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Abstract—Marathons have recently become popular sporting 

activities. Due to the competitive nature of marathons, 

organizers often use automatic timing systems to ensure 

fairness and impartiality. However, for small- and medium-

sized marathon organizers, the existing timing systems are too 

costly to deploy, so human supervision and timing are still often 

used. This study proposes an automatic timing system for 

marathons based on Bluetooth-Low-Energy (BLE) with 

multiple antennas. Compared to similar studies, this design has 

higher timing stability. By comparing the characteristics of the 

received signal strength (RSS) received from multiple antennas, 

our system can determine when the runner passes the 

checkpoint. This study uses deep learning algorithms to deal 

with noisy RSS from multiple antennas. During the evaluation, 

20 runners participated in experiments at four locations, 

demonstrating the scalability of the proposed system. The 

results showed that the accurate detection of the timing for 

marathon runners was 96.8%, which could be further increased 

to 100% if a one-second timing error is acceptable. 

 
Index Terms—Marathon runner, multiantenna, directional 

antenna, Bluetooth Low Energy, embedded system, RFID. 

I. INTRODUCTION 

marathon is a long-distance road running race. It is 

particularly important to track whether a runner has passed 

the checkpoints, the time at which they pass the checkpoints, 

and the time at which they complete the entire race. Before 

timing systems became popular in marathon races, timekeepers 

would manually determine whether a runner had passed the 

finish line with the assistance of high-speed scanning cameras 

taking continuous photos. This approach consumed a 

considerable amount of manpower, required the use of costly 

high-speed cameras, and led to frequent timing errors. In 

addition, for runners and spectators, the process and results of 

the race are less transparent and more prone to disputes. 

In order to ensure the impartiality of the race, automatic 

timing systems are often used to automatically identify and 

record the presence of runners, including when they start, pass 

the checkpoint, and reach the finish line. Currently, radio 

frequency identification (RFID) [1][2][3] timing systems are 

the most widely used to accurately time runners. As shown in 

Fig. 1(a), an RFID tag is battery-free and inexpensive. The 

runner wears the RFID tag on their feet, and it is detected by the 

RFID reader mat when the runner passes the checkpoint. 

Meanwhile, the RFID’s short communication range, usually 

less than 10 cm, ensures the precise detection of the RFID tag 

when the runner is passing the checkpoint. Although RFID 

timing system have already been used widely and proven to be 

useful in timing runners, their major drawback is that the 

checkpoint’s hardware is bulky and expensive, which prohibits 

the use of this type of system in small- and medium-sized 

marathons. Also, the reader may fail to detect the runner if they 

are not close enough to the RFID reader mat, resulting in the 

loss of their timing information. 

 
Fig. 1 (a) Conventional RFID-based timing system, (b) conventional BLE-
based timing system, and (c) the proposed BLE-based timing system with 

multidirectional antennas. 

 

Recently, several new designs have exploited the use of 

Bluetooth-Low-Energy (BLE) [14] to replace RFID. BLE-

based timing systems [4][5], as shown in Fig. 1(b), also use 

extremely low energy and perform short-distance 

communication in the range of several meters. The design of a 

BLE tag allows it to broadcast a BLE advertisement to the BLE 

receiver. Runners wearing BLE tags are detected by nearby 

BLE receivers. The runner passing the receiver is detected 

according to the change of received signal strength (RSS). This 

approach has been used widely [6][7][8] in positioning 

applications. Checkpoints often have multiple BLE receivers 

installed to increase the chance of receiving BLE tag 

advertisements. Therefore, BLE can replace RFID as an 

automatic timekeeper. This type of timing system is affordable 

for small- and medium-sized marathons.  

Although several similar designs using BLE have been 

proposed, they are often inferior due to the nature of wireless 

signals, resulting in the failed detection of a runner or the false 

detection of a runner who is far in distance or even off-route. 

The main reason is that radio waves have characteristics such 

as scattering and diffraction, which are greatly affected by the 

environment at the site. Therefore, it is rare to see BLE timing 

systems in real marathon events because of their unreliability.  

In order to respond to the desperate need for a better 
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automatic marathon timing system, this study proposes a new 

BLE-based system that features multiple directional antennas 

for the BLE receivers in the checkpoint to collect more 

characteristics of BLE advertisement broadcasted from the 

runner’s BLE tag, as shown in Fig. 1(c). Directional antennas 

have a higher signal gain in their designated direction and can 

provide more hints to determine the tag’s location and distance. 

