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GREEDY VARIABLE SELECTION
FOR HIGH-DIMENSIONAL COX MODELS

Chien-Tong Lin', Yu-Jen Cheng?* and Ching-Kang Ing?

LFeng Chia University and > National Tsing Hua University

Abstract: We examine the problem of variable selection for high-dimensional
sparse Cox models. We propose using a computationally efficient procedure, the
Chebyshev greedy algorithm (CGA), to sequentially include variables, and derive
its convergence rate under a weak sparsity condition. When we assume a strong
sparsity condition, we use a high-dimensional information criterion (HDIC) and
the CGA to achieve variable selection consistency. We further devise a greedier
version of the CGA (gCGA). With the help of the HDIC, the gCGA not only
enjoys selection consistency, but also exhibits superior finite-sample performance
in detecting marginally weak, but jointly strong signals over that of the original
CGA and other related high-dimensional methods, such as conditional sure inde-
pendence screening. We demonstrate the proposed methods using real data from

a cytogenetically normal acute myeloid leukaemia (CN-AML) data set.

Key words and phrases: Chebyshev greedy algorithm, high-dimensional informa-

tion criterion, sure screening, variable selection consistency.
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1. Introduction

In modern biomedical studies, the excessive number of biomarkers presents
technical challenges when trying to apply existing statistical methods. For
example, in the context of genomic research of acute myeloid leukaemia,
tens of thousands of gene signatures are measured to predict cancer patients’
overall survival (Metzeler et al., 2008). Typically, only a small portion of
biomarkers are relevant to the clinical outcome; thus, a tailored procedure
that effectively identifies relevant biomarkers is essential for analyses of
high-dimensional survival data.

Fan and Lv (2008) introduced a two-step procedure for high-dimensional
variable selection. In the first step, sure independence screening (SIS) is
used to reduce the number of candidate variables to a scalable size. Then,
the nonconcave penalized likelihood method is exploited to achieve the or-
acle property (Fan and Li, 2001). Since the seminal work of Fan and Lv
(2008), numerous marginal screening methods have been developed and ex-
tended to various survival models (Fan, Feng, and Wu, 2010; Song et al.,
2014). Nevertheless, most existing marginal screening methods hinge on
the assumption that jointly important variables should also have strong
marginal associations with the outcome. Consequently, marginally weak,

but jointly strong signals are unlikely to be detected by these methods.
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Barut, Fan, and Verhasselt (2016) and Hong, Kang, and Li (2018) ad-
dress this problem by implementing SIS after conditioning on a known
variable set C, which is referred to as conditional SIS (CSIS). They argue
that CSIS asymptotically detects marginally weak, but jointly strong sig-
nals (variables), provided that C satisfies some technical assumptions (see
Theorem 3 of Barut, Fan, and Verhasselt (2016)). However, it seems diffi-
cult to show that these assumptions are fulfilled by the commonly used C,
which is determined either from biological knowledge or from other variable
screening methods, such as (unconditional) SIS.

To gain further insight into how C affects the performance of CSIS,
we conduct a simulation study based on data generated from a sparse Cox
model with the hazard function A\(¢|Z) = exp(Z’B). The censoring time
is generated from the Uniform(0, ¢) distribution, and the censoring rate is
controlled around 30% by using the constant ¢. The sample size is set
to 400, B8 = (B1,-- -, P1oooo)’ is the coefficient vector satisfying 5 = [y =
P =3 and B; = 0 for 4 < j < 10000, and Z = (Z1,..., Zigooo)' is the
covariate vector obeying 721 = W, — Wy — W3, Zy = Wy — W3, Z3 = 2W3,
and Z; = W; for 4 < j < 10000, with {W;};27° being independent and
identically distributed (i.i.d.) as the standard normal distribution. Given

this specification, the relevant variables Z; and Z3 are marginally weak,
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and so are rarely selected by SIS. Moreover, Z; cannot be selected even by
CSIS with some commonly used data-driven variable set C. To see this,
denote Z; = (Z;,j € J) with J C {1,...,10000}, and let L¢, for j =
1,...,10000 be the maximum partial likelihood values obtained under Cox
models with covariates Z¢ 3, j ¢ C. Define Le 410000 = maxy<j<i0000 Le
which is used to represent the conditional marginal utility of irrelevant
variables in the presence of C. The box plots in Figure [I|show the empirical
distributions of L¢ ;, for j = 1,2,3, and L¢ 410000, based on 100 replicates.
The left panel of Figure[I|shows that Ly ; is much larger than the others, and
that Ly and Lys are largely indistinguishable from Lg 4.10000. Therefore,
when SIS is used to determine C for CSIS (as suggested by Barut, Fan,
and Verhasselt (2016)), {1} is likely to be selected. The behavior of CSIS
with C = {1} is illustrated in the middle panel of Figure [l Zj is easily
detected, but Z3 is not, because Ly}, is indistinguishable from L1y 4:10000-
These two panels reflect the intrinsic difficulty of using SIS to choose C.
On the other hand, when C is set to {1,3}, the remaining relevant
variable Z; is readily detected by CSIS, because Ly 3)2 > L1 3}.4:10000, a8
shown in the right panel of Figure Note that if we select one variable
at a time using CSIS, and update C (initialized with C = () iteratively

by adding the newly selected variable, then all relevant variables can be
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Figure 1: Box plots of the empirical distributions of L¢ ;, for j = 1,2,3,
and Le¢ 4:10000, based on 100 replicates, with C = ) (left panel), {1} (middle),

and {1, 3} (right).

included at the third iteration, as illustrated in Figure[I] This procedure is
the forward regression (FR) with partial likelihood pursuit (Hong, Zheng,
and Li, 2019).

Despite the advantages of FR in terms of selection accuracy, the method
has been criticized for its prohibitive computational complexity when the
number of candidate variables, p, is large. Greedy algorithms, such as Lo-
boosting (Bithlmann, 2006), the orthogonal greedy algorithm (OGA) (Ing
and Lai, 2011)), and orthogonal matching pursuit (Tropp and Gilbert, 2007))

have been proposed to alleviate this difficulty by sequentially choosing vari-
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ables to enter a linear model with much less computational effort, but with
the desired accuracy of prediction and selection. Greedy algorithms also
have satisfying statistical properties in high-dimensional generalized linear
models (Elenberg et al., 2018). However, not much is known about these
algorithms when applied to high-dimensional survival models.

