

bandit algorithms sequentially over the whole data set to record the final per-round regret rN ,

the sample size of each chosen arm ni, and the number of selected variables nVari (i = 1, · · · , l).

The experiment was repeated 100 times with permuted visit orders; the averaged results are

summarized in Figure 1 and Table 1.
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Figure 1: Boxplots of per-round regret from different bandit algorithms using warfarin dose data
with 100 random permutations. Left panel: 2 arms; middle panel: 3 arms; right panel: 4 arms.

Table 1: Averaged algorithm performance using warfarin dose data with 100 random permuta-
tions.

2 arms 3 arms 4 arms

Arm i 1 2 1 2 3 1 2 3 4

n̄i

MS-simple 4493 1544 2004 3225 808 1799 1825 1299 1114
B-lasso 3124 2913 2361 2621 1055 2334 1120 2073 510
MS-lasso 3025 3012 2242 1685 2110 2001 1047 1079 1910
MS-IGA 3041 2996 2194 1744 2099 1905 1123 1148 1861

nVari

B-lasso 28.45 27.66 29.29 23.47 15.92 29.40 25.37 23.12 7.41
MS-lasso 27.57 28.70 25.31 6.07 24.94 24.41 1.06 1.52 24.72
MS-IGA 16.17 20.81 15.77 4.73 19.55 16.59 5.60 4.51 19.58

r̄N

MS-simple 0.495 (0.001) 0.659 (0.001) 0.750 (0.001)
B-lasso 0.254 (0.003) 0.476 (0.005) 0.611 (0.004)
MS-lasso 0.267 (0.001) 0.474 (0.001) 0.623 (0.002)
MS-IGA 0.261 (0.001) 0.464 (0.001) 0.607 (0.001)

The boxplots from Figure 1 show that MS-simple without considering covariates yielded the

least favorable performance in all three scenarios, indicating the effectiveness of using covari-

ate information in choosing warfarin dose. Together with Table 1, we observe that MS-IGA

24



performed better than MS-lasso in these scenarios; MS-IGA also performed very competitively

compared to the benchmark and had reduced variability in per-round regret. In addition, the av-

eraged sample sizes of different arms appear more balanced for MS-IGA than for the benchmark,

particularly under the 3-arm and 4-arm scenarios; to some extent, this may reflect the less greedy

nature of the proposed algorithm. MS-IGA often selected fewer variables than the benchmark;

the exceptions come from arm 3 of the 3-arm scenario and arm 4 of the 4-arm scenario as these

arms were chosen less often than the other candidate arms by the benchmark.

8.2. News article recommendation

In the following, we use the Yahoo! front page user click log data set (version 2.0; Yahoo! Aca-

demic Relations, 2011; available from http://webscope.sandbox.yahoo.com). The complete

set includes about 28 million user visits to the news front page from October 2 to 16, 2011, and

each user visit record has 135 binary user covariates and a pool of candidate news articles. One

article is chosen uniformly at random from the pool and is displayed to the user; the binary

user response to the selected article is also recorded, with 1 for click and 0 for non-click. As the

candidate pools of news articles are dynamic and the popularity of a news article can change in

the long run, to account for these complications in algorithm evaluation, we adopted a screening

strategy similar to May et al. (2012) and only considered short-term performance using data

collected on the first day (October 2, 2011) with a three-article (id 563115, 563846, 565822) set

as the stationary candidate arms. Accordingly, we retained the user visit records where the can-

didate pool contained all three articles and the displayed article was one of them. The resulting

reduced data set contained 148,341 user visits for subsequent bandit algorithm evaluation.

Unlike the warfarin dose data, since a randomly selected news article is displayed at each

visit, we should not assume the optimal arm is known. Instead, we applied the unbiased offline

evaluation strategy developed in Li et al. (2010) to evaluate a bandit algorithm. That is, for each

user visit, if the arm chosen by the algorithm matched the displayed arm, we kept this visit as a

“valid” data point for algorithm use; otherwise, this visit record was ignored and not accessible by

the algorithm. Accordingly, each algorithm ran through the data set sequentially until N “valid”

data points were obtained with N = 30,000; the resulting “valid” data was used to calculate the

click through rate (CTR) as an unbiased evaluation of the bandit algorithm performance. We

ran the MS-simple, B-lasso, and MS-IGA algorithms over a random permutation of the reduced

data set and repeated the experiment 100 times. We used the averaged CTR from a complete
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random strategy (that chose arms uniformly at random) to generate each algorithm’s relative

CRT by computing the ratio between the algorithm’s CRT and that of the complete random

strategy. We then summarized the numerical results in Figure 2 and Table 2.
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Figure 2: Averaged relative CRT
with news article recommenda-
tion data.

Table 2: Averaged algorithm performance
with news article recommendation data.

MS-simple B-lasso MS-IGA MS-B-lasso

Avg. relative 1.040 0.924 1.070 1.070
CTRN (0.003) (0.003) (0.003) (0.003)

n̄i
arm 1 4358 29235 7373 6760
arm 2 7092 526 8960 8869
arm 3 18550 239 13667 14371

nVari
arm 1 - 8.34 4.78 9.27
arm 2 - 0.26 3.99 7.89
arm 3 - 0.04 7.38 8.76

Compared to the complete random strategy, we observe from the plots in Figure 2 that MS-

simple (without considering covariates) significantly improves the averaged CTR by about 4%.

MS-IGA further improves the averaged CTR, which can be attributed to the user covariates in

the reward modeling, while the benchmark surprisingly underperforms. The very unbalanced

arm sample sizes from the benchmark suggest that its observed result could be again due to the

more greedy nature of the benchmark designed to emphasize arm exploitation more than the

MS-type algorithms; as a numerical check, we then revised the benchmark by keeping the lasso

as the coefficient estimation method (with the same tuning parameter setting as B-lasso) but

adopting our MS-type algorithm instead (thus we denote it by MS-B-lasso). Interestingly, as

shown in Table 2, MS-B-lasso performs competitively in this case compared to MS-IGA, with

less sparse variable selection outcomes and reasonably balanced sample sizes.

9. Discussion

We study the bandit problem with high-dimensional covariates by designing an adaptive algo-

rithm with arm elimination and randomized allocation. The algorithm enjoys near minimax

optimal regret performance under both study scopes (without or with the margin), and demon-

strates adaptive performance by one unified algorithm. We also establish simultaneous coefficient

estimation and variable selection consistencies for the output of the proposed algorithm. The
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extensive numerical studies indicate that our proposal holds promise in real applications on per-

sonalized medical and online services. The previous discussion implicitly assumes that the total

number of visits N is known a priori; if N is unknown, the proposed approach can be extended

by employing the “doubling argument” (e.g., Cesa-Bianchi and Lugosi, 2006; Perchet and Rigol-

let, 2013). Although we only used IGA (as opposed to lasso) for Algorithm 1 to help achieve

variable selection consistency with improved coefficient estimation consistency, we expect that

popular shrinkage-type regression methods such as the adaptive lasso, SCAD, and MCP (Zou,

2006; Fan and Li, 2001; Zhang, 2010) could be other promising coefficient estimation candidates

to be integrated for the bandit problem algorithms; a comprehensive and rigorous investigation

on their theoretical and numerical properties could be of independent interest and is left for

future studies.
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Supplement to “Adaptive Algorithm for Multi-armed Bandit Problem with

High-dimensional Covariates”

A. Illustrative exposition with classical stochastic bandits

As an ancillary exposition, we use the classical setting of stochastic bandits (without considering

covariates) to help gain intuition for a general reader on useful elements of our proposal for the

bandits with high-dimensional covariates. Suppose an agent is faced with l (l ≥ 2) candidate

arms from a set I = {1, · · · , l}, where each arm represents a candidate decision. At each visit

point n, if arm i is chosen, then the reward Yi,n is revealed from some unknown distribution Fi.

The mean of Yi,n is denoted by µi. We allow the distribution to be sub-Gaussian, that is, there

is a constant σ (with known upper bound) such that E(ev(Yi,n−µi)) ≤ exp(v2σ2/2) for all i ∈ I

and v ∈ R; this subsumes binary outcomes as a special case.

With the aim of achieving the maximum (mean) reward, it would be ideal to always choose

the optimal arm i∗ = arg maxi∈I µi with the optimal mean reward µ∗ := µi∗ ; however, this

“oracle” strategy is impractical due to the lack of knowledge in µi. Define Λi = µ∗ − µi to be

the (unknown) mean reward difference between the optimal arm and arm i. Then if the agent

chooses an arm i other than the optimal arm, we say that a positive regret of Λi is incurred;

otherwise, the regret is 0. For technical convenience of the exposition, assume i∗ is unique and

Λi’s are upper bounded by a positive constant cΛ̄.

Given a finite number N of user visits, the agent must make sequential decisions: at each visit

point n (1 ≤ n ≤ N), the agent chooses an arm In and observes the reward YIn,n realized from

the unknown distribution FIn . For any sequential arm allocation rule, the arms I2, I3, · · · , In, · · ·

chosen can only depend on I1 and YI1,1, on (I1, I2) and (YI1,1, YI2,2), · · · , on (I1, · · · , In−1) and

(YI1,1, · · · , YIn−1,n−1), · · · respectively. We define the cumulative regret to be the sum of all the

regrets incurred within the N visits:

RN =
N∑
n=1

(µ∗ − µIn). (A.1)

The main goal of a stochastic bandit problem is to devise a sequential decision making algorithm

to achieve low cumulative regret.
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A.1. Multi-stage algorithm with arm elimination

Next, we use the classical stochastic bandit setting to design a multi-stage algorithm with arm

elimination and analyze how it performs in a stage-wise fashion. The multi-stage algorithm is

summarized in Algorithm 3. Specifically, we divide the N visits into multiple stages and define

Ñk to be the end visit point of stage k with k = 0, 1, · · · , K, where K denotes the last stage.

Step 1 is the algorithm initialization by stage k = 0 whose sample size is N0 := Ñ0 = lτ0, where

τ0 � logN . The set of candidate arms is Ŝ0 = I.

Step 2 performs arm elimination for the subsequent stage k (1 ≤ k ≤ K), and the stage

sample size is denoted by Nk := Ñk− Ñk−1; at stage k, given lk “promising” arms (to be defined

in (A.2)), we set Nk = lkτk and τk = cτk−1 with multiplicative factor c = 2 to simply double the

allocated sample size for each “promising” arm. The key parameters ζk’s (1 ≤ k ≤ K) are used

in the arm elimination step of each stage k. At the beginning of each stage k ≥ 1, the algorithm

generates the set Ŝk of “promising” arms so that Ŝk serves as the new set of candidate arms

for the current stage k: based on a data sample generated from the previous stage k − 1, define

µ̂i,k−1 to be the sample mean of arm i ∈ Ŝk−1; then the set of “promising” arms is defined as

Ŝk :=
{
i ∈ Ŝk−1 : max

j∈Ŝk−1

µ̂j,k−1 − µ̂i,k−1 ≤ ζk/2
}
, (A.2)

where we set ζk+1 = λ
√

log(N/τk,N )

τk
and τk,N = min(τk, N/2), and λ is some specified constant

with λ ≥ max(8σ,
√

2/ log 2); here, τk,N and τk are empirically equivalent, but we use τk,N in the

definition of ζk+1 due to technical convenience for the analysis in Section A.2 to ensure that ζk+1

remains well-defined for an arbitrarily large integer k ≥ 1. All the arms in Ŝk−1\Ŝk are literally

eliminated from stage k, and there remain lk = |Ŝk| arms.