This method can avoid relying solely on the single 

omnidirectional signal antenna of the BLE receiver to receive 

the wireless signal of the tag, making it difficult to determine 

whether the tag advertisement represents the passage of a 

runner. We will explain the issue of the existing BLE timing 

system in the following chapters. 

In the proposed design, the BLE receivers collect the BLE 

advertisement from multiple directional antennas and then use 

deep learning algorithms to determine the runner’s current 

behavior (i.e., running pass to the checkpoint or just wandering 

back and forth near the checkpoint). The proposed design can 

reduce errors and even provide anti-cheating features to prevent 

malicious behaviors (e.g., taking detours and shortcuts). The 

proposed design has been confirmed to lower the miss and false 

positive rate and raise the hit rate of detecting runners.  

In summary, the goals of this study are listed as follows: 

• The proposed system must be able to detect the runner 

passing the checkpoint reliably. 

• The system must be able to detect abnormal behaviors 

of marathon runners.  

• This system must be lightweight and easy to install to 

incentivize marathon organizers to use it.  

• Multiple runners passing the checkpoint should not 

affect the accuracy of detection. 

II. RELATED WORKS 

The advent of RFID technology has made it possible to fully 

automate marathon timing to improve the fairness of the race 

and to reduce the number of timekeepers. This allows us to 

display the time of runners passing by each checkpoint in real 

time, making the results of the whole race more convincing. As 

far as we know, the World Athletics Federation [6] has defined 

the specifications for timing systems for sprinting, but not for 

marathons. By surveying the marathon timing products [13] on 

the market and referring to the historical records of marathons 

[12], we can see that the minimal time resolution is recorded in 

seconds. This is because the runners who are usually at the top 

of the rankings have a significant gap in finishing time between 

each other, so the timing systems with a resolution in seconds 

is accurate enough to meet the needs of marathons. 

The current RFID timing system consists of an induction mat 

(consisting of multiple RFID readers) and a timing device for 

checkpoints. Depending on the width of the runner’s track, a 

checkpoint may need several mats to cover the whole track. 

Because of this, setting up the checkpoints for a marathon is 

often very complicated and requires professional expertise to 

assist in the installation and ensure that it is functioning 

properly. Therefore, the hardware and labor costs are raised.  

Study [1] analyzed the sources of timing errors in RFID-

based timing systems and examined how different types of 

RFID tags can affect accuracy. Study [2] discussed how 

different RFID tag types use RFID timing systems in different 

sports and how they can affect the performance of the system. 

Also, the results of the experiment revealed that speed and the 

degree of tag overlap among several runners will affect the 

timing accuracy of the RFID timing system reading. Study [3] 

attempted to solve the problem of multiple RFID signal 

collisions by integrating different technologies, but it also 

significantly increased the cost of the system. The development 

of RFID timing systems still faces the challenge of high prices, 

as an induction mat contains multiple RFID readers. Meanwhile, 

to prevent the RFID reader in the mat from being damaged, a 

protective shield needs to be added to the mat, which makes it 

difficult to reduce its size and weight. These factors make it 

hard to reduce the complexity and cost of deploying an RFID-

based timing system. Also, the mats may miss runners who do 

not pass right above the mat. To overcome missed detection, 

more RFID mats may be required and will further increase the 

cost. 

BLE technology [14] has emerged as a viable alternative to 

RFID for timing and is particularly useful for smaller marathon 

events on a budget. BLE systems are scalable and can cover the 

entire marathon route with multiple timing points. They also 

have a number of advantages, including low power 

consumption, low cost, and small size, etc. Study [4] proposed 

a BLE timing system architecture. The runner wears a BLE tag 

that broadcasts BLE advertisements periodically and can be 

received by the specially designed sensor mat, which consists 

of several BLE receivers. Intuitively, due to the nature of BLE’s 

short wireless communication range, typically less than ten m, 

the BLE receiver’s reception of the broadcast advertisements 

from the runner’s tag infers that they are physically near the 

BLE receiver, and the time is recorded. In this study, the authors 

analyzed the impact of different scenarios and timing errors. 

Study [5] proposed a low-cost BLE timing system based on the 

fact that the received signal strength (RSS) of the BLE signal 

will vary with the distance of the runner from the checkpoint. 

The closer to the checkpoint, the stronger the RSS will be. 

According to the study, the RSS will reach its “peak” point 

about 50 to 100 cm before the runner approaches the checkpoint. 