We attempt to fill this gap by investigating the Chebyshev greedy al-
gorithm (CGA) (Temlyakov, 2015) in a high-dimensional sparse Cox model
in which the number of candidate variables, p = p,, is much larger than
the sample size, n. We first derive a uniform error bound for the CGA that
holds uniformly for the number of iterations, and can be explained by a
bias—variance trade-off between the approximation error and the estimation
error. When the model coefficients satisfy a weak sparsity condition, the
best compromise between these two errors is achieved by suitably choosing
the iteration number, leading to a convergence rate of (logp,/n)'/?, which
coincides with the “minimax-optimal” rate obtained in linear regression
models (Raskutti, Wainwright, and Yu, 2011)).

Moreover, in Section 4 we show that the finite-sample performance of
the CGA in finding the relevant covariates is quite satisfactory in the exam-
ple with two marginally weak, but jointly strong signals, Z5 and Z3. How-

ever, the algorithm’s performance deteriorates when the relevant covariates,
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Z1, ..., 23, become correlated with the irrelevant ones, Zy, ..., Zig000; see
Section [3.1} In contrast, FR remains robust, albeit time consuming. This
observation motivates us to develop a greedier variant of CGA (gCGA) that
combines the strengths of the CGA and FR. We show that the gCGA not
only shares the same computational efficiency as that of the CGA, but it
also boasts exceptional finite-sample performance in terms of correctness
of selection, in particular, in the difficult case just mentioned. In addition,
under a strong sparsity condition, we establish the sure screening property
of the gCGA (defined in Theorem [2|) and its selection consistency when it
is used together with a high-dimensional information criterion (HDIC) that
removes all irrelevant covariates included by the algorithm. To the best of
our knowledge, no previous research examines the selection consistency of
greedy-type algorithms in high-dimensional Cox models.

The rest of this paper is organized as follows. We describe the CGA
and introduce its uniform convergence rate in Section [2 In Section [3]
we propose the gCGA, present its sure screening property, and establish
its selection consistency when used together with an HDIC. In Sections
and [5] we compare the performance of the proposed methods and those
based on CSIS or LASSO using simulated data and a CN-AML data set.

We conclude the paper in Section [6] All technical proofs and additional
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simulations are deferred to the Supplementary Material.

We end this section with some notation that we use throughout the
paper. For u = (uy,...,u,) € RP, u® = 1, u® = u, u®? = ud/,
supp(u) = {j + u; £ 0}, llully = {20, lual /0 for 1 < g < o0, and [[ufly =

"o 1(wy #0), |lullee = maxicjcy uy]. For J C {1,...,p}, u; € RP de-
notes the vector satisfying u; = 0, for i € J¢, J¢ = {1,...,p} — J is the
complement of J, and |J| denotes the cardinality of J. We denote the

minimum eigenvalues of a matrix A by Apnin[4], and |a| ([a]) denotes the

largest (smallest) integer < a (> a).

2. CGA for selecting high-dimensional Cox models

2.1 Preliminaries

There are three popular greedy algorithms for high-dimensional linear re-
gression models: FR (Wang, 2009)), Ly-boosting, and the OGA. Although
FR has desirable theoretical properties, it is very time consuming. This
weakness becomes more prominent when the method is generalized to high-
dimensional Cox models; see Section 4 and Section S3 of the Supplementary
Material for details. In contrast, while having great computational effi-
ciency, Lo-boosting suffers from very slow convergence (to the true model),

resulting in unsatisfactory performance in terms of estimation and vari-
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able selection. As a greedy algorithm lying somewhere between FR and
Lo-boosting, the OGA adequately shares their advantages. It gains compu-
tational efficiency by including variables as in Ls-boosting, and enjoys an
excellent convergence rate and selection accuracy by updating parameters
as in FR. The outstanding performance of the OGA motivates us to use its
nonlinear counterpart, the CGA, to choose variables in high-dimensional
Cox models.

Let the failure time, censoring time, and p-dimensional covariate vector
be denoted by T, C, and Z = (Zy,...,Z,)', respectively. Assume that

T and C are independent given Z, and 1" follows the Cox model
At Z) = Xo(t) exp(Z'BY), (2.1)

where \g(t) is the unspecified baseline hazard function, and 8* € R? is
the true coefficient vector. Because of right censorship, we observe only
{(Z;,X;,0;)}, for i = 1,...,n, where Z, = (Z;1,...,%;,)" is the observed
covariate vector, X; = min(7;, C;) is the observed event time, and ¢§; =
I(T; < C;) is the censoring indicator. For r = 0,1, 2, define
SOB.t) =n"t Y Z7Yi(t) exp{ZiB},
i=1
where Y;(t) = I(X; > t) is referred to as the at-risk process, 3 € RP,

and Z,(8,t) = SM(B,t)/S©(B,t). For a prespecified 7, the negative log-
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partial likelihood is given by

w@) =3 [ (20 1os50.0)anio)

where N;(t) = I(X; < t,0; = 1) is a counting process. Straightforward

calculations yield

V3(B) == /0 12, - Z,(B,0)]dN,(t) and VL,(8) = /O V(B 1) AN(8),

where N(t) =n=1>°" | Ny(t).
Denote Vi, (8) by (Vil.(8),...,V,l.(8)). For J C {1,...,p}, define

A

= ar min I.(B3),
By gﬂelgasupp(ﬂ):J 8)

where B C RP? is the parameter space of interest. The CGA is an iter-

ative algorithm that generates a sequence of nested sets {jl, cee J K} in
{1,...,p}, where K is a prescribed upper bound for the iteration number
and

Jo =t U k=1,... K, (2.2)

with Jo = 0, ji = ArgMax, _;, jcje ‘vjln(ﬁjk—l)}’ and B; = 0. The
selection criterion (2.2]) can be interpreted as choosing the variable with
the strongest correlation with the current functional gradient (He et al.,

2016)), and resembles the variable inclusion method used in Ls-boosting

and the OGA for linear models.
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2.2 Convergence analysis of the CGA

