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Abstract: We examine the problem of variable selection for high-dimensional

sparse Cox models. We propose using a computationally efficient procedure, the

Chebyshev greedy algorithm (CGA), to sequentially include variables, and derive

its convergence rate under a weak sparsity condition. When we assume a strong

sparsity condition, we use a high-dimensional information criterion (HDIC) and

the CGA to achieve variable selection consistency. We further devise a greedier

version of the CGA (gCGA). With the help of the HDIC, the gCGA not only

enjoys selection consistency, but also exhibits superior finite-sample performance

in detecting marginally weak, but jointly strong signals over that of the original

CGA and other related high-dimensional methods, such as conditional sure inde-

pendence screening. We demonstrate the proposed methods using real data from

a cytogenetically normal acute myeloid leukaemia (CN-AML) data set.

Key words and phrases: Chebyshev greedy algorithm, high-dimensional informa-

tion criterion, sure screening, variable selection consistency.
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1. Introduction

In modern biomedical studies, the excessive number of biomarkers presents

technical challenges when trying to apply existing statistical methods. For

example, in the context of genomic research of acute myeloid leukaemia,

tens of thousands of gene signatures are measured to predict cancer patients’

overall survival (Metzeler et al., 2008). Typically, only a small portion of

biomarkers are relevant to the clinical outcome; thus, a tailored procedure

that effectively identifies relevant biomarkers is essential for analyses of

high-dimensional survival data.

Fan and Lv (2008) introduced a two-step procedure for high-dimensional

variable selection. In the first step, sure independence screening (SIS) is

used to reduce the number of candidate variables to a scalable size. Then,

the nonconcave penalized likelihood method is exploited to achieve the or-

acle property (Fan and Li, 2001). Since the seminal work of Fan and Lv

(2008), numerous marginal screening methods have been developed and ex-

tended to various survival models (Fan, Feng, and Wu, 2010; Song et al.,

2014). Nevertheless, most existing marginal screening methods hinge on

the assumption that jointly important variables should also have strong

marginal associations with the outcome. Consequently, marginally weak,

but jointly strong signals are unlikely to be detected by these methods.
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Barut, Fan, and Verhasselt (2016) and Hong, Kang, and Li (2018) ad-

dress this problem by implementing SIS after conditioning on a known

variable set C, which is referred to as conditional SIS (CSIS). They argue

that CSIS asymptotically detects marginally weak, but jointly strong sig-

nals (variables), provided that C satisfies some technical assumptions (see

Theorem 3 of Barut, Fan, and Verhasselt (2016)). However, it seems diffi-

cult to show that these assumptions are fulfilled by the commonly used C,

which is determined either from biological knowledge or from other variable

screening methods, such as (unconditional) SIS.

To gain further insight into how C affects the performance of CSIS,

we conduct a simulation study based on data generated from a sparse Cox

model with the hazard function λ(t|Z) = exp(Z ′β). The censoring time

is generated from the Uniform(0, c) distribution, and the censoring rate is

controlled around 30% by using the constant c. The sample size is set

to 400, β = (β1, . . . , β10000)
′ is the coefficient vector satisfying β1 = β2 =

β3 = 3 and βj = 0 for 4 ≤ j ≤ 10000, and Z = (Z1, . . . , Z10000)
′ is the

covariate vector obeying Z1 = W1 −W2 −W3, Z2 = W2 −W3, Z3 = 2W3,

and Zj = Wj for 4 ≤ j ≤ 10000, with {Wj}10000j=1 being independent and

identically distributed (i.i.d.) as the standard normal distribution. Given

this specification, the relevant variables Z2 and Z3 are marginally weak,
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and so are rarely selected by SIS. Moreover, Z2 cannot be selected even by

CSIS with some commonly used data-driven variable set C. To see this,

denote ZJ = (Zj, j ∈ J) with J ⊆ {1, . . . , 10000}, and let LC,j, for j =

1, . . . , 10000 be the maximum partial likelihood values obtained under Cox

models with covariates ZC
⋃
{j}, j /∈ C. Define LC,4:10000 = max4≤j≤10000 LC,j,

which is used to represent the conditional marginal utility of irrelevant

variables in the presence of C. The box plots in Figure 1 show the empirical

distributions of LC,j, for j = 1, 2, 3, and LC,4:10000, based on 100 replicates.

The left panel of Figure 1 shows that L∅,1 is much larger than the others, and

that L∅,2 and L∅,3 are largely indistinguishable from L∅,4:10000. Therefore,

when SIS is used to determine C for CSIS (as suggested by Barut, Fan,

and Verhasselt (2016)), {1} is likely to be selected. The behavior of CSIS

with C = {1} is illustrated in the middle panel of Figure 1: Z3 is easily

detected, but Z2 is not, because L{1},2 is indistinguishable from L{1},4:10000.

These two panels reflect the intrinsic difficulty of using SIS to choose C.

On the other hand, when C is set to {1, 3}, the remaining relevant

variable Z2 is readily detected by CSIS, because L{1,3},2 ≫ L{1,3},4:10000, as

shown in the right panel of Figure 1. Note that if we select one variable

at a time using CSIS, and update C (initialized with C = ∅) iteratively

by adding the newly selected variable, then all relevant variables can be
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Figure 1: Box plots of the empirical distributions of LC,j, for j = 1, 2, 3,

and LC,4:10000, based on 100 replicates, with C = ∅ (left panel), {1} (middle),

and {1, 3} (right).

included at the third iteration, as illustrated in Figure 1. This procedure is

the forward regression (FR) with partial likelihood pursuit (Hong, Zheng,

and Li, 2019).

Despite the advantages of FR in terms of selection accuracy, the method

has been criticized for its prohibitive computational complexity when the

number of candidate variables, p, is large. Greedy algorithms, such as L2-

boosting (Bühlmann, 2006), the orthogonal greedy algorithm (OGA) (Ing

and Lai, 2011), and orthogonal matching pursuit (Tropp and Gilbert, 2007)

have been proposed to alleviate this difficulty by sequentially choosing vari-
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ables to enter a linear model with much less computational effort, but with

the desired accuracy of prediction and selection. Greedy algorithms also

have satisfying statistical properties in high-dimensional generalized linear

models (Elenberg et al., 2018). However, not much is known about these

algorithms when applied to high-dimensional survival models.

We attempt to fill this gap by investigating the Chebyshev greedy al-

gorithm (CGA) (Temlyakov, 2015) in a high-dimensional sparse Cox model

in which the number of candidate variables, p = pn, is much larger than

the sample size, n. We first derive a uniform error bound for the CGA that

holds uniformly for the number of iterations, and can be explained by a

bias–variance trade-off between the approximation error and the estimation

error. When the model coefficients satisfy a weak sparsity condition, the

best compromise between these two errors is achieved by suitably choosing

the iteration number, leading to a convergence rate of (log pn/n)
1/2, which

coincides with the “minimax-optimal” rate obtained in linear regression

models (Raskutti, Wainwright, and Yu, 2011).