Then in Step 3, the algorithm repeatedly cycles over the lk “promising” arms; the sample

size of each arm is τk. In practice, it is often preferable to choose arms using randomization, as

shown in Section 3.

A.2. Understanding algorithm performance

We next provide some analysis for Algorithm 3 in terms of the cumulative regret defined in (A.1).

Roughly speaking, the regret analysis lies in understanding the maintenance of “good” events as

follows.

Define arm sets M0 = {i ∈ I : Λi ≥ ζ1} and Mk = {i ∈ I : ζk+1 < Λi ≤ ζk} with

k ≥ 1. For each arm i (i 6= i∗), define ki to be the unique stage number associated with arm
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Algorithm 3 A multi-stage approach to classical stochastic bandits.

1. Set the initial stage k = 0 with sample size N0 = lτ0 and arm set Ŝ0 = I. Choose each
arm τ0 times. Then set the next stage k = 1.

2. At stage k, find the set Ŝk of “promising” arms by (A.2), that is,

Ŝk :=
{
i ∈ Ŝk−1 : max

j∈Ŝk−1

µ̂j,k−1 − µ̂i,k−1 ≤ ζk/2
}
,

where µ̂i,k−1 is the sample mean of arm i ∈ Ŝk−1 and ζk is a user-specified arm elimination
parameter.

3. For n = Nk−1+1, Nk−1+2, · · · , Nk, choose arms by repeatedly cycling over the “promising”
arms so that each of them is sampled τk = 2τk−1 times during stage k.

4. Set the next stage k = k + 1. Repeat steps 2–3 until the end of N visits.

i such that i ∈ Mki . Without loss of generality, we assume ordered arm indices such that

µ1 ≤ µ2 ≤ · · · ≤ µl = µ∗, which implies that k1 ≤ k2 ≤ · · · ≤ kl−1. Then for each (non-optimal)

arm i, define the “good” events

Gi,1 :={the optimal arm i∗ remains a “promising” arm in Ŝki+1 at stage ki + 1},

Gi,2 :={each arm j (for j ≤ i) is not a “promising” arm in Ŝkj+1 at stage kj + 1},

and Gi := Gi,1 ∩ Gi,2. Here, Gi is considered to be “good” events since any arm j (j ≤ i)

in ∪kik=0Mk is eliminated after Ñkj while the optimal arm i∗ remains “promising”. Then the

following two propositions provide insight into conditions for the maintenance of Gi,1 and Gi,2,

respectively. Define G0 to be the sample space and set k0 = 0; also define events

F̃i,k :=
{
|µ̂i,k − µi| < ζk/4 and |µ̂i∗,k − µ∗| < ζk/4

}
for i∗, i ∈ Ŝk; (A.3)

F̃i :=
{
|µ̂i,ki − µi| < ζk/4 and |µ̂i∗,ki − µ∗| < ζk/4

}
for i∗, i ∈ Ŝki . (A.4)

Proposition 7. Suppose Gi−1 holds. Given any arm j with i ≤ j < l, if at some stage k

(ki−1 + 1 ≤ k ≤ ki), both arm i∗ and arm j remain “promising” in Ŝk and the event F̃j,k

holds, then at stage k + 1, the optimal arm i∗ cannot be eliminated by arm j, that is, we have

µ̂j,k − µ̂i∗,k ≤ ζk/2.

Proposition 8. Suppose Gi−1 and Gi,1 hold. Then if arm i remains “promising” in Ŝki and the

event F̃i holds, then the event Gi,2 also holds.

The two propositions above demonstrate that understanding the estimation errors for the

mean rewards µi shown in (A.3) and (A.4) is important for analysis of “good” events. Using
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Bernstein-type inequalities for the estimation errors, the probability upper bounds for “bad”

events can be found as follows.

Proposition 9. Given arm i (i 6= i∗), we have P (Gi−1 ∩ Gc
i,1) ≤ 8(l − i)(τki − τki−1

)/N and

P (Gi−1 ∩Gi,1 ∩Gc
i,2) ≤ 2τki/N .

Then note that given any arm l0 with l0 < l, the whole sample space can be partitioned into

the events

Gi−1 ∩Gc
i = (Gi−1 ∩Gc

i,1) ∪ (Gi−1 ∩Gi,1 ∩Gc
i,2) and Gl0 for 1 ≤ i ≤ l0, (A.5)

which allows us to decompose the expected cumulative regret accordingly. Together with Propo-

sition 9 and the definition of ki in which ζki+1 ≤ Λi < ζki , additional algebra provides the

following cumulative regret under the classical setting. Recall that we assume Λi’s are upper

bounded by a constant cΛ̄.

Theorem 8. There exist positive constants c̄1, c̄2 and C > 4 such that for any arm l0 with l0 < l,

the cumulative regret satisfies

E(RN) ≤ c̄1

l0∑
i=1

log(NΛ2
i + C)

Λi

+
c̄2(l − l0) log(NΛ2

l0
+ C)

Λl0

+NΛl0+1, (A.6)

where c̄1 = 66C̃, c̄2 = 64C̃ with some positive constant C̃ ≥ 4λ2 + 2c2
Λ̄

.

The obtained regret bound of (A.6) matches that of the Successive Elimination algorithm

seminally proposed and rigorously analyzed in Perchet and Rigollet (2013). In particular, with

l0 = l − 1 and denoting Λ to be a lower bound of all Λi’s (i 6= i∗), we can see that E(RN) �
C̃l log(NΛ2+C)

Λ
, which shows the well-known logarithmic rate expected for classical stochastic ban-

dits (Lai and Robbins, 1985). Also, by choosing a proper l0 (e.g., Λl0 �
√
C̃l log l/N when such

an arm exists), we get the upper bound that E(RN) �
√
C̃(l log l)N . Algorithm 3 is similar

to the Improved UCB algorithm in Auer and Ortner (2010) but unbounded rewards along with

somewhat different stage-specific sampling sizes and elimination criterion are considered; a dif-

ferent analysis strategy is given here in order to illustrate the relevance and potential connection

with our analysis efforts for the challenging scenarios of high-dimensional covariates in the main

sections.

Remark 7. We have managed to organize and deliver the relevant concepts for analysis in Sec-

tion A by a mostly parallel fashion to their counterparts in Section 3 and Section 5. These

relevant concepts include the multi-stage algorithm structure with embedded arm elimination;
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the definition of “good” and “bad” events and the associated regret decomposition by partition-

ing the whole sample space with events (A.5) vs. (11); the connection between “good” events and

reward (function) estimation by Propositions 7 and 8 vs. Propositions 2 and 3; probability upper

bounds for “bad” events by Proposition 9 vs. Theorems 1 and 2; and assembly of cumulative

regret upper bounds in Theorem 8 vs. Theorems 3 and 7.

B. Proofs of main propositions and theorems

B.1. Proofs for Supplement A

Proof of Proposition 7. Since arms i∗ and j are both “promising” at stage k, it follows that

µ̂j,k − µ̂i∗,k = µ̂j,k − µj + µj − µ∗ + µ∗ − µ̂i∗,k ≤ ζk/4 + ζk/4 = ζk/2,

where the inequality follows by (A.3) and µ∗ ≥ µj. This completes the proof of Proposition 7.

Proof of Proposition 8. Under Gi,1, arm i∗ is retained in Ŝki+1. This implies that

µ̂i∗,ki − µ̂i,ki = µ̂i∗,ki − µ∗ + µ∗ − µi + µi − µ̂i,ki

> Λi − ζki+1/2 ≥ ζki+1 − ζki+1/2 = ζki+1/2,

where the first inequality follows by (A.4) and the second inequality follows by the definition of

Mki . Therefore, arm i is not a “promising” arm in Ŝkj+1 and Gi,2 holds.

Proof of Proposition 9. By Proposition 7 and the definition of Gi−1 and Gc
i,1, we have

P (Gi−1 ∩Gc
i,1) ≤ P

(
there is a stage k + 1 with ki−1 + 1 ≤ k ≤ ki such that the optimal arm i∗

is eliminated by some arm j with i ≤ j ≤ l − 1
)

≤
ki∑

k=ki−1+1

l−1∑
j=i

P (F̃ c
j,k) ≤

ki∑
k=ki−1+1

l−1∑
j=i

4τk
N

=
l−1∑
j=i

8τki
N

(1− 2−(ki−ki−1)) ≤
8(l − i)(τki − τki−1

)

N
,

where the second and third inequalities follow by our choice of λ ≥ 8σ, the union bound, and

Hoeffding’s inequality. Also, by Proposition 8, we have

P (Gi−1 ∩Gi,1 ∩Gc
i,2) ≤ P (F̃ c

i ) ≤ 4τki
N

.

This completes the proof of Proposition 9.
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Proof of Theorem 8. By the partition of the sample space, we note that

E(RN) = E
( l0∑
i=1

RNI(Gi−1 ∩Gc
i)
)

+ E
(
RNI(Gl0)

)
≤ E

( l0∑
i=1

(
NΛi + 2

i−1∑
j=1

τkjΛj

)
I(Gi−1 ∩Gc

i)
)

+ E
((
NΛl0+1 + 2

l0∑
j=1

τkjΛj

)
I(Gl0)

)
≤

l0∑
i=1

NΛiP (Gi−1 ∩Gc
i) +NΛl0+1 + 2

l0∑
j=1

τkjΛj

≤
l0∑
i=1

NΛi

(
P (Gi−1 ∩Gc

i,1) + P (Gi−1 ∩Gi,1 ∩Gc
i,2)
)

+NΛl0+1 + 2

l0∑
j=1

Λjτkj . (A.7)

Then by Proposition 9,
l0∑
i=1

NΛiP (Gi−1 ∩Gc
i,1) ≤

l0∑
i=1

8Λi

l−1∑
j=i

(τki − τki−1
) = 8

l−1∑
j=1

l0∧j∑
i=1

Λi(τki − τki−1
)

=8
l−1∑
j=1

l0∧j∑
i=1

(Λiτki − Λiτki−1
+ Λi+1τki − Λi+1τki) ≤ 8

l−1∑
j=1

l0∧j∑
i=1

(Λi − Λi+1)τki + 8
l−1∑
j=1

Λl0∧j+1τkl0∧j .

(A.8)

Also, by definition of the Mk’s and ζk’s, if ki > 0, it is not hard to see that there is a constant

C > 4 such that τki ≤ 4λ2

Λ2
i

log(NΛ2
i + C) for λ >

√
2/ log 2. If ki = 0, we note that τ0 � logN ,

Λi ≥ λ
√

log(N/τ0)
τ0

, and Λi is upper bounded. Consequently, there exists a positive constant

C̃ ≥ 4λ2 + 2c2
Λ̄

such that for all ki’s,

τki ≤
C̃

Λ2
i

log(NΛ2
i + C). (A.9)

By (A.9) and integration by parts, we obtain

l0∧j∑
i=1

(Λi − Λi+1)τki ≤ C̃

l0∧j∑
i=1

(Λi − Λi+1)
log(NΛ2

i + C)

Λ2
i

≤
4C̃ log(NΛ2

l0∧j + C)

Λl0∧j
.

