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Abstract

This paper studies an important sequential decision making problem known as the multi-
armed stochastic bandit problem with covariates. Under a linear bandit framework with
high-dimensional covariates, we propose a general multi-stage arm allocation algorithm
that integrates both arm elimination and randomized assignment strategies. By employing
a class of high-dimensional regression methods for coefficient estimation, the proposed algo-
rithm is shown to have near optimal finite-time regret performance under a new study scope
that requires neither a margin condition nor a reward gap condition for competitive arms.
Based on the synergistically verified benefit of the margin, our algorithm exhibits adaptive
performance that automatically adapts to the margin and gap conditions, and attains op-
timal regret rates simultaneously for both study scopes, without or with the margin, up
to a logarithmic factor. Besides the desirable regret performance, the proposed algorithm
simultaneously generates useful coefficient estimation output for competitive arms and is
shown to achieve both estimation consistency and variable selection consistency. Promis-
ing empirical performance is demonstrated through extensive simulation and two real data
evaluation examples.

Key Words: contextual bandits, exploration-exploitation tradeoff, high-dimensional regression
model, sequential decision making, stepwise regression procedure

1. Introduction

Sequential decision making problems are commonly encountered optimization tasks with im-
portant modern applications. For example, in medical service, a physician must decide the
appropriate dose level for prescriptions, with the hope of maximizing patients’ well-being and
preventing adverse effects; in online service, a news website must recommend “top” news articles
from multiple candidate news articles to upcoming website visitors to attract more readings;

in financial service, a lending firm seeks to decide whether and under what terms they should
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approve upcoming applicants’ loan requests and to reduce overall default rates. These decision
making problems can be formulated as the multi-armed stochastic bandit problem: at each user
visit, an agent must choose one of the candidate decision arms (e.g., news articles) and then
observe a reward (e.g., 1 for reading and 0 for non-reading) from the chosen arm, where the
reward follows some unknown distribution; the primary target is to maximize the overall reward
over a certain number of visits.

The classic settings (Robbins, 1954; Lai and Robbins, 1985; Berry and Fristedt, 1985; Lai,
1987; Gittins, 1989; Auer et al., 2002) typically assume that the reward distribution of each arm
is homogeneous. See, e.g., Bubeck and Cesa-Bianchi (2012), Lattimore and Szepesvari (2020),
Chan (2020), and references therein for a recent overview on algorithm efficiencies under related
settings. In many real applications, we have access to extra covariate information from users
of the service, which holds promise for personalized service. In personalized medical service,
for example, the treatment effect can be dependent on a patient’s medical profiles such as age,
medical history, and genetic information; in personalized online service, a reader’s interest in
news article contents may also be associated with information such as location and browsing
history. This promising variation of sequential decision making problems that incorporate user-
space covariates is known as the multi-armed bandit problem with covariates.

Initialized by Woodroofe (1979), bandit problems with covariates tend to be classified into two
categories according to assumptions on the mean reward functions. The first category is referred
to as the nonparametric bandit problem with covariates, in which the mean reward functions are
assumed to satisfy mild smoothness conditions. Notably, Yang and Zhu (2002) studied strong
consistency properties of a class of randomized allocation algorithms. Rigollet and Zeevi (2010)
and Perchet and Rigollet (2013) proposed arm-elimination type algorithms and established their
near minimax rates for cumulative regrets. Some related recent work in this category can also
be found in Qian and Yang (20164,b), Guan and Jiang (2018), and Reeve et al. (2018).

The second category is called the parametric linear bandit problem with covariates, where
the mean reward functions take a linear form with unknown arm-specific parameters. In this
category, Goldenshluger and Zeevi (2009, 2013) and Bastani and Bayati (2020) considered fixed
dimensions and high-dimensional covariates, respectively, and showed that their forced sampling
algorithms with exploitation achieve (near) minimax rates when a margin condition (Tsybakov,
2004) and a constant gap condition are imposed. However, the performance of their algorithms

remains unknown in more general scenarios where these two conditions are possibly violated.



A detailed discussion involving these conditions is given in Section 6 to exhibit the valuable
connection and critical difference between our work and the literature.

In this paper, we propose a multi-stage arm allocation algorithm with arm elimination and
randomized allocation to solve the linear bandit problem with high-dimensional covariates. We
particularly study the integration of a class of stepwise-type high-dimensional regression methods
into the proposed approach and develop new technical tools to analyze non-i.i.d. samples inherited
from arm allocation of the bandit algorithm. Our work significantly extends the theoretical
understanding under the parametric framework; the main contribution is outlined as follows.

First, this paper investigates a new study scope that does not necessarily require the margin
condition or the constant gap condition of competitive arms (the arms with positive probabilities
of being optimal), and demonstrates a finite-time regret analysis that shows near minimax opti-
mal performance of the proposed algorithm (Section 5.2). To our knowledge, no other existing
algorithm is known to work under this new study scope (see also the discussion in Section 6.1).
By the discovery of an intriguing connection between the margin and the gap conditions, our
new results on regret analysis also synergistically complement the existing literature and to-
gether verify the “benefit” of margin conditions in a minimax sense that, if satisfied, can lead
to significantly improved regret rates. Second, our algorithm enjoys adaptive performance, in
that it automatically captures the regret benefit under the margin and the constant gap condi-
tions and always maintains near-optimal performance regardless of whether these conditions are
satisfied (Section 6). This seems to be the first study to exhibit such an adaptive phenomenon
for linear bandits with high-dimensional covariates. Third, we show that the outputs of our
bandit algorithm possess desired statistical properties, including parameter estimation consis-
tency and variable selection consistency for competitive arms (Section 5.3). Note that variable
selection consistency with simultaneous optimal regret guarantees (without or with the margin
and constant gap conditions) has not been reported elsewhere in the literature. Also, promising
applications of our proposal are demonstrated through two real data examples on drug dose
assignment and news article recommendation.

It is worth noting that bandit problems have been studied under other related settings.
The examples include best policy matching (e.g., Langford and Zhang, 2008; Agarwal et al.,
2014), arm-space (with or without user-space) contextual bandits (e.g., Auer et al., 2007; Abbasi-
Yadkori et al., 2011), difficulty links on simple and cumulative regret minimization (Bubeck et al.,

2011), the multi-class banditron (e.g., Kakade et al., 2008; Beygelzimer et al., 2017), Bayesian-



type approaches (e.g., May et al., 2012; Laber et al., 2018), and bandits with delayed feedback
(e.g., Bistritz et al., 2019; Arya and Yang, 2020), among many others (see, e.g., Cesa-Bianchi and
Lugosi, 2006; Bubeck and Cesa-Bianchi, 2012; Zhou, 2015; Lattimore and Szepesvari, 2020 for
bibliographic remarks, surveys and references therein). However, these alternative settings and
the corresponding algorithms do not address the main issue of this study. For example, Lattimore
and Szepesvari (2020, Ch.23) studied a general arm-space setting for sparse contextual linear
bandits, where the (possibly infinitely many) arms share the same unknown sparse coefficient
vector. The cumulative regret of the algorithm designed for this setting increases at a polynomial
rate with respect to the arm feature dimension. In constrast, our study framework focuses on
a user-space setting with a finite and relatively small number of arms, which have their own
individual sparse coefficients. As will be seen, the optimal arm depends on the user covariates,
and the corresponding cumulative regret has the desirable logarithmic rate in terms of the user
covariate dimension.

In fact, our study is in line with the very fruitful research topic known as dynamic treatment
regimes (DTR; e.g., Murphy, 2003; Qian and Murphy, 2011; Goldberg and Kosorok, 2012; McK-
eague and Qian, 2014; Laber et al., 2014; Shi et al., 2018, and many important others). Rather
than considering an i.i.d. sample with multi-time point decision rules, this paper focuses on the
single-time point decision for sequentially coming users and intends to achieve guaranteed near
optimal cumulative rewards for all these users as a whole.

In the remainder of the paper, we provide the basic settings of the bandit problem with
high-dimensional covariates in Section 2. The main algorithm and the integrated stepwise-type
coefficient estimation are described in Sections 3 and 4, followed by a theoretical investigation
in Section 5. The benefit of the margin condition and the algorithm’s adaptive performance
are studied in Section 6. Simulation and real data evaluation are given in Sections 7 and 8,
respectively. The proofs of propositions and main theorems as well as technical lemmas, an-
cillary expositions, and additional numerical results are all relegated to the Supplement. In
particular, we provide the general reader with an illustrative exposition in Supplement A for a
multi-stage algorithm and its analysis under the classical stochastic bandits, which may yield
a better intuition of the main contents of our high-dimensional counterparts (see Remark 7 in
Supplement A).

We close this section by briefly summarizing the notation consistently used in this article: n

for the user visit index and N for the total number of visits; k for the stage index and K for the



total number of stages; ¢ for the arm index, I for a chosen arm, and [ for the total number of

arms.

2. Setting for linear bandits with high-dimensional covariates

In many applications, as opposed to the classical setting with homogeneous distributions, the
reward from a decision arm often depends on many user covariates. In the following, we propose
developing a new algorithm to solve the sequential decision making problem with linear mean
reward structures in high-dimensional settings. Suppose there are [ candidate decision arms
(I > 2) and let N be the total number of user visits. Given user covariate vector X € RP
and arm ¢ (1 < i < [l), we consider linear model structures in which the observed reward Y;
has the conditional mean f;(X) := E(V;|X) = X'3,, where B; = (811, Bia, -+, Bip)” € RP is
the true coefficient vector for arm . We assume the sparsity condition in which only a subset
of elements in X is associated with Y;. Define the set of relevant variables for arm 7 to be
Vi={1<j<p:|Bi| >0} and its size ¢; := |Vi| < p.

Our problem of interest works like the classical setting but with the necessary incorporation
of the covariates. At each user visit n (1 < n < N), a user covariate vector X,, € RP is first
revealed, where the X,,’s are i.i.d. from some unknown distribution (same as X) with domain
X C RP. Let I; be the chosen arm at each visit point j (1 < j < N), and let Y; ; be the reward
if arm 7 is chosen. Then given the observable information {(Xj, I;,Y7,;), 1 < j < n — 1} and
current covariate vector X,,, a bandit algorithm is applied to choose an arm I, and receive the
corresponding reward Y7, ,, = XZB 1, T €1,m, Where g;,, is the random error of arm 7 and is not

necessarily independent of X,,.

2.1. Definitions and assumptions

Before introducing the algorithm evaluation, we first give key assumptions. For x € X', define
the optimal mean reward f*(x) = max;<;<;x’(3;. Assume that the set Z = {1,---,{} of all
candidate arms can be partitioned into a set of competitive arms Z, and a set of non-competitive

arms Z,. Let 7; be the competitive region where arm ¢ € 7 is optimal:
Ti={xex :x"8 - m;iXXTﬁj > 0} (1)
JFi

As given in Assumption 1, we define that arm ¢ is a competitive arm in Z, if it is an optimal arm

with a positive probability bounded away from zero.



Assumption 1. (Competitive arms) There is a positive constant ¢; such that for each arm

i€T, PXET)>c.

As given in Assumption 2, we define that arm ¢ is a non-competitive arm in Z,, if it is always
a sub-optimal arm with a gap of f ~ from the optimal reward. Here we allow Z, to be an empty
set. If Z, = @, then Assumption 2 simply reduces to a null assumption, which is also the case
in the settings of Goldenshluger and Zeevi (2013). If Z,, # @, Cw is allowed to approach zero as

N — oo.

Assumption 2. (Non-competitive arms) Each arm i € Z, satisfies that with probability 1,
maxj<;<i XTBJ- — XT3, > Cy, where (y >

1/4.

c2
NV los N)172 for some constants ¢ > 0 and 0 < ¢ <

We also assume in Assumption 3 that the covariates satisfy a version of the restricted isometry
property (RIP; Candes and Tao, 2005). The RIP condition and its related variants have often
been used in the analysis of high-dimensional linear regression methods (e.g., Meinshausen and
Yu, 2009; Zhang, 2010, 2011b). By the nature of our targeted bandit problem with covariates,
an “oracle” allocation strategy (the benchmark in regret definition that knows the competitive
regions for all the competitive arms) is to always deliver a competitive arm at this arm’s own
competitive region; it is then natural to have conditions that use the arms’ own competitive
regions, since under the “oracle” benchmark, each competitive arm’s data points must all fall
within its own competitive region. Specifically, for each arm i € Z,, define the conditional second
moment on the competitive region in which ¥; = E(XXT | X € T;); for each arm i € Z,, define
¥, = ¥ = E(XXT). Given any arm i € Z and positive integer s, define \;(s) = min{v¥;v :

[vll2 = 1, [[vllo < s}

Assumption 3. There exists a constant ¢, > 0 such that for each arm i € Z, A\;(¢.) > ¢, where

¢ := C1 maxy<;<; ¢; for some constant C; > 1.

In Assumption 3, ¢, serves as an upper bound of all ¢;’s at the same order of max;c7 ¢;; a
sufficient condition of Assumption 3 is that the minimum eigenvalues of the ¥;’s, denoted by
Amin(2;), are bounded away from zero.

In addition, we assume bounded reward coefficients such that ||3;||1 < b for some constant
b > 0, and the sub-Gaussian condition for random errors such that E(e*sin | X,,) < exp(v?0?/2)
for all v € R. For simplicity, we consider bounded domain X with || X, || < 6 for some constant

0 > 0, but it may be extended to covariates with a sub-Gaussian distribution.



2.2. Algorithm evaluation

Let i*(x) = argmax,.7 fi(x) be the arm that has the maximum mean reward given x, and define
f*(x) = fi<(x). Without knowledge of random error, the “oracle” (but clearly not applicable)
benchmark is to choose the optimal arm I} := i*(X,,) at each visit point n. To evaluate the algo-
rithm performance, define the cumulative regret Ry that measures the shortfall of the algorithm

in cumulative mean reward compared to the “oracle” benchmark:
N

Ry = (f"(Xa) = fr.(Xa))- (2)

n=1

It is desirable for an allocation strategy to have a guaranteed finite-time upper bound on cumu-
lative regret. Note that for each visit point n, only the reward of the chosen arm can be observed
while the rewards of all the other arms are not observable: we inevitably encounter incomplete
information under the bandit settings.

In addition, a useful but less discussed question of interest in the linear bandit problem is
whether the devised algorithm outputs meaningful variable selection results for the competitive
arms. Suppose at the end of running an allocation strategy, the algorithm output gives a set
of estimated competitive arms io, and for each arm ¢ € fo, there is an associated estimate
Bi = (Bﬂ, Big, cee Bip) for B,; the estimated set of important variables is defined as Y, = {1<

j<p: |5AU| > 0}. Then we say an algorithm is variable selection consistent if
P(Z,=1,) — 1and P(V; =V, for alli € Z,) — 1 as N — oo. (3)

It is also desirable to establish that the algorithm is coefficient estimation consistent. That is, for
each competitive arm i € Z,, ||3; — B;|l2 = Op(Ux), where 9y is the (preferably fast) convergence
rate with 9y — 0 as N — oo. Both variable selection consistency and coefficient estimation
consistency (e.g., Zou, 2006; Meinshausen and Yu, 2009; Fan and Lv, 2010; Qian et al., 2019a and
references therein) are widely studied in the statistics literature for high-dimensional regression
problems. In our bandit problem setting, these results provide some asymptotic theoretical
guarantees on the algorithm output for an analyst who may want to subsequently use the output

for understanding relevant variables and designing new offline policies.

2.3. A useful example

In our following study, we will first focus on the study scope from Section 2.1, that is, the

class of l-armed bandit reward function (or coefficient) sets with joint distributions Px e of



(Xps€1m, -+ 5 €1n) that satisfy all the conditions in Section 2.1. Each member in the class is
characterized by a set of coefficients {3, - -- , 3;} with a distribution Px .. Later on in Section 6,
we will present another study scope that imposes two additional assumptions including a margin
condition and a constant gap condition of competitive arms. In general, more assumptions lead
to smaller class size and a potentially lower (minimax) optimal regret rate; as will be seen, the
different study scopes lead to different optimality results (and different algorithmic design).