Moreover, in Section 4, we show that the finite-sample performance of

the CGA in finding the relevant covariates is quite satisfactory in the exam-

ple with two marginally weak, but jointly strong signals, Z2 and Z3. How-

ever, the algorithm’s performance deteriorates when the relevant covariates,
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Z1, . . . , Z3, become correlated with the irrelevant ones, Z4, . . . , Z10000; see

Section 3.1. In contrast, FR remains robust, albeit time consuming. This

observation motivates us to develop a greedier variant of CGA (gCGA) that

combines the strengths of the CGA and FR. We show that the gCGA not

only shares the same computational efficiency as that of the CGA, but it

also boasts exceptional finite-sample performance in terms of correctness

of selection, in particular, in the difficult case just mentioned. In addition,

under a strong sparsity condition, we establish the sure screening property

of the gCGA (defined in Theorem 2) and its selection consistency when it

is used together with a high-dimensional information criterion (HDIC) that

removes all irrelevant covariates included by the algorithm. To the best of

our knowledge, no previous research examines the selection consistency of

greedy-type algorithms in high-dimensional Cox models.

The rest of this paper is organized as follows. We describe the CGA

and introduce its uniform convergence rate in Section 2. In Section 3,

we propose the gCGA, present its sure screening property, and establish

its selection consistency when used together with an HDIC. In Sections 4

and 5, we compare the performance of the proposed methods and those

based on CSIS or LASSO using simulated data and a CN-AML data set.

We conclude the paper in Section 6. All technical proofs and additional

Statistica Sinica: Preprint 
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simulations are deferred to the Supplementary Material.

We end this section with some notation that we use throughout the

paper. For u = (u1, . . . , up)
′ ∈ Rp, u⊗0 = 1,u⊗1 = u, u⊗2 = uu′,

supp(u) = {j : uj ̸= 0}, ∥u∥q = {
∑p

j=1 |ui|q}1/q for 1 ≤ q < ∞, and ∥u∥0 =∑p
j=1 I(uj ̸= 0), ∥u∥∞ = max1≤j≤p |uj|. For J ⊆ {1, . . . , p}, uJ ∈ Rp de-

notes the vector satisfying ui = 0, for i ∈ J c, J c = {1, . . . , p} − J is the

complement of J , and |J | denotes the cardinality of J . We denote the

minimum eigenvalues of a matrix A by λmin[A], and ⌊a⌋ (⌈a⌉) denotes the

largest (smallest) integer ≤ a (≥ a).

2. CGA for selecting high-dimensional Cox models

2.1 Preliminaries

There are three popular greedy algorithms for high-dimensional linear re-

gression models: FR (Wang, 2009), L2-boosting, and the OGA. Although

FR has desirable theoretical properties, it is very time consuming. This

weakness becomes more prominent when the method is generalized to high-

dimensional Cox models; see Section 4 and Section S3 of the Supplementary

Material for details. In contrast, while having great computational effi-

ciency, L2-boosting suffers from very slow convergence (to the true model),

resulting in unsatisfactory performance in terms of estimation and vari-
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able selection. As a greedy algorithm lying somewhere between FR and

L2-boosting, the OGA adequately shares their advantages. It gains compu-

tational efficiency by including variables as in L2-boosting, and enjoys an

excellent convergence rate and selection accuracy by updating parameters

as in FR. The outstanding performance of the OGA motivates us to use its

nonlinear counterpart, the CGA, to choose variables in high-dimensional

Cox models.

Let the failure time, censoring time, and p-dimensional covariate vector

be denoted by T , C, and Z = (Z1, . . . , Zp)
′, respectively. Assume that

T and C are independent given Z, and T follows the Cox model

λ(t|Z) = λ0(t) exp(Z
′β∗), (2.1)

where λ0(t) is the unspecified baseline hazard function, and β∗ ∈ Rp is

the true coefficient vector. Because of right censorship, we observe only

{(Zi, Xi, δi)}, for i = 1, . . . , n, where Zi = (Zi,1, . . . , Zi,p)
′ is the observed

covariate vector, Xi = min(Ti, Ci) is the observed event time, and δi =

I(Ti ≤ Ci) is the censoring indicator. For r = 0, 1, 2, define

S(r)(β, t) = n−1

n∑
i=1

Z⊗r
i Yi(t) exp{Z ′

iβ},

where Yi(t) = I(Xi ≥ t) is referred to as the at-risk process, β ∈ Rp,

and Z̄n(β, t) = S(1)(β, t)/S(0)(β, t). For a prespecified τ , the negative log-
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partial likelihood is given by

ln(β) = − 1

n

n∑
i=1

∫ τ

0

(
Z ′

iβ − logS(0)(β, t)
)
dNi(t),

where Ni(t) = I(Xi ≤ t, δi = 1) is a counting process. Straightforward

calculations yield

∇ln(β) = −n−1

n∑
i=1

∫ τ

0

[
Zi − Z̄n(β, t)

]
dNi(t) and ∇2ln(β) =

∫ τ

0

Vn(β, t)dN̄(t),

where N̄(t) = n−1
∑n

i=1Ni(t).

Denote ∇ln(β) by (∇1ln(β), . . . ,∇pln(β))
′. For J ⊆ {1, . . . , p}, define

β̂J = arg min
β∈B,supp(β)=J

ln(β),

where B ⊆ Rp is the parameter space of interest. The CGA is an iter-

ative algorithm that generates a sequence of nested sets {Ĵ1, . . . , ĴK} in

{1, . . . , p}, where K is a prescribed upper bound for the iteration number

and

Ĵk = Ĵk−1

⋃
{ĵk}, k = 1, . . . , K, (2.2)

with Ĵ0 = ∅, ĵk = argmax1≤j≤p,j∈Ĵc
k−1

∣∣∇jln(β̂Ĵk−1
)
∣∣, and β̂∅ = 0. The

selection criterion (2.2) can be interpreted as choosing the variable with

the strongest correlation with the current functional gradient (He et al.,

2016), and resembles the variable inclusion method used in L2-boosting

and the OGA for linear models.