Together with (A.8), the display above implies that

l0∑
i=1

NΛiP (Gi−1 ∩Gc
i,1) ≤ 64C̃

l−1∑
j=1

log(NΛ2
l0∧j + C)

Λl0∧j
. (A.10)

In addition, by Proposition 9, (A.9) and similar arguments from above, we have

l0∑
i=1

NΛiP (Gi−1 ∩Gi,1 ∩Gc
i,2) + 2

l0∑
j=1

Λjτkj ≤ 2C̃

l0∑
i=1

log(NΛ2
i + C)

Λi

. (A.11)

Then (A.7), (A.10), and (A.11) together imply that

E(RN) ≤ 66C̃

l0∑
i=1

log(NΛ2
i + C)

Λi

+
64C̃(l − l0) log(NΛ2

l0
+ C)

Λl0

+NΛl0+1.
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Setting c̄1 = 66C̃ and c̄2 = 64C̃ from above, we complete the proof of Theorem 8.

B.2. Proofs and propositions for Section 2.3

Proof of Proposition 1. Note that

P (|f1,N(X)− f2,N(X)| > δ̃N) ≤ P (
1
√
q

q∑
j=1

Xj >
Nα−α′ − 1

2
) + P (

1
√
q

q∑
j=1

Xj <
−Nα−α′ + 1

2
).

Then (4) holds immediately by Chebyshev’s inequality and Var( 1√
q

∑q
j=1 Xj) = 1

3
.

Proposition 10. For all the class members in P, Assumptions 1 and 2 are both satisfied such

that Iu = ∅, and P (X ∈ Ti) are bounded away from zero by a positive constant (i = 1, 2).

Proof of Proposition 10. For any member in P , it is clear that both arms are competitive arms;

thus Assumption 2 becomes void and trivially holds. It remains to verify Assumption 1: that

P (X ∈ Ti) is bounded away from zero (i = 1, 2). Define Z =
√

3
q

∑q
j=1Xj and z =

√
3

2
. Let

FZ(·) be the cumulative distribution function (CDF) of Z. Then

P (X ∈ T1) = P
( 2κ
√
q

q∑
j=1

Xj > ω
)
≥ P (Z > z) ≥ Φ(−z)− |FZ(−z)− Φ(−z)| > 1/10,

where Φ(·) is the CDF of the standard normal distribution, and the last inequality holds by a

uniform error bound for the Irwin–Hall distribution (Allasia, 1981; Marengo et al., 2017) with

an approximating normal distribution such that |FZ(−z) − Φ(−z)| ≤
√

3/q

20
. The lower bound

for P (X ∈ T2) can be derived similarly as above. Therefore, P (X ∈ Ti) are bounded away from

zero, which completes the proof of Proposition 10.

Proposition 11. For all the class members in P, Assumption 3 is satisfied such that the mini-

mum eigenvalues λmin(Σi) are bounded away from zero by a positive constant (i = 1, 2).

Proof of Proposition 11. To verify Assumption 3 for the class P , it is sufficient to examine Σi =

(XXT |X ∈ Ti) and verify that λmin(Σi) is bounded away from zero. For this purpose, we

can see that Σi has the block diagonal structure: the three diagonal block components of Σi

are 1, Σqi, and 1
3
Ip−q−1, where Σqi is a q × q matrix with a compound symmetry structure.

Specifically for Σqi, the diagonal elements are ai := E(X2
1 |X ∈ Ti) and the off-diagonal elements

are di := E(X1X2 |X ∈ Ti). Without loss of generality, assume that ω ≥ 0 and q > 2 (the proof

can be similarly done for ω < 0). Then note that

Σqi = (ai + (q − 1)di)P1q + (ai − di)(Iq − P1q),
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where 1q ∈ Rq is the one vector, and P1q = 1
q
1q1

T
q is the projection matrix onto the subspace

spanned by 1q. Therefore, eigenvalues of Σqi are ai − di and ai + (q − 1)di. Then it suffices to

find some positive constant lower bounds for a1− d1 and a2 + (q− 1)d2. For the former, we have

a1 − d1 =
1

2
E
(
(X1 −X2)2 |

q∑
j=1

Xj >

√
qω

2κ

)
≥

E
(
(X1 −X2)2I(X1 +X2 >

ω√
qκ

)
)
P
(∑q

j=3Xj >
(q−2)ω
2
√
qκ

)
2P
(∑q

j=1 Xj >
√
qω

2κ

)
≥
P
(

1√
q−2

∑q
j=3 Xj >

1
2

)
2P
(

1√
q

∑q
j=1 Xj >

1
2

) E
(
(X1 −X2)2I(X1 +X2 >

1√
3

)
)

≥
Φ(−

√
3

2
)− 1

20

2Φ(−
√

3
2

) + 1
10

E
(
(X1 −X2)2I(X1 +X2 >

1√
3

)
)
> 0,

where Φ(·) is the CDF of the standard normal distribution and the inequality of the last line

holds by the uniform error bound for the Irwin–Hall distribution with an approximating normal

distribution. For the latter, define Z =
√

3
q

∑q
j=1 Xj. Then we note that

a2 + (q − 1)d2 =
1

q
(qa2 + q(q − 1)d2) = E

(1

q
(

q∑
j=1

Xj)
2 |X ∈ T2

)
=

E
(
Z2I(Z <

√
3ω

2κ

)
3P
(
Z <

√
3ω

2κ

) ≥ E(Z2)

6Φ(
√

3
2

) + 3
10

=
1

6Φ(
√

3
2

) + 3
10

> 0.

The two displays above imply that λmin(Σqi) are bounded away from zero by a positive constant

for all members in the class P , and the proof of Proposition 11 is complete.

B.3. Proofs for Section 5.1

Proof of Proposition 2 (Arm pre-screening behavior). Given x ∈ X , define β̃∗ = β̃i∗(x) and β∗ =

βi∗(x). Given any arm i ∈ I,

xT β̃i − xT β̃∗ = xT (β̃i − βi) + xT (βi − β∗) + xT (β∗ − β̃∗) ≤ 2θb0 = δN .

In addition, given any arm i ∈ Iu, given τ0 = c0q
2
∗ log pN(N2ψ ∨ logN) where c0 ≥ 32θ2cρc

−2
2 , we

have

xT β̃∗ − xT β̃i = xT (β̃∗ − β∗) + xT (β∗ − βi) + xT (βi − β̃i)

>ζN − 2θb0 ≥
c2√

N2ψ ∨ logN
− 2θq∗

√
2cρ log pN/τ0 ≥ δN .

Therefore, I∗n ∈ S̃n and i /∈ S̃n for any i ∈ Iu. This completes the proof of Proposition 2.

Proof of Proposition 3 (Arm elimination behavior). Given stage k and Xn, define β̂∗ = β̂i∗(Xn),k
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and β∗ = βi∗(Xn). Then, under Uk, by Proposition 2, I∗n ∈ S̃n and for any i ∈ S̃n,

XT
n β̂i −XT

n β̂∗ = XT
n (β̂i,k − βi) + XT

n (βi − β∗) + XT
n (β∗ − β̂∗) ≤ 2θbk = ∆k.

Therefore, I∗n ∈ Ŝn. In addition, for every i ∈ Ŝn,

XT
nβ∗ −XT

nβi = XT
n (β∗ − β̂∗) + XT

n (β̂∗ − β̂i) + XT
n (β̂i − βi) ≤ 2θbk + ∆k = 2∆k.

This completes the proof of Proposition 3.

Proof of Theorem 2. We intend to perform an analysis on the sample collected at stage k that

corresponds to each arm i ∈ Io. Here we follow substeps (2a)–(2d) for objective (2) described in

Section 5.1.

(2a) Randomized allocation with “random” samples. By using the randomized allocation

scheme, we first account for the difficulty of analyzing the non-i.i.d. data by finding a random

sample with “known” covariate properties. Define lo = |Io|. Under Uk, by Proposition 3, for

any x ∈ Ti, we have i ∈ Ŝk(x). As a result, if x ∈ Ti, P (In = i |Xn = x, Uk) ≥ l−1
o . Then we

artificially divide arm i into two sub-arms ī and ĩ so that

P (Zn = 1 |Xn = x, Uk) = l−1
o and P (In = ĩ |Xn = x, Uk) = P (In = i |Xn = x, Uk)− l−1

o ,

where Zn = I(In = ī), that is, the probability of selecting arm ī is a constant given any x ∈ Ti.

Consequently, Xn |Xn ∈ Ti, Zn = 1 with Ñk−1 + 1 ≤ n ≤ Nk has the same distribution as

Xn |Xn ∈ Ti, and a random sample for arm ī with an identical covariate distribution (following

Xn |Xn ∈ Ti) can be obtained.

(2b) Sample size determination. To find the corresponding sample size, define J̄i,k = {Ñk−1 +

1 ≤ n ≤ Ñk : Xn ∈ Ti, Zn = 1}. Note that by Assumption 1, we have P (Xn ∈ Ti, Zn = 1|Uk) ≥

pil
−1
o , where pi = P (X ∈ Ti). Therefore, by an extended Bernstein inequality (e.g., Lemma 2 in

Qian and Yang, 2016a) and c0 ≥ 28c−2
1 , we have

P
(
|J̄i,k| ≤

Nkpil
−1
o

2

∣∣∣Uk) ≤ exp
(
−3Nkpil

−1
o

28

)
≤ 1

N3
. (A.12)

Denote Hk to be the event that for all i ∈ Io, |J̄i,k| > Nkpil
−1
o

2
. Then by (A.12), under Uk, we

have Hk with probability greater than 1− lo/N3.

(2c) Covariate “Design matrix” properties. Defining Ji,k = {Ñk−1 + 1 ≤ n ≤ Ñk : In = i}

and J̃i,k = Ji,k\J̄i,k, we next look at the design matrix properties. Define Xi,k, X̄i,k, and X̃i,k

to be the covariate design matrix associated with Ji,k, J̄i,k, and J̃i,k, respectively. Define Σ̂i,k =

XT
i,kXi,k/|Ji,k|, Σ̄i,k = X̄T

i,kX̄i,k/|J̄i,k|, and Σ̃i,k = X̃i,kX̃T
i,k/|J̃i,k|. Define σ̄i,k = |Σ̄i,k − Σi|∞ and

σ̄k = maxi∈Io σ̄i,k, where |A|∞ denotes the maximum element in A. Then by (10) in Bickel and
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Levina (2008) and a union bound, given ε > 0, there exist constants ca, cb > 0 such that

P (σ̄k > ε, Hk |Uk) ≤ lo max
i∈Io, j≥

Nkpil
−1
o

2l

P (σ̄i,k > ε | |J̄i,k| = j, Uk) ≤ calop
2 exp

(
−Nkc1ε

2

2cblo

)
.