To facilitate an appreciation of the generality and challenges of the study scope in Section 2.1,
we next present a useful example. Given [ = 2 and ¢, define a subclass consisting of all the two-

armed bandit pairs of coefficients {3,, B, } with Px . that satisfy the following scenarios. Treating

the first elements in 3, and 3, as intercept terms, we define 8, = (0, \/%, e ,\/ia, <, 0)T e RP,
= (w, =2, =L ... 0)T € R, where and have g nonzero elements besides the
2 Va Va 1 2

intercept, K > 0, w € (—~, ), and K,/q is upper bounded by a positive constant. Also denote
the covariates by X = (1, Xy, --,X,_1), where Xy,---, X, are i.i.d. with Uniform[—1,1J;
conditioning on X,,, the random errors € ,, and €5, satisfy the sub-Gaussian condition. This gives
the simple scenarios in which f;(X) = = > -1 Xjand fo(X) = w— NG 7_1 Xj; the competitive
region for arm ¢ (i = 1,2) is 7, = {x € X : fi(x) — fj(x) > 0,5 # i}. For convenience,
we denote this bandit subclass as P. Then all the members in P satisfy the assumptions in
Section 2.1 and indeed fall within the intended study scope (as shown by Propositions 10 and
11 in Supplement B.2). We can then construct a sequence of its members with both coefficient
parameters £ and w indexed by N: let kK = ky = N~ for some constant a > 0 and w = wy €

(—kn, kn); we denote the corresponding mean reward function pairs as {f1 n(-), fon(-)}. This

example gives the properties in Proposition 1.

Proposition 1. Consider the sequence of the class members constructed above from P. Then

given any constants o > o > 0 with on = N~ we have

PO < fo(X) — fL(X) <dn) =1 as N — oo, (4)
where 3 (X) = max(f n(X), fin(X)) flﬂ\,(X) = min(fi n(X), fon(X)); equivalently,
P(fon(X) — fin(X) > 0n) + P(fin(X) — fon(X) > dx) =0 as N — oo. (5)

Proposition 1 reflects a philosophy for our proposed study in which a newly designed algorithm
may ideally be able to handle increasingly closer competitive arms as N gets larger, so that to
some extent, it parallels the statistical thinking that larger sample size allows for the finding of

increasingly smaller treatment effects. The class P will also be helpful to establish a regret lower



bound (to be shown in Section 5.2).

Noting the polynomially decreasing oy in (4) and (5), it will be seen in Section 6.1 that the
study scope of Section 2.1 and the associated algorithm design are deemed different from the
existing literature. On one hand, Bastani and Bayati (2020) novelly designed algorithms that
are well-suited with provable optimality under the additional margin condition and constant gap
condition for competitive arms. On the other hand, neither of these two additional conditions
are necessarily satisfied for Section 2.1, and the literature has not yet shown how to design a
generally near optimal algorithm. We will defer the detailed discussion to Section 6.1 on the
connection between the different study scopes, without or with the two conditions.

Furthermore, it would be interesting for a newly designed algorithm to simultaneously perform
optimally when these additional conditions are imposed: that is, can an algorithm adaptively
achieve near optimality in both worlds of the different study scopes, and attain potential regret
“benefit” if the additional conditions are satisfied? The efforts to address this issue will be

presented in Section 6.2.

3. A multi-stage algorithm in high dimensions

Our proposed algorithm divides the total visit points into K + 1 stages, with stage 0 being
the initial forced sampling stage. Here Nj (1 < k < K) is the end visit point of stage k,
and N, = N, — Nj_; is the sample size of stage k. Set Ny = lro, 70 = coq?log pn(N* V log N),
Ny = 2Ny_1, and K = [logy(1+N/Ny) —1], where py = pV N, ¢ is some positive constant, [-] is
the ceiling function, and stage K may have a sample size less than 2N 1. We set ¢y = 320%c,c; 2
(or its upper bound) for Section 5, where ¢, > 0 is a constant (to be given in Theorem 1). Given
stage k, define A;; = {n: Ny14+1<n<Ng, I, = i} to be the set of visit points where arm 4
is chosen; similarly, define By; ={n:1<n < Ny, I, = i}.

Let Xy = (X1, Xy, -+, Xun)T be the N x p matrix containing all the user covariates, and
let yn = (y1,%2,+ -+ ,yn)? be the vector containing the reward responses from the chosen arms
with ¥, = Y7,n (1 < n < N). Then given any visit index set A = {ji,72,- -+, jja/} with
1 <j1 <--<jja <N, define X4 € RMI*P and y 4 € Rl to be the corresponding covariate
design sub-matrix from Xy and the reward response sub-vector from yy, respectively; that is,
row,(X4) = row;, (Xy) and row,(y4) = row;, (yn) for 1 < n < |A|. We can apply a specified
high-dimensional linear regression method with tuning parameter £ to obtain the coefficient

estimator B(X A, ¥4, €). In our following discussion, unless stated otherwise we will use the



Algorithm 1 Stage-wise arm elimination with randomized allocation.

1. Set initial sampling stage with sample size Ny. Choose each arm an equal number of times
To. For each arm ¢ € Z, compute the initial estimated coefficient 3,. Set k = 1.

2. At stage k, perform the following substeps at n = Neoi+1,- N

e Reveal covariate X,, € RP.

e Pre-screen arms using the initial sampling data to generate the arm set

S, ={iel: maIXXz[;j — XT3, <oy} (6)
je
o If k > 1, eliminate arms on S, to generate the set of “promising” arms
S, = {ieS,: ma:XXZijk — XZBZ,C < A} (7)
JESR

otherwise, set S'n = gn.
e Define I, = argmax; g XZBM Perform randomized allocation to choose an arm 1,
from &,, with h > 1 and receive reward Y7, ,:
{fm with probability h
I, =

h+|Sp|—1"

7,  with probability h—HSl =T 1 #£ I, ie&,.

3. Find the estimated coefficient for next stage by computing sz 4 for each i € 7.

4. Set k =k + 1. Repeat steps 2-4 until the end of NV user visits.

N

n=Np_ il S, and output the estimated

5. Obtain an estimated set of competitive arms Zy = U
coefficient 3; = BLK for all i € Zy.

high-dimensional Interactive Greedy Algorithm (IGA, Qian et al., 2019b), which is a generalized
method from stepwise-type regression (e.g., Zhang, 2011a,b; Ing and Lai, 2011). Here, £ represents
the tuning parameter for IGA and regulates the estimator sparsity from the solution path. It is
closely related to the penalty term of the high-dimensional information criterion (Ing and Lai,
2011), which is used to overcome potential overfitting problems associated with the orthogonal
greedy algorithm. We offer a brief description of the coefficient estimation by IGA in Section 4.
Then, given arm 1, Bl = B(X Aoi» Y Ao, €o) are the estimated coefficients from stage 0; we set
Bi,k = B(XAk_l’i,yAk_M, &) to be the coefficients used by stage k and estimated from the data
of its previous stage, where the &’s are their respective tuning parameters. If A,_;; = &, we
set sz = B(XBk—l,ﬂykal,i’ &), where the alternative choice of estimated coefficients with the

larger sample By_1; (that includes all historical data of arm i) is given in Remark 2 of Section 4.

We are now ready to describe the details of the proposed multi-stage algorithm as shown in

10



Algorithm 1. Specifically, Step 1 is the initial sampling of stage 0 that allocates each arm an equal
number of times. Step 2 shows that for each visit point n of a given stage k, after the observation
of covariate X,, € RP, there are two substeps of arm screening procedures: (6) pre-screens out
uncompetitive arms, and (7) performs an extra elimination step to generate “promising” arms
for use in the subsequent randomized allocation substep. We set the parameters 6y = 20by and
Ay = 20b;, with by = q*\/m and b, = ¢, \/m, k > 2, for Section 5, where
¢, and ¢, are positive constants (to be given in Theorems 1 and 2). Here g, can also be replaced
by a general upper bound s, (s, > ¢,); its implication w.r.t. the analysis is given in Remark 6
of Section 6.2.

In the last substep of Step 2, define I, = argmax; g X{Bm where any tie-breaking rule
may apply. Let h > 1 be a randomization parameter. Then, under the randomized allocation
scheme, we choose an arm ¢ from Sn with probability 0 < p,; < 1, where Zie &, Pni =1 and
b, h

An — y T . o o — J— 1
o= h for all i # I; that is, p,, ; TR and p, ; e

h = 1 corresponds to simple randomization among arms in S,. We use h = 1 in theoretical

for ¢ # I,inS,. In particular,

development for simplicity.

Step 3 updates the coefficient estimation after the current stage. In Step 4, the algorithm
moves to the next stage, and continues in a stage-wise fashion until the end of N user visits. Then
Step 5 outputs the estimated set of competitive arms and their associated coefficient estimates.
Considering the scenario in which the last stage K has a small sample size, we use the last two

stages to estimate jN‘

Remark 1. Algorithm 1 includes the arm pre-screening substep (6) for all stages. If Z, = &, the
algorithm can be further simplified by removing this substep. However, if Z, # &, the optimal
arm may be eliminated by a non-competitive arm, and the analysis argument (to be outlined
in Section 5.1 and Proposition 3 for having “good” events) may not hold without this substep.
The use of randomized allocation with A > 1 (as opposed to h = 1) is mainly motivated by the
potentially more efficient exploitation of the estimated promising arms in practice. A similar
empirical idea for randomization has also been used for the nonparametric bandit problem with
covariates (e.g., Qian and Yang, 2016b); the feature of (non-uniform) randomized allocation,
together with the embedded key arm-elimination technique (Perchet and Rigollet, 2013), can be
practically useful to provide additional flexibility for an algorithm to further utilize the reward
function estimation; all theoretical results of our proposed algorithm remain the same for upper

bounded h; we will demonstrate its empirical performance with A > 1 in the numerical studies.

11



Algorithm 2 Stepwise coefficient estimation.

1. Initialize 7 = 0, 8" = 0, G© = @, 0 < p < 1and £ > 0. Set ¢©@ = Q(B") —
min;<j<p, acr Q(B") + ae;).

2. Perform forward selection with the following substeps.

(a) Find candidate variable set

Gy ={9 G Q(B") —min Q(B" + ae,) > po"}. (8)
(b) Select element g™ € G, and set G+Y = G U {g"}.
(c) Compute ,8(”1) = arg ming,,,g)ecr+1) Q(B), and find £0r+l) — Q(B(’")) — Q(B(TH)).
(d) Set r=r+1.

3. Set ¢ = mianGmQ(ﬁ(r) — ejT,B(T)ej) — Q(,@(T)). If o0 < €0 /2, perform backward
selection with following substeps.

a) Find g = arg min;cqo Q(B") — e?ﬂ(r)ej).

Set r =7 — 1 and G = GUFTD\{gr+V},

Compute 3" = arg Ming,,p8)ecn @(B)-

Update ¢ = Min e o) Q(B" — ejT,B(r)ej) —Q(BM).

(e) If ¢ < £ /2, repeat backward selection substeps above.

4. Find ¢ = Q(,B(T)) — Mini<j<p ack Q(,@W + ae;j). If ¢ > & repeat Steps 2-4; otherwise,
output 8.

4. Coefficient estimation

As IGA is embedded into Algorithm 1 and plays an important role in coefficient estimation,
we next briefly describe main steps of IGA summarized in Algorithm 2 to keep the paper self-
contained.

Given the input design matrix X € R™*P and response vector y € R, define the objective
function Q(B) = L|ly — XB|3. Let e; € R? be the unit vector with the j-th element being zero.
Then from Algorithm 2, following initialization (Step 1), the forward selection in Step 2 selects
one variable into the active set G and drives down the objective function Q(3) in a stepwise
fashion, that is, (8) essentially considers all the candidate variables one by one and finds those

that rank high in reduction of Q(3). Alternatively, to avoid repeated optimization tasks on the

objective function and to significantly reduce computation time, we can also replace (8) and ¢(")

12



by gradient-based criterion:

o = VQ(B") | and G, = {g & G+ [V,Q(B")] = po"}, (9)
where VQ(B) is the gradient vector and V,Q(8) is its g-th element. Without additional in-
formation on true variables, it suffices that we set p = 1. Step 3 is the backward elimination
step that checks if some variables may become redundant after the new variable is included from
forward selection. This forward-backward iteration scheme continues until the addition of any

new variables does not significantly reduce the objective function as shown in Step 4.

Remark 2. Given X, y, and &, the output of Algorithm 2 gives the coefficient estimator 3 (X, y,8).
The parameter £ regulates the solution sparsity: a larger £ tends to provide a sparser solution. In
empirical studies, instead of giving explicit values for &, we use the number of steps to determine
solution sparsity, which is automatically selected by ten-fold cross validation (CV) on (X, y)
under the mean square error criterion. The package that implements the IGA method with
CV is publicly available on GitHub. Also, in the description of Algorithm 1, we use the stage-
specific sample Ay ; for coefficient estimation to make the proofs more concise and express the
algorithm description as parallel as possible with Algorithm 3 of Supplement A. In practice, we

recommend using the sample choice of including all historical data from previous stages so that

A

/Bi,k+1 = B(XB;W' » YBi.i 5k+1)‘

5. Understanding algorithm performance

To understand the performance of the proposed algorithm, it is helpful to study how the algo-
rithm estimates the conditional mean rewards and the coefficients and how these estimates are
associated with “good” events on arm selection. In Section 5.1, we outline the analysis strategy
for the cumulative regret upper bounds, which consist of four main steps. We provide the upper
and lower bounds on the cumulative regret in Section 5.2, and establish the variable selection

and coefficient estimation consistency properties in Section 5.3.

5.1. Outline of main analysis steps

The first main step is regret decomposition via the partitioning of the sample space into
properly defined events. Specifically, let Ryo and Ry1 be the regrets accumulated in Stage 0 and
the following stages, respectively. Then we see that Ry = Ry + Ry1. Also define the following
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events on coefficient estimation errors. For 2 < k < K, define
Fy=Uy={Vi €L |B- Bl <bo}, Fr ={Vi € T, [|B;s — Bl < b}, (10)

and U, = Fy N <ﬂ§:2 Fj>. The whole sample space can be partitioned into the events

U, UsNF, Ug for 1<kE< K -1 (11)
to further decompose the cumulative regret, so that
K—1 K—1
Ryi =Ry I(UY) + Y RniI(Up N Fiyy) + Rl (Ux) =: Ry + Y Ry + Ry (12)
k=1 k=1

To provide upper bounds for the decomposed regrets, we need to understand the properties and
implications of these associated events to be shown in the next two main steps.

In the second main step, we intend to achieve the following specific objective (1): un-
der “good” events, via connection with coefficient/reward estimation errors, the regret can be
upper-bounded. We further divide the analysis effort of this step into two substeps, which in-
clude studying (la) arm pre-screening behavior and (1b) arm elimination behavior. Steps (1a)
and (1b) are summarized in Propositions 2 and 3, respectively, whose proofs are relegated to

Supplement B.3.

Proposition 2. Given stage k (k > 1), if the event Uy, holds, then at any visit point n (Nk_l—i—l <

n < Nk), the optimal arm I} remains in S,, and any non-competitive arm i € I, is excluded

from S,,.

Proposition 3. Given stage k (k > 2), if the event Uy, holds, then at any visit point n (Nk_l—l—l <
n < Nk), the optimal arm I remains in S,; in addition, any “promising” arm i € S, belongs to

the arm set Un, = {j € I, : XF;CBI; — X718, <2A}.

The two propositions above suggest that with the arm pre-screening and elimination proce-
dures, the event Uy regarding the coefficient estimation errors leads to the “good” event that the
algorithm always keeps the optimal arm while all the other remaining arms must be in the arm
set Uy, i, thereby restricting the regret of each step within 22, to achieve objective (1). There-
fore, to study the maintenance of “good” events for arm selection, it is important to understand
the coefficient estimation errors.