Statistica Sinica: Preprint 
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2.2 Convergence analysis of the CGA

Our asymptotic results are built mainly on assumptions about the popula-

tion counterparts of ln(β), ∇ln(β), and ∇2ln(β):

l(β) =−
∫ τ

0

(
s(1)(β∗, t)′β − [log s(0)(β, t)]s(0)(β∗, t)

)
λ0(t)dt,

∇l(β) =−
∫ τ

0

{
s(1)(β∗, t)− s(1)(β, t)

s(0)(β, t)
s(0)(β∗, t)

}
λ0(t)dt,

∇2l(β) =

∫ τ

0

{s(2)(β, t)

s(0)(β, t)
−

(s(1)(β, t)
s(0)(β, t)

)⊗2}
s(0)(β∗, t)λ0(t)dt,

where s(r)(β, t) = E{S(r)(β, t)}, for r = 0, 1, 2. Let b0 be a large constant.

The parameter space that we are interested in is the l1-ball of radius b0,

B = {β : β ∈ Rp, ∥β∥1 ≤ b0}, where p = pn is allowed to approach infinity

faster than n. For J, J
′ ⊆ {1, . . . , p}, define βJ = argminβ∈B,supp(β)=J l(β)

and ∇2
JJ ′ l(β) = [∇2

kll(β)]k∈J,l∈J ′ , where ∇2
kll(β) is the (k, l)th element of

∇2l(β). The assumptions required in our analysis are listed below:

(C1) β∗ is an interior point of B; moreover, there exists a positive constant

D̄ such that for any |J | ≤ Dn = ⌈D̄(n/ log pn)
1/2⌉, βJ is an interior

point of B.

(C2) There exists a constant η > 0, such that P (max1≤j≤pn |Zj| > η) = 0.

(C3) There exists a constant 0 < ρ < 1, such that ρ := P (Y1(τ) = 1).

(C4) log pn = O(nκ), for some 0 ≤ κ < 1.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0265



GREEDY VARIABLE SELECTION 11

(C5) There exists a constant δ0 > 0, such that

δ0 ≤ min
|J |≤Dn

λmin[∇2
JJ l(βJ)].

(C6) There is an arbitrarily small ϵ > 0, such that for some 0 < M < ∞,

max
|J |≤Dn,i∈Jc

sup
β∈Bϵ(βJ )

supp(β)=J

∥∥∥{∫ 1

0

∇2
iJ l((1− t)βJ + tβ)dt

}{∫ 1

0

∇2
JJ l((1− t)βJ + tβ)dt

}−1∥∥∥
1

< M. (2.3)

(C7) Let N := supp(β∗); there exist 0 ≤ θ < (1 − κ)/4 and C0 > 0, such

that

min
|J |≤Dn,N−J ̸=∅

max
j∈N−J

|∇jl(βJ)| > C0n
−θ,

where ∇jl(β) denotes the jth component of ∇l(β).

A few comments are in order related to (C1)–(C7). The first part of

(C1) is often referred to as the weak sparsity condition. It allows all compo-

nents in β∗ to be nonzero, but requires that they are absolutely summable.

The second part of (C1), together with (C5), ensures that for any j ∈ J

and |J | ≤ Dn, βJ is unique and ∇jl(βJ) = 0, which is crucial in our

analysis of the CGA. To ensure that these two properties hold during the

iterations, the iteration number is restricted to K = Kn < Dn; see Theo-

rem 1. Conditions (C2) and (C3) are commonly assumed in the literature on

Statistica Sinica: Preprint 
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high-dimensional survival analysis; see Kong and Nan (2014), Hong, Kang,

and Li (2018), and Hong, Zheng, and Li (2019). Condition (C4) allows pn

to grow exponentially with n. Condition (C5) imposes a lower bound for

the minimum eigenvalue of the Hessian matrix of l(·), evaluated at the local

minimizer, βJ , over BJ := B
⋂
{β : β ∈ Rp, supp(β) = J} with |J | ≤ Dn.

The condition is flexible in the sense that it does not introduce any restric-

tions on the maximum eigenvalue of the matrix. Conditions such as (C6)

are frequently used in derivations of the convergence rates of greedy-type

algorithms under weak sparsity conditions; see Ing and Lai (2011) and Ing

(2020). Because the ε in (2.3) can be arbitrarily small, (2.3) is almost

equivalent to

max
|J |≤Dn,i∈Jc

∥∥∥{∇2
iJ l(βJ)

}{
∇2

JJ l(βJ)
}−1∥∥∥

1
< M,

which further simplifies to

max|J |≤Dn,i∈Jc

∥∥∥cov(zi,ZJ)var
−1(ZJ)

∥∥∥
1
< M (2.4)

in the case of the linear model. As argued in Ing and Lai (2011) and Ing

(2020), (2.4) holds even when the components in Z are highly correlated.

Condition (C7) is closely related to the so-called “beta-min” condition

(which requires that the nonzero coefficients are sufficiently large) and the

signal strength condition in Barut, Fan, and Verhasselt (2016). Moreover,

Statistica Sinica: Preprint 
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(C7) together with (C1) is referred to as the strong sparsity condition, which

stipulates that the number of nonzero coefficients be much smaller than n.

In fact, it can be shown (see Section S2 of the Supplementary Materials)

that

min
j∈N

|β∗
j | ≥

C0

4η2
n−θ and |N | ≤ 4η2C−1

0 b0n
θ, (2.5)

provided that (C1)–(C3) and (C7) hold. For an additional discussion of

(C7), see Section 3.1.

We can now state the main result of this section.

Theorem 1. Assume (C1)–(C5) and (C6) or (C7). Let Kn = δ̄(n/ log pn)
1/2,

where 0 < δ̄ < D̄ and may depend on b0, η, ρ, δ0, or M . Then,

max
1≤k≤Kn

l(β̂Ĵk
)− l(β∗)

k−1 + kn−1 log pn
= Op(1). (2.6)

Note that l(β̂Ĵk
)− l(β∗) is the sum of the approximation error, l(βĴk

)−

l(β∗), and the estimation error, l(β̂Ĵk
) − l(βĴk

). For the approximation

error, we show in the proof of Theorem 1 that

max
1≤k≤Kn

l(βĴk
)− l(β∗)

k−1
= Op(1), (2.7)

which plays a role similar to (6.17) of Bühlmann (2006) or (3.12) of Ing

and Lai (2011) in high-dimensional linear models, in which weak greedy

Statistica Sinica: Preprint 
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algorithms or the OGA are used in place of the CGA. Equation (2.7),

together with the uniform bound established for the estimation error,

max
1≤k≤Kn

l(β̂Ĵk
)− l(βĴk

)

kn−1 log pn
= Op(1) (2.8)

(which is also given in the proof of Theorem 1), suggests that k∗
n = c0(n/ log pn)

1/2,

for c0 > 0, is an optimal choice of k that achieves the best compromise (up

to a constant factor) between the approximation and the estimation errors,

and leads to the the following error bound:

l(β̂Ĵk∗n
)− l(β∗) = Op((log pn/n)

1/2). (2.9)

Note that (log pn/n)
1/2 is also the “minimax-optimal” rate for linear models

(Raskutti, Wainwright, and Yu, 2011). To better understand (2.9), we

provide a numerical illustration of the equation at different sparsity levels

in the Supplementary Material.