Our asymptotic results are built mainly on assumptions about the popula-

tion counterparts of 1,,(3), VI,(3), and V?1,(8):

vig) = [ {Sbd - (5

o LsO(B,t)  \sO(B,1)

where s (3,t) = E{S"(8,t)}, for r = 0,1,2. Let by be a large constant.
The parameter space that we are interested in is the [;-ball of radius by,
B={B:8¢cRr|B|i < by}, where p = p, is allowed to approach infinity
faster than n. For J,J C {1,...,p}, define B, = arg Mingep supp(3)=J [ (B)
and V2 ,1(8) = [Vil(B)lresier, Where VI(B) is the (k,1)th element of

V21(B). The assumptions required in our analysis are listed below:

(C1) B is an interior point of B; moreover, there exists a positive constant
D such that for any |J| < D, = [D(n/logp,)*?], B, is an interior

point of B.
(C2) There exists a constant n > 0, such that P(max;<;<,, |Z;| > n) = 0.
(C3) There exists a constant 0 < p < 1, such that p := P(Yi(7) = 1).

(C4) logp, = O(n"), for some 0 < k < 1.
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(C5) There exists a constant dy > 0, such that

(50 < min )\mm[vJJl(ﬁJ)]

|J|<Dn

(C6) There is an arbitrarily small € > 0, such that for some 0 < M < oo,

-1

max  sup H /v 1—t,6J+tﬁdt /vuz t)ﬁJthB)dt}

|J|<Dn ieJe BEBe (ﬁj)
supp(B)=J

< M. (2.3)

(C7) Let N := supp(B*); there exist 0 < 6 < (1 — k)/4 and Cy > 0, such

that

|J‘§Drinn J#@jg}\%xj‘v l(/BJ)l > C1On 5

where V,[(3) denotes the jth component of Vi(3).

A few comments are in order related to (C1)—(C7). The first part of
(C1) is often referred to as the weak sparsity condition. It allows all compo-
nents in 3* to be nonzero, but requires that they are absolutely summable.
The second part of (C1), together with (C5), ensures that for any j € J
and |J| < D,, B; is unique and V,I(8;) = 0, which is crucial in our
analysis of the CGA. To ensure that these two properties hold during the
iterations, the iteration number is restricted to K = K,, < D,,; see Theo-

rem[l] Conditions (C2) and (C3) are commonly assumed in the literature on
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high-dimensional survival analysis; see Kong and Nan (2014), Hong, Kang,
and Li (2018), and Hong, Zheng, and Li (2019). Condition (C4) allows p,
to grow exponentially with n. Condition (C5) imposes a lower bound for
the minimum eigenvalue of the Hessian matrix of [(+), evaluated at the local
minimizer, 3, over By := B(\{B : B € R?,supp(B3) = J} with |J| < D,,.
The condition is flexible in the sense that it does not introduce any restric-
tions on the maximum eigenvalue of the matrix. Conditions such as (C6)
are frequently used in derivations of the convergence rates of greedy-type
algorithms under weak sparsity conditions; see |Ing and Lai (2011) and Ing
(2020). Because the € in (2.3) can be arbitrarily small, is almost

equivalent to

max
|J|<Dp,ieJe

{v28) v} |, <™

which further simplifies to

cov(zi, Z j)var—Y(Z ;)

<M (2.4)

max,j|<p,ieJe .
in the case of the linear model. As argued in |Ing and Lai (2011)) and |Ing
(2020), (2.4) holds even when the components in Z are highly correlated.
Condition (CT7) is closely related to the so-called “beta-min” condition

(which requires that the nonzero coefficients are sufficiently large) and the

signal strength condition in Barut, Fan, and Verhasselt (2016). Moreover,
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(C7) together with (C1) is referred to as the strong sparsity condition, which
stipulates that the number of nonzero coefficients be much smaller than n.
In fact, it can be shown (see Section S2 of the Supplementary Materials)

that

: * CO —0 2 v—1 0
?élAlfl|Bj| > 4—77271 and |N| < 4n*Ci bon’, (2.5)

provided that (C1)—(C3) and (C7) hold. For an additional discussion of

(C7), see Section

We can now state the main result of this section.

Theorem 1. Assume (C1)-(C5) and (C6) or (C7). Let K,, = 6(n/logp,)"/?,

where 0 < 6 < D and may depend on by, 1, p, b, or M. Then,

1(B;,) — (B

1ehe R kL + kT log pn, >

0,(1). (2.6)

Note that Z(Bjk) —1(B") is the sum of the approximation error, {(3;, ) —
[(B"), and the estimation error, I(B j.) — UBj, ). For the approximation

error, we show in the proof of Theorem [1| that

max w = 0,(1), (2.7)

1<k<K, k-1

which plays a role similar to (6.17) of Bithlmann (2006) or (3.12) of Ing

and Lai (2011) in high-dimensional linear models, in which weak greedy
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algorithms or the OGA are used in place of the CGA. Equation ({2.7)),

together with the uniform bound established for the estimation error,

1(B;,) —1(8Bj,)
1ShaK,  kn-l log p, = Op(1) (2.8)

(which is also given in the proof of Theorem, suggests that k* = co(n/logp,)'/?,

for ¢o > 0, is an optimal choice of k that achieves the best compromise (up
to a constant factor) between the approximation and the estimation errors,

and leads to the the following error bound:

1(Bj,.) = UB") = Op((log pu/n)"/?). (2.9)

Note that (log p,/n)'/? is also the “minimax-optimal” rate for linear models
(Raskutti, Wainwright, and Yu, 2011). To better understand , we
provide a numerical illustration of the equation at different sparsity levels
in the Supplementary Material.

When ,[9 Juy o1 the left-hand side of is replaced with the LASSO
estimate, Kong and Nan (2014)) derive an error bound that achieves the op-
timal balance between the approximation and the estimation errors. How-
ever, it may be difficult to recover the (log p,/n)'/? convergence rate using
their bound when the weak sparsity condition described in (C1) holds. Note
that establishing the sure screening property appears to be more relevant

than pursuing the (logp,/n)/? rate when (C7) is assumed. As discussed
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in the next section, (2.7) plays an indispensable role in developing such a

property for the CGA and its variants.