Due to the nature of necessarily evolving arm allocation in sequential decision making, only
one response from the selected arm is revealed while responses from all the other arms are not
available; the accumulated data for each arm are not i.i.d. random samples anymore (as opposed

to regular settings in high-dimensional regression problems), which poses unique challenges in
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studying the statistical properties of the estimated coefficients. With the multi-stage approach
and stage-wise arm elimination, we also employ randomized arm allocation to help partly over-
come the technical issues (besides empirical performance considerations, to achieve a balance
between exploration and exploitation).

In the third main step, we intend to achieve the specific objective (2): the (conditional)
probabilities of violating the “good” events are relatively small. For this purpose, we establish
Theorems 1 and 2 (see below). These theorems are proved through four substeps (2a) randomized
allocation with “random” samples, (2b) sample size determination, (2¢) covariate “design matrix”
properties, and (2d) coefficient estimation upper bounds, details of which are also relegated to
Supplement B.3. Note that & and the &,’s correspond to the tuning parameter £ in Algorithm 2,
which computes Bl and the Bivk’s, respectively; recall that py =pV N.

Theorem 1. Suppose Assumptions 1-3 hold. Then there exists a positive constant c, such that

given & = Crli%, it holds with probability less than [/N?3 that

3 «(gi +1og N ol
18; — Billi > \/C"q (¢; +log N + giplog pn)

To

for some i € I, where ¢;0 = |Jiol, Jio = {7 € Vi : |Bi;] < /cglogpn/T0}, and c,,c5 > 0 are

some constants.

Theorem 2. Suppose Assumptions 1-3 hold. Then there exists a positive constant ¢, such that

given &gy = c“;,% and Uy (1 <k < K — 1), it holds with probability less than 3l/N3 that

; Cp:(i +10g N + gilo
||/8i,k+1_6i||1>\/pq (g gNk qix log pn)

for some i € Z,,, where i = |Jix|, Jix ={j € Vi : |Bi;| < \/Cslogpn/Ni}, and ¢,,éz > 0 are

some constants.

These two theorems suggest that with the proposed algorithm, given Uy, the probability of
violating Fyi1 (or Uyy1) on the coefficient estimation errors is small; consequently, since Uy
always implies the “good” arm selection events on the next stage as shown in the propositions
for objective (1), the same probability bound applies to violating these “good” events, thereby
achieving objective (2).

As the last main step, we obtain the decomposed regrets by Propositions 2 and 3 from
objective (1) and Theorems 1 and 2 from objective (2), and subsequently assemble the cumulative

regret upper bounds to be shown next in Section 5.2.1.
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5.2. Upper and lower bounds on cumulative regret

We demonstrate here the near minimax optimal regret performance of the proposed algorithm,

where the upper bound and the lower bound are given in Sections 5.2.1 and 5.2.2, respectively.

5.2.1 Upper bound

The analysis efforts briefly summarized in Section 5.1 enable us to provide the following finite-

time regret analysis for (2).

Theorem 3. Suppose Assumptions 1-3 hold. Then there exist positive constants Co and Coy

such that the cumulative regret of Algorithm 1 satisfies

E(Ry) < Calg;logpy(N* Vlog N) + Caq./ N log py (13)
with Cy1 = 460bcy+660b and Cog = 8(96;/2; in particular, if 1 = 0 and p = o(N) for some constant
¢ > 0 with fixed | and q., then for any large enough N,

E(RN) S 2022(]*\/ NlngN (14)

In Theorem 3, the upper bound of (13) consists of two components. Roughly speaking, the
first component is mainly attributed to the initial forced sampling, which generates initial crude
estimates for the coefficients and ensures good performance for the pre-screening of the uncom-
petitive arms; mainly from the much more refined arm elimination stages for the competitive
arms, the second component is usually a dominating term as shown by (14).

Note that under additional conditions (to be introduced in Section 6.1), existing algorithms
(Goldenshluger and Zeevi, 2013; Bastani and Bayati, 2020) indicate that by an exploitation-based
strategy, it is ensured for regret analysis that the optimal arm in its competitive region with a
certain constant reward gap can be exclusively selected with high probability. However, such
analysis argument is not technically feasible here. To overcome this difficulty, we employ arm
elimination and randomized allocation to carefully control regret accumulation in a stagewise
fashion, thereby circumventing the need for these additional conditions. The inherited new
technical challenges in regret analysis are naturally shared with the simultaneous establishment

of variable selection consistency to be shown in Section 5.3.
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5.2.2 Lower bound

We then seek to address whether it is possible for any alternative algorithm to achieve a regret
rate much slower than that of (14). For this purpose, recall the bandit subclass P defined from

the example of Section 2.3, which has been verified to satisfy all the conditions of Section 2.1.

Theorem 4. For any admissible bandit strategy, there is a positive constant Cs such that with
any large enough N, we can always find some class member in P under which its cumulative

regret satisfies

E(RN) > 03\/N

The regret lower bound in Theorem 4 implies that the upper bound in Theorem 3 is almost
not improvable for N (up to a logarithmic factor), and that our proposed algorithm has near

minimax optimal performance under the study scope of Section 2.1.

Remark 3. In the upper-bound regret analysis, it is assumed that || X, || is bounded above by
a constant @ > 0, which is involved in setting the coefficients of algorithm parameters. This con-
dition can be relaxed to allow element-wise sub-Gaussian conditions on the covariates. Specif-
ically, assume that for all covariates X,, = (X1, Xn2, -, Xnp)?, there exists some constant
ox > 0 such that E(e"¥i) < exp(v?0%/2) for v € R and 1 < j < p. Define the event
A = {||Xplle € cooxv/Iogpy forall 1 < n < N} with some constant ¢, > 2v/2. Then the

following Proposition 4 shows that the regret contributed by A€ is relatively negligible.

Proposition 4. Given the sub-Gaussian conditions on covariates, it is satisfied that
E(RN](AC)) < 4bchXpE1\/logpN.

By treating A€ as a “bad” event in our regret decomposition, Proposition 4 suggests that we can
just focus on the “good” event in which all covariates are bounded by Oy = c,0xv/1og py and
replace the constant 6 by Oy instead; as a result, the algorithm analysis under event A can be

performed similarly, with the mild price on regret rate by extra multiplicative factors of log py.

5.3. Variable selection and coefficient estimation consistency

The proposed algorithm also generates consistently estimated competitive arms Zy and their
consistently estimated coefficients as shown in Theorem 5. Here, §; is the size of variables with

relatively weak signals. Note that the coefficient estimation error bound of BZ in Theorem 2
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includes the slight price of an extra additive log N term; this reflects the subtle need for the
bandit algorithm to simultaneously achieve the desired finite-time regret guarantees. However,
this extra log N term can be removed for the coefficient estimation consistency in Theorem 5,

which matches a known result of a regular sparse high-dimensional regression setting (that is,

O,(v/(g; + @ logpn) /N)).

Theorem 5. Under the same conditions of Theorem 3, the algorithm output of the estimated
competitive arms satisfies P(fN =7,) - 1 as N — oco. In addition, the output of coefficient
estimation for each arm i € T, satisfies ||B; — B;ll2 = Op(y/ ELEEPNY) here g; = | i, and
Ti={j €Vi: Byl < /252y,

Combined with a beta-min condition, we further establish coefficient estimation and variable
selection consistency simultaneously for the competitive arms in Theorem 6. Therefore, the

proposed bandit algorithm also achieves the desired property (3).

Theorem 6. Suppose an arm i € I, satisfies minjey, |55 ;| > 1/ 4651#. Then under the same
conditions of Theorem 3, the output of coefficient estimation for arm i € I, satisfies

1) coefficient estimation consistency: ||3; — B;ll2 = O( );

2) variable selection consistency: P(V; = V;) — 1 as N — co.

Bijl >/ 4551#, Algorithm 1 is variable selection consistent.

In particular, if minez, jev,

The variable selection consistency of Theorems 5 and 6 also uses results from finite-time
analysis, which shows the desired sparsity recovery with high probability. Indeed, it is shown
in Supplement B.5 that for any large enough N, P(Zy # Z,) < 3K/N and for every i € I,
P(V; # Vi) <4K/N.

Remark 4. From the proofs of Theorems 1 and 2, we can see that the positive constants
c.,Cp,Cg,Cr, Cp,cp exist. Given that there are constants cq,cy > 0 associated with the IGA

method as shown in Lemma 1 of Supplement C, we can set

SR C 7L TP B TS - A 167
¢ =—" —), ¢, = ¢ c , Cg = :
" cle. 827 P T el ! e, "’ Ae,
1
cr = 160%0%c;c 1 (2 + 8?)7 c, = 80%c; (cq + 4cy) + 80%c,c;t, cp = 1280%¢,c; .
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6. Adaptive performance

6.1. Benefit of margin condition

A margin condition is known as an assumption that regulates the complexity and rates of conver-
gence for classification and estimation problems (Mammen and Tsybakov, 1999; Tsybakov, 2004;
Audibert and Tsybakov, 2007). To fully appreciate the contribution of our new algorithm design
in this work and discern its distinction from the existing literature, it is helpful to consider and
discuss a margin condition under linear bandits with covariates. In particular, a margin condition
has been assumed and carefully studied in earlier work under both the fixed-dimension setting
(Goldenshluger and Zeevi, 2013) and the targeted high-dimensional setting (Bastani and Bayati,
2020); their corresponding bandit algorithms are well-designed to optimally solve the problem
under both a margin condition and a constant gap condition.

We next define these conditions. For x € X, let Z¥(x) = {i € Z, : fi(x) < f*(x)} be the
set of sub-optimal arms. Then define f#(x) = max;ez: X' G; if I*(x) # @, and f¥(x) = f*(x)

otherwise.

Assumption 4. There exists a positive constant L such that given any § > 0,
P(0 < f4(X) — f4(X) < 0) < L.

Assumption 4 requires that except for a subset of the domain with small probability close
to the decision boundary, the optimal mean reward can be separated from sub-optimal rewards
by arbitrarily small 6. Alongside the margin condition, earlier work also assumes the following

constant gap condition.

Assumption 5. There are positive constants w, ¢ > 0 such that for each arm i € Z,, P(X €

Ti) > ¢1, where
Ti={xex x'g,— mgxxT,Bj > w}.
VED
First, we discover that the margin condition of Assumption 4 and the gap condition of As-
sumption 5 are closely related. Indeed, as shown in the following first statement of Proposition 5,
if we impose the margin condition in addition to those of Section 2.1, then the resulting study

scope becomes largely equivalent to that of Bastani and Bayati (2020) since it is guaranteed that

Assumption 5 is also satisfied.

Proposition 5. If Assumption 1 holds, then Assumption 4 implies Assumption 5. On the other

hand, Assumption 5 implies Assumption 1.
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The second statement of Proposition 5 implies that the study scope of Bastani and Bayati
(2020) is subsumed in (and is smaller than) that of Section 2.1. In particular, neither Assump-
tion 4 nor Assumption 5 are necessarily satisfied under the study scope of Section 2.1 with
Assumption 1: indeed, as an example, the bandit class P of the example in Section 2.3 together

with Proposition 1 implies the following results.

Proposition 6. Assumptions 1-3 are satisfied for all the class members in P, but neither As-

sumption 4 nor Assumption 5 holds for all the members in P.

Consequently, in light of the connection illustrated by Proposition 5, the key difference in
the study scopes and the regret bounds for Section 2.1 from the existing literature lies in the
margin condition. In a synergistic manner, our regret bounds in Section 5.2 complement earlier
results with the margin condition (Goldenshluger and Zeevi, 2013; Bastani and Bayati, 2020),
and together verify the benefit of a margin condition to achieve a significantly improved regret

rate (from polynomial to logarithmic).

Remark 5. The discussion above resolves the seemingly contradictory optimal regret rates for the
bandit problem with high-dimensional covariates: In Section 5.2, we show that the near N'/2 rate
is optimal and is achievable by Algorithm 1, but the existing literature (Bastani and Bayati, 2020)
shows that the near log N rate is optimal and is achievable by an exploitation-based algorithm.
There is no conflict here since the study scope of Section 2.1 imposes no assumption on the margin
(or the related constant gap condition); hence under this more “difficult” situation without
assuming the margin, it is natural that the optimal regret rate is higher than the logarithmic
rate; Theorem 4 has shown that no algorithm is able to give a regret rate lower than N'/2.
To some extent, this observation of different optimal regret rates is reminiscent of the intriguing
debates on the optimal convergence rates (and their associated classifier rules) for nonparametric

classification in the statistics literature as discussed by Tsybakov (2004, p.146):

How fast can the convergence of classifiers be and how does one construct the clas-
sifiers that have optimal convergence rates? ... Yang (1999) claims that the optimal
rates are quite slow (substantially slower than n='/?) and they are attained with plug-
in rules; Mammen and Tsybakov (1999) claim that the rates are fast (between n~'/?
and n™') and they are attained by ERM (empirical risk minimization rules) and re-

lated classifiers. ... In fact, there is no contradiction since different classes

of joint distributions of (X,Y’) are considered. Yang (1999) ... do not impose
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assumption on the margin. Therefore, it is not surprising that they get rates slower

1/2 —1/2

than n="/*: one cannot obtain a rate faster than n with no assumptions on the
margin. ... On the contrary, Mammen and Tsybakov (1999) ... show what can be
achieved when ... assumption on the margin holds. In this case the fast rates (up to

n~1) are realizable.

Therefore, the results presented in this subsection for the targeted bandit problem with covariates
pleasantly join the celebrated group of known benefits by margin conditions (if satisfied) as
exhibited in nonparametric estimation and nonparametric bandit problems (Tsybakov, 2004;

Audibert and Tsybakov, 2007; Rigollet and Zeevi, 2010; Perchet and Rigollet, 2013).

6.2. Achieving regret benefit adaptively

An important question naturally arises from our discussion in Section 6.1: since it is usually
unknown whether the margin condition (or the closely related constant gap condition) holds, is
it possible to design a bandit algorithm to adaptively achieve the regret benefit from the margin
condition? That is, does there exist an algorithm that can simultaneously perform optimally
under both of the study scopes, without or with assuming the margin, and automatically take
advantage of the desirable regret benefit if the margin condition is satisfied? To a large ex-
tent, this question also resembles the spirit of adaptive performance to the margin proposed for
classical classification and estimation problems (Tsybakov, 2004). In the following, we provide
an affirmative answer and show that our proposed algorithm indeed adapts to the two different
study scopes, and always attains near optimal regret rates (up to a logarithmic factor) regardless

of whether the margin condition holds.
Assumption 6. If 7, # &, Assumption 2 holds with ¥ = 0.

Like Assumptions 4 and 5, Assumption 6 above for non-competitive arms was also used in
Bastani and Bayati (2020), which considers a special case of Assumption 2. Now our study scope
in this subsection, similar to that of Bastani and Bayati (2020), is devised to be the bandit class

that imposes Assumptions 4 and 6 in addition to those of Section 2.

Theorem 7. Suppose Assumptions 4 and 6 and the conditions of Theorem & hold. Then there

exists a positive constant Cy such that the cumulative regret of Algorithm 1 satisfies
E(Ry) < Cslg?logpy log N, (15)

with Cy = 46bcy + 60b + 320%C,,.
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Using the same algorithm designed in Section 3, Theorem 7 shows that under the margin
condition, our algorithm also enjoys a nearly optimal regret rate up to a logarithmic factor (the
lower bound is given by Goldenshluger and Zeevi, 2013); for example, if [ and g. are upper
bounded and p = o(N°¢) with some constant ¢ > 0, then the regret upper bound in Theorem 7
is simplified to O((log N)?). The upper bound here slightly improves on the result in Bastani
and Bayati (2020) by removing an additive term of O((logp)?). This result together with Theo-
rem 3 and Theorem 4 confirms that our proposed algorithm simultaneously enjoys near optimal
performance under both study scopes given in Section 2.1 and Section 6.

In addition, as the conditions of Theorem 3 are still satisfied here, the variable selection

consistency results of Theorem 6 for the proposed algorithm continue to hold under the margin.