When β̂Ĵk∗n
on the left-hand side of (2.9) is replaced with the LASSO

estimate, Kong and Nan (2014) derive an error bound that achieves the op-

timal balance between the approximation and the estimation errors. How-

ever, it may be difficult to recover the (log pn/n)
1/2 convergence rate using

their bound when the weak sparsity condition described in (C1) holds. Note

that establishing the sure screening property appears to be more relevant

than pursuing the (log pn/n)
1/2 rate when (C7) is assumed. As discussed

Statistica Sinica: Preprint 
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in the next section, (2.7) plays an indispensable role in developing such a

property for the CGA and its variants.

3. A greedier variant of the CGA and consistent variable selec-

tion

Throughout the rest of the paper, we assume that (C7) holds. Motivated

by an example in Section 3.1, we first introduce the gCGA, which combines

the advantages of CGA and FR, and then state its sure screening property.

In Section 3.2, we establish the selection consistency of the gCGA when it

is used together with an HDIC.

Statistica Sinica: Preprint 
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Figure 2: Box plots for the empirical distributions of kc(r) (left) and kf (r)

(right) based on 100 simulations, where r ∈ A.

3.1 A greedier variant of the CGA and its sure screening prop-

erty

A salient feature of the CGA is that it reduces computational costs by using

only the gradient information, while maintaining the desired convergence

rate. In addition, the CGA efficiently identifies the relevant covariates in

the example of Section 1, which contains two marginally weak, but jointly

strong signals. For more details, see Section 4. However, the performance

of the CGA deteriorates in the same example when the relevant covariates,

Statistica Sinica: Preprint 
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Z1, . . . , Z3, become correlated with the irrelevant ones, Z4, . . . , Z10000. More

specifically, let Z1, . . . , Z3 and W1, . . . ,W10000 be defined as in Section 1.

Set Zj = rW3 + Wj, 4 ≤ j ≤ 10000, where r ∈ A ≡ {0, 0.5, 1, 1.5, 2}.

The values of r indicate the correlations between the relevant and irrele-

vant variables. Note that r = 0 corresponds to the example of Section 1,

in which {Z1, . . . , Z3} and {Zj, 4 ≤ j ≤ 10000} are independent. Let

C = {1}, {|∇ciln(β̂C)|, i = 1, . . . , p − 1} be a nonincreasing rearrangement

of {|∇iln(β̂C)|, i = 2, . . . , p}, and {ln(β̂C∪{fi}), i = 1, . . . , p− 1} be a nonde-

creasing rearrangement of {ln(β̂C∪{i}), i = 2, . . . , p}. Define

kc(r) = arg min
1≤j≤p−1

{j : {2, 3} ∩ {c1, . . . , cj} ̸= ∅},

kf (r) = arg min
1≤j≤p−1

{j : {2, 3} ∩ {f1, . . . , fj} ̸= ∅},

where r ∈ A. Box plots of the empirical distributions of kc(r) and kf (r),

based on 100 simulations, are presented in Figure 2. The figure shows that

for each r, all values of kf (r) are equal to one, suggesting that regardless of

whether the correlations between {Z1, . . . , Z3} and {Zj, 4 ≤ j ≤ 10000} are

high or low, Z2 or Z3 is chosen easily by FR at the second iteration, once Z1

has been included at the first iteration. On the other hand, although kc(r)

behaves like kf (r) when r ≤ 0.5, the value of kc(r) is larger than one when

r ≥ 1, and grows rapidly as r increases. Therefore, when r is relatively large,

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0265



GREEDY VARIABLE SELECTION 18

it is difficult for the CGA to find Z2 or Z3, given that Z1 has been chosen

by the algorithm at the first iteration. This numerical experiment reveals

that although FR is very time consuming, it substantially outperforms the

CGA in terms of selection accuracy in the difficult case where the relevant

covariates contain some marginally weak, but jointly strong signals, and are

highly correlated with the irrelevant covariates. This observation motivates

us to combine the strengths of the CGA and FR using a greedier variant of

CGA, which we call the gCGA.

The gCGA, initiated with J̃0 = ∅, is sequentially updated using

J̃k+1 = J̃k
⋃

{j̃k+1},

where

j̃k+1 = argmin
j∈M̃k

ln(β̂J̃k
⋃
{j})

and, for some 0 ≤ t ≤ 1,

M̃k := {j ∈ J̃ c
k : |∇jln(β̂J̃k

)| ≥ t∥∇ln(β̂J̃k
)∥∞}.

The gCGA clearly includes the CGA (t = 1) and FR (t = 0) as special

cases. Because at each iteration k, the gCGA implements FR within a

“promising” subset, M̃k, of J̃
c
k, and because this promising subset is deter-

mined solely based on gradient information, the algorithm preserves FR’s
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selection accuracy without much computational effort, provided the t in M̃k

is chosen to be close to one. A practical guideline for determining M̃k is

provided in Section 4. The next corollary shows that the CGA, the gCGA,

and FR all share the same convergence rate.

Corollary 1. Assume (C1)–(C5) and (C7). Then, for any t ∈ [0, 1] and

Kn = δ̄(n/ log pn)
1/2, where δ̄ is defined as in Theorem 1, (2.6) holds, with

Ĵk replaced with J̃k.

With the help of Corollary 1, Theorem 2 establishes the sure screening

property of the gCGA (the CGA and FR).

Theorem 2. Assume (C1)–(C5) and (C7). Then, for any t ∈ [0, 1] and Kn ≥

⌈C1n
2θ⌉, with C1 being a constant depending on η, b0, and C0,

lim
n→∞

P (N ⊂ J̃Kn) = 1, (3.1)

which is referred to as the sure screening property.

Theorem 2 asserts that the gCGA (the CGA and FR) enjoys the sure

screening property, as long as the number of iterations approaches ⌈C1n
2θ⌉.

3.2 Variable selection consistency

Although the gCGA has the sure screening property when Kn > C1n
2θ, the

model J̃Kn determined by the algorithm at the end of iteration Kn suffers
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from severe overfitting, because, as indicated in (2.5), |N | = O(nθ) ≪ Kn.