The authors claimed based on this observation that the mean 

time error is less than 100 ms, using a single mat (consisting of 

three BLE receiver). In this study, three mats were placed at a 

distance of 1 m (three sensor mats, with nine BLE receivers in 

total) to increase the reception rate, and the experiments 

revealed a detection rate of 99.86%. This study uses duplicate 

BLE receivers not only to overlap and enhance the detection 

rate but also to increase its hardware and deployment cost. As 

this type of system is based on receiving the BLE advertisement 

from the tag and using its RSS to determine the runner’s time, 

one may maliciously emit a BLE signal from a remote location 

to mimic a runner passing the checkpoint. This is an important 

concern to BLE-based solutions in real marathons; this design 

does not have anti-cheating features and may be prone to 

disputes. In summary, RFID-based systems have been widely 

used in marathon events to provide automatic runner timing, but 

have been prohibitive in terms of their high hardware cost and 

high deployment complexity. BLE-based systems also have 
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been discussed in several prior studies to provide an alternative 

solution for small-scale marathons. However, the accuracy, 

reliability, and credibility of BLE-based systems is still unclear. 

To respond to the desperate need of a low cost, easy to deploy, 

reliable, and anti-cheating timing solution, this study proposed 

a new BLE timing system using multiple directional antennas 

to receive more characteristics of BLE advertisement 

broadcasted from the runner’s BLE tag. This study is expected 

to achieve the following objectives: 

 

• The proposed system can automatically time the 

marathon runners without human intervention and 

provide sufficient accuracy. 

• The system is low cost, easy to deploy, and flexible 

compared with the conventional runner’s timing 

solution. 

• The system can accommodate different kinds of 

environments while maintaining time accurately.  

• The system can detect cheating behaviors, such as taking 

detours and shortcuts. 

III. SYSTEM ARCHITECTURE AND DESIGN 

 

  
Fig. 2 The architecture of the proposed BLE-based multidirectional antenna 

timing system. 

 

Fig. 2 shows the architecture of the proposed system. The 

runner in this system wears a BLE tag that will continuously 

broadcast BLE advertisements in 10 Hz. Several specially 

designed checkpoints (hereafter called CP) were installed along 

the marathon route, including at the start line and the finish line. 

A CP consists of several BLE receivers with different 

directional antennas; this design is aimed at receiving the 

wireless signal, or BLE advertisements, from the BLE tag worn 

on the runner to indicate that they passed by the CP. In contrast 

to the previous BLE timing system, the proposed CP design 

features the ability to collect BLE beacons using different 

directional antennas, which are aimed in different directions. As 

a directional antenna receives greater radio wave power in 

specific directions (in contrast to omnidirectional antennas that 

receive from a wide angle), our design allows us to collect more, 

different characteristics of RSS of the same BLE advertising 

packet or advertisement from a BLE tag moving along CPs. The 

details follow.  

Fig. 2 shows three components of the system: the BLE tag, 

the CP, and the edge server inside the CP.  

 

3.1 BLE Tag 
A BLE tag worn by a runner is made by an ESP32-WROOM-

32D [6] (hereafter ESP32), which is programmed to broadcast 

BLE advertisements in 10 Hz. The ESP32 output power level is 

9 dBm with its 3.7 dBi internal antenna. The runner can wear 

the BLE tag as a wristband or headband. Compared to other 

BLE timing systems, which use the mat to receive BLE 

advertisements, suggesting that wearing the BLE tag on the 

shoe, our system removes this limitation and will not affect the 

performance significantly. Each BLE advertisement will 

contain the tag’s ID to confirm the source of the packet by the 

receiver. 

 
Fig. 3 A picture of a real CP and received RSS curves. 

3.2 CP and Edge Server: 
As shown in Fig. 3, a CP consists of five BLE receivers based 

on five ESP32, and each ESP32 is equipped with a 10 dBi gain 

2.4 GHz directional antenna [10] aimed in different directions. 

The size of the CP is 40 cm x 60 cm. For CP’s microprocessor 

selection, the following factors must be considered. First, it 

should be able to receive BLE advertisements without adding 

external components (i.e. another RF transceiver). Second, it 

should be able to have enough internal memory to buffer 

received BLE advertisements before reporting to the edge 

server. Third, it should provide an external communication 

interface to transmit the collected data to the edge server, and 

USB is a good choice to meet this requirement. With these 

factors in mind, we chose the ESP32 since we had the 

development kit on hand.  