Remark 6. For studying Algorithm 1 in the previous two sections, to help maintain the “good”
events of arm elimination and selection required by Propositions 2 and 3 with high probabilities,
the coefficients used in parameters 7y, o5, and Ay involve ¢,, an upper bound of max;c7 ¢; at
the same order. We can also replace ¢, with a general upper bound s, (s, > ¢.) in setting these
coefficients; then the proofs remain largely the same, although as a mild compromise, in the regret
upper bounds of Theorems 3 and 7, g, should be replaced by s, as well. We note that the use of
a general upper bound s, in setting algorithm parameter coefficients for theoretical development
was also required in the related literature; for example, the regret bound in Theorem 7 becomes
O(Is*1logpy log N), and the quadratic rate of s, matches the result of Bastani and Bayati (2020),
which required both Assumption 4 and Assumption 5. In addition, the regret lower bounds with
the margin (Goldenshluger and Zeevi, 2013) and without the margin (Theorem 4) are both in
respect of N only. It remains unclear whether s, can be unknown to an algorithm and whether a
matching bound for s, can be obtained. We leave these as open challenging questions for future

investigation.

7. Simulation

We next evaluate the performance of the proposed bandit algorithms on simulated data. For
brevity, the multi-stage type algorithms described in Section 3 are abbreviated as “MS”. We
considered IGA and lasso as the methods for coefficient estimation and denote the corresponding
bandit algorithms by MS-IGA and MS-lasso. For comparison, we used the MS algorithm without
any covariates (denoted by MS-simple), that is, the mean reward estimates in Algorithm 1

were replaced by the simple average of the accumulated response values of each arm. We also
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considered the bandit algorithm in Bastani and Bayati (2020) as a useful benchmark (denoted by
B-lasso). Due to the page limit, all simulation settings and results are relegated to Supplement D,
where we evaluate the performance of the proposed algorithms in Supplement D.1 and perform

a sensitivity analysis on parameter choice in Supplement D.2.

8. Real data evaluation

We next use two real data sets to evaluate the performance of the proposed algorithm. One
challenge naturally arises due to the incomplete nature of the data sets for the bandit setting:
unlike simulation, for each user visit, we only observe the user response to one selected arm.
To account for such limited feedback, the following two data sets require different evaluation
strategies, which will be described in their respective subsections. In addition, to achieve faster
computation for MS-IGA, we used the gradient-version of Algorithm 2 that replaces criterion (8)

with (9). The parameters were chosen the same way as discussed in Supplement D.2.

8.1. Warfarin dose assignment

Warfarin is a widely used anticoagulant, and its appropriate dosing is important for the pre-
vention of adverse events (International Warfarin Pharmacogenetics Consortium, 2009). The
warfarin data set (available from https://www.pharmgkb.org) contains 6922 patient records,
each of which has covariate information including demographic variables (e.g., gender, ethnicity,
age), clinical background variables (e.g., height, weight, comorbidities, medication, smoking),
and genotypic variables (CYP2C9 and VKORCI genetic variants). We converted categorical
variables to corresponding binary indicators and replaced missing values by the respective sam-
ple means, which resulted in 127 covariates for each patient. In addition, the continuous outcome
variable was the stable therapeutic dose of warfarin, and we included 6037 patients for bandit
algorithm evaluation after removing records with missing dose values.

To generate bandit arms, we categorized the outcome variable by grouping it to [ (I = 2,3,4)
categories, using the [-quantiles as breaking points (that is, we used median for | = 2, tertiles
for [ = 3, and quartiles for [ = 4) so that each arm (or category) in the data set corresponds to
approximately the same number of patients. Since the outcome variable is the doctor-prescribed
steady-state dose values that gave stable anticoagulation levels, if the therapeutic dose value fell
in the category of an arm ¢*, we set this arm ¢* to be the patient’s optimal arm with reward

1, while all the other arms j (j # *) were considered sub-optimal with reward 0. This setting
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allowed us to evaluate any bandit algorithm: an algorithm incurs no regret if it chooses ¢* for the
patient, and incurs unit regret otherwise. We randomized the order of patient visits and ran the
bandit algorithms sequentially over the whole data set to record the final per-round regret ry,
D).

The experiment was repeated 100 times with permuted visit orders; the averaged results are

the sample size of each chosen arm n;, and the number of selected variables nVar; (i = 1, - -

summarized in Figure 1 and Table 1.
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Figure 1: Boxplots of per-round regret from different bandit algorithms using warfarin dose data
with 100 random permutations. Left panel: 2 arms; middle panel: 3 arms; right panel: 4 arms.

Table 1: Averaged algorithm performance using warfarin dose data with 100 random permuta-
tions.

2 arms 3 arms 4 arms
Arm ¢ 1 2 1 2 3 1 2 3 4
n;
MS-simple 4493 1544 2004 3225 808 1799 1825 1299 1114
B-lasso 3124 2913 2361 2621 1055 2334 1120 2073 510
MS-lasso 3025 3012 2242 1685 2110 2001 1047 1079 1910
MS-IGA 3041 2996 2194 1744 2099 1905 1123 1148 1861
nVar;
B-lasso 28.45 27.66 29.29 2347 1592 2940 25.37 23.12 7.41
MS-lasso 2757 28.70 2531 6.07 2494 2441 1.06 1.52 24.72
MS-IGA 16.17  20.81 15.77 473 19.55 16.59 5.60 4.51 19.58
TN
MS-simple 0.495 (0.001) 0.659 (0.001) 0.750 (0.001)
B-lasso 0.254 (0.003) 0.476  (0.005) 0.611 (0.004)
MS-lasso 0.267 (0.001) 0.474 (0.001) 0.623 (0.002)
MS-IGA 0.261 (0.001) 0.464 (0.001) 0.607 (0.001)

The boxplots from Figure 1 show that MS-simple without considering covariates yielded the
least favorable performance in all three scenarios, indicating the effectiveness of using covari-

ate information in choosing warfarin dose. Together with Table 1, we observe that MS-IGA
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performed better than MS-lasso in these scenarios; MS-IGA also performed very competitively
compared to the benchmark and had reduced variability in per-round regret. In addition, the av-
eraged sample sizes of different arms appear more balanced for MS-IGA than for the benchmark,
particularly under the 3-arm and 4-arm scenarios; to some extent, this may reflect the less greedy
nature of the proposed algorithm. MS-IGA often selected fewer variables than the benchmark;
the exceptions come from arm 3 of the 3-arm scenario and arm 4 of the 4-arm scenario as these

arms were chosen less often than the other candidate arms by the benchmark.

8.2. News article recommendation

In the following, we use the Yahoo! front page user click log data set (version 2.0; Yahoo! Aca-
demic Relations, 2011; available from http://webscope.sandbox.yahoo.com). The complete
set includes about 28 million user visits to the news front page from October 2 to 16, 2011, and
each user visit record has 135 binary user covariates and a pool of candidate news articles. One
article is chosen uniformly at random from the pool and is displayed to the user; the binary
user response to the selected article is also recorded, with 1 for click and 0 for non-click. As the
candidate pools of news articles are dynamic and the popularity of a news article can change in
the long run, to account for these complications in algorithm evaluation, we adopted a screening
strategy similar to May et al. (2012) and only considered short-term performance using data
collected on the first day (October 2, 2011) with a three-article (id 563115, 563846, 565822) set
as the stationary candidate arms. Accordingly, we retained the user visit records where the can-
didate pool contained all three articles and the displayed article was one of them. The resulting
reduced data set contained 148,341 user visits for subsequent bandit algorithm evaluation.
Unlike the warfarin dose data, since a randomly selected news article is displayed at each
visit, we should not assume the optimal arm is known. Instead, we applied the unbiased offline
evaluation strategy developed in Li et al. (2010) to evaluate a bandit algorithm. That is, for each
user visit, if the arm chosen by the algorithm matched the displayed arm, we kept this visit as a
“valid” data point for algorithm use; otherwise, this visit record was ignored and not accessible by
the algorithm. Accordingly, each algorithm ran through the data set sequentially until N “valid”
data points were obtained with N = 30,000; the resulting “valid” data was used to calculate the
click through rate (CTR) as an unbiased evaluation of the bandit algorithm performance. We
ran the MS-simple, B-lasso, and MS-IGA algorithms over a random permutation of the reduced

data set and repeated the experiment 100 times. We used the averaged CTR from a complete
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random strategy (that chose arms uniformly at random) to generate each algorithm’s relative
CRT by computing the ratio between the algorithm’s CRT and that of the complete random

strategy. We then summarized the numerical results in Figure 2 and Table 2.

Table 2: Averaged algorithm performance
with news article recommendation data.

w0
o
e -~
5 MS-simple B-lasso MS-IGA MS-B-lasso
-% S | Avg. relative 1.040 0.924 1.070 1.070
3 - CTRy (0.003)  (0.003) (0.003)  (0.003)
(>3.7 - randqm _
< v L B L
8 N — MseA arm 1 4358 29235 7373 6760
O T RO arm 2 7092 526 8960 8869
T T T T T T T arm 3 18550 239 13667 14371
0 5000 15000 25000 —_
nVar;
n arm 1 - 8.34 4.78 9.27
arm 2 - 0.26 3.99 7.89
Figure 2: Averaged relative CRT arm 3 - 0-04 738 8.76
with news article recommenda-
tion data.

Compared to the complete random strategy, we observe from the plots in Figure 2 that MS-
simple (without considering covariates) significantly improves the averaged CTR by about 4%.
MS-IGA further improves the averaged CTR, which can be attributed to the user covariates in
the reward modeling, while the benchmark surprisingly underperforms. The very unbalanced
arm sample sizes from the benchmark suggest that its observed result could be again due to the
more greedy nature of the benchmark designed to emphasize arm exploitation more than the
MS-type algorithms; as a numerical check, we then revised the benchmark by keeping the lasso
as the coefficient estimation method (with the same tuning parameter setting as B-lasso) but
adopting our MS-type algorithm instead (thus we denote it by MS-B-lasso). Interestingly, as
shown in Table 2, MS-B-lasso performs competitively in this case compared to MS-IGA, with

less sparse variable selection outcomes and reasonably balanced sample sizes.

9. Discussion

We study the bandit problem with high-dimensional covariates by designing an adaptive algo-
rithm with arm elimination and randomized allocation. The algorithm enjoys near minimax
optimal regret performance under both study scopes (without or with the margin), and demon-
strates adaptive performance by one unified algorithm. We also establish simultaneous coefficient

estimation and variable selection consistencies for the output of the proposed algorithm. The
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extensive numerical studies indicate that our proposal holds promise in real applications on per-
sonalized medical and online services. The previous discussion implicitly assumes that the total
number of visits N is known a priors; if N is unknown, the proposed approach can be extended
by employing the “doubling argument” (e.g., Cesa-Bianchi and Lugosi, 2006; Perchet and Rigol-
let, 2013). Although we only used IGA (as opposed to lasso) for Algorithm 1 to help achieve
variable selection consistency with improved coefficient estimation consistency, we expect that
popular shrinkage-type regression methods such as the adaptive lasso, SCAD, and MCP (Zou,
2006; Fan and Li, 2001; Zhang, 2010) could be other promising coefficient estimation candidates
to be integrated for the bandit problem algorithms; a comprehensive and rigorous investigation
on their theoretical and numerical properties could be of independent interest and is left for

future studies.
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Supplement to “Adaptive Algorithm for Multi-armed Bandit Problem with

High-dimensional Covariates”

A. Illustrative exposition with classical stochastic bandits

As an ancillary exposition, we use the classical setting of stochastic bandits (without considering
covariates) to help gain intuition for a general reader on useful elements of our proposal for the
bandits with high-dimensional covariates. Suppose an agent is faced with [ (I > 2) candidate
arms from a set Z = {1,--- ,l}, where each arm represents a candidate decision. At each visit
point n, if arm ¢ is chosen, then the reward Y; ,, is revealed from some unknown distribution Fj;.
The mean of Y;,, is denoted by p;. We allow the distribution to be sub-Gaussian, that is, there
is a constant o (with known upper bound) such that E(e*Yin=1)) < exp(v?0?/2) for all i € T
and v € R; this subsumes binary outcomes as a special case.

With the aim of achieving the maximum (mean) reward, it would be ideal to always choose
the optimal arm * = argmax;c7 p; with the optimal mean reward p* := p;+; however, this
“oracle” strategy is impractical due to the lack of knowledge in p;. Define A; = p* — p; to be
the (unknown) mean reward difference between the optimal arm and arm 4. Then if the agent
chooses an arm ¢ other than the optimal arm, we say that a positive regret of A; is incurred;
otherwise, the regret is 0. For technical convenience of the exposition, assume ¢* is unique and
A;’s are upper bounded by a positive constant cj.

Given a finite number /N of user visits, the agent must make sequential decisions: at each visit

point n (1 < n < N), the agent chooses an arm I,, and observes the reward Y7, ,, realized from

the unknown distribution Fj,. For any sequential arm allocation rule, the arms Iy, I3, -+ , I, - -
chosen can only depend on I; and Y7, 1, on ([1,15) and (Y7, 1,Y52), -+, on (Iy,---,I,—;) and
(Yroa,--- .Y, ,n-1), - respectively. We define the cumulative regret to be the sum of all the
regrets incurred within the N visits:
N
Ry =Y (1" = ju,)- (A1)
n=1

The main goal of a stochastic bandit problem is to devise a sequential decision making algorithm

to achieve low cumulative regret.



A.1. Multi-stage algorithm with arm elimination

Next, we use the classical stochastic bandit setting to design a multi-stage algorithm with arm
elimination and analyze how it performs in a stage-wise fashion. The multi-stage algorithm is
summarized in Algorithm 3. Specifically, we divide the N visits into multiple stages and define
Nj to be the end visit point of stage k with £ = 0,1,--- , K, where K denotes the last stage.
Step 1 is the algorithm initialization by stage k = 0 whose sample size is Ny := Ny = 79, where
To < log N. The set of candidate arms is S'O =17

Step 2 performs arm elimination for the subsequent stage k (1 < k < K), and the stage
sample size is denoted by Ny := Nk — Nk,l; at stage k, given [ “promising” arms (to be defined
in (A.2)), we set Ny, = [, and 7, = ¢7_1 with multiplicative factor ¢ = 2 to simply double the
allocated sample size for each “promising” arm. The key parameters (;’s (1 < k < K) are used
in the arm elimination step of each stage k. At the beginning of each stage £ > 1, the algorithm
generates the set Sk of “promising” arms so that Sk serves as the new set of candidate arms
for the current stage k: based on a data sample generated from the previous stage k — 1, define

fli x—1 to be the sample mean of arm ¢ € S’k_l; then the set of “promising” arms is defined as

Sp = {Z € S : max fje—1 — flig—1 < Ck/2}7 (A.2)

JESK_1

where we set (g1 = A and 7, y = min(7, N/2), and X is some specified constant

log(N/7k,n)
Tk
with A > max(8a, m); here, 7, x and 75, are empirically equivalent, but we use 73 5 in the
definition of ;.1 due to technical convenience for the analysis in Section A.2 to ensure that ;4
remains well-defined for an arbitrarily large integer k£ > 1. All the arms in Sk_l\gk are literally
eliminated from stage k, and there remain I, = |S;| arms.
Then in Step 3, the algorithm repeatedly cycles over the [, “promising” arms; the sample

size of each arm is 75. In practice, it is often preferable to choose arms using randomization, as

shown in Section 3.

A.2. Understanding algorithm performance

We next provide some analysis for Algorithm 3 in terms of the cumulative regret defined in (A.1).
Roughly speaking, the regret analysis lies in understanding the maintenance of “good” events as
follows.

Define arm sets My = {i € Z : A; > (1} and My = {i € T : (1 < Ay < (i} with

k > 1. For each arm i (i # *), define k; to be the unique stage number associated with arm



Algorithm 3 A multi-stage approach to classical stochastic bandits.

1. Set the initial stage k = 0 with sample size Ny = 7y and arm set S‘o = 7. Choose each
arm 7y times. Then set the next stage k = 1.

2. At stage k, find the set Sy, of “promising” arms by (A.2), that is,
Sp = {’L € Spo1t max fijp-1 — flip-1 < Ck/2}7

JESK-1

where fi; ;1 is the sample mean of arm ¢ € S;_; and ¢}, is a user-specified arm elimination
parameter.