In this section, we propose using an HDIC to overcome this difficulty. Define

HDIC(J) =ln(β̂J) + |J |wn log pn/n, (3.2)

where wn is some positive constant depending on n. We first restrict our

attention to the set of nested models, JKn = {J̃1, . . . , J̃Kn}, generated dur-

ing the gCGA iterations. Then, we find the model J̃k̃n = {j̃1, . . . , j̃k̃n} with

the smallest HDIC value among JKn , where

k̃n =arg min
1≤k≤Kn

HDIC(J̃k). (3.3)

We further construct a subset of J̃k̃n ,

J̃Trim = {j̃i : 1 ≤ i ≤ k̃n, HDIC(J̃k̃n − {j̃i}) > HDIC(J̃k̃n)}, (3.4)

to exclude (possibly) redundant variables in J̃k̃n by examining the “marginal”

contribution of each Zj̃i
, for 1 ≤ i ≤ k̃n, to the HDIC. The asymptotic per-

formance of J̃Trim is reported in the following theorem.

Theorem 3. (i) Assume (C1)–(C7). Suppose that Kn = δ̄(n/ log pn)
1/2, wn →

∞, and wn = o(Kn). Then,

lim
n→∞

P{J̃Trim = Nn} = 1. (3.5)
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(ii) Assume (C1)–(C5) and (C7), with θ strengthened to 0 ≤ θ < (1 −

κ)/6. Suppose that ⌈C1n
2θ⌉ ≤ Kn ≤ C2n

−θ+(1−κ)/2, wn → ∞, and wn =

o(Kn), where C2 depends on C0, η, and δ0. Then, (3.5) holds.

It would be of interest to compare Theorem 3 with Theorem 4.5 of

Bradic, Fan, and Jiang (2011), which extends the consistency of the smoothly

clipped absolute deviation (SCAD) from fixed-dimensional Cox models (Fan

and Li, 2002) to high-dimensional models. Note first that instead of im-

posing high-level assumptions that require S(r)(β, t), for r = 0, 1, 2, to have

probability limits (see Condition 2 (i) of Bradic, Fan, and Jiang (2011)),

we derive the concentration inequalities directly for S(r)(β, t) (see Lemma

2 in the Supplementary Material) under conditions that can be easily jus-

tified. Moreover, Theorem 4.5 of Bradic, Fan, and Jiang (2011) demands a

maximum eigenvalue condition on the Hessian matrix of l(·), whereas there

is no such restriction in Theorem 3. Finally, while Condition (C6) in The-

orem 3 (i) is similar, but somewhat stronger than Condition 8 in Bradic,

Fan, and Jiang (2011), Theorem 3 (ii) drops (C6) at the cost of slightly

stronger limitations on Kn and θ. Generally speaking, neither of the sets of

assumptions used in Theorem 3 (i) (or Theorem 3 (ii)) and Theorem 4.5 of

Bradic, Fan, and Jiang (2011) is more restrictive than the other. However,

the former set of assumptions allows us to build the selection consistency
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of greedy-type algorithms in high-dimensional Cox models, which, to the

best of our knowledge, is not reported in the existing literature.

4. Simulations

In this section, we use four simulation scenarios to assess the variable

screening performance of the gCGA and the variable selection accuracy

of J̃Trim. Note that for a given t, there exists an integer, say m, such

that M̃k consists of the variables with the largest m absolute gradients

among {|∇jln(β̂J̃k
)|, j = 1, . . . , p}. To facilitate the implementation of the

gCGA, in the rest of this section, we change its tuning parameter from

t to m, and denote the algorithm by gCGA(m), for a given m. In our sim-

ulation study, m is set to 1, 10, 30, and 50, noting that gCGA(1) reduces

to the CGA. In addition, Kn, the number of iterations, and wn, a penalty

term of the HDIC, are given by ⌊5(n/ log pn)1/2⌋ and log log n, respectively.

We suggest using the following data-driven method to select m:

m̂ = arg min
m∈Q

HDIC(J̃Kn(m)),

where J̃Kn(m) denotes the model chosen by gCGA(m) at the end of an

iteration, andQ, a user-chosen subset of {1, . . . , p}, is set to {1, 10, 30, 50} in

our simulation. In the rest of this section, the variable sets J̃Trim (see (3.4))

derived from gCGA(m) and gCGA(m̂) are referred to as gCGA(m)+Trim
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and gCGA(m̂)+Trim, respectively,

For the purpose of comparison, we consider three marginal methods:

(a) SIS+SCAD: Uses SIS (Fan, Feng, and Wu, 2010) to screen variables

and then selects variables, using SCAD (Fan and Li, 2002) together

with an extended BIC (Luo, Xu, and Chen, 2015).

(b) CSIS+SCAD: Screens variables using CSIS, with the conditioning set

given by the set of variables chosen in (a), and then selects variables

using SCAD together with an extended BIC.

(c) ISIS+SCAD: Performs the same procedure as in (b), except that the

conditioning set is replaced by C10, where C1 is the set of variables

chosen in (a) and, for t ≥ 2, Ct is that chosen by CSIS+SCAD using

conditioning set Ct−1.

Note that all screening methods in the above procedures are implemented

based on the partial likelihood. In addition, the number of variables in-

cluded at the screening stage is restricted to ⌈n/ log n⌉, and the tuning

constant in the extended BIC is set to 1 − log n/(3 log p), as suggested by

Hong, Zheng, and Li (2019).

For the sake of completeness, we also consider a regularization method,

the adaptive LASSO (ALASSO) (Zhang and Lu, 2007), for the Cox model.
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Because ALASSO uses the LASSO (Tibshirani, 1997) as an initial estimator

to determine the weights for a second-stage weighted LASSO, we treat

the LASSO as the screening step of ALASSO, and compare it with the

aforementioned screening methods. The tuning parameters of the LASSO

and ALASSO are chosen using five-fold cross-validation and the extended

BIC, respectively.

We conducted 100 replications for (n, p) = (200, 10000) and (n, p) =

(400, 10000). For each subject, we generated the survival time T from the

Cox model λ(t|Z) = exp(Z ′β∗), the censoring time from the Uniform(0, c)

distribution, the observed time Y = min{T,C}, and the censoring indica-

tor δ = I(T ≤ C). The constant c was controlled so that the corresponding

censoring rates were around 20% and 50%. Detailed settings for the covari-

ate vector Z and the coefficient vector β∗ are given below.