Taking ε =
√

Cb log pN
Nk

with Cb ≥ 12cbc
−2
1 , we have

P (Dc
k ∩Hk |Uk) ≤ p−3

N , (A.13)

where Dk = {σ̄k ≤
√

Cb log pN
Nk

}. Also, note that since

Σ̂i,k =
|J̄i,k|
|Ji,k|

Σ̄i,k +
|J̃i,k|
|Ji,k|

Σ̃i,k =
|J̄i,k|
|Ji,k|

Σi +
|J̄i,k|
|Ji,k|

(Σ̄i,k − Σi) +
|J̃i,k|
|Jk|

Σ̃i,k,

we have under Uk, Hk, and Dk, for q ≤ q∗, with v ∈ Sp−1,

λ̃i,k(q) := min
‖v‖0≤q

vT Σ̂i,kv ≥
c2

1λi(q)

2
− σ̄k max

‖v‖0≤q
‖v‖2

1 ≥
c2

1c∗
2
− q∗

√
Cb log pN

Nk

≥ c2
1c∗
4
. (A.14)

(2d) Coefficient estimation upper bounds. To evaluate the coefficient estimation of β̂i,k+1,

note that given X = XAk,i , the elements in yAk,i are conditionally independent. Suppose Uk, Hk,

and Dk hold and |Ak,i| = m. Also assume that |V̂i| ≤ q∗ − qi and

‖Xβ̂i,k+1 − Xβi‖2
2 ≤ m

(
Q(β̂i,k+1)−Q(βi)

)
(A.15)

+ 2‖Xβ̂i,k+1 − Xβi‖2σ

√
cdqi + 2cf |V̂i\Vi| log p+ cf log(

2e

η
),

where η = 2e/N4. Then by Lemmas 9 and 10,

Q(β̂i,k+1)−Q(βi) ≤
8θ2ξk+1

λ̃i,k(q∗)
|Ji,τ |, (A.16)

where Ji,τ = {j ∈ Vi\V̂i : β2
i,j < τ} with τ = 128θ2ξk+1/λ̃i,k(q∗). Take c′r =

128θ2σ2cf
c41c∗ρ

(2 + 1
8θ2

).

Then by our choice of ξk+1 and Lemma 8,

2cfσ
2 log p|V̂i\Vi| ≤

mλ̃i,k(q∗)ρξk+1

16θ2
|V̂i\Vi| ≤

1

8
‖X(β̂i,k+1 − βi)‖2

2. (A.17)

Then, (A.15) and (A.16) give

1

2
‖Xβ̂i,k+1 − Xβi‖2

2

≤− 1

2
‖Xβ̂i,k+1 − Xβi‖2

2

+ 2‖Xβ̂i,k+1 − Xβi‖2σ

√
cdqi + 2cf |V̂i\Vi| log p+ cf log(

2e

η
) +

8θ2ξk+1m

λ̃i,k(q∗)
|Ji,τ |

≤2σ2
(
cdqi + cf log(

2e

η
)
)

+ 4σ2cf |V̂i\Vi| log p+
8θ2ξk+1m

λ̃i,k(q∗)
|Ji,τ |

≤2σ2
(
cdqi + cf log(

2e

η
)
)

+
1

4
‖Xβ̂i,k+1 − Xβi‖2

2 +
8θ2ξk+1m

λ̃i,k(q∗)
|Ji,τ |,
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where the last inequality follows by (A.17). The display above implies that

λ̃i,k(q∗)‖β̂i,k+1 − βi‖2
2 ≤

1

m
‖Xβ̂i,k+1 − Xβi‖2

2 ≤
8σ2

m

(
cdqi + cf log(

2e

η
)
)

+
8θ2ξk+1

λ̃i,k(q∗)
|Ji,τ |. (A.18)

Consequently,

‖β̂i,k+1 − βi‖2
2 ≤

64σ2

c4
1c∗Nk

(cdqi + 4cf logN) +
32θ2c′r log pN

c2
1c∗Nk

|Ji,τ | ≤
c̃ρ(qi + logN + qi,k log pN)

Nk

with c̃ρ = 64σ2

c41c∗
(cd + 4cf ) + 32θ2c′r

c21c∗
and c̃β = 512θ2c′r

c21c∗
. Lastly, by Lemmas 1 and 11, (A.12) and

(A.13), together with the Cauchy–Schwarz inequality, we complete the proof of Theorem 2.

Proof of Theorem 1. The proof is similar to (and simpler due to the forced sampling with random

sample) that of Theorem 2, and we can replace c′r with cr = 16θ2σ2cfc
−1
∗ ρ

−1(2+1/(8θ2)), c̃ρ with

cρ = 8σ2c−1
∗ (cd + 4cf ) + 8θ2crc

−1
∗ , and c̃β with cβ = 128θ2crc

−1
∗ to obtain Theorem 1. Thus we

omit the proof details.

B.4. Proofs for Section 5.2

Proof of Theorem 3. First, we describe regret decomposition. Recall that RN0 and RN1 are the

regrets accumulated in Stage 0 and the following stages, respectively. Then RN = RN0 + RN1.

In addition, we partition the sample space into the events as shown in (11):

U c
1 , Uk ∩ F c

k+1, UK for 1 ≤ k ≤ K − 1.

As a result, (12) follows that

RN1 = RN1I(U c
1) +

K−1∑
k=1

RN1I(Uk ∩ F c
k+1) +RN1I(UK) =: R0 +

K−1∑
k=1

Rk +RK .

Then we have RN0 ≤ 2θblτ0 = 2θbc0lq
2
∗ log pN(N2ψ ∨ logN).

Next, to provide bounds for Rk (1 ≤ k ≤ K), it is important to understand the properties

and implications regarding these associated events. As summarized in Section 5.1, we intend

to achieve two objectives: (1) Under “good” events, the regret can be properly upper bounded

via a connection with coefficient/reward estimation errors; (2) The (conditional) probabilities of

violating the “good” events are relatively small. To accomplish these two objectives, we further

divide the proof into multiple substeps. Specifically, for objective (1), the substeps include

studying (1a) arm pre-screening behavior; and (1b) arm elimination behavior. Steps (1a) and

(1b) are summarized in Propositions 2 and 3, respectively. For objective (2), the overall task is

summarized in Theorems 1 and 2.

After accomplishing these steps for the two objectives, by the results of Theorems 1 and 2

11



from objective (2), we obtain

E(R0) ≤ 2θbNP (U c
1) ≤ 2θbl/N2 and E(Rk) ≤ 2θbNP (Uk ∩ F c

k+1) ≤ 6θbl/N2 (A.19)

for 1 ≤ k ≤ K − 1. Also, by the results of Proposition 3 from objective (1), we have

RK ≤
K∑
k=1

Ñk∑
n=Ñk−1+1

(
f ∗(Xn)− fIn(Xn)

)
I(UK) ≤ 2θblτ0 +

K∑
k=2

Ñk∑
n=Ñk−1+1

4θbkI(Uk),

which implies that

E(RK) ≤ 2θbc0lq
2
∗ log pN(N2ψ ∨ logN) +

K∑
k=2

4θbkNk

≤ 2θbc0lq
2
∗ log pN(N2ψ ∨ logN) + 8θc̃1/2

ρ q∗
√
N log pN . (A.20)

By (12), (A.19), (A.20), and setting C21 = 4θbc0 + 6θb and C22 = 8θc̃
1/2
ρ , we obtain (13). Lastly,

noting that lq∗ logN = o(
√

N
log pN

) obviously holds with the additional conditions for (14), we

complete the proof of Theorem 3.

Proof of Theorem 4. We prove the lower bound through the two-armed bandit class P defined

in Section 2.3. For simplicity, we only consider q = 1 in the following proof since for q > 1, our

proof leads to basically the same lower bound through normal approximation for the Irwin–Hall

distribution. Also assume the random error εi,n of each arm i follows N(0, σ2). Given N , let κ be

some fixed value whose choice will be given later. We can then apply a Bayes average technique

adapted from Goldenshluger and Zeevi (2013). Specifically, assume that ω is randomly drawn

according to a continuous prior probability w, and let pw(·) denote the density function of w and

Ew(·) denote the expectation with respect to the prior w. Then we choose

pw(ω) =
1

κ
cos2

(πω
2κ

)
I(|ω| ≤ κ).

Given any admissible bandit strategy, let RN(Fω) be its cumulative regret for a class member

Fω in P . Let Zn be the set of past observations {Xj, Ij, YIj ,j}n−1
j=1 prior to the n-th visit, where

Xn = (1, Xn,1, · · · , Xn,p−1). Let Fn and F̃n be the σ-fields generated by Zn and (Zn,Xn),

12



respectively. Then we have

sup
Fω∈P

E
(
R(Fω)

)
≥ EwE

(
R(Fω)

)
≥EwE

( N∑
n=1

|2κXn,1 − ω|
(
I(2κXn,1 > ω, In = 2) + I(2κXn,1 < ω, In = 1)

))
≥E

( N∑
n=1

(
Ew

(
(2κXn,1 − ω)I(2κXn,1 > ω) | F̃n

)
I(In = 2)

− Ew

(
(2κXn,1 − ω)I(2κXn,1 < ω) | F̃n

)
I(In = 1)

))
.

By plugging in the decision rule that chooses arm In = 2 if Ew(2κXn,1 − ω | F̃n) ≤ 0 (that is,

ω̂n ≥ 2κXn,1 with ω̂n = Ew(ω | Fn)) and arm In = 1 otherwise to minimize the display above, we

have

sup
Fω∈P

E
(
R(Fω)

)
≥ E

( N∑
n=1

(
Ew

(
(2κXn,1 − ω)I(ω < 2κXn,1 ≤ ω̂n) | F̃n

)
− Ew

(
(2κXn,1 − ω)I(ω̂n < 2κXn,1 ≤ ω) | F̃n

)))
≥ 1

8κ
E
( N∑
n=1

Ew

(
(ω̂n − ω)2 | Fn

))
=

1

8κ

N∑
n=1

EwE(ω̂n − ω)2

≥ 1

8κ

N∑
n=1

1

(n− 1)σ−2 + I(w)
,

where the last inequality follows by the van Trees inequality (Gill and Levit, 1995; Goldenshluger

and Zeevi, 2013), and I(w) = Ew(∂ log pw(ω)
∂ω

)2 = π2/κ2. Therefore, taking κ = σN−1/2, we obtain

sup
Fω∈P

E
(
R(Fω)

)
≥ 1

8

N∑
n=1

σ2

nκ+ π2σ2/κ
≥ C3

√
N,

where C3 = σ
8(1+π2)

. This completes the proof of Theorem 4.

Proof of Proposition 4. First, note by the union bounds and sub-Gaussian conditions that for

any 1 ≤ n ≤ N ,

E
(
‖Xn‖∞I(‖Xn‖∞ ≥ cxσX

√
log pN)

)
≤
∫ ∞

0

P
(
‖Xn‖∞I(‖Xn‖∞ ≥ cxσX

√
log pN) > ε

)
dε

≤ cxσX
√

log pNP (‖Xn‖∞ > cxσX
√

log pN) +

∫ ∞
cxσX

√
log pN

P (‖Xn‖∞ > ε)dε

≤ 2cxσXp
−3
N

√
log pN + 2p

∫ ∞
cxσX

√
log pN

exp
(
− ε2

2σ2
X

)
dε ≤ 4cxσXp

−3
N

√
log pN .

13



Also note that

P (Ac) ≤
N∑
n=1

P (‖Xn‖∞ ≥ cxσX
√

log pN) ≤ p−2
N .

The two displays above imply that

E
(
‖Xn‖∞I(Ac)

)
≤E

(
‖Xn‖∞I(Ac, ‖Xn‖∞ < cxσX

√
log pN)

)
+ E

(
‖Xn‖∞I(Ac, ‖Xn‖∞ ≥ cxσX

√
log pN)

)
≤ cxσX

√
log pNP (Ac) + E

(
‖Xn‖∞I(‖Xn‖∞ ≥ cxσX

√
log pN)

)
≤ 2cxσXp

−2
N

√
log pN .

Consequently, we obtain

E
(
RNI(Ac)

)
≤ 2b

N∑
n=1

E
(
‖Xn‖∞I(Ac)

)
≤ 4bcxσXp

−1
N

√
log pN ,

which completes the proof of Proposition 4.