3. Forn = Ng_14+1, Ny_1+2,---, Ni, choose arms by repeatedly cycling over the “promising”
arms so that each of them is sampled 7, = 27,1 times during stage k.

4. Set the next stage k = k + 1. Repeat steps 2-3 until the end of N visits.

¢ such that ¢ € My,. Without loss of generality, we assume ordered arm indices such that
< pg < oo < gy = p*, which implies that k; < ky < -+ < k1. Then for each (non-optimal)
arm 1, define the “good” events

(i1 :={the optimal arm ¢* remains a “promising” arm in S'k#l at stage k; + 1},

G2 :={each arm j (for j <1) is not a “promising” arm in Sij at stage k; + 1},
and G; := G;1 N G;5. Here, G, is considered to be “good” events since any arm j (j < i)
in Ug;o./\/lk is eliminated after Nkj while the optimal arm ¢* remains “promising”. Then the

following two propositions provide insight into conditions for the maintenance of G;; and G,

respectively. Define Gy to be the sample space and set kg = 0; also define events
Evk = {|,&Zk — | < Cp/4 and | — p'| < Ck/4} for i*,i € S’k; (A.3)
Fy o= {|fuig — sl < Go/4 and |fize g, — p*| < Go/4} for i*,i € Sk, (A4)
Proposition 7. Suppose G;_1 holds. Given any arm j with 1 < j < I, if at some stage k
(kioy +1 < k < k;), both arm i* and arm j remain “promising” in S’k and the event Fj,k
holds, then at stage k + 1, the optimal arm i* cannot be eliminated by arm j, that is, we have
figr — flis e < Cr/2.
Proposition 8. Suppose G;_1 and G;1 hold. Then if arm i remains “promising” in Ski and the

event E holds, then the event G; o also holds.

The two propositions above demonstrate that understanding the estimation errors for the

mean rewards p; shown in (A.3) and (A.4) is important for analysis of “good” events. Using

3



Bernstein-type inequalities for the estimation errors, the probability upper bounds for “bad”

events can be found as follows.

Proposition 9. Given arm i (i # i*), we have P(G;1 N G§,) < 8(1 — i)(7h;, — Th,_,)/N and
P(Gi_l N Gi,l N G;Q) S QTkZ/N

Then note that given any arm [, with [y < [, the whole sample space can be partitioned into

the events
Gi—l N Gf = (Gi—l N G?,l) U (Gi—l N Gi,l N GS,Q) and Glo for 1 < 1 < lo, (A5)

which allows us to decompose the expected cumulative regret accordingly. Together with Propo-
sition 9 and the definition of k; in which (41 < A; < (,, additional algebra provides the
following cumulative regret under the classical setting. Recall that we assume A;’s are upper

bounded by a constant cj.

Theorem 8. There exist positive constants ¢y, ¢y and C' > 4 such that for any arm ly with ly <[,

the cumulative regret satisfies

lo 2 — 2
log(NA2 +C) Gl — 1y log(NA2 + C
E(RN)§61§ o8 A? )+ 2(1 = o) Agf lo )+NAIO+1, (A.6)

i=1
where ¢; = 666’, Cy = 64C with some positive constant C > 4N + 20?—\.

0

The obtained regret bound of (A.6) matches that of the Successive Elimination algorithm
seminally proposed and rigorously analyzed in Perchet and Rigollet (2013). In particular, with

lo = 1 — 1 and denoting A to be a lower bound of all A;’s (i # i*), we can see that E(Ry) =<

Cllog(NA2+C)
A

dits (Lai and Robbins, 1985). Also, by choosing a proper Iy (e.g., A, < 1/Cllogl/N when such
an arm exists), we get the upper bound that E(Ry) < 1/C(llogl)N. Algorithm 3 is similar
to the Improved UCB algorithm in Auer and Ortner (2010) but unbounded rewards along with

, which shows the well-known logarithmic rate expected for classical stochastic ban-

somewhat different stage-specific sampling sizes and elimination criterion are considered; a dif-
ferent analysis strategy is given here in order to illustrate the relevance and potential connection
with our analysis efforts for the challenging scenarios of high-dimensional covariates in the main

sections.

Remark 7. We have managed to organize and deliver the relevant concepts for analysis in Sec-
tion A by a mostly parallel fashion to their counterparts in Section 3 and Section 5. These

relevant concepts include the multi-stage algorithm structure with embedded arm elimination;
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the definition of “good” and “bad” events and the associated regret decomposition by partition-
ing the whole sample space with events (A.5) vs. (11); the connection between “good” events and
reward (function) estimation by Propositions 7 and 8 vs. Propositions 2 and 3; probability upper
bounds for “bad” events by Proposition 9 vs. Theorems 1 and 2; and assembly of cumulative

regret upper bounds in Theorem 8 vs. Theorems 3 and 7.

B. Proofs of main propositions and theorems

B.1. Proofs for Supplement A

Proof of Proposition 7. Since arms ¢* and j are both “promising” at stage k, it follows that
fljk = Pk = fgr — Hy+ py — 05+t — g < G /44 G4 = G2,

where the inequality follows by (A.3) and p* > ;. This completes the proof of Proposition 7. [

Proof of Proposition 8. Under G, 1, arm ¢* is retained in Skiﬂ. This implies that
ﬂzk - ﬂi7ki = ﬂzkz - M* + M* — Mi + g — ﬂi,ki
> Ni = Crir1/2 > Grr — Q1 /2 = Crir1/2,

where the first inequality follows by (A.4) and the second inequality follows by the definition of

My, Therefore, arm 7 is not a “promising” arm in Sy, 11 and G; holds. O

Proof of Proposition 9. By Proposition 7 and the definition of G;—; and G7;, we have
P(Gi-1NGYy) < P(there is a stage k + 1 with k;_; + 1 < k < k; such that the optimal arm ¢*

is eliminated by some arm j with ¢ < j <[ — 1)

k; -1 k; -1

< > D PEDS Y, 24_]?

k=ki_1+1 j=i k=k;_1+1 j=i

-1 .
8Tk. (1L 8(l - Z)(Tk. — Tk._ )
— 7 1 _ 2 (kz kz—l) < 7 7—1
ZJ_Z N ( )< N ’

where the second and third inequalities follow by our choice of A > 8¢, the union bound, and

Hoeffding’s inequality. Also, by Proposition 8, we have

Ay,

N

This completes the proof of Proposition 9. O

P(Gii1 NGy NGS,) < P(FY) <




Proof of Theorem 8. By the partition of the sample space, we note that

B(Ry) = (Z RyI(Gii NGY)) +E(RyI(Gy,))

lo lo
<B(D (VA +2 Z 7y ) H(Gict N GE)) + B((NApar +2 3 7,05 1(Gy) )
i=1 j=1 j=1
0 lo
<Y ONAP(Gia NG + N +2) 7 A

Jj=1

lo lO
<Y NA(P(Gioi NG ) + P(Gioa N Gin N GEy)) + NNy +2)  Ajmi. (A7)

j=1
Then by Proposition 9,
I lo -1 1-1 loAj
D ONAP(GiaNGE) <Y 8MD (1, = 7)) =8 ) il
=1 =1 j=t 7j=1 =1
1-1 loAj 1-1 loAj -1
=38 Z Z(AiTki — Nty + N1 T, — Niami,) <8 Z Z(Az — A1), + 8 ZAIO/\jJrlTklOAj-
j=1 i=1 j=1 i=1 j=1

(A.8)
Also, by definition of the My’s and (;’s, if k; > 0, it is not hard to see that there is a constant
C > 4 such that 7, < % 2 log(NA2 + C) for A > y/2/log2. If k; = 0, we note that 7y < log IV,

A > /\@/M, and AZ- is upper bounded. Consequently, there exists a positive constant
C >4\ + 261—X such that for all &;’s,

T, < % log(NA? + C). (A.9)

By (A.9) and integration by parts, we obtain

loNj loNj ~ 2
. log(NA? +C) _ 4Clog(NAj ,; +C)
;(Ai — A1), < C;(Ai —Nij1) A2 < s :

Together with (A.8), the display above implies that

! -1
EO ~ log(NAZ .. +C
NAZP(GZ—I N Gil) < 64C Og( loNj )

(A.10)
i=1 j=1 Aion;
In addition, by Proposition 9, (A.9) and similar arguments from above, we have
lo
1 NA2 C
S NAP(Gy NGy N1 GEy) + ZZA n < 202 BIVAHEC) (A

i=1

Then (A.7), (A.10), and (A.11) together imply that
lo = 2
NZI NA? 64C (1 — ly) log(NA; + C

A 1 + NAysr.
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Setting & = 66C and & = 64C from above, we complete the proof of Theorem 8. O]

B.2. Proofs and propositions for Section 2.3

Proof of Proposition 1. Note that
—_No— o + 1
P(| fin(X) = fon(X)] > dy) < P(— ZX ZX —)

Then (4) holds immediately by Chebyshev s inequality and Var(% ;1.:1 X;) = % O]

Proposition 10. For all the class members in P, Assumptions 1 and 2 are both satisfied such

that T, = &, and P(X € T;) are bounded away from zero by a positive constant (i =1,2).

Proof of Proposition 10. For any member in P, it is clear that both arms are competitive arms;
thus Assumption 2 becomes void and trivially holds. It remains to verify Assumption 1: that
P(X € 7T;) is bounded away from zero (i = 1,2). Define Z = \/gzgzl X; and z = %g Let
F7(-) be the cumulative distribution function (CDF) of Z. Then

P(XeT) = P(% zq:Xj > w) > P(Z > 2) > ®(—2) — |Fy(—2) — ®(—2)| > 1/10,

where ®(+) is the CDF of the standard normal distribution, and the last inequality holds by a
uniform error bound for the Irwin—Hall distribution (Allasia, 1981; Marengo et al., 2017) with
an approximating normal distribution such that |Fz(—z) — ®(—2)| < @. The lower bound
for P(X € 7T3) can be derived similarly as above. Therefore, P(X € 7;) are bounded away from

zero, which completes the proof of Proposition 10. O

Proposition 11. For all the class members in P, Assumption 3 is satisfied such that the mini-

mum eigenvalues Amin(3;) are bounded away from zero by a positive constant (i =1,2).

Proof of Proposition 11. To verify Assumption 3 for the class P, it is sufficient to examine ¥; =
(XXT|X € T;) and verify that Auin(X;) is bounded away from zero. For this purpose, we
can see that >; has the block diagonal structure: the three diagonal block components of ¥;
are 1, g, and %Ip,q,l, where Y, is a ¢ X ¢ matrix with a compound symmetry structure.
Specifically for ¥, the diagonal elements are a; := E(X? | X € T;) and the off-diagonal elements
are d; := E(X1 Xy | X € T;). Without loss of generality, assume that w > 0 and ¢ > 2 (the proof

can be similarly done for w < 0). Then note that

Eqi = (CLi + (q — 1)di)P1q —+ ((Ii — dz)(Iq — qu),



where 1, € R? is the one vector, and Py, = %1q1qT is the projection matrix onto the subspace
spanned by 1,. Therefore, eigenvalues of X, are a; — d; and a; + (¢ — 1)d;. Then it suffices to
find some positive constant lower bounds for a; — d; and as + (q —1)dy. For the former, we have

—dy = ;E ZX >

E((X1 — X2)*I(X1 + Xz > W))P( 1 X > )
2P (Y1, X, > )

P> ,X;>1
(G 2 2)E((Xl LXK X > )

>

B 2P(\/L§ X >3) V3
(=) — 5% 1
> mE((X Xo) (X1 + Xy > \/g)) > 0,

where ®(-) is the CDF of the standard normal distribution and the inequality of the last line
holds by the uniform error bound for the Irwin—Hall distribution with an approximating normal

distribution. For the latter, define Z = \/g Z?Zl X;. Then we note that

1
as + (g — 1)dy = = (gas + q(q — 1)ds) = ZX 21X €T)
q =
_B(ZHZ<ge) Bz 1
3P(Z<52) ~6o() 45 00(H) +
The two displays above imply that A\yin(X4) are bounded away from zero by a positive constant

> 0.

for all members in the class P, and the proof of Proposition 11 is complete. n

B.3. Proofs for Section 5.1

Proof of Proposition 2 (Arm pre-screening behavior). Given x € X, define B* = Bi*(x) and B, =
Bi+(x)- Given any arm i € Z,

In addition, given any arm i € Z,, given 79 = coq? log py(N?¥ V log N) where ¢y > 32920pc2_2, we

have
Co
>(n — 20bg > — 20q.1/2¢,1 > On.
N 0 = N7 v log N q cplogpn /10 > N
Therefore, I € S, and i ¢ S, for any ¢ € Z,. This completes the proof of Proposition 2. O

Proof of Proposition 3 (Arm elimination behavior). Given stage k and X,,, define B* = Bi*(Xn),k
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and B8, = B;-x,- Then, under Uy, by Proposition 2, I € S, and for any i € S,,
Xng - X’ZB* = X?;(sz - B;) + Xz;(ﬁz - B.)+ Xg(ﬁ* - B*) < 20b, = Ay
Therefore, I € S,. In addition, for every i € S,,
X, 8, - X\8, =X, (8, - B*) + XZ(B* - Iéz) + XZ(Bz — B;) < 20b, + Ay, = 2A,.

This completes the proof of Proposition 3. n

Proof of Theorem 2. We intend to perform an analysis on the sample collected at stage k that
corresponds to each arm ¢ € Z,. Here we follow substeps (2a)—(2d) for objective (2) described in
Section 5.1.

(2a) Randomized allocation with “random” samples. By using the randomized allocation
scheme, we first account for the difficulty of analyzing the non-i.i.d. data by finding a random
sample with “known” covariate properties. Define [, = |Z,|. Under Uy, by Proposition 3, for
any x € T;, we have i € Sp(x). As a result, if x € 7;, P(I, = i|X, = x, Uy) > [;'. Then we

artificially divide arm 7 into two sub-arms i and ¢ so that

P(Zy=1|X,=x,Up) =13

o

Vand P(I, = 1| X, =x, U;) = P(I, =i| X, =x, U) — ;!

where Z,, = I(I,, = 1), that is, the probability of selecting arm i is a constant given any x € 7;.
Consequently, X, | X, € T;,Z, = 1 with Nk_l + 1 < n < N has the same distribution as
X, | X, € T;, and a random sample for arm 7 with an identical covariate distribution (following
X, | X, € T;) can be obtained.

(2b) Sample size determination. To find the corresponding sample size, define J; j, = {Ny_1+
1<n<Ny:X,€T;, Zn= 1}. Note that by Assumption 1, we have P(X,, € T;, Z, = 1|U;.) >
pil; ', where p; = P(X € T;). Therefore, by an extended Bernstein inequality (e.g., Lemma 2 in

Qian and Yang, 2016a) and ¢y > 28¢;?, we have

Nkpilil 3Nkpll1> 1
%o < — 0 )< .
2 ‘U’f> = eXp( 28 ) = N3

Denote Hj to be the event that for all i € Z,, |Jix| > N‘“”TEI Then by (A.12), under Uy, we

P(1Jixl < (A.12)
have Hj with probability greater than 1 —[,/N3.