Scenario 1. (AR(1) correlation). The covariate vector Z follows a multi-

variate normal distribution with zero mean and covariance matrix Σ,

where Σjj = 1 and Σjk = 0.5|j−k|, for j ̸= k. The coefficients {β∗
j },

for j ∈ {1, 2, 3, 6, 12}, are generated from (4 log n/
√
n + |W |/4)U , in

which W follows the standard normal distribution and P (U = 1) =

P (U = −1) = 1/2, and the other components of β∗ are fixed to be

zero.
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Scenario 2. (Equi-correlation). The covariate vector Z follows a multi-

variate normal distribution with zero mean and covariance matrix Σ,

where Σjj = 1 and Σjk = 0.5, for j ̸= k. The coefficients {β∗
j }, for

j ∈ {1, . . . , 15}, are generated from (4 log n/
√
n+ |W |/4)U , in which

W follows the standard normal distribution and P (U = 1) = P (U =

−1) = 1/2, and β∗
j are fixed to be zero for j > 15.

Scenario 3. (Marginally weak, but jointly strong signals I). The covariate

vector Z satisfies Z1 = W1 − W2 − W3, Z2 = W2 − W3, Z3 = 2W3,

and Zj = Wj, for j ≥ 4, where W1 ∼ N(0, 2) and {Wk}k≥2 are from

i.i.d. standard normal distributions. In addition, β∗
j = 3 for j = 1, 2, 3,

and β∗
j = 0 for j ≥ 4.

Scenario 4. (Marginally weak, but jointly strong signals II). The covari-

ate vector Z satisfies Z1 = W1−W2−W3, Z2 = W2−W3, Z3 = 2W3,

and Zj = W3+Gj, for j ≥ 4, whereW1 ∼ N(0, 2) and {W2,W3, Gj}j≥4

are from i.i.d. standard normal distributions, and the coefficient vec-

tor is the same as that in Scenario 3.

In Scenarios 1 and 2, an AR(1) correlation structure and an equi-

correlation structure, respectively, are imposed on the candidate variables

and the number of the relevant variables in Scenario 2 is considerably larger
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than that in Scenario 1. In Scenario 3, all candidate variables are uncorre-

lated with each other, except for the relevant ones Z1, Z2, and Z3, of which

only Z1 is correlated with the survival outcome, and Z2 is more difficult

to detect than Z3, as illustrated in Figure 1. The setting of Scenario 4

is the same as that of Scenario 3, except that {Zj}3j=1 becomes correlated

with {Zk}pk=4 through W3. Additional scenarios and their corresponding

simulation results are provided in the Supplementary Material.

For a given screening method in {gCGA(m), gCGA(m̂), SIS, CSIS,

ISIS, LASSO} and the corresponding model selection method in {gCGA(m)+Trim,

gCGA(m̂)+Trim, SIS+SCAD, CSIS+SCAD, ISIS+SCAD, ALASSO}, de-

fine Ŝb and T̂b as the sets of variables determined by the former and the

latter, respectively, in the bth replication, where 1 ≤ b ≤ 100. We evaluated

the performance of the screening method using its true positive rate (TPR)

and the frequency of sure screening (Sure):

TPR = 100−1

100∑
b=1

|N
⋂

Ŝb|
|N |

, Sure = 100−1

100∑
b=1

I{N ⊆ Ŝb}.

We evaluated the performance of the variable selection method using its

false discovery rate (FDR), frequency of exactly selecting the true model

(Exact), and average model size (AMS):

FDR = 100−1

100∑
b=1

|N c
⋂

T̂b|
|T̂b|

, Exact = 100−1

100∑
b=1

I{N = T̂b}, AMS = 100−1

100∑
b=1

|T̂b|.
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These performance measures are summarized in Table 1 for the case of (n, p) =

(200, 10000), and in Table 2 for the case of (n, p) = (400, 10000).

As shown in Tables 1 and 2, the performance of gCGA(m), for m ∈

{1, 10, 30, 50}, is quite satisfactory in Scenarios 1 and 3, because their TPR

and Sure values are close to one. These methods have TPR and Sure val-

ues distant from one in Scenario 2 with n = 200, but equal to one as n

increases to 400. In Scenario 4, the TPR and Sure values for gCGA(1) are

much less than one in the case of n = 200, and cannot be improved by

increasing n. Although the performance of gCGA(m) is also unsatisfactory

for m ∈ {10, 30, 50, 60} in Scenario 4 with n = 200, it improves significantly

when n grows to 400. This shows that gCGA(m), with m ≥ 10, borrows

from the strengths of FR to enhance its screening performance in difficult

situations, such as Scenario 4, where gCGA(1) does not work well. More-

over, the performance of gCGA(m) tends to increase withm in all scenarios,

and gCGA(m̂) performs equally well as gCGA(50). The screening perfor-

mance of the marginal methods SIS, CSIS, and ISIS is, in general, inferior

to that of gCGA(m̂). Their performance, however, improves when t in Ct

increases (see item (c) in Section 4). In other words, ISIS is better than

CSIS, and CSIS is better than SIS. We therefore compare gCGA(m̂) and

ISIS. Note first that when n = 200, the two methods are largely compara-
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ble in Scenarios 1 and 4, and in Scenario 2 at a censoring rate of 50%, but

that the former significantly outperforms the latter in all other scenarios.

When n = 400, ISIS is comparable with gCGA(m̂) in Scenarios 1 and 3,

but its performance is obviously poorer than that of gCGA(m̂) in Scenarios

2 and 4. The TPR and Sure values of the LASSO are close to those of

gCGA(m̂) in Scenarios 1, 2, and 4 with n = 200, but are much lower than

the latter in Scenario 3, with the same sample size. When n increases to

400, the LASSO improves substantially in Scenario 3, and both methods ex-

hibit almost perfect performance in the first three scenarios. In Scenario 4,

however, the TPR and Sure values of the LASSO do not increase with the

sample size, resulting in screening performance that is worse than that of

gCGA(m̂) when n = 400.

The selection accuracy of gCGA(m̂)+HDIC depends mainly on the

screening performance of gCGA(m̂), and on whether the HDIC can suc-

cessfully remove the redundant variables from those included by gCGA(m̂),

while retaining the relevant ones. The result shown in Tables 1 and 2 sug-

gest that the HDIC can indeed perform well, because the Exact value of

gCGA(m̂)+Trim is almost equivalent to the Sure values of gCGA(m̂). Note

that this Sure–Exact equivalence does not occur in any other screening-

selection pairs considered in this section. When n = 400, the Exact value
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of gCGA(m̂)+Trim is equal (or close) to one in Scenarios 1–3. The se-

lection performance of the marginal methods is obviously inferior to that

of gCGA(m̂)+Trim. Their Exact values are high only in cases such as

CSIS+SCAD and ISIS+SCAD in Scenario 1 at a censoring rate of 20%,

and ISIS+SCAD in Scenario 3. ALASSO’s selection performance lies be-

tween that of gCGA(m̂)+Trim and that of the marginal methods in the

first three scenarios. Its Exact value, however, falls to zero in Scenario 4,

which partly because of the equally low Sure value of the LASSO. The Ex-

act values of all methods in the case of n = 200 are, in general, smaller

than those in the case of n = 400. However, gCGA(m̂)+Trim still performs

satisfactorily in Scenarios 1 and 3, even at a censoring rate of 50%.