B.5. Proofs for Section 5.3

Proof of Theorem 5. Suppose that IN 6= Io. This implies that either event A or B occurs, where

A = {∃n ≥ Ñk−2 + 1 such that i ∈ S̃n for some i ∈ Iu},

B = {∃ i ∈ Io such that ∀Ñk−2 + 1 ≤ n ≤ Ñk−1, i /∈ Ŝn}.

By Proposition 2,

P (A) ≤
N∑

n=Ñk−2+1

P (i ∈ S̃n for some i ∈ Iu) ≤ NK−1P (U c
K−1) +NKP (U c

K). (A.21)

In addition, by induction, we have P (U c
k) ≤ k/N2 for all k (1 ≤ k ≤ K). Indeed, it is known by

Theorem 1 that P (U c
1) ≤ 1/N2. If we suppose P (U c

k) ≤ k/N2 holds, then by the arguments in

the proof of Theorem 2, we have

P (U c
k+1) ≤ P (U c

k) + P (Uk ∩Hc
k) + P (Uk ∩Hk ∩Dc

k) + P (Uk ∩Hk ∩Dk ∩ F c
k+1)

≤ k/N2 + l/N3 + 1/p3
N + 4el/N4 ≤ k + 1

N2
. (A.22)

Therefore, (A.21) and (A.22) show that P (A) ≤ 2K/N . Also note that

P (B) ≤ P (U c
K−1) + P (UK−1 ∩Hc

K−1) ≤ (K − 1)/N2 + l/N3 ≤ K/N.

Consequently, P (IN 6= Io) ≤ P (A) + P (B) ≤ 3K
N
→ 0 as N → ∞. For coefficient estimation,

the consistency is the immediate result of (A.18) for Theorem 2 and (A.22), and we complete

the proof of Theorem 5.
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Proof of Theorem 6. We only show variable selection consistency, as coefficient consistency is an

immediate result of Theorem 5. Following the proof of Theorem 2, assume that UK , DK , and

HK hold, and suppose |AK,i| = m. Also for an arm i ∈ Io, assume event Wi holds in which

|V̂i| < q∗−qi. Let X = XAk,i and y = yAk,i . Define G′i = V̂i∪Vi and β̂G′i = argminsupp(β)=G′i
Q(β),

and β̂i,0 = argminsupp(β)=Vi Q(β). If ‖X(β̂G′i − β̂i,0)‖2 ≤ 3‖X(β̂i − β̂G′i)‖2, then by Lemmas 8

and 10,

ρξK λ̃i,K(q∗)

2θ2
|V̂i\Vi| ≤

1

m
‖X(β̂i − β̂i,0)‖2

2 ≤
64θ2ξK

λ̃i,K(q∗)
|Vi\V̂i| ≤

128θ2ξK

λ̃i,K(q∗)
|Ji,τ |,

where Ji,τ = {j ∈ Vi\V̂i : β2
i,j < τ} with τ = 4c̃β log pN/N . The display above implies that

|Vi\V̂i| ≤ 2|Ji,τ | and

|V̂i\Vi| ≤
256θ4

ρλ̃i,K(q∗)2
|Ji,τ | ≤

256θ4

ρc4
1c

2
∗/16
|Ji,τ | =: cθ|Ji,τ |.

On the other hand, if ‖X(β̂G′i − β̂i,0)‖2 > 3‖X(β̂i − β̂G′i)‖2, then by Lemmas 8 and 9,

ρξK λ̃i,K(q∗)

4θ2
|V̂i\Vi| ≤

1

2m
‖X(β̂i − β̂i,0)‖2

2 ≤ Q(β̂i,0)−Q(β̂i). (A.23)

Also, suppose it holds that given η = 2e/N4,

Q(β̂i,0)−Q(β̂i) ≤ σ2m−1
(
2cf |V̂i\Vi| log p+ cf log(

2e

η
)
)
. (A.24)

The two displays above imply that

|V̂i\Vi| ≤
cf log(2e

η
)

ρmξK λ̃i,K(q∗)

4θ2σ2 − 2cf log p
<

logN

log pN
≤ 1, (A.25)

that is, |V̂i\Vi| = 0. Then by (A.23) and (A.24), we have

1

2m
‖X(β̂i − β̂i,0)‖2

2 ≤
cfσ

2

m
log(

2e

η
). (A.26)

Also suppose that

‖β̂0 − β0‖∞ ≤ σ

√
2

mλ̃i,K(q∗)
log(

2qi
η

). (A.27)

Note that

1

m
‖X(β̂i,0 − β̂i)‖2

2 ≥ λ̃i,K(q∗)‖β̂i,0,Vi\V̂i‖
2
2 ≥ λ̃i,K(q∗)

(1

2
‖βi,Vi\V̂i‖

2
2 − ‖β̂i,0,Vi\V̂i − βi,Vi\V̂i‖

2
2

)
≥ λ̃i,K(q∗)

(1

2
‖βi,Vi\V̂i‖

2
2 − |Vi\V̂i|‖β̂i,0 − βi‖2

∞
)
.

If |G0\G(r∗)| 6= 0, the display above together with (A.26) and (A.27) implies that

1

2
λ̃i,K(q∗)‖βi,Vi\V̂i‖

2
2 ≤

σ2

m

(
2cf log(

2e

η
) + 2 log(

2qi
η

)
)
|Vi\V̂i| ≤

λ̃i,K(q∗)ρξK
θ2

|Vi\V̂i|,
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where the last inequality holds as was derived for (A.25). Also note that

1

2
λ̃i,K(q∗)‖βi,Vi\V̂i‖

2
2 ≥

1

2
λ̃i,K(q∗)τ |J ′i,τ |,

where J ′i,τ = {j ∈ Vi\V̂i : β2
i,j ≥ τ}. The two displays above together with log p = o(N) show that

|J ′i,τ | ≤
2ρξK
τθ2
|Vi\V̂i| ≤ 1

2
|Vi\V̂i|, which implies that |Vi\V̂i| ≤ 2|Ji,τ |. Therefore, by Lemmas 2, 11

and the known probability bound for (A.27), from the beta-min condition, we have

P (V̂i 6= Vi) = P (IN 6= Io) + P (IN = Io, |V̂i\Vi| > cθ|Ji,τ | or |Vi\V̂i| ≤ 2|Ji,τ |)

≤3K/N + P (U c
K) + P (UK ∩Hc

K) + P (UK ∩HK ∩Dc
K) + P (UK ∩HK ∩DK ∩W c

i ) + 4e/N4

≤3K/N + (K + 1)/N2 ≤ 4K/N,

which approaches 0 as N →∞. We complete the proof of Theorem 6.

B.6. Proofs for Section 6

Proof of Proposition 5. We prove the first statement by contradiction. Suppose Assumption 5

does not hold. Then for every ε, c > 0, there are some members in the considered bandit class

and some i ∈ Io such that

P
(
fi(X)−max

j 6=i
fj(X) > ε

)
< c.

Together with Assumption 4, this implies that∑
ĩ 6=i

P
(
fĩ(X)−max

j 6=ĩ
fj(X) > 0

)
≥
∑
ĩ 6=i

P
(
fĩ(X)−max

j 6=ĩ
fj(X) > ε

)
> 1− Lε− c.

Consequently, P
(
fi(X) − maxj 6=i fj(X) > 0

)
< Lε + c. Then with ε = c/L, this implies that

for every c > 0, there are some members and some i ∈ Io such that P
(
fi(X)−maxj 6=i fj(X) >

0
)
< 2c, which is in contradiction with Assumption 1. The second statement holds trivially by

noting that under Assumption 5, for any i ∈ Io, P (X ∈ Ti) ≥ P (X ∈ T̃i) > c̃1. The proof is

complete.

Proof of Proposition 6. The first statement is simply the reiteration of Propositions 10 and 11.

For the second statement, it is not hard to see that Assumption 4 and Assumption 5 are in direct

contradiction with the statements (4) and (5) of Proposition 1, respectively. This completes the

proof of Proposition 6.

Proof of Theorem 7. The proof of Theorem 7 follows the same proof structure of Theorem 3; we

need only modify the proof for the regret upper bound of RK . Specifically, by Proposition 3, we
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have

RK ≤
K∑
k=1

Ñk∑
n=Ñk−1+1

(
f ∗(Xn)− fIn(Xn)

)
I(UK)

≤ 2θblτ0 +
K∑
k=2

Ñk∑
n=Ñk−1+1

4θbkI(Uk, f
∗(Xn)− f ](Xn) ≤ 4θbk).

Then, by Assumption 4 and Assumption 6,

E(RK) ≤ 2θbc0lq
2
∗ log pN logN +

K∑
k=2

16θ2b2
kNk ≤ 2θbc0lq

2
∗ log pN logN + 32θ2c̃ρKq

2
∗ log pN .

(A.28)

By (12), (A.19), and (A.28) and setting C̃2 = 4θbc0 + 6θb + 32θ2c̃ρ, we obtain the conclusion of

Theorem 7.

C. Ancillary lemmas and proofs

To perform an analysis for β̂i,k+1, we require some ancillary lemmas. For notational brevity, we

omit the subscripts for arm i and stage k + 1. Using the definitions in the proof of Theorem 2,

we assume throughout this section that Uk, Dk, and Hk hold, with sample size m := |Ji,k|

(m > Nkpil
−1
o /2). Given variable set G ⊂ {1, · · · , p}, without confusion, the true coefficient is

β0 := βi, the true set of relevant variables is G0 := Vi = supp(β0), least square estimation on

set G is β̂G := argminsupp(β)∈GQ(β), β̂0 = β̂G0
, λ̃(s) := λ̃i,k(s), and ξ := ξk+1, where Q(β) is

defined in Section 4 with response y := yAk,i and covariate matrix X := XAk,i .

Due to key arguments for the design matrix under the randomized allocation scheme, we are

able to prove Lemmas 1–4 in a similar way to that of Lemmas C3, C4, B1, and B2 in Zhang

(2011). Their proofs are thus omitted. Let ε = (ε̃1, · · · , ε̃m)T be the random error vector, which

has conditionally independent elements given X.

Lemma 1. With probability greater than 1 − η, there exist constants cd, cf > 0 (e.g., cd =

7.4, cf = 2.7) such that given X, for all G ⊂ {1, · · · , p},

‖Xβ̂G−Xβ0‖2
2 ≤ m[Q(β̂G)−Q(β0)] + 2‖Xβ̂G−Xβ0‖2σ

√
cd|G0|+ 2cf |G\G0| log p+ cf log(

2e

η
).

Lemma 2. With probability greater than 1− η, given X, for all G ⊂ {1, · · · , p},

Q(β̂0)−Q(β̂G∪G0
) ≤ σ2m−1

(
2cf |G\G0| log p+ cf log(

2e

η
)
)
.
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Lemma 3. (Forward Step) Given G ⊂ {1, · · · , p}, define G′ = G ∪G0 and s = |G′|. Then

Q(β̂G)− min
α∈R, j∈G0\G

Q(β̂G + αej) ≥
λ̃(s)

4θ2|G′\G|

( 1

m
‖X(β̂G − β̂G′)‖2

2 +Q(β̂G)−Q(β̂G′)
)
.

Lemma 4. (Backward Step) Given G ⊂ {1, · · · , p} and β̂G = (β̂G,1, · · · , β̂G,p)T , we have

min
j∈G

Q(β̂G − β̂G,jej)−Q(β̂G) ≤ θ2

|G\G0|
∑

j∈G\G0

β̂2
G,j.

The following lemmas are related to IGA estimator properties at a certain iteration r with

selected variable index set G(r), immediately after the completion of Step 2 in Algorithm 2, and

are derived for Lemma 11. Let G(r−1) be the obtained index set at the end of the previous

iteration. Define s = |G(r) ∪G0|.