(2¢) Covariate “Design matriz” properties. Defining J; ) = {Nk—l +1<n<Ny: I, = i}
and jm = Ji,k\(]_i,/m we next look at the design matrix properties. Define X, XM, and sz
to be the covariate design matrix associated with J; , jhk, and jl-7k, respectively. Define f]zk =
XZkX@k/]Ji,kL ii,k = XZTszk/Usz and ilk = szXZTk/|jzk| Define 7, = |ii,k — Yiloo and

Ok = MaX;ez, 0; %, Where |A|, denotes the maximum element in A. Then by (10) in Bickel and



Levina (2008) and a union bound, given € > 0, there exist constants c,, ¢, > 0 such that

_ N, 2
PGr>e Ho|U) <1, max PG> e||Jirl = 5, Us) < calop? eXp(— KCLe )
. o Nppilg ! ’ ’ 2¢pl,
16I07]2kT
Taking € = w/cblfé% with Cy > 12¢,c; 2, we have
P(Dj, N Hi | Uy) < py/ (A.13)
where Dy, = {7}, < C*’bﬁ}%}. Also, note that since
: | Jil ik ¢ | Jil | Tigl < ik ¢
Yik = T Sik + Yik = 2+ (e — %) = ik,
A e el PN L WA e PA RS
we have under Uy, Hy, and Dy, for ¢ < ¢, with v € SP71,
. ANi(q) cle Cylogpy _ e
i ‘= 1min VTE v> 20 5 max ||v L= . > 1 A.14
Ha) = i v P 2 e vl 2 T e R = e (A

(2d) Coefficient estimation upper bounds. To evaluate the coefficient estimation of Bi,kzﬂv
note that given X = X, ,, the elements in y 4, , are conditionally independent. Suppose Uy, Hy,

and Dy, hold and |Ag ;| = m. Also assume that Wl] < ¢x — ¢q; and
1XBisi1 = XBil13 < m(QBirsr) — Q) (A.15)

. - 2e
KBy mnza\/cd% 20D\ logp + ¢y log ().

where n = 2¢/N*. Then by Lemmas 9 and 10,
5 80%Ek+1

Q(/Bi,k-i-l) - Q(:Bz) < = |J@ T| <A~16>
)\z k(Q*)
where J;, = {j € V\V; : B7; < T} with 7 = 128026141/ Nik(q.). Take ¢, = 12?;2;” 2+ 55)
Then by our choice of &;11 and Lemma 8§,
N TR P
2estlogp VAV < TS Gy < Lixa, o)l (a)

Then, (A.15) and (A.16) give
1.
LIS AT

1 A
= 1% — X3

8925k+1m

N |Ji,7'|

N N 2e
+ 2[|XB; j1 — Xﬂnga\/qui + 2¢¢|Vi\Vi|logp + ¢y log(?) +

2 8
<20°(cqq; + ¢ log(—e)) + 4a%c; |V \Vi| log p + Sk | iz |

n z,k(Q*)

2e 1, 80%6,.1m
3202(%%‘ +cy log(—)) + Z||X13i,k+l XB; ||2 ~L|Ji,7'|7

10



where the last inequality follows by (A.17). The display above implies that

» . 1 “ 82 2e 8(92§k 1
Nk @GN Biras — Bill2 < —I1XB; oy — XBi |12 < — (caqs + ¢ log(—=)) + —|Jir|. (A18
k(g )HB,kJrl Billz < mH ﬁ,k+1 Billz < m ( dd £ log( 1 )) )‘z‘,k(Q*)’ A )

Consequently,
Cp(gi +1log N + g; 1 log pw)
Ny

(cqg + 4cy) + 320 and ég = %. Lastly, by Lemmas 1 and 11, (A.12) and
1 *

Cl Cx

640> 320%c log py

||Bi,k+1 —Bill5 < W(Cd(h +4cylog N) +

Ji .| <
cie Ny e, Ny, irl <

: ~  __ 6402
with ¢, = e

(A.13), together with the Cauchy—Schwarz inequality, we complete the proof of Theorem 2. [

Proof of Theorem 1. The proof is similar to (and simpler due to the forced sampling with random
sample) that of Theorem 2, and we can replace ¢ with ¢, = 166%c%c;e; p~H(2+1/(86?)), ¢, with
¢, = 80%c; (cq + 4cyp) + 80%¢,ct, and ¢g with cg = 1286%c,.c;! to obtain Theorem 1. Thus we

omit the proof details. O

B.4. Proofs for Section 5.2

Proof of Theorem 3. First, we describe regret decomposition. Recall that Ry and Ry are the
regrets accumulated in Stage 0 and the following stages, respectively. Then Ry = Ryo + Ry1.

In addition, we partition the sample space into the events as shown in (11):
Ui, UpsNFe,, Ug for1<k<K-—1

As a result, (12) follows that

K-1 K-1
Ryi = Ry I(UD) + Y Rail(Up N Ffyy) + Rl (Ux) =t Ro+ Y Ry + R
k=1 k=1

Then we have Ryg < 20blty = 20bcylg? log py(N?¥ V1og N).

Next, to provide bounds for Ry (1 < k < K), it is important to understand the properties
and implications regarding these associated events. As summarized in Section 5.1, we intend
to achieve two objectives: (1) Under “good” events, the regret can be properly upper bounded
via a connection with coefficient /reward estimation errors; (2) The (conditional) probabilities of
violating the “good” events are relatively small. To accomplish these two objectives, we further
divide the proof into multiple substeps. Specifically, for objective (1), the substeps include
studying (la) arm pre-screening behavior; and (1b) arm elimination behavior. Steps (la) and
(1b) are summarized in Propositions 2 and 3, respectively. For objective (2), the overall task is
summarized in Theorems 1 and 2.

After accomplishing these steps for the two objectives, by the results of Theorems 1 and 2

11



from objective (2), we obtain
E(Ry) < 20bNP(Uy) < 20bl/N* and E(Ry,) < 20bNP(Uy N Ff, ;) < 60bl/N* (A.19)

for 1 <k < K — 1. Also, by the results of Proposition 3 from objective (1), we have
K Ni K N
Rie<) > (F(X0) = fr(X)I(Uk) <20blm+ ) Y 4061 (Up),

k=1 7“L=Nk71+1 k=2 n=N;€71+1

which implies that

K
E(Ry) < 20bcolg? log py(N* V1og N) 4+ _ 40b; Ny,
k=2

< 20bcolq? log py (N V log N) + 895;/2%\/ N log py. (A.20)
By (12), (A.19), (A.20), and setting Ca; = 46bco + 66b and Cay = 867y %, we obtain (13). Lastly,
noting that lg, log N = o(,/—=2—) obviously holds with the additional conditions for (14), we

logpn

complete the proof of Theorem 3. n

Proof of Theorem 4. We prove the lower bound through the two-armed bandit class P defined
in Section 2.3. For simplicity, we only consider ¢ = 1 in the following proof since for ¢ > 1, our
proof leads to basically the same lower bound through normal approximation for the Irwin—Hall
distribution. Also assume the random error g, ,, of each arm i follows N(0,02). Given N, let  be
some fixed value whose choice will be given later. We can then apply a Bayes average technique
adapted from Goldenshluger and Zeevi (2013). Specifically, assume that w is randomly drawn
according to a continuous prior probability w, and let p,(-) denote the density function of w and

E,(+) denote the expectation with respect to the prior w. Then we choose

Pw(w) = %COSQ<%)I(|W| < K).

Given any admissible bandit strategy, let Ry(F,) be its cumulative regret for a class member
F,in P. Let Z™ be the set of past observations {X;, I;, Y7 ; ?:_11 prior to the n-th visit, where
X, = (1, Xp1,--- , Xsp-1). Let F, and F,, be the o-fields generated by Z" and (7", X,),

12



respectively. Then we have

}Eue%E(R(Fw)) > EwE(R(Fw))

N
> EwE(Zan,l — | (I(26 Xy > w, I = 2) + I(26X,) <w, I, = 1)))
n=1

> E(Z (Ew((%xn,1 — W) (26X > w) | F)I(T, = 2)

n=1

= By (25X — )26 X0y <) [ F) (I =1))).

By plugging in the decision rule that chooses arm [,, = 2 if E,,(2kX,,1 — w/| ]:'n) < 0 (that is,

Wy > 26X,,1 with @, = E,(w| F,,)) and arm I, = 1 otherwise to minimize the display above, we

have

s E(R(F,)) > E(Z (Ew((%xn,1 — W) (w < 26Xy < @) | Fr)

n=1
B (26X 0y — ) (@0 < 26Xy < w) yﬁn)))
1 1 &
> §E<; Eu((@n = )| F)) = 5 ; B, E(Gy — w)?
1 & 1
Z%; (n—1)024I(w)’

where the last inequality follows by the van Trees inequality (Gill and Levit, 1995; Goldenshluger

and Zeevi, 2013), and I(w) = E,,(Z%E22)2 — 72 /52 Therefore, taking k = o N~'/2, we obtain
1 & o?

sup B(R(F,)) > 5 Y ————7— > G\,

FLeP “— nk + w202 /K

where C3 = 57 This completes the proof of Theorem 4.

__9
14+m2)*

]

Proof of Proposition 4. First, note by the union bounds and sub-Gaussian conditions that for

any 1 <n <N,

E(HXHHOOI(HXnHoo > COx 10gpN)) < / P(HXnHoo[(”XnHoo > c,ox\/logpy) > €>d€
0

< eox\10g pny P(|| Xnlloo > coox/10gpn) +/ P([| X, |00 > €)de
czoxVlogpn
00 62
<2c,oxpy\/logpy + 2p/ exp(——z)de < de,oxpyv/log pw.
czoxV9ogpn 2O—X

13



Also note that

N
P(A%) < 3" P(Xulle > caox/Togpn) < pi.
The two displays above imply tha:il::1
E([1 X/l (A%))
<E(|[Xnlloo (A [Xalloo < czoxv10g px)) + E(IXnllood (A [ Xalloe = coox v/10g py))

< cpox\/10g pnP(AY) + E([|Xn|loo L (|| Xnlloo = cooxv/10gpn)) < 2¢,0xpNV/10g P

Consequently, we obtain

N
E(RyI(A%) <2b) E(|[Xallwl(A%)) < 4be,oxpy'v/logpy,
n=1

which completes the proof of Proposition 4.

B.5. Proofs for Section 5.3

Proof of Theorem 5. Suppose that Zy # Z,. This implies that either event A or B occurs, where
A={dn> Ni_s + 1 such that i € S,, for some i € 7.},
B ={3i € Z, such that VN, o4+1<n< Ny, i ¢ Sn}

By Proposition 2,
N
P(A)< ) P(i€S, for somei € L,) < Nk P(Uf;_y) + N P(U). (A.21)
n=Nj_s+1
In addition, by induction, we have P(Uf) < k/N? for all k (1 < k < K). Indeed, it is known by
Theorem 1 that P(UY) < 1/N?. If we suppose P(Uf) < k/N? holds, then by the arguments in

the proof of Theorem 2, we have

PUi,) < PU;)+ PU.NH) +PU.NH,ND;)+ P(Upy N HyN DN FL)
k+

N2
Therefore, (A.21) and (A.22) show that P(A) < 2K/N. Also note that

< k/N?+1/N®+ 1/pX + 4el /N* <

. (A.22)

P(B) < P(U§_ )+ P(Ux 1 NH )< (K—1)/N*+1/N* < K/N.

Consequently, P(Zy # Z,) < P(A) + P(B) < 2% — 0 as N — oo. For coefficient estimation,
the consistency is the immediate result of (A.18) for Theorem 2 and (A.22), and we complete

the proof of Theorem 5. O]
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Proof of Theorem 6. We only show variable selection consistency, as coefficient consistency is an
immediate result of Theorem 5. Following the proof of Theorem 2, assume that Uy, Dy, and
Hp hold, and suppose |Ag;| = m. Also for an arm i € Z,, assume event W; holds in which
Vil < ¢o—q;. Let X = Xa,, andy = yyu,,. Define G} = V;UV; and BG; = argming,,,g)—c: Q(B);
and Bi,[) = argming,,,g)-y, @(8). If ||X(BG; - Bi,O)HQ < 3||X(Bz - BG;)HZ, then by Lemmas 8
and 10,

Nirc () o Loo,n - 646> L 12862
Padesc(@) ) < Ly, — o) < S ) < 2808k

20 m ik (x) Ai i ()
where J;, = {j € Vz\fil : B’L?,j < 7} with 7 = 4¢ézlogpy/N. The display above implies that

|V1\1>1| S 2|Jz77-’ and

- 2566* 2560*
Vi\Vi| < ~—2|J¢,T| < — 5l = col izl
P i () pcic2/16
On the other hand, if HX(BG; - Bi,O)HQ > 3||X(8; — BG;)”Z: then by Lemmas 8 and 9,
pEr ik (g ¢ 1 wia 7 : :
4—92]%\141 < %HX(@ —Bio)ll3 < Q(Bio) — Q(B,). (A.23)
Also, suppose it holds that given n = 2¢/N*,
. . N - 2e
Q(Bio) — Q(B;) < o®m™ (24| Vi\Vi|log p + ¢ 10g(?))- (A.24)
The two displays above imply that
. cylog (2 log N
VA< ——7 G) <220 < (A.25)
pméie;(;z;(q*) —2¢;logp log pn
that is, [V;\Vi| = 0. Then by (A 23) and (A.24), we have
cio? 2e
—H Bi- Bl <L Og(;)- (A.26)
Also suppose that
A 2 2q;
Bo — Bollo <0y [ ——log A.27
1By~ Bl <[ s ton(). (A21)
Note that
1 . . . .
— 1,0 — Pi)lla = Ak \Gx i _zK* i,0,Vi\ Vs i Vi\V; 112
—IIX(Bio — 8 M3 > Xk (@185 000w, 15 > i (g )( 185y, 13 = 18,0005, — B )

> Nk (g )( ||:31v\vz |V\V|||/610 ﬂz”go)

If |Go\G™) (A.26) and (A.27) implies that
1 2 2; e :
DB, = 2 (2eron) + 2108 ) pp < MU
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where the last inequality holds as was derived for (A.25). Also note that
1-~
2> S ()T,
where J; = {j € VAV B2, > 7}. The two displays above together with log p = o(/N') show that
|7 < 2256(V\ Vi < 3[V;\Vi|, which implies that [V;\V;| < 2|J;,|. Therefore, by Lemmas 2, 11

702

1~
5)\1‘,1{ (Q*) H/gi,Vi\f/i

and the known probability bound for (A.27), from the beta-min condition, we have
P(Vi #£ Vi) = P(Iy # 1,) + P(Iy = L,, [V\Vi| > co|Ji-| or [Vi\Vi| < 2J;])
<3K/N + P(U§) + P(Ux N HE) + P(Ux N Hg N DS) + P(Ux N Hg N D N WE) + 4e/N*
<3K/N + (K +1)/N* < 4K/N,

which approaches 0 as N — oo. We complete the proof of Theorem 6. O

B.6. Proofs for Section 6

Proof of Proposition 5. We prove the first statement by contradiction. Suppose Assumption 5
does not hold. Then for every €,c > 0, there are some members in the considered bandit class
and some ¢ € 7, such that
P(fi(X) — njngfJ(X) >€) <c

Together with Assumption 4, this implies that

Z P(f(X) - max f;(X) > 0) 2 Z P(£(X) —max f;(X) > ¢) > 1~ Le—c.

i#i i#i
Consequently, P(f;(X) — max;; f;(X) > 0) < Le + c. Then with e = ¢/L, this implies that
for every ¢ > 0, there are some members and some i € Z, such that P(f;(X) — max;; f;(X) >
0) < 2¢, which is in contradiction with Assumption 1. The second statement holds trivially by
noting that under Assumption 5, for any i € Z,, P(X € T;) > P(X € T;) > é. The proof is
complete. O

Proof of Proposition 6. The first statement is simply the reiteration of Propositions 10 and 11.
For the second statement, it is not hard to see that Assumption 4 and Assumption 5 are in direct
contradiction with the statements (4) and (5) of Proposition 1, respectively. This completes the

proof of Proposition 6. O

Proof of Theorem 7. The proof of Theorem 7 follows the same proof structure of Theorem 3; we

need only modify the proof for the regret upper bound of Rx. Specifically, by Proposition 3, we
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have
K Ny,
Re <> > (ff(Xn) = f1.(X0)I(Uk)
k=1 n=Nk71+1
K Ny,
<20blmo+ Y > A0 I(Ur, f1(X0) — fH(X,) < 40b).
k=2 n=Ny_;+1

Then, by Assumption 4 and Assumption 6,

K
E(Rg) < 20bcylg? log py log N + Z 160°b; Ny, < 20bcolg? log py log N + 326°¢,K q2 log py .
k=2
(A.28)
By (12), (A.19), and (A.28) and setting Cy = 40bcy + 60b + 3260%¢,, we obtain the conclusion of
Theorem 7. [

C. Ancillary lemmas and proofs

To perform an analysis for sz 41, We require some ancillary lemmas. For notational brevity, we
omit the subscripts for arm ¢ and stage k + 1. Using the definitions in the proof of Theorem 2,
we assume throughout this section that Uy, Dy, and Hj hold, with sample size m := |J; x|
(m > Ngpil;'/2). Given variable set G C {1,--- ,p}, without confusion, the true coefficient is
By = B,;, the true set of relevant variables is Gy := V; = supp(8,), least square estimation on
set G is B = argming, . g @(B), By = BGO, A(s) := \ix(s), and € := &y, where Q(B) is
defined in Section 4 with response y :=y 4, , and covariate matrix X := Xy, ;.