3. A greedier variant of the CGA and consistent variable selec-

tion

Throughout the rest of the paper, we assume that (C7) holds. Motivated
by an example in Section [3.1], we first introduce the gCGA, which combines
the advantages of CGA and FR, and then state its sure screening property.
In Section [3.2] we establish the selection consistency of the gCGA when it

is used together with an HDIC.
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Figure 2: Box plots for the empirical distributions of k.(r) (left) and k¢(r)

(right) based on 100 simulations, where r € A.

3.1 A greedier variant of the CGA and its sure screening prop-

erty

A salient feature of the CGA is that it reduces computational costs by using
only the gradient information, while maintaining the desired convergence
rate. In addition, the CGA efficiently identifies the relevant covariates in
the example of Section [T} which contains two marginally weak, but jointly
strong signals. For more details, see Section [, However, the performance

of the CGA deteriorates in the same example when the relevant covariates,
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Z1, ..., 23, become correlated with the irrelevant ones, Zy, ..., Z19g00. More
specifically, let Z,..., Zs and Wi,..., Wigeo be defined as in Section [I]
Set Z; = rW3 + W;, 4 < j < 10000, where r € A = {0,0.5,1,1.5,2}.
The values of r indicate the correlations between the relevant and irrele-
vant variables. Note that r = 0 corresponds to the example of Section [I]
in which {Z;,...,Z5} and {Z;,4 < j < 10000} are independent. Let
C = {1}, {|IVe,ln(Be)|,i = 1,...,p — 1} be a nonincreasing rearrangement
of {|Vila(Bc)],i =2,...,p}, and {ln(,@w{fi}),i =1,...,p— 1} be a nonde-

creasing rearrangement of {ln(BCU{i}),i =2,...,p}. Define

ko(r) =arg min {55 (2,3} 0 {er,. o5} # 0},

ky(r) —arg min (7 {2,300 {fireo0 S} £ 00,

where 7 € A. Box plots of the empirical distributions of k.(r) and k¢(r),
based on 100 simulations, are presented in Figure [2l The figure shows that
for each r, all values of k¢(r) are equal to one, suggesting that regardless of
whether the correlations between {71, ..., Z3} and {Z;,4 < j < 10000} are
high or low, Z5 or Z3 is chosen easily by FR at the second iteration, once Z;
has been included at the first iteration. On the other hand, although k.(r)
behaves like ky(r) when r < 0.5, the value of k.(r) is larger than one when

r > 1, and grows rapidly as r increases. Therefore, when r is relatively large,
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it is difficult for the CGA to find Z, or Z3, given that Z; has been chosen
by the algorithm at the first iteration. This numerical experiment reveals
that although FR is very time consuming, it substantially outperforms the
CGA in terms of selection accuracy in the difficult case where the relevant
covariates contain some marginally weak, but jointly strong signals, and are
highly correlated with the irrelevant covariates. This observation motivates
us to combine the strengths of the CGA and FR using a greedier variant of
CGA, which we call the gCGA.

The gCGA, initiated with Jy = ), is sequentially updated using

jk+1 = jk: U{ijrl}a

where

Jrer = argmin by(Bj, ()
JEMy,

and, for some 0 <t <1,
My, = {j € J¢ : [Vilu(B5)] = VI (B],)lloo}-

The gCGA clearly includes the CGA (¢t = 1) and FR (¢ = 0) as special
cases. Because at each iteration k, the gCGA implements FR within a
“promising” subset, My, of JN,?, and because this promising subset is deter-

mined solely based on gradient information, the algorithm preserves FR’s
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selection accuracy without much computational effort, provided the ¢ in M &

is chosen to be close to one. A practical guideline for determining My is
provided in Section |4, The next corollary shows that the CGA, the gCGA,

and FR all share the same convergence rate.

Corollary 1. Assume (C1)-(C5) and (C7). Then, for any t € [0,1] and
K, = 6(n/logp,)/?, where § is defined as in Theorem (@ holds, with

jk replaced with jk

With the help of Corollary [T} Theorem [2] establishes the sure screening

property of the gCGA (the CGA and FR).

Theorem 2. Assume (C1)-(C5) and (C7). Then, for anyt € [0,1] and K,, >

[C1n*], with Cy being a constant depending on n, by, and C,

lim P(N C Jk,) =1, (3.1)

n—00

which s referred to as the sure screeming property.

Theorem [2] asserts that the gCGA (the CGA and FR) enjoys the sure
screening property, as long as the number of iterations approaches [Cyn2?].
3.2 Variable selection consistency

Although the gCGA has the sure screening property when K,, > C1n?’, the

model Jg, determined by the algorithm at the end of iteration K, suffers
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from severe overfitting, because, as indicated in (2.5), |N| = O(n’) < K,.

In this section, we propose using an HDIC to overcome this difficulty. Define
HDIC(J) =1(B,) + | J|w, log pa/n, (32)

where w,, is some positive constant depending on n. We first restrict our
attention to the set of nested models, Jx, = {J1, ..., Jk, }, generated dur-
ing the gCGA iterations. Then, we find the model jkn = {j1,... ,jkn} with

the smallest HDIC value among Jk, , where

k, =arg min HDIC(J}). (3.3)

1<k<K,

We further construct a subset of j,;n,
Jrim = {Ji 1 <@ < ky, HDIC(Jg, = {5:}) > HDIC(J; )}, (3.4)

to exclude (possibly) redundant variables in J}Cn by examining the “marginal”
contribution of each Z; , for 1 < < k., to the HDIC. The asymptotic per-

formance of jmm is reported in the following theorem.

Theorem 3. (i) Assume (C1)-(C7). Suppose that K,, = d(n/logp,)"/?, w, —

oo, and w, = o(K,). Then,

lim P{Jgum = No} = 1. (3.5)

n—oo
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1) Assume (C1)-(C5) an 7), wit strengthened to 0 < 0 < (1 —
A C C d (C h 60 hened 0
k) /6. Suppose that [C1n*] < K,, < Cyn=0+0=9/2 4 — oo, and w, =

o(K,,), where Cy depends on Cy, 1, and dy. Then, (3.5)) holds.