When a BLE tag broadcasts the advertising packet, the five 

BLE receivers indeed receive the same packet, but possibly 

with different RSS levels, due to the fact that it is received from 

different directional antennas with different polarization 

directions. This characteristic is novel compared to previous 

designs using multiple BLE receivers, which do not intend to 

receive RSS from the same wireless packet, and therefore, are 

not able to realize the proposed approach. As the RSS values 

from five ESP32s are measured, the data are transferred to the 

edge server via USB for further analysis. 

The CP in this system can be designed in the form of a traffic 

cone next to the road and installed at key locations on the 

running path, allowing runners to run past it. The advantages of 

this design are that compared to traditional RFID mats or BLE 

mats that must be laid on the ground, our design has the 

advantages of easy and simple installation, lower labor costs, 
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and lower hardware equipment costs. Because it is not like a 

RFID or BLE mat that will be placed on the ground and 

trampled by runners, it also reduces the chance of equipment 

damage. Traditional mats must have a hard shell, which leads 

to increased costs, heavy shell weight, and troublesome 

installation. 

Fig. 3 shows a photo of a real CP and how the proposed 

system works. The CP in this design has five directional 

antennas arranged in a half-moon shape installed on a shelf 46 

cm high, each facing a different direction. The polarization 

directions of ANT1, ANT2, ANT3, ANT4, and ANT5 

correspond to 180°, 135°, 90°, 45°, and 0°, respectively, in the 

polar coordinate system. Fig. 3(a) and (b) present the RSS 

curves from different antennas as the runner moves from left 

(close to the start line) to right (close to the finish line), passing 

the CP. Fig. 3(a) shows that the peaks (refer to the green dotted 

circle in the figure) of all RSS curves are in a short period of 

time before passing the CP; this finding is the same as that of 

the paper [5]. However, it is quite unreliable to use the peak of 

the RSS curve to infer that the runner has actually passed this 

place due to the fact that the RSS is often noisy. This 

demonstrates the need for our new approach to deal with this 

situation. In Fig. 3(a), we can see that all RSS curves intersect 

at the moment the runner passes the CP (indicated by the red 

dotted line), and this characteristic can be used to imply that the 

runner has passed the CP.  

For a simplified view, Fig. 3(b) shows only ANT2 and ANT4; 

the polarization directions of these direction antennas 

correspond to 135° and 45°, respectively. As the runner begins 

to move from left to right before passing the CP, the RSS of 

ANT2 gradually raises until it is close to the point passing 

through the CP, and then the RSS begins to reflect and decrease 

gradually. We can see a similar RSS fluctuation from ANT4. 

When the runner is to the left of the CP, the RSS of ANT2 will 

always be larger than the RSS of ANT4, due to their different 

antenna polarization directions. Similarly, the RSS of ANT4 

will always be larger than that of of ANT2 when the runner is 

to the right of the CP. The main reason is that the polarization 

directions of these two directional antennas are symmetrical, 

that is, the directions of the two antennas’ amplified signals are 

symmetrical. When the tag moves to just passing the CP, the 

signal amplification of these two antennas at this location will 

be relatively small, so this characteristic occurs. 

The above observations show us that the absolute value of 

RSS is less helpful, as it may be affected by many factors, but 

the difference among RSS curves (sourced from the same BLE 

advertisement) from multiple directional antennas is 

meaningful and can be used to detect that the runner has indeed 

passed by the CP. This is the basic idea of the proposed BLE 

design. The details are introduced below. 

 

 
Fig. 4 The working flowcharts of the tag and the CP. 

 

The working flow charts of the tag and CP are shown in Fig. 

4. After the tag is powered on, it starts to broadcast BLE 

advertisements in 10 Hz frequency. In order to simplify the 

subsequent experimental procedures, a button on the tag was 

added so that runners can press the button when passing the CP. 

This will mark what time it is and change the internal state of 

the tag and the advertisement content (so we can mark the 

dotted red line based on it in Fig. 3[a] and Fig. 3[b]). When the 

CP receives its BLE broadcast packet, it can also know the tag’s 

button has been pressed. These data can be used as ground truth 

for subsequent data analysis. Please note that the button only 

needs to be used to generate training data initially. When this 

system is actually used, the runner does not need to press this 

button. 

After the CP is powered on, the Wi-Fi communication 

interface and network time protocol (NTP) will be initialized to 

obtain the current time. After that, two tasks will be created. 