The proposed gCGA(m) seems applicable to the case when marginal

weak, but jointly strong signals appear in the interaction term. To see

this, we explore the performance of gCGA(m) on the Cox model involving

two-way interaction terms. Denote Z ′β∗ in (2.1) as

β∗
1Z1 + · · ·+ β∗

pZp + β∗
1,2Z1,2 + · · ·+ β∗

p,p−1Zp,p−1,

with Zi,j = ZiZj. Under (n, p) = (400, 200) and properly designed β∗ and

Z, there are three (out of 20100) relevant variables, Z1, Z1,2, and Z1,3, in the

above Cox model, where the main effect Z1 and the interaction term Z1,3 are

marginal weak, but jointly strong signals. The details of the setting and the
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results are provided in Supplementary Material. Note that the true model

follows the so-called weak heredity principle, because at least one of the

main effects is present when an interaction term is included in the model.

The result shows that gCGA(m̂)+Trim can offer satisfying variable selection

results, and that it outperforms the other methods in high-dimensional Cox

models with interaction terms, in which some marginally weak, but jointly

strong main and interaction effects appear.

To conclude this section, note that gCGA(m̂) and gCGA(m̂)+Trim

exhibit excellent performance in terms of screening and selection that sur-

passes that of all other methods under consideration. In particular, when

(n, p) = (400, 10000), they perform almost perfectly over Scenarios 1–4,

some of which seem very challenging, owing to the high correlations be-

tween the relevant and the irrelevant variables. Furthermore, as discussed

in the Supplementary Material, the computing time for gCGA(m) grows

linearly with m, indicating that our proposed method gCGA(m̂), with m̂

chosen from Q ⊆ {1, . . . , 50}, offers a substantial improvement in terms of

speed over gCGA(10000), which is equivalent to FR.
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Table 1: Results for (n, p) = (200, 10000) under Scenarios 1–4.

Censor Rate 20% 50%
TPR Sure FDR Exact AMS TPR Sure FDR Exact AMS

AR(1) correlation
gCGA(1)+Trim 1.00 1.00 0.00 1.00 5.00 0.96 0.91 0.00 0.90 4.79
gCGA(10)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(30)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(50)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 5.00 0.99 0.98 0.00 0.96 4.92
SIS+SCAD 0.86 0.30 0.10 0.29 4.70 0.81 0.17 0.14 0.11 4.12
CSIS+SCAD 0.99 0.94 0.15 0.42 6.08 0.94 0.72 0.22 0.11 5.89
ISIS+SCAD 1.00 0.99 0.33 0.15 8.15 0.95 0.77 0.22 0.09 5.87
ALASSO 1.00 0.98 0.00 0.97 4.97 0.97 0.83 0.03 0.65 4.86

Equi-correlation
gCGA(1)+Trim 0.75 0.55 0.16 0.31 5.92 0.28 0.00 0.35 0.00 1.59
gCGA(10)+Trim 0.78 0.63 0.14 0.44 7.81 0.29 0.02 0.39 0.00 1.68
gCGA(30)+Trim 0.78 0.64 0.15 0.43 7.71 0.30 0.03 0.38 0.00 1.70
gCGA(50)+Trim 0.79 0.65 0.15 0.43 7.70 0.30 0.03 0.37 0.00 1.70
gCGA(m̂)+Trim 0.87 0.78 0.12 0.51 8.75 0.32 0.03 0.36 0.00 1.68
SIS+SCAD 0.34 0.00 0.17 0.00 2.84 0.29 0.00 0.25 0.00 3.04
CSIS+SCAD 0.41 0.00 0.13 0.00 3.06 0.32 0.00 0.23 0.00 3.24
ISIS+SCAD 0.46 0.12 0.14 0.00 4.40 0.32 0.00 0.23 0.00 3.24
ALASSO 0.87 0.55 0.08 0.22 10.96 0.54 0.00 0.17 0.00 2.69

Marginally weak but jointly strong signals I
gCGA(1)+Trim 0.99 0.99 0.00 0.99 2.98 0.96 0.94 0.00 0.94 2.88
gCGA(10)+Trim 1.00 1.00 0.00 1.00 3.00 0.99 0.99 0.00 0.99 2.98
gCGA(30)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(50)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
SIS+SCAD 0.34 0.00 0.04 0.00 1.12 0.34 0.01 0.03 0.01 1.08
CSIS+SCAD 0.67 0.02 0.12 0.02 1.97 0.67 0.02 0.06 0.00 1.50
ISIS+SCAD 0.82 0.45 0.17 0.12 3.14 0.74 0.22 0.11 0.01 2.26
ALASSO 0.63 0.02 0.08 0.02 1.86 0.57 0.00 0.07 0.00 1.48

Marginally weak but jointly strong signals II
gCGA(1)+Trim 0.67 0.00 0.72 0.00 7.23 0.67 0.00 0.61 0.00 4.98
gCGA(10)+Trim 0.68 0.03 0.71 0.03 7.33 0.67 0.01 0.64 0.01 5.60
gCGA(30)+Trim 0.70 0.11 0.65 0.11 6.90 0.67 0.02 0.64 0.02 5.68
gCGA(50)+Trim 0.72 0.17 0.60 0.17 6.69 0.68 0.05 0.62 0.05 5.57
gCGA(m̂)+Trim 0.72 0.17 0.61 0.17 6.74 0.68 0.05 0.62 0.05 5.58
SIS+SCAD 0.33 0.00 0.24 0.00 2.25 0.33 0.00 0.20 0.00 1.80
CSIS+SCAD 0.64 0.01 0.30 0.00 4.44 0.57 0.00 0.22 0.00 3.18
ISIS+SCAD 0.71 0.18 0.24 0.11 6.58 0.60 0.06 0.20 0.04 4.68
ALASSO 0.67 0.00 0.06 0.00 1.18 0.67 0.00 0.12 0.00 1.47
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Table 2: Results for (n, p) = (400, 10000) under Scenarios 1–4.