It would be of interest to compare Theorem [3| with Theorem 4.5 of
Bradic, Fan, and Jiang (2011)), which extends the consistency of the smoothly
clipped absolute deviation (SCAD) from fixed-dimensional Cox models (Fan
and Li, 2002)) to high-dimensional models. Note first that instead of im-
posing high-level assumptions that require S (83, t), for r = 0, 1, 2, to have
probability limits (see Condition 2 (i) of Bradic, Fan, and Jiang (2011)),
we derive the concentration inequalities directly for S)(3,t) (see Lemma
2 in the Supplementary Material) under conditions that can be easily jus-
tified. Moreover, Theorem 4.5 of Bradic, Fan, and Jiang (2011)) demands a
maximum eigenvalue condition on the Hessian matrix of [(-), whereas there
is no such restriction in Theorem [3] Finally, while Condition (C6) in The-
orem (3| (i) is similar, but somewhat stronger than Condition 8 in Bradic,
Fan, and Jiang (2011)), Theorem (3| (ii) drops (C6) at the cost of slightly
stronger limitations on K, and 6. Generally speaking, neither of the sets of
assumptions used in Theorem |3| (i) (or Theorem 3| (ii)) and Theorem 4.5 of
Bradic, Fan, and Jiang (2011)) is more restrictive than the other. However,

the former set of assumptions allows us to build the selection consistency
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of greedy-type algorithms in high-dimensional Cox models, which, to the

best of our knowledge, is not reported in the existing literature.

4. Simulations

In this section, we use four simulation scenarios to assess the variable
screening performance of the gCGA and the variable selection accuracy
of Jrim. Note that for a given ¢, there exists an integer, say m, such
that M, consists of the variables with the largest m absolute gradients
among {]len(,@jk)\,j =1,...,p}. To facilitate the implementation of the
gCGA, in the rest of this section, we change its tuning parameter from
t to m, and denote the algorithm by gCGA(m), for a given m. In our sim-
ulation study, m is set to 1, 10, 30, and 50, noting that gCGA(1) reduces
to the CGA. In addition, K, the number of iterations, and w,, a penalty
term of the HDIC, are given by |5(n/logp,)'/?| and loglog n, respectively.

We suggest using the following data-driven method to select m:
m = arg mig HDIC(Jk, (m)),
me

where Jg, (m) denotes the model chosen by gCGA(m) at the end of an
iteration, and Q, a user-chosen subset of {1, ..., p}, isset to {1, 10, 30,50} in
our simulation. In the rest of this section, the variable sets Jyyim (see (3.4)))

derived from gCGA(m) and gCGA(m) are referred to as gCGA(m)+Trim
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and gCGA(m)+Trim, respectively,

For the purpose of comparison, we consider three marginal methods:

(a) SIS+SCAD: Uses SIS (Fan, Feng, and Wu, 2010) to screen variables
and then selects variables, using SCAD (Fan and Li, 2002) together

with an extended BIC (Luo, Xu, and Chen, 2015).

(b) CSIS+SCAD: Screens variables using CSIS, with the conditioning set
given by the set of variables chosen in (a), and then selects variables

using SCAD together with an extended BIC.

(c) ISIS+SCAD: Performs the same procedure as in (b), except that the
conditioning set is replaced by Cjo, where C; is the set of variables
chosen in (a) and, for ¢ > 2, C; is that chosen by CSIS+SCAD using

conditioning set C;_;.

Note that all screening methods in the above procedures are implemented
based on the partial likelihood. In addition, the number of variables in-
cluded at the screening stage is restricted to [n/logn], and the tuning
constant in the extended BIC is set to 1 — logn/(3logp), as suggested by
Hong, Zheng, and Li (2019)).

For the sake of completeness, we also consider a regularization method,

the adaptive LASSO (ALASSO) (Zhang and Lu, 2007)), for the Cox model.
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Because ALASSO uses the LASSO (Tibshirani, 1997) as an initial estimator
to determine the weights for a second-stage weighted LASSO, we treat
the LASSO as the screening step of ALASSO, and compare it with the
aforementioned screening methods. The tuning parameters of the LASSO
and ALASSO are chosen using five-fold cross-validation and the extended
BIC, respectively.

We conducted 100 replications for (n,p) = (200,10000) and (n,p) =
(400, 10000). For each subject, we generated the survival time 7" from the
Cox model \(t|Z) = exp(Z'B), the censoring time from the Uniform(0, c)
distribution, the observed time Y = min{7, C'}, and the censoring indica-
tor § = [(T < C). The constant ¢ was controlled so that the corresponding
censoring rates were around 20% and 50%. Detailed settings for the covari-

ate vector Z and the coefficient vector 8" are given below.

Scenario 1. (AR(1) correlation). The covariate vector Z follows a multi-
variate normal distribution with zero mean and covariance matrix X,
where Xj; = 1 and Xj, = 0.5V 7* for j # k. The coefficients {8},
for j € {1,2,3,6,12}, are generated from (4logn/y/n+ |W|/4)U, in
which W follows the standard normal distribution and P(U = 1) =
P(U = —1) = 1/2, and the other components of 8" are fixed to be

Zero.
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Scenario 2. (Equi-correlation). The covariate vector Z follows a multi-
variate normal distribution with zero mean and covariance matrix X,
where ¥;; = 1 and ¥ = 0.5, for j # k. The coefficients {3}, for
j€{1,...,15}, are generated from (4logn/\/n + |W|/4)U, in which
W follows the standard normal distribution and P(U = 1) = P(U =

—1) =1/2, and 3} are fixed to be zero for j > 15.

Scenario 3. (Marginally weak, but jointly strong signals I'). The covariate
vector Z satisfies 27 = Wi, — Wy — Wa, Zy = Wy — W3, Z3 = 2W5,
and Z; = W;, for j > 4, where Wy ~ N(0,2) and {Wj};>2 are from
i.i.d. standard normal distributions. In addition, 87 = 3 for j = 1,2, 3,

andﬁ;f:OfoerZL

Scenario 4. (Marginally weak, but jointly strong signals I7). The covari-
ate vector Z satisfies Zy = Wy — Wy — W3, Zy = Wo — W3, Z3 = 2W5s,
and Z; = W3+G;, for j > 4, where Wy ~ N(0,2) and {Ws, W3, G;},>4
are from i.i.d. standard normal distributions, and the coefficient vec-

tor is the same as that in Scenario 3.