Due to key arguments for the design matrix under the randomized allocation scheme, we are
able to prove Lemmas 1-4 in a similar way to that of Lemmas C3, C4, B1, and B2 in Zhang
(2011). Their proofs are thus omitted. Let € = (€1, -+ ,&,,)7 be the random error vector, which

has conditionally independent elements given X.

Lemma 1. With probability greater than 1 — n, there exist constants cq,cy > 0 (e.g., cq =
74, c; =2.7) such that given X, for all G C {1,--- ,p},

N A a 2e
1XBe —XBoll5 < m[Q(Be) — Q(By)] +2[XBg — XﬁoHW\/CdIGol + 2¢7|G\Go| logp + ¢ 10g(?)-
Lemma 2. With probability greater than 1 —n, given X, for all G C {1,--- ,p},

Q(By) — Q(Baug,) < o*m ™ (2¢1|G\Gollog p + ¢; 10g<277_6)).
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Lemma 3. (Forward Step) Given G C {1,--- ,p}, define G' = GUGy and s = |G'|. Then

. A(s)

QBo)— _min. _Q(Bg+ae) > it (o I%(Bg — el + Q(Bo) ~ QBo) )

Lemma 4. (Backward Step) Given G C {1,--- ,p} and BG = (BG 1,0 ,qu)T, we have

min Q(B¢ — faje;) — QBs) < |G\ 2 ey

]EG\G
The following lemmas are related to IGA estimator properties at a certain iteration r with
selected variable index set G("), immediately after the completion of Step 2 in Algorithm 2, and
are derived for Lemma 11. Let G~ be the obtained index set at the end of the previous

iteration. Define s = |G U Gy|.

Lemma 5. Suppose the current iteration has no backward elimination. Then

1o,z A
L(Boe - B3 2 200

Proof of Lemma 5. Let G' = G™ UG,. Then it is not hard to see that since G"~1 c G c &,
QBae-) ~ QBe) = - I1X(Be — Bae)I}
QBa) ~ QB = 1% (Ber — Boo) I (4.29)
Also, note from Step 2 that
f = Q(/BG(T ) — Q(BG(”)

> Q(Bgi-n) — meiﬂg Q(Bgo-v + ae;)  for some j € G,

|G\ Gol.

> p(Q(Beirv) - oin  QBgen + ae;)) = pot" Y (A.30)
pA(s) . .

Z IGAGE] (Q(Bsn) — Q(Ber))
PA(s) - :

~ e e - Bl (A31)

where the last inequality holds by Lemma 3 and (A.29), and is used later by Lemma 6.

By assumption that there is no backward elimination at the current iteration, by Lemma 4,

g(r) . . 92
9 < JIE%P Q(ﬂa BG(’“),jej) - Q(Bam) < Z ﬁc mj —- N\ Gy |||ﬁG(T)\GO||2
JEGM\ Gy
(A.32)
Then, by (A.32) and (A.30), we have
<A A)ET PEN(S) | (v

LR (Bo—Bo) 13 = X6 B ~Boll = M5B = 27 GGy > L0060 |
This completes the proof of Lemma 5. O

18



9 > 894,},2|G/\G(r71

Lemma 6. Under the same conditions as Lemma 5, if 5\(5) 1 with some v > 2,

|GG
then
142971 - -
()X B — Bo)ll3 < QBy) — QB
Proof of Lemma 6. By (A.31) and (A.32),
20> pA(s) pA(s)?

() 2 > 7 2 > A2
’G(T)\Go‘ ”IBG<T)\G’0H2 > 492m’G/\G(T,1)’ HX(ﬁG(T) BG’)HQ > 492m’G/\G(T,1)’ ||ﬁG(T) BG’“%
which implies by the value of v that
~ () - A ~ (1) N
1Bcingollz = YBan — Berllz = Y(IBain g, l2 = [1Baeng, lI2)s

where B(T) = BGM and B, = BG,. The two displays above imply that

> —1y A
1Baenaollz = (1 =7 )Baong, Il (A.33)

_ pA(s) IGW\Gol o » )
= (1 -7 1>\/492m|G’\G(”_1)\ 262 HX</BG(’") - ﬁG’)HQ

2 (1= 1) 57 % B — Bel

Therefore,
1 N ~ A ~ ~
EHX(ﬁcy - ﬁo)”g > M) Be — :30”% > /\(S)HBG'\G(,H% 2

which implies that
IX(Beor = Bo)ll2 = (v = D(IX(Bs — Bo)llz = IX(Ber — Bo)ll2)

—1)? . u
O (B — Aol (A34)

and

I%(Beer = Bolll2 <~ 1X(Ber = B2 (A.35)

Therefore,

Q(By) — QBan) =Q(By) — Q(Ber) + Q(Ba) — Q(Bem)

1 - 1 N A
= [%(Be — Bl — —IX(Ber — B

1 - 1 .
> —[IX(Be — Bo)llz — m”x(ﬁc/ — Bo)ll3

2 A
>(1+ ;)HX(BG(T) — Bo) 3.
where the first inequality follows by (A.34) and the last inequality follows by (A.35). This
completes the proof of Lemma 6.

O
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Lemma 7. Under the same conditions as Lemma 6,

2 > 5\ S — ~—1)2 G(r) G
QBy) — QB > M2 vzégpa \Go|

Proof of Lemma 7. We can see that

. . 1 . .
QB — QBe) = X (B — Bo)l

[\l )

~ ~l
> /\(S)H/@G(’“)\GOH%

et A A(s)(1 = y71)?pE| GG
> (1=~ M)1Baimne, |z = &) 222 = 0|’

where the second to last inequality follows by (A.33) and the last inequality follows by (A.30)
and (A.32). This completes the proof of Lemma 7. O

In Lemmas 810, we assume that IGA obtains the variable index set G(") when it terminates.

Let s = |G U Gy|. Note that these lemmas still hold if we replace B, by 3,.

Lemma 8. When IGA terminates, we have

1o, - A
L% (Bo — Bo)l = P aong. (A.36)

Proof of Lemma 8. By the backward termination condition and (A.30), we know that

rerg(n) (Baer — BJ(T)ej) — Q(Bae) > 0561 > 0.5p¢,
J s

where B](T) is the j-th element of B(T) = BG(T‘). Together with Lemma 4, we have
5(T) r
0B I3 = 0.5/ G\ Gol.

Then, we obtain (A.36) by noting that

1 - < - < ~(r)
—[X(Baer = Bo)lls = M5B = Bolls = A5)l1Bgin g, I2-

Lemma 9. When IGA terminates, if | X(Ba — Bo)ll2 > 3I1X(Baw — Ber)ll2, then
A 1 A
Q(By) = QBaw) 2 5~ 1X(Beo = Bo)llz-

Proof of Lemma 9. This lemma is proved by noting that

Q(Bo) = QBaw) = Q(By) — Q(Ber) — (QBen) — QBer))

1 o 1 A A
:E”X(,@G/ - ﬂo)”% - EHX(ﬂG("') - Q(ﬂ@))”g

1 - 1 . 1 .
2| X(Ber — Bo)lls — o IX(Ber — Bo)ll5 > o 1X(Bee) = Bo)ll3,
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where the last inequality follows by
IX(Ber = Bo)llz < IX(Bawr = Ballz + 1X(Bar = Bo)llz
1 A N 4 .
< 1X(Bo — Bo)ll+ 1X(Bor — Byl < 5 1X(Ber — Bl

Lemma 10. When IGA terminates, if

IX(B = Bo)ll2 < 3IX(Bawr — Ber)ll2,

then
1o , _ 640%¢ o 1286%€
(B = Bl < STHENGY ] < S
“ 92 92
QBow) — Q(By) < <f|G \GO| < <§|J0T|

where Jo, = {j € GoO\G") : B2, < 7} with 7 = 12806 /A(s)?.

Proof of Lemma 10. Note that by the termination condition and Lemma 3,

. . . A(s) : 2 2
> r - r ] > r) — ! .
£ > Q(Bawm) e I Q(Bar + aej) > 492|G0\G(r)]m”X(ﬁG< ) = Be)llz, (A7)

which implies that
- ~ - A 2
IX(Baer = Bo)llz < (IX(Baer = Bar)ll2 + 11X (Ber — Bo)ll2)

A A 640
< 16]X(Boer — B2 < A(”f

1Go\G™). (A.38)
Also, note that

R R . 1 . 40%¢
Q(Ben) — Q(By) < Q(Ben) — Q(Be) = E”X(ﬁcm Bl <

Go\G™ A.39
()|\ . (A39)

where the last inequality follows by (A.37). In addition,

1 P ~ . ~ -

—|X(Beor = Bo)llz = Ms)l1Bar = Bollz 2 A)NIBocnanllz = As)7l o, |,
where J, = {j € Go\G") : B3, > 7} with 7 = 12862¢/A(s)2. The displays above together with
(A.38) imply that #& mg|G \GM| > \(s s)7|Jo.+|. Then, by our choice of 7, we have

Go\G"| > 2|5 .| = 2(1Go\G"| = | oz ).
Consequently, |Go\G™| < 2.Jp,. Together with (A.38) and (A.39), we obtain the conclusions of

this lemma. O

The following lemma provides an upper bound on the size of the selected variables. Let

q=q.
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Lemma 11. Assume that IGA terminates with the variable index set GU) and we set & >
166%02cy

AP (2logp + M). Given X, with probability greater than 1 —n, we have r* < q. — q.

3202q

Proof of Lemma 11. Suppose that we have r* > ¢, — ¢q. Then assume that r = ¢, — ¢ is first
recorded. Then note that there is no backward step in the previous step. Let G/ = G) N Gy.

We seek to verify that the conditions of Lemma 7 hold. Indeed, we can see that
320°|G\G V| < 320%(q + 1) < M(g+)* (g« — 29) < Mg.)*|G\Gol, (A.40)

where the second inequality holds because under (A.14),
4.2 2 2
ac o 646 S 320°(q + 1)

Mg,)? > , A4l
(¢.)" 2 16 — (C1—2) = (C1—2)q ( )
with some large enough constant C'; > 2. Then we can apply Lemma 6 to obtain
A o Mg p€|GO\G
QBar) < Q) — GG, (A.42)
Also, suppose that
~ A 02 26
Q(Bo) ~ Q(Be) < - (2e|G™\Gol logp + ey log () (A.43)
holds. Then (A.42) and (A.43) imply that
86%c? cr 2e 802> cr 2e
< ——(2¢rlogp+ ————1log(—)) < ———(2¢rlogp + ————1og(—)),
mA(q*>p( ! |GGl ( " ) m/\(q*)p( d 3202(q + 1) ( n )

where the last inequality follows by (A.40). However, this contradicts our choice of &, and thus

(A.43) does not hold. Together with Lemma 2, we complete the proof of Lemma 11. O

D. Simulation

In this section, we evaluate the performance of the proposed bandit algorithms on simulated data.
We compare the performance of different bandit algorithms in Supplement D.1 and perform a

sensitivity analysis on parameter choice in Supplement D.2.

D.1. Performance with different algorithms

For brevity, the multi-stage type algorithms described in Section 3 are abbreviated as “MS”.
Throughout the following numerical evaluation, we set the initial sampling size 79 = 20 and set
the arm screening and elimination parameters to be oy = c\/m and Ay = c\/m :
Unless stated otherwise, we simply set ¢ = 1 and h = 4. We considered IGA and lasso as the
methods for coefficient estimation and denote the corresponding bandit algorithms by MS-IGA
and MS-lasso. For MS-IGA, rather than directly setting the IGA parameter £, we generated the

22



solution path through the forward-backward selection steps, and applied ten-fold cross validation
(CV) to determine the best number of selection steps and find the IGA estimates for each stage.
For MS-lasso, we found the solution path with a decreasing sequence of the tuning parameter
values (Friedman et al., 2010) via an accelerated proximal gradient descent (Beck and Teboulle,
2009), and then applied ten-fold CV to generate lasso estimates for each stage. For comparison,
we used the MS algorithm without any covariates (denoted by MS-simple), that is, the mean
reward estimates in Algorithm 1 were replaced by the simple average of the accumulated response
values of each arm. We also considered the LASSO bandit algorithm in Bastani and Bayati (2020)
as a useful benchmark (denoted by B-lasso); to avoid having to perform computationally more
expensive CV at each user visit point, we adopted the parameter values recommended for B-lasso
algorithm in numerical evaluation.

In the simulation, we set the number of arms [ = 3, the number of covariates p = 500 and
the total number of visits N = 10000. We generated covariate vectors X,, from a multivariate
normal distribution with mean 0 and covariance ¥ with exponential decay (X);; = p/" and
p = 0.5. For each arm ¢ (i = 1,2,3), we set the number of relevant variables to be the same
for all arms at gy = ¢; = 5,10 or 15. The index set for nonzero coefficients was F,y = {j : j =
10(k—1)+1,k=1---,q}, and the j-th element of B, for j € F,, was generated randomly
by P(B;; =) = P(B;; = —9) = 0.5, where we set ¥ = 0.2 or 0.4. Then the response followed
the linear model Y;,, = XT3, + €in, Where the ¢;,,’s are independent N (0, 0?) with 0 = 2. We
then ran the aforementioned bandit algorithms over the entire simulated data set in a sequential
manner.

For the algorithm performance, we recorded the per-round regret trajectory, that is, r, =
R,/n (n=1,--- N). We also evaluated the coeflicient estimation and variable selection per-
formance of each arm from the final algorithm output: given arm ¢ and algorithm output Bi,
let ||B; — B,||2 be the estimation error in the Iy norm, C; = [V, N V;| be the number of correctly
identified variables in 3;, and IC; = |V;\Vi| be the number of incorrectly identified variables.
The experiment was repeated 100 times to obtain the averaged results of these measures.

From the averaged per-round regret 7y summarized in Table 3 (numbers in parentheses are
standard errors), it is not surprising that MS-simple did not perform well since it ignores the
covariate information; satisfactorily, MS-IGA performed better or competitively compared to
MS-lasso and the benchmark. We also plotted the averaged per-round regrets against the user

visit points n in Figure 3 and Figure 4. Except for MS-simple, all three algorithms considering
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covariates exhibit a decreasing trend in these plots.

Table 3: Averaged per-round regret for different bandit algorithms on simulated data from 100
runs.

¥ =02 ¥ =04
Qo 5 10 15 5 10 15
MS-simple 0.359 (0.006) 0.528 (0.005) 0.645 (0.005) 0.732 (0.012) 1.068 (0.010) 1.298 (0.011)
B-lasso 0.245 (0.003) 0.308 (0.002) 0.335 (0.002) 0.322 (0.004) 0.359 (0.002) 0.364 (0.002)
MS-lasso 0.303 (0.005) 0.358 (0.004) 0.359 (0.004) 0.224 (0.004) 0.249 (0.003) 0.263 (0.005)
MS-IGA 0.202 (0.004) 0.274 (0.004) 0.317 (0.005) 0.177 (0.006) 0.221 (0.008) 0.273 (0.010)
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Figure 3: Averaged per-round regret curves of different bandit algorithms (¢ = 0.2). Left panel:
qo = 5; middle panel: ¢y = 10; right panel: ¢y = 15.
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Figure 4: Averaged per-round regret curves of different bandit algorithms (¢ = 0.4). Left panel:
qo = 5; middle panel: gy = 10; right panel: gy = 15.