Lemma 5. Suppose the current iteration has no backward elimination. Then

1

m
‖X(β̂G(r) − β0)‖2

2 ≥
ρξλ̃(s)

2θ2
|G(r)\G0|.

Proof of Lemma 5. Let G′ = G(r) ∪G0. Then it is not hard to see that since G(r−1) ⊂ G(r) ⊂ G′,

Q(β̂G(r−1))−Q(β̂G′) =
1

m
‖X(β̂G′ − β̂G(r−1))‖2

2,

Q(β̂G(r))−Q(β̂G′) =
1

m
‖X(β̂G′ − β̂G(r))‖2

2. (A.29)

Also, note from Step 2 that

ξ(r) = Q(β̂G(r−1))−Q(β̂G(r))

≥ Q(β̂G(r−1))−min
α∈R

Q(β̂G(r−1) + αej) for some j ∈ Gρ

≥ ρ
(
Q(β̂G(r−1))− min

j /∈G(r−1),α∈R
Q(β̂G(r−1) + αej)

)
= ρφ(r−1) (A.30)

≥ ρλ̃(s)

4θ2|G′\G(r−1)|
(
Q(β̂G(r))−Q(β̂G′)

)
=

ρλ̃(s)

4θ2|G′\G(r−1)|m
‖X(β̂G(r−1) − β̂G′)‖2

2, (A.31)

where the last inequality holds by Lemma 3 and (A.29), and is used later by Lemma 6.

By assumption that there is no backward elimination at the current iteration, by Lemma 4,

ξ(r)

2
≤ min

j∈G(r)
Q(β̂G(r) − β̂G(r),jej)−Q(β̂G(r)) ≤

θ2

|G(r)\G0|
∑

j∈G(r)\G0

β̂2
G(r),j =:

θ2

|G(r)\G0|
‖β̂

(r)

G(r)\G0
‖2

2.

(A.32)

Then, by (A.32) and (A.30), we have

1

m
‖X(β̂G(r)−β0)‖2

2 ≥ λ̃(s)‖β̂G(r)−β0‖2
2 ≥ λ̃(s)‖β̂

(r)

G(r)\G0
‖2

2 ≥
λ̃(s)ξ(r)

2θ2
|G(r)\G0| ≥

ρξλ̃(s)

2θ2
|G(r)\G0|.

This completes the proof of Lemma 5.

18



Lemma 6. Under the same conditions as Lemma 5, if λ̃(s)2 ≥ 8θ4γ2|G′\G(r−1)|
|G(r)\G0|

with some γ ≥ 2,

then

(
1 + 2γ−1

m
)‖X(β̂G(r) − β0)‖2

2 ≤ Q(β0)−Q(β̂G(r)).

Proof of Lemma 6. By (A.31) and (A.32),

2θ2

|G(r)\G0|
‖β̂

(r)

G(r)\G0
‖2

2 ≥
ρλ̃(s)

4θ2m|G′\G(r−1)|
‖X(β̂G(r) − β̂G′)‖2

2 ≥
ρλ̃(s)2

4θ2m|G′\G(r−1)|
‖β̂G(r) − β̂G′‖2

2,

which implies by the value of γ that

‖β̂
(r)

G(r)\G0
‖2 ≥ γ‖β̂G(r) − β̂G′‖2 ≥ γ(‖β̂

(r)

G(r)\G0
‖2 − ‖β̂

′
G(r)\G0

‖2),

where β̂
(r)

= β̂G(r) and β̂
′
= β̂G′ . The two displays above imply that

‖β̂
′
G(r)\G0

‖2 ≥ (1− γ−1)‖β̂
(r)

G(r)\G0
‖2 (A.33)

≥ (1− γ−1)

√
ρλ̃(s)

4θ2m|G′\G(r−1)|
|G(k)\G0|

2θ2
‖X(β̂G(r) − β̂G′)‖2

≥ (γ − 1)

√
1

λ̃(s)m
‖X(β̂G(r) − β̂G′)‖2.

Therefore,

1

m
‖X(β̂G′ − β0)‖2

2 ≥ λ̃(s)‖β̂G′ − β0‖2
2 ≥ λ̃(s)‖β̂

′
G′\G0

‖2
2 ≥

(γ − 1)2

m
‖X(β̂G(r) − β̂G′)‖2

2, (A.34)

which implies that

‖X(β̂G(r) − β0)‖2 ≥ (γ − 1)(‖X(β̂G(r) − β0)‖2 − ‖X(β̂G′ − β0)‖2)

and

‖X(β̂G(r) − β0)‖2 ≤
γ

γ − 1
‖X(β̂G′ − β0)‖2. (A.35)

Therefore,

Q(β0)−Q(β̂G(r)) =Q(β0)−Q(β̂G′) +Q(β̂G′)−Q(β̂G(r))

=
1

m
‖X(β̂G′ − β0)‖2

2 −
1

m
‖X(β̂G′ − β̂G(r))‖2

2

≥ 1

m
‖X(β̂G′ − β0)‖2

2 −
1

(γ − 1)2m
‖X(β̂G′ − β0)‖2

2

≥(1 +
2

γ
)‖X(β̂G(r) − β0)‖2

2,

where the first inequality follows by (A.34) and the last inequality follows by (A.35). This

completes the proof of Lemma 6.
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Lemma 7. Under the same conditions as Lemma 6,

Q(β̂0)−Q(β̂G′) ≥
λ̃(s)(1− γ−1)2ρξ|G(r)\G0|

2θ2
.

Proof of Lemma 7. We can see that

Q(β̂0)−Q(β̂G′) =
1

m
‖X(β̂G′ − β̂0)‖2

2 ≥ λ̃(s)‖β̂
′
G(r)\G0

‖2
2

≥ (1− γ−1)2λ̃(s)‖β̂
(r)

G(r)\G0
‖2

2 ≥
λ̃(s)(1− γ−1)2ρξ|G(r)\G0|

2θ2
,

where the second to last inequality follows by (A.33) and the last inequality follows by (A.30)

and (A.32). This completes the proof of Lemma 7.

In Lemmas 8–10, we assume that IGA obtains the variable index set G(r) when it terminates.

Let s = |G(r) ∪G0|. Note that these lemmas still hold if we replace β0 by β̂0.

Lemma 8. When IGA terminates, we have

1

m
‖X(β̂G(r) − β0)‖2

2 ≥
ρξλ̃(s)

2θ2
|G(r)\G0|. (A.36)

Proof of Lemma 8. By the backward termination condition and (A.30), we know that

min
j∈G(r)

Q(β̂G(r) − β̂(r)
j ej)−Q(β̂G(r)) > 0.5ξ(r) ≥ 0.5ρξ,

where β̂
(r)
j is the j-th element of β̂

(r)
= β̂G(r) . Together with Lemma 4, we have

θ2‖β̂
(r)

G(r)\G0
‖2

2 ≥ 0.5ρξ|G(r)\G0|.

Then, we obtain (A.36) by noting that

1

m
‖X(β̂G(r) − β0)‖2

2 ≥ λ̃(s)‖β̂G(r) − β0‖2
2 ≥ λ̃(s)‖β̂

(r)

G(r)\G0
‖2

2.

Lemma 9. When IGA terminates, if ‖X(β̂G′ − β0)‖2 > 3‖X(β̂G(r) − β̂G′)‖2, then

Q(β0)−Q(β̂G(r)) ≥
1

2m
‖X(β̂G(r) − β0)‖2

2.

Proof of Lemma 9. This lemma is proved by noting that

Q(β0)−Q(β̂G(r)) = Q(β0)−Q(β̂G′)−
(
Q(β̂G(r))−Q(β̂G′)

)
=

1

m
‖X(β̂G′ − β0)‖2

2 −
1

m
‖X(β̂G(r) −Q(β̂G′))‖2

2

≥ 1

m
‖X(β̂G′ − β0)‖2

2 −
1

9m
‖X(β̂G′ − β0)‖2

2 ≥
1

2m
‖X(β̂G(r) − β0)‖2

2,
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where the last inequality follows by

‖X(β̂G(r) − β0)‖2 ≤ ‖X(β̂G(r) − β̂G′)‖2 + ‖X(β̂G′ − β0)‖2

≤1

3
‖X(β̂G′ − β0)‖2 + ‖X(β̂G′ − β0)‖2 ≤

4

3
‖X(β̂G′ − β0)‖2.

Lemma 10. When IGA terminates, if

‖X(β̂G′ − β0)‖2 < 3‖X(β̂G(r) − β̂G′)‖2,

then

1

m
‖X(β̂G(r) − β0)‖2

2 ≤
64θ2ξ

λ̃(s)
|G0\G(r)| ≤ 128θ2ξ

λ̃(s)
|J0,τ |,

Q(β̂G(r))−Q(β0) ≤ 4θ2ξ

λ̃(s)
|G0\G(r)| ≤ 8θ2ξ

λ̃(s)
|J0,τ |,

where J0,τ = {j ∈ G0\G(r) : β2
0,j < τ} with τ = 128θ2ξ/λ̃(s)2.

Proof of Lemma 10. Note that by the termination condition and Lemma 3,

ξ ≥ Q(β̂G(r))− min
α∈R, j∈G0\G(r)

Q(β̂G(r) + αej) ≥
λ̃(s)

4θ2|G0\G(r)|m
‖X(β̂G(r) − β̂G′)‖2

2, (A.37)

which implies that

‖X(β̂G(r) − β0)‖2
2 ≤

(
‖X(β̂G(r) − β̂G′)‖2 + ‖X(β̂G′ − β0)‖2

)2

≤ 16‖X(β̂G(r) − β̂G′)‖2
2 ≤

64θ2mξ

λ̃(s)
|G0\G(r)|. (A.38)

Also, note that

Q(β̂G(r))−Q(β0) ≤ Q(β̂G(r))−Q(β̂G′) =
1

m
‖X(β̂G(r) − β̂G′)‖2

2 ≤
4θ2ξ

λ̃(s)
|G0\G(r)|, (A.39)

where the last inequality follows by (A.37). In addition,

1

m
‖X(β̂G(r) − β0)‖2

2 ≥ λ̃(s)‖β̂G(r) − β0‖2
2 ≥ λ̃(s)‖β0,G0\G(r)‖2

2 ≥ λ̃(s)τ |J ′0,τ |,

where J ′0,τ = {j ∈ G0\G(r) : β2
0,j ≥ τ} with τ = 128θ2ξ/λ̃(s)2. The displays above together with

(A.38) imply that 64θ2mξ

λ̃(s)
|G0\G(r)| ≥ λ̃(s)τ |J ′0,τ |. Then, by our choice of τ , we have

|G0\G(r)| ≥ 2|J ′0,τ | = 2(|G0\G(r)| − |J0,τ |).

Consequently, |G0\G(r)| ≤ 2J0,τ . Together with (A.38) and (A.39), we obtain the conclusions of

this lemma.

The following lemma provides an upper bound on the size of the selected variables. Let

q = qi.
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Lemma 11. Assume that IGA terminates with the variable index set G(r∗) and we set ξ ≥
16θ2σ2cf

mλ̃(q∗)ρ
(2 log p+ log(2e/η)

32θ2q
). Given X, with probability greater than 1− η, we have r∗ < q∗ − q.

Proof of Lemma 11. Suppose that we have r∗ ≥ q∗ − q. Then assume that r = q∗ − q is first

recorded. Then note that there is no backward step in the previous step. Let G′ = G(r) ∩ G0.