In Scenarios 1 and 2, an AR(1) correlation structure and an equi-
correlation structure, respectively, are imposed on the candidate variables

and the number of the relevant variables in Scenario 2 is considerably larger
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than that in Scenario 1. In Scenario 3, all candidate variables are uncorre-
lated with each other, except for the relevant ones Z;, Zs, and Z3, of which
only Z; is correlated with the survival outcome, and Z, is more difficult
to detect than Z3, as illustrated in Figure The setting of Scenario 4
is the same as that of Scenario 3, except that {Z; }?:1 becomes correlated
with {Z;}7_, through W;5. Additional scenarios and their corresponding
simulation results are provided in the Supplementary Material.

For a given screening method in {gCGA(m), gCGA(m), SIS, CSIS,
ISIS, LASSO} and the corresponding model selection method in {gCGA (m)+Trim,
gCGA(m)+Trim, SIS+SCAD, CSIS+SCAD, ISIS+SCAD, ALASSO}, de-
fine S’b and ’fz as the sets of variables determined by the former and the
latter, respectively, in the bth replication, where 1 < b < 100. We evaluated
the performance of the screening method using its true positive rate (TPR)

and the frequency of sure screening (Sure):

100 5 100
TPR=100") W\/\f% Sure = 100" ) T I{N C S}
b=1

We evaluated the performance of the variable selection method using its
false discovery rate (FDR), frequency of exactly selecting the true model

(Exact), and average model size (AMS):

100 |N ﬂT| 100 100
FDR = 100~ Z | =P Bxact =1007') N =T}, AMS=100") " [T.

b‘ b=1 b=1
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These performance measures are summarized in Tablefor the case of (n,p) =
(200, 10000), and in Table [2f for the case of (n,p) = (400, 10000).

As shown in Tables (1| and , the performance of gCGA(m), for m €
{1, 10, 30, 50}, is quite satisfactory in Scenarios 1 and 3, because their TPR
and Sure values are close to one. These methods have TPR and Sure val-
ues distant from one in Scenario 2 with n = 200, but equal to one as n
increases to 400. In Scenario 4, the TPR and Sure values for gCGA(1) are
much less than one in the case of n = 200, and cannot be improved by
increasing n. Although the performance of gCGA(m) is also unsatisfactory
for m € {10, 30, 50,60} in Scenario 4 with n = 200, it improves significantly
when n grows to 400. This shows that gCGA(m), with m > 10, borrows
from the strengths of FR to enhance its screening performance in difficult
situations, such as Scenario 4, where gCGA(1) does not work well. More-
over, the performance of gCGA(m) tends to increase with m in all scenarios,
and gCGA(m) performs equally well as gCGA(50). The screening perfor-
mance of the marginal methods SIS, CSIS, and ISIS is, in general, inferior
to that of gCGA(m). Their performance, however, improves when t in C,
increases (see item (c) in Section [4)). In other words, ISIS is better than
CSIS, and CSIS is better than SIS. We therefore compare gCGA (1) and

ISIS. Note first that when n = 200, the two methods are largely compara-
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ble in Scenarios 1 and 4, and in Scenario 2 at a censoring rate of 50%, but
that the former significantly outperforms the latter in all other scenarios.
When n = 400, ISIS is comparable with gCGA(m) in Scenarios 1 and 3,
but its performance is obviously poorer than that of gCGA(7) in Scenarios
2 and 4. The TPR and Sure values of the LASSO are close to those of
gCGA(m) in Scenarios 1, 2, and 4 with n = 200, but are much lower than
the latter in Scenario 3, with the same sample size. When n increases to
400, the LASSO improves substantially in Scenario 3, and both methods ex-
hibit almost perfect performance in the first three scenarios. In Scenario 4,
however, the TPR and Sure values of the LASSO do not increase with the
sample size, resulting in screening performance that is worse than that of
gCGA(m) when n = 400.

The selection accuracy of gCGA(rm)+HDIC depends mainly on the
screening performance of gCGA(m), and on whether the HDIC can suc-
cessfully remove the redundant variables from those included by gCGA (1),
while retaining the relevant ones. The result shown in Tables [I] and [2] sug-
gest that the HDIC can indeed perform well, because the Exact value of
gCGA(m)+Trim is almost equivalent to the Sure values of gCGA(m). Note
that this Sure-Exact equivalence does not occur in any other screening-

selection pairs considered in this section. When n = 400, the Exact value
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of gCGA(mm)+Trim is equal (or close) to one in Scenarios 1-3. The se-
lection performance of the marginal methods is obviously inferior to that
of gCGA(m)+Trim. Their Exact values are high only in cases such as
CSIS+SCAD and ISIS+SCAD in Scenario 1 at a censoring rate of 20%,
and ISIS+SCAD in Scenario 3. ALASSO’s selection performance lies be-
tween that of gCGA(r)+Trim and that of the marginal methods in the
first three scenarios. Its Exact value, however, falls to zero in Scenario 4,
which partly because of the equally low Sure value of the LASSO. The Ex-
act values of all methods in the case of n = 200 are, in general, smaller
than those in the case of n = 400. However, gCGA (12)+Trim still performs
satisfactorily in Scenarios 1 and 3, even at a censoring rate of 50%.

The proposed gCGA(m) seems applicable to the case when marginal
weak, but jointly strong signals appear in the interaction term. To see
this, we explore the performance of gCGA(m) on the Cox model involving

two-way interaction terms. Denote Z'3* in (2.1)) as
/B:TZZL + e +B;Zp+ﬂik,22172+ e +/B;7p_1Zp7p717

with Z; ; = Z;Z;. Under (n,p) = (400, 200) and properly designed 8* and
Z, there are three (out of 20100) relevant variables, Z;, Z; 5, and Z; 3, in the
above Cox model, where the main effect Z; and the interaction term Z; 3 are

marginal weak, but jointly strong signals. The details of the setting and the
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results are provided in Supplementary Material. Note that the true model
follows the so-called weak heredity principle, because at least one of the
main effects is present when an interaction term is included in the model.
The result shows that gCGA (7)+Trim can offer satisfying variable selection
results, and that it outperforms the other methods in high-dimensional Cox
models with interaction terms, in which some marginally weak, but jointly
strong main and interaction effects appear.