Censor Rate 20% 50%
TPR Sure FDR Exact AMS TPR Sure FDR Exact AMS

AR(1) correlation
gCGA(1)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(10)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(30)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(50)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
SIS+SCAD 0.88 0.41 0.03 0.41 4.53 0.86 0.33 0.07 0.33 4.54
CSIS+SCAD 1.00 1.00 0.01 0.94 5.06 0.99 0.97 0.09 0.59 5.58
ISIS+SCAD 1.00 1.00 0.02 0.90 5.10 1.00 1.00 0.15 0.46 6.28
ALASSO 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 0.97 5.01

Equi-correlation
gCGA(1)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.02 0.94 14.34
gCGA(10)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.01 0.98 14.78
gCGA(30)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.99 14.89
gCGA(50)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.99 14.89
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.98 14.79
SIS+SCAD 0.54 0.00 0.10 0.00 7.14 0.51 0.00 0.14 0.00 5.90
CSIS+SCAD 0.80 0.07 0.03 0.05 10.93 0.69 0.02 0.09 0.02 8.88
ISIS+SCAD 0.91 0.82 0.05 0.38 13.18 0.86 0.69 0.12 0.09 12.74
ALASSO 1.00 1.00 0.00 0.99 15.01 1.00 0.96 0.02 0.65 15.18

Marginally weak but jointly strong signals I
gCGA(1)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(10)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(30)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(50)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
SIS+SCAD 0.34 0.00 0.01 0.00 1.04 0.34 0.00 0.00 0.00 1.02
CSIS+SCAD 0.68 0.05 0.03 0.05 2.14 0.67 0.01 0.04 0.01 2.13
ISIS+SCAD 1.00 1.00 0.00 0.98 3.02 1.00 1.00 0.07 0.76 3.30
ALASSO 1.00 1.00 0.00 1.00 3.00 0.96 0.87 0.00 0.83 2.84

Marginally weak but jointly strong signals II
gCGA(1)+Trim 0.74 0.21 0.64 0.21 9.09 0.70 0.11 0.67 0.11 7.47
gCGA(10)+Trim 0.94 0.82 0.15 0.82 4.38 0.83 0.50 0.38 0.50 5.69
gCGA(30)+Trim 0.99 0.97 0.02 0.97 3.21 0.89 0.67 0.25 0.67 4.82
gCGA(50)+Trim 1.00 0.99 0.01 0.99 3.07 0.92 0.75 0.19 0.75 4.37
gCGA(m̂)+Trim 1.00 0.99 0.01 0.99 3.07 0.91 0.74 0.20 0.74 4.44
SIS+SCAD 0.34 0.00 0.32 0.00 3.80 0.34 0.00 0.19 0.00 2.28
CSIS+SCAD 0.72 0.15 0.25 0.15 7.05 0.68 0.05 0.21 0.05 4.91
ISIS+SCAD 0.81 0.43 0.01 0.43 1.88 0.72 0.18 0.10 0.17 3.86
ALASSO 0.67 0.00 0.00 0.00 1.03 0.67 0.00 0.02 0.00 1.06
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5. Data Analysis

We apply our proposed method to data from the study of Metzeler et al.

(2008). The primary concern here is to identify the gene signatures relevant

to overall survival in patients who are diagnosed with cytogenetically normal

acute myeloid leukaemia. In this study, the training cohort consisted of 163

adult patients, from whom a total of 44754 gene signatures were recorded

using Affymetrix HG-U133 A+B microarrays. The median survival time in

the training cohort is 9.4 months, with a censoring rate of 37%. In addition,

an independent sample consisting of 79 patients on Affymetrix HG-U133

Plus 2.0 microarrays is used as the test cohort, which has a median survival

time of 15.7 months, with a censoring rate of 41%. Following Metzeler

et al. (2008), all gene expressions are centered and rescaled. This data

set is publicly available on the gene expression omnibus website (http:

//www.ncbi.nlm.nih.gov/geo/) under the accession number GSE12417.

We consider gCGA(m̂)+Trim, with Q = {1, 10, 30, 50}, and the other

four variable selection methods introduced in Section 4; all methods are ap-

plied to the training cohort to select relevant genes. To validate the results,

we calculate the concordance statistics (C-statistics) and the area under

the curve (AUC) developed by Uno et al. (2011), based on the test cohort.

The prediction performance is reported in Table 3, revealing that the resul-
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Table 3: Summary of prediction performance for gene signatures selected

from different methods in CN-AML data.

gCGA(m̂)+Trim SIS+SCAD CSIS+SCAD ISIS+SCAD ALASSO

C-statistic 0.618 0.610 0.579 0.618 0.582

AUC 0.626 0.603 0.544 0.592 0.552

Model size 19 7 10 32 10

tant 19 gene signatures selected by our method possess greater predictive

power. In particular, the first three genes (SOSC2, AXL, and NCR3LG1)

that survive the screening and selection stages of gCGA(m̂)+Trim deserve

further inspection. The first gene signature (SOSC2) is known to be associ-

ated with patients’ overall survival in CN-AML (Metzeler et al., 2008), but

is not discovered by any other methods under consideration. On the other

hand, the second gene (AXL) and the third gene (NCR3LG1) are identified

by CSIS+SCAD, ISIS+SCAD, and ALASSO. Therefore, we conclude that

gCGA(m̂)+Trim yields reliable importance ranking for gene signatures, and

leads to an interpretative sparse model with competitive prediction power.

6. Conclusion

We have proposed using the CGA, the gCGA, and an HDIC to select vari-

ables for high-dimensional Cox models. This study contributees to the lit-
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erature in the three ways. First, under a weak sparsity condition, we show

that the convergence rate of the CGA is coincident with the “minimax-

optimal” rate obtained in high-dimensional linear models. Note that al-

though this rate is not necessarily minimax-optimal for high-dimensional

Cox models, the coincidence suggests that the CGA works reasonably well

in such models. Second, under a strong sparsity condition, we show that we

can use the gCGA and an HDIC to achieve variable selection consistency,

a property that has not been established previously for greedy-type algo-

rithms in high-dimensional Cox models. Third, the proposed gCGA com-

bines the computational efficiency of the CGA and finite-sample accuracy

of FR. In particular, our experimental results show that gCGA(m̂)+HDIC

outperforms ALASSO and marginal methods, and exhibits excellent selec-

tion accuracy, even in challenging situations in which marginally weak, but

jointly strong signals are present and highly correlated with the irrelevant

variables.

We have yet to explore the performance of the proposed methods in

high-dimensional Cox models with interaction terms. Model selection for

such models can be applied to identify gene-gene interactions associated

with patients’ overall survival in lung adenocarcinoma (Wu, Huang, and

Ma, 2018), and thus merits future research.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0265



GREEDY VARIABLE SELECTION 36

Supplementary Material

The online Supplementary Material contains detailed proofs of the the-

oretical results, and additional simulations for various settings and that

demonstrate the time cost of gCGA(m).
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