We seek to verify that the conditions of Lemma 7 hold. Indeed, we can see that

32θ2|G′\G(r−1)| ≤ 32θ2(q + 1) ≤ λ̃(q∗)
2(q∗ − 2q) ≤ λ̃(q∗)

2|G(r)\G0|, (A.40)

where the second inequality holds because under (A.14),

λ̃(q∗)
2 ≥ c4

1c
2
∗

16
≥ 64θ2

(C1 − 2)
≥ 32θ2(q + 1)

(C1 − 2)q
, (A.41)

with some large enough constant C1 > 2. Then we can apply Lemma 6 to obtain

Q(β̂G′) ≤ Q(β̂0)− λ̃(q∗)ρξ|G(r)\G0|
8θ2

. (A.42)

Also, suppose that

Q(β̂0)−Q(β̂G′) ≤
σ2

m

(
2cf |G(r)\G0| log p+ cf log(

2e

η
)
)

(A.43)

holds. Then (A.42) and (A.43) imply that

ξ ≤ 8θ2σ2

mλ̃(q∗)ρ

(
2cf log p+

cf
|G(r)\G0|

log(
2e

η
)
)
≤ 8θ2σ2

mλ̃(q∗)ρ

(
2cf log p+

cf
32θ2(q + 1)

log(
2e

η
)
)
,

where the last inequality follows by (A.40). However, this contradicts our choice of ξ, and thus

(A.43) does not hold. Together with Lemma 2, we complete the proof of Lemma 11.

D. Simulation

In this section, we evaluate the performance of the proposed bandit algorithms on simulated data.

We compare the performance of different bandit algorithms in Supplement D.1 and perform a

sensitivity analysis on parameter choice in Supplement D.2.

D.1. Performance with different algorithms

For brevity, the multi-stage type algorithms described in Section 3 are abbreviated as “MS”.

Throughout the following numerical evaluation, we set the initial sampling size τ0 = 20 and set

the arm screening and elimination parameters to be δN = c
√

log pN/τ0 and ∆k = c
√
l log pN/Nk.

Unless stated otherwise, we simply set c = 1 and h = 4. We considered IGA and lasso as the

methods for coefficient estimation and denote the corresponding bandit algorithms by MS-IGA

and MS-lasso. For MS-IGA, rather than directly setting the IGA parameter ξ, we generated the
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solution path through the forward-backward selection steps, and applied ten-fold cross validation

(CV) to determine the best number of selection steps and find the IGA estimates for each stage.

For MS-lasso, we found the solution path with a decreasing sequence of the tuning parameter

values (Friedman et al., 2010) via an accelerated proximal gradient descent (Beck and Teboulle,

2009), and then applied ten-fold CV to generate lasso estimates for each stage. For comparison,

we used the MS algorithm without any covariates (denoted by MS-simple), that is, the mean

reward estimates in Algorithm 1 were replaced by the simple average of the accumulated response

values of each arm. We also considered the LASSO bandit algorithm in Bastani and Bayati (2020)

as a useful benchmark (denoted by B-lasso); to avoid having to perform computationally more

expensive CV at each user visit point, we adopted the parameter values recommended for B-lasso

algorithm in numerical evaluation.

In the simulation, we set the number of arms l = 3, the number of covariates p = 500 and

the total number of visits N = 10000. We generated covariate vectors Xn from a multivariate

normal distribution with mean 0 and covariance Σ with exponential decay (Σ)i,j = ρ|i−j| and

ρ = 0.5. For each arm i (i = 1, 2, 3), we set the number of relevant variables to be the same

for all arms at q0 = qi = 5, 10 or 15. The index set for nonzero coefficients was Fq0 = {j : j =

10(k − 1) + 1, k = 1, · · · , q0}, and the j-th element of βi for j ∈ Fq0 was generated randomly

by P (βij = ϑ) = P (βij = −ϑ) = 0.5, where we set ϑ = 0.2 or 0.4. Then the response followed

the linear model Yi,n = XT
nβi + εi,n, where the εi,n’s are independent N(0, σ2) with σ = 2. We

then ran the aforementioned bandit algorithms over the entire simulated data set in a sequential

manner.

For the algorithm performance, we recorded the per-round regret trajectory, that is, rn =

Rn/n (n = 1, · · · , N). We also evaluated the coefficient estimation and variable selection per-

formance of each arm from the final algorithm output: given arm i and algorithm output β̂i,

let ‖β̂i − βi‖2 be the estimation error in the l2 norm, Ci = |Vi ∩ V̂i| be the number of correctly

identified variables in β̂i, and ICi = |V̂i\Vi| be the number of incorrectly identified variables.

The experiment was repeated 100 times to obtain the averaged results of these measures.

From the averaged per-round regret r̄N summarized in Table 3 (numbers in parentheses are

standard errors), it is not surprising that MS-simple did not perform well since it ignores the

covariate information; satisfactorily, MS-IGA performed better or competitively compared to

MS-lasso and the benchmark. We also plotted the averaged per-round regrets against the user

visit points n in Figure 3 and Figure 4. Except for MS-simple, all three algorithms considering
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covariates exhibit a decreasing trend in these plots.

Table 3: Averaged per-round regret for different bandit algorithms on simulated data from 100
runs.

ϑ = 0.2 ϑ = 0.4

q0 5 10 15 5 10 15

MS-simple 0.359 (0.006) 0.528 (0.005) 0.645 (0.005) 0.732 (0.012) 1.068 (0.010) 1.298 (0.011)
B-lasso 0.245 (0.003) 0.308 (0.002) 0.335 (0.002) 0.322 (0.004) 0.359 (0.002) 0.364 (0.002)
MS-lasso 0.303 (0.005) 0.358 (0.004) 0.359 (0.004) 0.224 (0.004) 0.249 (0.003) 0.263 (0.005)
MS-IGA 0.202 (0.004) 0.274 (0.004) 0.317 (0.005) 0.177 (0.006) 0.221 (0.008) 0.273 (0.010)
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Figure 3: Averaged per-round regret curves of different bandit algorithms (ϑ = 0.2). Left panel:
q0 = 5; middle panel: q0 = 10; right panel: q0 = 15.
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Figure 4: Averaged per-round regret curves of different bandit algorithms (ϑ = 0.4). Left panel:
q0 = 5; middle panel: q0 = 10; right panel: q0 = 15.

Besides the regret performance, we summarized the coefficient estimation and variable selec-

tion results of the algorithms’ final output for ϑ = 0.2 in Table 4. The averaged sample sizes
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Table 4: Averaged simulation results of different bandit algorithms based on 100 runs (ϑ = 0.2).

q0 = 5 q0 = 10 q0 = 15

Arm i 1 2 3 1 2 3 1 2 3

n̄i

MS-simple 3697 3234 3069 3055 3635 3310 3444 3232 3324
B-lasso 3394 3337 3269 3253 3376 3371 3371 3317 3312
MS-lasso 3279 3439 3282 3276 3434 3290 3488 3236 3276
MS-IGA 3413 3253 3334 3202 3397 3401 3497 3212 3290

Avg. ‖β̂i − βi‖2

B-lasso 1.22 1.246 1.254 1.237 1.205 1.192 1.183 1.2 1.205
(0.011) (0.011) (0.011) (0.012) (0.012) (0.011) (0.010) (0.010) (0.010)

MS-lasso 0.364 0.362 0.368 0.394 0.413 0.422 0.433 0.448 0.449
(0.009) (0.008) (0.008) (0.011) (0.011) (0.012) (0.007) (0.008) (0.008)

MS-IGA 0.175 0.206 0.205 0.250 0.256 0.238 0.254 0.311 0.306
(0.011) (0.012) (0.012) (0.014) (0.015) (0.012) (0.012) (0.014) (0.014)

C̄i

B-lasso 5.00 5.00 5.00 10.00 10.00 10.00 14.99 15.00 15.00
MS-lasso 2.62 2.92 2.63 8.39 8.30 7.88 14.36 14.37 14.34
MS-IGA 4.46 4.26 4.26 8.77 8.60 9.02 14.14 13.56 13.5

ICi

B-lasso 469.66 468.29 470.19 463.67 463.43 463.09 457.64 458.3 459.32
MS-lasso 0.74 1.68 0.60 8.82 6.03 5.61 11.98 13.98 13
MS-IGA 0.75 0.96 1.08 0.92 0.90 0.85 1.09 1.64 1.37
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Figure 5: Boxplots for coefficient estimation error of arm 1 from output of different bandit
algorithms (ϑ = 0.2). Left panel: q0 = 5; middle panel: q0 = 10; right panel: q0 = 15.

n̄i appear well-balanced among different arms, which is expected from the randomized gener-

ation of the true coefficients. Both MS-lasso and MS-IGA generated much sparser coefficient

estimates than that of the benchmark, as we empirically employed the data-driven approach for

parameter tuning in the MS algorithms. In particular, for most cases here, MS-IGA resulted in

fewer incorrectly identified variables than MS-lasso. Similar patterns on variable selection with
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Table 5: Averaged simulation results of different bandit algorithms based on 100 runs (ϑ = 0.4).

q0 = 5 q0 = 10 q0 = 15

Arm i 1 2 3 1 2 3 1 2 3

n̄i

MS-simple 3382 3382 3236 3043 3711 3246 3377 3243 3380
B-lasso 3357 3343 3300 3382 3332 3286 3372 3309 3319
MS-lasso 3271 3362 3367 3319 3427 3253 3287 3369 3344
MS-IGA 3251 3421 3328 3359 3339 3301 3345 3312 3343

Avg. ‖β̂i − βi‖2

B-lasso 1.177 1.180 1.186 1.131 1.133 1.154 1.098 1.126 1.123
(0.012) (0.013) (0.011) (0.011) (0.010) (0.011) (0.010) (0.011) (0.010)

MS-lasso 0.388 0.399 0.389 0.443 0.431 0.441 0.523 0.514 0.506
(0.007) (0.009) (0.007) (0.008) (0.007) (0.009) (0.008) (0.011) (0.008)

MS-IGA 0.113 0.112 0.118 0.149 0.159 0.150 0.174 0.177 0.174
(0.004) (0.006) (0.009) (0.008) (0.011) (0.008) (0.005) (0.004) (0.004)

C̄i

B-lasso 5.00 5.00 5.00 10.00 10.00 10.00 15.00 15.00 15.00
MS-lasso 4.99 4.96 4.99 10.00 10.00 9.99 15.00 14.92 15.00
MS-IGA 5.00 5.00 4.95 10.00 9.92 10.00 15.00 15.00 15.00

ICi

B-lasso 467.37 466.90 468.20 461.21 462.13 462.72 455.16 456.6 457.47
MS-lasso 2.45 2.23 2.22 10.50 11.86 13.13 20.15 19.48 20.42
MS-IGA 0.22 0.33 0.25 0.32 0.40 0.35 0.32 0.20 0.31
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Figure 6: Boxplots for coefficient estimation error of arm 1 from output of different bandit
algorithms (ϑ = 0.4). Left panel: q0 = 5; middle panel: q0 = 10; right panel: q0 = 15.

satisfactory performance by MS-IGA were observed under an increased coefficient signal with

ϑ = 0.4 (Table 5). In addition, boxplots for arm 1’s coefficient estimation errors are given in

Figure 5 with ϑ = 0.2 and Figure 6 with ϑ = 0.4. The boxplots for arm 2 and arm 3 are similar

to arm 1 (Figures 7–10). The averaged coefficient estimation from MS-IGA outperformed that

of the other two alternatives in all cases, and the advantage of MS-IGA appears to be widened
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with ϑ = 0.4 compared to that of ϑ = 0.2; this observation coincides with Theorem 5, which

suggests that MS-IGA may become more favorable with strong signals and small q̄i.
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Figure 7: Boxplots for coefficient estimation errors of arm 2 from output of different bandit
algorithms (ϑ = 0.2). Left panel: q = 5; middle panel: q = 10; right panel: q = 15.
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Figure 8: Boxplots for coefficient estimation errors of arm 2 from output of different bandit
algorithms (ϑ = 0.4). Left panel: q0 = 5; middle panel: q0 = 10; right panel: q0 = 15.