To conclude this section, note that gCGA(m) and gCGA (m)+Trim
exhibit excellent performance in terms of screening and selection that sur-
passes that of all other methods under consideration. In particular, when
(n,p) = (400,10000), they perform almost perfectly over Scenarios 1-4,
some of which seem very challenging, owing to the high correlations be-
tween the relevant and the irrelevant variables. Furthermore, as discussed
in the Supplementary Material, the computing time for gCGA(m) grows
linearly with m, indicating that our proposed method gCGA(m), with m
chosen from Q C {1,...,50}, offers a substantial improvement in terms of

speed over gCGA(10000), which is equivalent to FR.
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Table 1: Results for (n,

p) = (200, 10000) under Scenarios 1-4.

Censor Rate 20% 50%

TPR Sure FDR Exact AMS TPR Sure FDR Exact AMS

AR(1) correlation
gCGA(1)+Trim 1.00 1.00 0.00 1.00 5.00 0.96 0.91 0.00 0.90 4.79
gCGA(10)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(30)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(50)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(m)+Trim 1.00 1.00 0.00 1.00 5.00 0.99 0.98 0.00 0.96 4.92
SIS+SCAD 0.86 0.30 0.10 0.29 4.70 0.81 0.17 0.14 0.11 4.12
CSIS+SCAD 099 094 0.15 042 6.08 094 0.72 0.22 0.11 5.89
ISIS+SCAD 1.00 0.99 0.33 0.15 815 0.95 0.77 0.22 0.09 5.87
ALASSO 1.00 0.98 0.00 0.97 4.97 0.97 0.83 0.03 0.65 4.86
Equi-correlation
gCGA(1)+Trim 0.75 0.55 0.16 0.31 5.92 0.28 0.00 0.35 0.00 1.59
gCGA(10)+Trim 0.78 0.63 0.14 044 7.81 0.29 0.02 0.39 0.00 1.68
gCGA(30)+Trim 0.78 0.64 0.15 043 7.71 0.30 0.03 0.38 0.00 1.70
gCGA(50)+Trim 0.79 0.65 0.15 043 7.70 0.30 0.03 0.37 0.00 1.70
gCGA(m)+Trim 0.87 0.78 0.12 0.51 875 0.32 0.03 0.36 0.00 1.68
SIS+SCAD 0.34 0.00 0.17 0.00 2.84 0.29 0.00 0.25 0.00 3.04
CSIS+SCAD 0.41 0.00 0.13 0.00 3.06 0.32 0.00 0.23 0.00 3.24
ISIS+SCAD 0.46 0.12 0.14 0.00 4.40 0.32 0.00 0.23 0.00 3.24
ALASSO 0.87 0.55 0.08 0.22 10.96 0.54 0.00 0.17 0.00 2.69
Marginally weak but jointly strong signals [
gCGA(1)+Trim 0.99 0.99 0.00 0.99 2.98 0.96 0.94 0.00 0.94 2.88
gCGA(10)+Trim 1.00 1.00 0.00 1.00 3.00 0.99 0.99 0.00 0.99 2.98
gCGA(30)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(50)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(m)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
SIS+SCAD 0.34 0.00 0.04 0.00 1.12 0.34 0.01 0.03 0.01 1.08
CSIS+SCAD 0.67 0.02 0.12 0.02 1.97 0.67 0.02 0.06 0.00 1.50
ISIS+SCAD 0.82 0.45 0.17 0.12 3.14 0.74 0.22 0.11 0.01 2.26
ALASSO 0.63 0.02 0.08 0.02 1.86 0.57 0.00 0.07 0.00 1.48
Marginally weak but jointly strong signals 17

gCGA(1)+Trim 0.67 0.00 0.72 0.00 7.23 0.67 0.00 0.61 0.00 4.98
gCGA(10)+Trim 0.68 0.03 0.71 0.03 7.33 0.67 0.01 0.64 0.01 5.60
gCGA(30)+Trim 0.70 0.11 0.65 0.11 6.90 0.67 0.02 0.64 0.02 5.68
gCGA(50)+Trim 0.72 0.17 0.60 0.17 6.69 0.68 0.05 0.62 0.05 5.57
gCGA(m)+Trim 0.72 0.17 0.61 0.17 6.74 0.68 0.05 0.62 0.05 5.58
SIS+SCAD 0.33 0.00 0.24 0.00 2.25 0.33 0.00 0.20 0.00 1.80
CSIS+SCAD 0.64 0.01 0.30 0.00 4.44 0.57 0.00 0.22 0.00 3.18
ISIS+SCAD 0.71 0.18 0.24 0.11 6.58 0.60 0.06 0.20 0.04 4.68
ALASSO 0.67 0.00 0.06 0.00 1.18 0.67 0.00 0.12 0.00 1.47
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Table 2: Results for (n,

p) = (400, 10000) under Scenarios 1-4.

Censor Rate

20%

50%

AMS

gCGA(1)+Trim
gCGA(10)+Trim
gCGA(30)+Trim
gCGA(50)+Trim
gCGA(m)+Trim
SIS+SCAD
CSIS+SCAD
[SIS+SCAD
ALASSO

gCGA(1)+Trim
gCGA(10)+Trim
gCGA(30)+Trim
gCGA(50)+Trim
gCGA (m)+Trim
SIS+SCAD
CSIS+SCAD
[SIS+SCAD
ALASSO

gCGA(1)+Trim
gCGA(10)+Trim
gCGA(30)+Trim
gCGA(50)+Trim
gCGA (m)+Trim
SIS+SCAD
CSIS+SCAD
ISIS+SCAD
ALASSO

gCGA(1)+Trim
gCGA(10)+Trim
gCGA(30)+Trim
gCGA(50)+Trim
gCGA (m)+Trim
SIS+SCAD
CSIS+SCAD
ISIS+SCAD
ALASSO

1.00
1.00
1.00
1.00
1.00
0.88
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
0.54
0.80
0.91
1.00