Besides the regret performance, we summarized the coefficient estimation and variable selec-

tion results of the algorithms’ final output for ¥ = 0.2 in Table 4. The averaged sample sizes
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Table 4: Averaged simulation results of different bandit algorithms based on 100 runs (¢ = 0.2).

Go =5 ¢ =10 g =15
Arm i 1 2 3 1 2 3 1 2 3
n;
MS-simple 3697 3234 3069 3055 3635 3310 3444 3232 3324
B-lasso 3394 3337 3269 3253 3376 3371 3371 3317 3312
MS-lasso 3279 3439 3282 3276 3434 3290 3488 3236 3276
MS-IGA 3413 3253 3334 3202 3397 3401 3497 3212 3290
Ave. [|1B; = Bl
B-lasso 1.22  1.246 1.254 1.237 1205 1.192  1.183 1.2 1.205
(0.011) (0.011) (0.011) (0.012) (0.012) (0.011) (0.010) (0.010) (0.010)
MS-lasso 0.364 0.362 0.368 0.394 0413 0422 0433  0.448  0.449
(0.009) (0.008) (0.008) (0.011) (0.011) (0.012) (0.007) (0.008) (0.008)
MS-IGA 0.175 0.206 0.205 0.250 0256  0.238 0.254 0.311  0.306
(0.011) (0.012) (0.012) (0.014) (0.015) (0.012) (0.012) (0.014) (0.014)
C;
B-lasso 5.00 5.00 500  10.00  10.00  10.00 14.99 1500  15.00
MS-lasso 2.62 2.92 2.63 8.39 8.30 7.88  14.36  14.37  14.34
MS-IGA 4.46 4.26 4.26 8.77 8.60 9.02  14.14 1356  13.5
IC;
B-lasso 469.66 468.29 470.19 463.67 463.43 463.09 457.64 458.3  459.32
MS-lasso 0.74 1.68 0.60 8.82 6.03 561 1198  13.98 13
MS-IGA 0.75 0.96 1.08 0.92 0.90 0.85 1.09 1.64 1.37
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Figure 5: Boxplots for coefficient estimation error of arm 1 from output of different bandit
algorithms (¢ = 0.2). Left panel: ¢y = 5; middle panel: gy = 10; right panel: gy = 15.

n; appear well-balanced among different arms, which is expected from the randomized gener-
ation of the true coefficients. Both MS-lasso and MS-IGA generated much sparser coefficient
estimates than that of the benchmark, as we empirically employed the data-driven approach for
parameter tuning in the MS algorithms. In particular, for most cases here, MS-IGA resulted in

fewer incorrectly identified variables than MS-lasso. Similar patterns on variable selection with
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Table 5: Averaged simulation results of different bandit algorithms based on 100 runs (¢ = 0.4).

Estimation error

QO:E) qo=10 qO:15
Arm i 1 2 3 1 2 3 1 2 3
n;
MS-simple 3382 3382 3236 3043 3711 3246 3377 3243 3380
B-lasso 3357 3343 3300 3382 3332 3286 3372 3309 3319
MS-lasso 3271 3362 3367 3319 3427 3253 3287 3369 3344
MS-IGA 3251 3421 3328 3359 3339 3301 3345 3312 3343
Ave. [|1B; = Bl
B-lasso 1177 1180  1.186  1.131 1133 1154 1098 1.126  1.123
(0.012) (0.013) (0.011) (0.011) (0.010) (0.011) (0.010) (0.011) (0.010)
MS-lasso 0.388  0.399 0380 0443 0431 0441 0523 0514  0.506
(0.007)  (0.009) (0.007) (0.008) (0.007) (0.009) (0.008) (0.011) (0.008)
MS-IGA 0113 0112 0118 0149 0159  0.150 0174  0.177  0.174
(0.004) (0.006) (0.009) (0.008) (0.011) (0.008) (0.005) (0.004) (0.004)
C;
B-lasso 500 500 500 1000 10.00  10.00 1500 1500  15.00
MS-lasso 499 496 499 1000 10.00  9.99 1500 1492  15.00
MS-IGA 500 500 495 1000 992 1000 1500 1500  15.00
1C;
B-lasso 467.37 466.90 468.20 461.21 462.13 462.72 455.16  456.6  457.47
MS-lasso 245 223 222 1050 11.86 13.13  20.15 1948  20.42
MS-IGA 0.22 033 025 032 040 035 032 020 0.31
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Figure 6: Boxplots for coefficient estimation error of arm 1 from output of different bandit
algorithms (¢ = 0.4). Left panel: gy = 5; middle panel: gy = 10; right panel: gy = 15.

satisfactory performance by MS-IGA were observed under an increased coefficient signal with

¥ = 0.4 (Table 5). In addition, boxplots for arm 1’s coefficient estimation errors are given in

Figure 5 with ¥ = 0.2 and Figure 6 with ¥ = 0.4. The boxplots for arm 2 and arm 3 are similar

to arm 1 (Figures 7-10). The averaged coefficient estimation from MS-IGA outperformed that

of the other two alternatives in all cases, and the advantage of MS-IGA appears to be widened
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with ¥ = 0.4 compared to that of ¥ = 0.2; this observation coincides with Theorem 5, which

suggests that MS-IGA may become more favorable with strong signals and small g;.
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Figure 7: Boxplots for coefficient estimation errors of arm 2 from output of different bandit
algorithms (¢ = 0.2). Left panel: ¢ = 5; middle panel: ¢ = 10; right panel: ¢ = 15.
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Figure 8: Boxplots for coefficient estimation errors of arm 2 from output of different bandit
algorithms (¢ = 0.4). Left panel: ¢y = 5; middle panel: gy = 10; right panel: gy = 15.

D.2. Performance with different parameter values

To provide more guidance on our proposal’s empirical applications, we performed further eval-
uation on the sensitivity of the MS-IGA algorithm with different parameter value choices. In
particular, note that ¢ is a parameter for arm screening/elimination and h is for randomized
allocation. We first considered ¢ = 0.5, 0.75, or 1 while keeping all other experimental settings
exactly the same as that in Section D.1. The averaged per-round regret of MS-IGA with different

values of ¢ is summarized in Table 6, and the averaged results on coefficient estimation are given
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Figure 9: Boxplots for coefficient estimation errors of arm 3 from output of different bandit
algorithms (¢ = 0.2). Left panel: ¢ = 5; middle panel: g = 10; right panel: ¢ = 15.
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Figure 10: Boxplots for coefficient estimation errors of arm 3 from output of different bandit
algorithms (¢ = 0.4). Left panel: gy = 5; middle panel: ¢y = 10; right panel: gy = 15.

in Table 7. In addition, we considered different randomization parameters h = 7 and h = 10

while keeping ¢ = 1; the results on regret and coefficient estimation are summarized in Table 8
and Table 9.
Table 6: Averaged per-round regret of MS-IGA with different ¢ values on simulated data.

¥ =0.2 ¥ =04
9o 10 15 10 15

5 5
c=05 0203 (0.005) 0.289 (0.007) 0.368 (0.010) 0.230 (0.013) 0.316 (0.018) 0.448 (0.030)
c=0.75 0.199 (0.004) 0.273 (0.004) 0.329 (0.006) 0.193 (0.011) 0.236 (0.011) 0.307 (0.016)
c=1 0202 (0.004) 0.274 (0.004) 0.317 (0.005) 0.177 (0.006) 0.221 (0.008) 0.273 (0.012)

It can be seen from Table 6 that the regret of MS-IGA often increased if we set the ¢ value

too small; this can be explained by the over-elimination of competitive arms, which inaccurately
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Table 7: Averaged simulation results of MS-IGA with different ¢ values on simulated data (9 =
0.2).

G =95 q =10 qo =15
Arm ¢ 1 2 3 1 2 3 1 2 3
n;
c=0.5 3403 3371 3226 3059 3572 3369 3487 3333 3180
c=0.75 3450 3293 3257 3163 3435 3402 3471 3206 3323
c=1 3413 3253 3334 3202 3397 3401 3497 3212 3290
Avg. 1B, = Bil2
c=0.5 0.19 0.205 0.213 0.293 0.256 0.280 0.322 0.343 0.340
(0.013) (0.014) (0.014) (0.018) (0.015) (0.023) (0.021) (0.019) (0.024)
c=0.75 0.170 0.200 0.208 0.264 0.252 0.250 0.277 0.331 0.297
(0.010) (0.013) (0.013) (0.014) (0.013) (0.013) (0.015) (0.016) (0.016)
c=1 0.175 0.206 0.205 0.250 0.256 0.238 0.254 0.311 0.306
(0.011) (0.012) (0.012) (0.014) (0.015) (0.012) (0.012) (0.014) (0.014)
Gi
c=0.5 4.26 4.02 3.86 7.95 8.56 8.43 12.64 12.64 12.48
c=0.75 4.43 4.33 4.02 8.77 8.84 9.00 13.66 13.04 13.46
c=1 4.46 4.26 4.26 8.77 8.60 9.02 14.14 13.56 13.5
IC;
c=0.5 0.74 0.71 0.64 1.06 0.83 1.03 1.37 1.81 1.46
c=0.75 0.61 1.11 0.66 1.15 0.95 1.19 1.08 1.59 1.29
c= 0.75 0.96 1.08 0.92 0.90 0.85 1.09 1.64 1.37

Table 8: Averaged per-round regret of MS-IGA with different i values on simulated data.

¥ =0.2 ¥ =04
9o 5 10 15 5 10 15

h=4 0202 (0.004) 0.274 (0.004) 0.317 (0.005) 0.177 (0.006) 0.221 (0.008) 0.273 (0.012)
h=7 0.195 (0.004) 0.265 (0.003) 0.312 (0.005) 0.175 (0.006) 0.218 (0.008) 0.275 (0.012)
h=10 0.190 (0.004) 0.263 (0.004) 0.315 (0.005) 0.177 (0.006) 0.227 (0.008) 0.286 (0.011)

removes “promising” arms from candidate sets for randomized allocation. Table 7 for ¢ = 0.2
(along with Table 10 for ¥ = 0.4) also shows that an overly small ¢ (such as ¢ = 0.5) sometimes
leads to increased coefficient estimation errors and less ideal variable selection results, and the
performance of MS-IGA can be sensitive to small ¢ values. A simple choice of ¢ = 1 often gave
reasonable performance compared to those smaller alternatives. On the other hand, as shown in
Table 8, the use of a larger randomization parameter h with h = 7 or 10 did not significantly
change the averaged per-round regret in most cases. In addition, we observed no clear patterns
in the change of the coefficient estimation and variable selection performance from Table 9 with
¥ = 0.2 (and Table 11 with ¥ = 0.4); differences in averaged estimation errors were mostly

not significant in these cases. These seem to suggest that MS-IGA is relatively robust to these
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Table 9: Averaged simulation results of MS-IGA with different h values on simulated data
(9 =0.2).

QO:E) q0=10 (IQ=15
Arm 4 1 2 3 1 2 3 1 2 3
n;
h=4 3413 3253 3334 3202 3397 3401 3497 3212 3290
h="17 3352 3215 3433 3204 3369 3427 3484 3235 3281
h=10 3269 3304 3426 3138 3492 3370 3516 3106 3378
Avg. 1B; = Bill»
h=4 0.175 0.206 0.205 0.250 0.256 0.238 0.254 0.311 0.306

(0.011) (0.012) (0.012) (0.014) (0.015) (0.012) (0.012) (0.014) (0.014)
0192 0203 0197 0270 0261 0251 0275 0322 0311
(0.012) (0.013) (0.013) (0.014) (0.017) (0.015) (0.014) (0.017) (0.018)
h=10 0219 0201 0190 0294 0256 0265 0293 0360  0.299

(0.014) (0.013) (0.014) (0.019) (0.016) (0.015) (0.017) (0.019) (0.015)

h

Il
-3

Ci

h=4 4.46 4.26 4.26 8.77 8.60 9.02 14.14 13.56 13.50
h=T17 4.19 4.04 4.15 8.79 8.68 8.81 13.79 13.12 12.97
h =10 4.02 4.00 4.02 8.03 8.53 8.56 13.42 12.34 13.58
IC

h = 0.75 0.96 1.08 0.92 0.90 0.85 1.09 1.64 1.37
h = 0.67 0.58 0.74 1.49 1.30 1.10 1.24 1.67 1.00
h =10 0.79 0.58 0.46 1.10 0.91 0.93 1.38 1.66 1.44

different choices of h. Accordingly, in the real data evaluation studies of Section 8, for any MS
algorithm, we simply used the last parameters in Tables 6 and 8 (that is, ¢ = 1 and h = 10)

across all experiments.
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Table 10: Averaged simulation results of MS-IGA with different ¢ values on simulated data

(9 = 0.4).

G =95 q =10 G =15
Arm ¢ 1 2 3 1 2 3 1 2 3
n;
c=0.5 3132 3351 3517 3388 3492 3119 3395 3491 3113
c=0.75 3143 3379 3478 3312 3363 3324 3319 3298 3383
c=1 3251 3421 3328 3359 3339 3301 3345 3312 3343
Ave. [1B; - Bill:
c=0.5 0.196 0.182 0.157 0.222 0.204 0.293 0.282 0.307 0.347
(0.030) (0.023) (0.018) (0.020) (0.022) (0.042) (0.038) (0.042) (0.050)
c=0.75 0.143 0.125 0.125 0.153 0.155 0.148 0.201 0.222 0.175
(0.014) (0.010) (0.010) (0.012) (0.008) (0.005) (0.020) (0.023) (0.005)
c=1 0.113 0.112 0.118 0.149 0.159 0.150 0.174 0.177 0.174
(0.004) (0.006) (0.009) (0.008) (0.011) (0.008) (0.005) (0.004) (0.004)
C;
c=0.5 4.64 4.71 4.75 9.30 9.62 8.80 13.80 13.49 13.25
c=0.75 4.85 4.95 4.94 9.90 9.96 10.00 14.70 14.59 15.00
c=1 5.00 5.00 4.95 10.00 9.92 10.00 15.00 15.00 15.00
IC;
c=0.5 0.28 0.56 0.35 0.35 0.49 0.28 0.46 0.20 0.21
c=10.75 0.29 0.43 0.29 0.21 0.37 0.22 0.32 0.36 0.36
c=1 0.22 0.33 0.25 0.32 0.40 0.35 0.32 0.20 0.31

Table 11: Averaged simulation results of MS-IGA with different i values on simulated data
(¥ =0.4).

o =5 qo =10 qo =15
Arm ¢ 1 2 3 1 2 3 1 2 3
n;
h=4 3251 3421 3328 3359 3339 3301 3345 3312 3343
h="17 3267 3413 3320 3339 3354 3306 3314 3329 3357
h =10 3246 3420 3334 3364 3316 3320 3335 3278 3387
Avg. 1B = Bill
h=4 0.113 0.112 0.118 0.149 0.159 0.150 0.174 0.177 0.174
(0.004) (0.006) (0.009) (0.008) (0.011) (0.008) (0.005) (0.004) (0.004)
h="17 0.135 0.132 0.131 0.148 0.155 0.158 0.185 0.184 0.179
(0.009) (0.009) (0.009) (0.005) (0.007) (0.006) (0.005) (0.005) (0.005)
h =10 0.151 0.141 0.128 0.147 0.170 0.162 0.180 0.190 0.165
(0.013) (0.014) (0.011) (0.005) (0.012) (0.006) (0.005) (0.008) (0.003)
@
h=4 5.00 5.00 4.95 10.00 9.92 10.00 15.00 15.00 15.00
h= 4.97 4.96 4.95 10.00 9.97 10.00 15.00 15.00 15.00
h=10 4.90 4.85 4.93 10.00 9.90 10.00 14.99 14.98 15.00
IC;
h=4 0.22 0.33 0.25 0.32 0.40 0.35 0.32 0.20 0.31
h="17 0.48 0.50 0.33 0.32 0.40 0.49 0.49 0.53 0.43
h=10 0.42 0.40 0.22 0.23 0.37 0.41 0.32 0.47 0.15
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