D.2. Performance with different parameter values

To provide more guidance on our proposal’s empirical applications, we performed further eval-

uation on the sensitivity of the MS-IGA algorithm with different parameter value choices. In

particular, note that c is a parameter for arm screening/elimination and h is for randomized

allocation. We first considered c = 0.5, 0.75, or 1 while keeping all other experimental settings

exactly the same as that in Section D.1. The averaged per-round regret of MS-IGA with different

values of c is summarized in Table 6, and the averaged results on coefficient estimation are given
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Figure 9: Boxplots for coefficient estimation errors of arm 3 from output of different bandit
algorithms (ϑ = 0.2). Left panel: q = 5; middle panel: q = 10; right panel: q = 15.
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Figure 10: Boxplots for coefficient estimation errors of arm 3 from output of different bandit
algorithms (ϑ = 0.4). Left panel: q0 = 5; middle panel: q0 = 10; right panel: q0 = 15.

in Table 7. In addition, we considered different randomization parameters h = 7 and h = 10

while keeping c = 1; the results on regret and coefficient estimation are summarized in Table 8

and Table 9.

Table 6: Averaged per-round regret of MS-IGA with different c values on simulated data.

ϑ = 0.2 ϑ = 0.4

q0 5 10 15 5 10 15

c = 0.5 0.203 (0.005) 0.289 (0.007) 0.368 (0.010) 0.230 (0.013) 0.316 (0.018) 0.448 (0.030)
c = 0.75 0.199 (0.004) 0.273 (0.004) 0.329 (0.006) 0.193 (0.011) 0.236 (0.011) 0.307 (0.016)
c = 1 0.202 (0.004) 0.274 (0.004) 0.317 (0.005) 0.177 (0.006) 0.221 (0.008) 0.273 (0.012)

It can be seen from Table 6 that the regret of MS-IGA often increased if we set the c value

too small; this can be explained by the over-elimination of competitive arms, which inaccurately
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Table 7: Averaged simulation results of MS-IGA with different c values on simulated data (ϑ =
0.2).

q0 = 5 q0 = 10 q0 = 15

Arm i 1 2 3 1 2 3 1 2 3

n̄i

c = 0.5 3403 3371 3226 3059 3572 3369 3487 3333 3180
c = 0.75 3450 3293 3257 3163 3435 3402 3471 3206 3323
c = 1 3413 3253 3334 3202 3397 3401 3497 3212 3290

Avg. ‖β̂i − βi‖2

c = 0.5 0.19 0.205 0.213 0.293 0.256 0.280 0.322 0.343 0.340
(0.013) (0.014) (0.014) (0.018) (0.015) (0.023) (0.021) (0.019) (0.024)

c = 0.75 0.170 0.200 0.208 0.264 0.252 0.250 0.277 0.331 0.297
(0.010) (0.013) (0.013) (0.014) (0.013) (0.013) (0.015) (0.016) (0.016)

c = 1 0.175 0.206 0.205 0.250 0.256 0.238 0.254 0.311 0.306
(0.011) (0.012) (0.012) (0.014) (0.015) (0.012) (0.012) (0.014) (0.014)

C̄i

c = 0.5 4.26 4.02 3.86 7.95 8.56 8.43 12.64 12.64 12.48
c = 0.75 4.43 4.33 4.02 8.77 8.84 9.00 13.66 13.04 13.46
c = 1 4.46 4.26 4.26 8.77 8.60 9.02 14.14 13.56 13.5

ICi

c = 0.5 0.74 0.71 0.64 1.06 0.83 1.03 1.37 1.81 1.46
c = 0.75 0.61 1.11 0.66 1.15 0.95 1.19 1.08 1.59 1.29
c = 1 0.75 0.96 1.08 0.92 0.90 0.85 1.09 1.64 1.37

Table 8: Averaged per-round regret of MS-IGA with different h values on simulated data.

ϑ = 0.2 ϑ = 0.4

q0 5 10 15 5 10 15

h = 4 0.202 (0.004) 0.274 (0.004) 0.317 (0.005) 0.177 (0.006) 0.221 (0.008) 0.273 (0.012)
h = 7 0.195 (0.004) 0.265 (0.003) 0.312 (0.005) 0.175 (0.006) 0.218 (0.008) 0.275 (0.012)
h = 10 0.190 (0.004) 0.263 (0.004) 0.315 (0.005) 0.177 (0.006) 0.227 (0.008) 0.286 (0.011)

removes “promising” arms from candidate sets for randomized allocation. Table 7 for ϑ = 0.2

(along with Table 10 for ϑ = 0.4) also shows that an overly small c (such as c = 0.5) sometimes

leads to increased coefficient estimation errors and less ideal variable selection results, and the

performance of MS-IGA can be sensitive to small c values. A simple choice of c = 1 often gave

reasonable performance compared to those smaller alternatives. On the other hand, as shown in

Table 8, the use of a larger randomization parameter h with h = 7 or 10 did not significantly

change the averaged per-round regret in most cases. In addition, we observed no clear patterns

in the change of the coefficient estimation and variable selection performance from Table 9 with

ϑ = 0.2 (and Table 11 with ϑ = 0.4); differences in averaged estimation errors were mostly

not significant in these cases. These seem to suggest that MS-IGA is relatively robust to these
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Table 9: Averaged simulation results of MS-IGA with different h values on simulated data
(ϑ = 0.2).

q0 = 5 q0 = 10 q0 = 15

Arm i 1 2 3 1 2 3 1 2 3

n̄i

h = 4 3413 3253 3334 3202 3397 3401 3497 3212 3290
h = 7 3352 3215 3433 3204 3369 3427 3484 3235 3281
h = 10 3269 3304 3426 3138 3492 3370 3516 3106 3378

Avg. ‖β̂i − βi‖2

h = 4 0.175 0.206 0.205 0.250 0.256 0.238 0.254 0.311 0.306
(0.011) (0.012) (0.012) (0.014) (0.015) (0.012) (0.012) (0.014) (0.014)

h = 7 0.192 0.203 0.197 0.270 0.261 0.251 0.275 0.322 0.311
(0.012) (0.013) (0.013) (0.014) (0.017) (0.015) (0.014) (0.017) (0.018)

h = 10 0.219 0.201 0.190 0.294 0.256 0.265 0.293 0.360 0.299
(0.014) (0.013) (0.014) (0.019) (0.016) (0.015) (0.017) (0.019) (0.015)

C̄i

h = 4 4.46 4.26 4.26 8.77 8.60 9.02 14.14 13.56 13.50
h = 7 4.19 4.04 4.15 8.79 8.68 8.81 13.79 13.12 12.97
h = 10 4.02 4.00 4.02 8.03 8.53 8.56 13.42 12.34 13.58

ICi

h = 4 0.75 0.96 1.08 0.92 0.90 0.85 1.09 1.64 1.37
h = 7 0.67 0.58 0.74 1.49 1.30 1.10 1.24 1.67 1.00
h = 10 0.79 0.58 0.46 1.10 0.91 0.93 1.38 1.66 1.44

different choices of h. Accordingly, in the real data evaluation studies of Section 8, for any MS

algorithm, we simply used the last parameters in Tables 6 and 8 (that is, c = 1 and h = 10)

across all experiments.
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Table 10: Averaged simulation results of MS-IGA with different c values on simulated data
(ϑ = 0.4).

q0 = 5 q0 = 10 q0 = 15

Arm i 1 2 3 1 2 3 1 2 3

n̄i

c = 0.5 3132 3351 3517 3388 3492 3119 3395 3491 3113
c = 0.75 3143 3379 3478 3312 3363 3324 3319 3298 3383
c = 1 3251 3421 3328 3359 3339 3301 3345 3312 3343

Avg. ‖β̂i − βi‖2

c = 0.5 0.196 0.182 0.157 0.222 0.204 0.293 0.282 0.307 0.347
(0.030) (0.023) (0.018) (0.029) (0.022) (0.042) (0.038) (0.042) (0.050)

c = 0.75 0.143 0.125 0.125 0.153 0.155 0.148 0.201 0.222 0.175
(0.014) (0.010) (0.010) (0.012) (0.008) (0.005) (0.020) (0.023) (0.005)

c = 1 0.113 0.112 0.118 0.149 0.159 0.150 0.174 0.177 0.174
(0.004) (0.006) (0.009) (0.008) (0.011) (0.008) (0.005) (0.004) (0.004)

C̄i

c = 0.5 4.64 4.71 4.75 9.30 9.62 8.80 13.80 13.49 13.25
c = 0.75 4.85 4.95 4.94 9.90 9.96 10.00 14.70 14.59 15.00
c = 1 5.00 5.00 4.95 10.00 9.92 10.00 15.00 15.00 15.00

ICi

c = 0.5 0.28 0.56 0.35 0.35 0.49 0.28 0.46 0.20 0.21
c = 0.75 0.29 0.43 0.29 0.21 0.37 0.22 0.32 0.36 0.36
c = 1 0.22 0.33 0.25 0.32 0.40 0.35 0.32 0.20 0.31

Table 11: Averaged simulation results of MS-IGA with different h values on simulated data
(ϑ = 0.4).

q0 = 5 q0 = 10 q0 = 15

Arm i 1 2 3 1 2 3 1 2 3

n̄i

h = 4 3251 3421 3328 3359 3339 3301 3345 3312 3343
h = 7 3267 3413 3320 3339 3354 3306 3314 3329 3357
h = 10 3246 3420 3334 3364 3316 3320 3335 3278 3387

Avg. ‖β̂i − βi‖2

h = 4 0.113 0.112 0.118 0.149 0.159 0.150 0.174 0.177 0.174
(0.004) (0.006) (0.009) (0.008) (0.011) (0.008) (0.005) (0.004) (0.004)

h = 7 0.135 0.132 0.131 0.148 0.155 0.158 0.185 0.184 0.179
(0.009) (0.009) (0.009) (0.005) (0.007) (0.006) (0.005) (0.005) (0.005)

h = 10 0.151 0.141 0.128 0.147 0.170 0.162 0.180 0.190 0.165
(0.013) (0.014) (0.011) (0.005) (0.012) (0.006) (0.005) (0.008) (0.003)

C̄i

h = 4 5.00 5.00 4.95 10.00 9.92 10.00 15.00 15.00 15.00
h = 7 4.97 4.96 4.95 10.00 9.97 10.00 15.00 15.00 15.00
h = 10 4.90 4.85 4.93 10.00 9.90 10.00 14.99 14.98 15.00

ICi

h = 4 0.22 0.33 0.25 0.32 0.40 0.35 0.32 0.20 0.31
h = 7 0.48 0.50 0.33 0.32 0.40 0.49 0.49 0.53 0.43
h = 10 0.42 0.40 0.22 0.23 0.37 0.41 0.32 0.47 0.15
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