1.00
1.00
1.00
1.00
1.00
0.34
0.68
1.00
1.00

0.74
0.94
0.99
1.00
1.00
0.34
0.72
0.81

TPR Sure FDR Exact AMS TPR Sure FDR Exact
AR(1) correlation
1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00
041 0.03 041 4.53 0.86 0.33 0.07 0.33
1.00 0.01 094 5.06 0.99 097 0.09 0.59
1.00 0.02 0.90 5.10 1.00 1.00 0.15 0.46
1.00 0.00 1.00 5.00 1.00 1.00 0.00 0.97
Equi-correlation
1.00 0.00 1.00 15.00 1.00 1.00 0.02 0.94
1.00 0.00 1.00 15.00 1.00 1.00 0.01 0.98
1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.99
1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.99
1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.98
0.00 0.10 0.00 7.14 0.51 0.00 0.14 0.00
0.07 0.03 0.05 10.93 0.69 0.02 0.09 0.02
0.82 0.05 0.38 13.18 0.86 0.69 0.12 0.09
1.00 0.00 0.99 15.01 1.00 0.96 0.02 0.65
Marginally weak but jointly strong signals [
1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00
1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00
0.00 0.01 0.00 1.04 0.34 0.00 0.00 0.00
0.05 0.03 0.05 2.14 0.67 0.01 0.04 0.01
1.00 0.00 0.98 3.02 1.00 1.00 0.07 0.76
1.00 0.00 1.00 3.00 0.96 0.87 0.00 0.83
Marginally weak but jointly strong signals 17
021 0.64 0.21 9.09 0.70 0.11 0.67 0.11
0.82 0.15 0.82 4.38 0.83 0.50 0.38 0.50
097 0.02 097 3.21 0.89 0.67 0.25 0.67
0.99 0.01 099 3.07 092 0.75 0.19 0.75
0.99 0.01 0.99 3.07 091 0.74 0.20 0.74
0.00 0.32 0.00 3.80 0.34 0.00 0.19 0.00
0.15 0.25 0.15 7.05 0.68 0.05 0.21 0.05
043 0.01 043 1.88 0.72 0.18 0.10 0.17
0.00 0.00 0.00 1.03 0.67 0.00 0.02 0.00

0.67

5.00
5.00
5.00
5.00
5.00
4.54
5.58
6.28
5.01

14.34
14.78
14.89
14.89
14.79

5.90

8.88
12.74
15.18

3.00
3.00
3.00
3.00
3.00
1.02
2.13
3.30
2.84

7.47
5.69
4.82
4.37
4.44
2.28
491
3.86
1.06
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5. Data Analysis

We apply our proposed method to data from the study of Metzeler et al.
(2008). The primary concern here is to identify the gene signatures relevant
to overall survival in patients who are diagnosed with cytogenetically normal
acute myeloid leukaemia. In this study, the training cohort consisted of 163
adult patients, from whom a total of 44754 gene signatures were recorded
using Affymetrix HG-U133 A+B microarrays. The median survival time in
the training cohort is 9.4 months, with a censoring rate of 37%. In addition,
an independent sample consisting of 79 patients on Affymetrix HG-U133
Plus 2.0 microarrays is used as the test cohort, which has a median survival
time of 15.7 months, with a censoring rate of 41%. Following Metzeler
et al. (2008]), all gene expressions are centered and rescaled. This data
set is publicly available on the gene expression omnibus website (http:
//www.ncbi.nlm.nih.gov/geo/) under the accession number GSE12417.
We consider gCGA(m)+Trim, with @ = {1, 10,30,50}, and the other
four variable selection methods introduced in Section [4} all methods are ap-
plied to the training cohort to select relevant genes. To validate the results,
we calculate the concordance statistics (C-statistics) and the area under
the curve (AUC) developed by Uno et al. (2011)), based on the test cohort.

The prediction performance is reported in Table 3| revealing that the resul-
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Table 3: Summary of prediction performance for gene signatures selected

from different methods in CN-AML data.

gCGA(m)+Trim SIS+SCAD CSIS+SCAD ISIS+SCAD ALASSO

C-statistic 0.618 0.610 0.579 0.618 0.582
AUC 0.626 0.603 0.544 0.592 0.552
Model size 19 7 10 32 10

tant 19 gene signatures selected by our method possess greater predictive
power. In particular, the first three genes (SOSC2, AXL, and NCR3LG1)
that survive the screening and selection stages of gCGA (m)+Trim deserve
further inspection. The first gene signature (SOSC2) is known to be associ-
ated with patients’ overall survival in CN-AML (Metzeler et al., 2008), but
is not discovered by any other methods under consideration. On the other
hand, the second gene (AXL) and the third gene (NCR3LG1) are identified
by CSIS+SCAD, ISIS+SCAD, and ALASSO. Therefore, we conclude that
gCGA (1m)+Trim yields reliable importance ranking for gene signatures, and

leads to an interpretative sparse model with competitive prediction power.

6. Conclusion

We have proposed using the CGA, the gCGA, and an HDIC to select vari-

ables for high-dimensional Cox models. This study contributees to the lit-
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erature in the three ways. First, under a weak sparsity condition, we show
that the convergence rate of the CGA is coincident with the “minimax-
optimal” rate obtained in high-dimensional linear models. Note that al-
though this rate is not necessarily minimax-optimal for high-dimensional
Cox models, the coincidence suggests that the CGA works reasonably well
in such models. Second, under a strong sparsity condition, we show that we
can use the gCGA and an HDIC to achieve variable selection consistency,
a property that has not been established previously for greedy-type algo-
rithms in high-dimensional Cox models. Third, the proposed gCGA com-
bines the computational efficiency of the CGA and finite-sample accuracy
of FR. In particular, our experimental results show that gCGA (m)+HDIC
outperforms ALASSO and marginal methods, and exhibits excellent selec-
tion accuracy, even in challenging situations in which marginally weak, but
jointly strong signals are present and highly correlated with the irrelevant
variables.

We have yet to explore the performance of the proposed methods in
high-dimensional Cox models with interaction terms. Model selection for
such models can be applied to identify gene-gene interactions associated
with patients’ overall survival in lung adenocarcinoma (Wu, Huang, and

Ma, 2018), and thus merits future research.
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Supplementary Material

The online Supplementary Material contains detailed proofs of the the-
oretical results, and additional simulations for various settings and that

demonstrate the time cost of gCGA(m).
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