The first task is continuously collecting BLE advertisements 

from tags and forwarding them to the data processing task for 

data preprocessing through the data queue and the collected 

data was processed in 1 sec unit and sent to the edge server 

through a USB for later analysis of the runner’s behaviors.  

An edge server is a computer that receives data from the five 

ESP32s by USB. A laptop computer was used in this prototype 

to collect data and run the deep learning algorithm and 

determine the runner’s behavior and time, (i.e., that runner 1 is 

passing by CP 1). This can be replaced by an embedded system 

to miniature the size and lower the power consumption. 

3.3 Preliminary Experiment 
 

  
Fig. 5 Preliminary experiment.  

Preliminary experiments were conducted to verify our idea. 

As shown in Fig. 5, a runner with a BLE tag ran on the path 
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from left to right, following the yellow route. A normal runner 

should follow the “normal path” (refer to the red arrow) in the 

figure and pass by the CP (at a distance range of 1 to 10 m). 

However, a cheating runner may take a shortcut (refer to the 

blue arrow) by turning early and not following the route. 

Alternatively, a cheating runner might use a cheating device to 

try and generate the BLE signals to mimic a normal runner 

passing the CP. 

3.3.1 Time Resolution of RSS 

  
Fig. 6 The RSS received by the CP with multiple antennas, generated by a 

runner running on the normal path. 

 

Fig. 6 shows the RSS from an experiment with a runner 

running on the normal path (red arrow in Fig. 5) from left to 

right. In order to simply the explanation, Fig. 6(a) only shows 

the RSS collected by the CP (refer to the CP in Fig. 5) from 

ANT1 and ANT5 (which are pointed to 180° and 0°, 

respectively). The RSS_dif curve in the figure indicates the 

difference between ANT1 and ANT5. The RSS in Fig. 6(a) is 

collected by the CP at a frequency of 10 Hz. Although the RSS 

curve of ANT1 and ANT5 are noisy, we can still see that 

RSS_dif drops to zero at the intersection (refer to the green 

dotted circle in Fig. 6[a]) of the two RSS curves. In addition, 

the runner is passing the CP at this point. We perform 1 sec 

moving average processing on the RSS of Fig. 6(a) and obtain 

the  Fig. 6(b) with a relatively smooth RSS. We find that the 

characteristics previously discovered in Fig. 6(a) are more 

obvious in Fig. 6(b), where RSS_dif drops to zero, indicating 

the runner passing the CP. In order to reduce the amount of data 

processed by the subsequent edge server, the time resolution of 

our RSS is reduced to a frequency of 1 Hz. In this case, the 

previously discovered characteristics are still clearly present, 

with RSS_dif decreasing to 0 close to where the runner passes 

the CP. Based on this result, in subsequent experiments, we will 

set the CP to collect RSS data at 1 Hz for subsequent data 

analysis. 

3.3.2 RSS of Normal and Cheating Runners or 

Devices 

 
Fig. 7 The RSS from normal runner and cheating runner scenarios. 

 

We conducted the following experiments to verify our 

proposed approach to discriminate between normal runner and 

cheating behaviors. We selected two cheating scenarios, 

including cheating runners who turn early and take shortcuts 

and cheating runners who use a cheating device to generate 

normal runner signals. The RSS received by the CP is shown in 

Fig. 7.  

Since our BLE-based running timing system uses the RSS 

change of the BLE tag received by the CP to determine whether 

the runner actually ran past the CP, the purpose of this 

experiment is to ask whether, in the case there is a malicious 

BLE tag installed near the CP (refer to the yellow triangle in 

Fig. 5) and it can broadcast BLE advertisement signals at 

different power levels (i.e., from weak to strong, and to weak) 

to emulate a normal runner’s RSS, can it effectively deceive the 

CP into pretending that a runner is passing by? Fig. 7(b) shows 

the RSS generated by the cheating device, although it tries to 

emulate RSS changes, it is difficult to generate the 

characteristics of a normal runner’s RSS and make the CP’s 

RSS curves of two specific antenna have a crossover. Therefore, 

it can be seen that the RSS curve in Fig. 7(b) is not the same as 

the normal runner RSS in Fig. 7(a). Similarly, the RSS shown 

in Fig. 7(c) for the runners who turn early and take shortcuts 

obviously does not have the same characteristics as the RSS of 

normal runners. In the later experiment, we use deep learning 

algorithms to show that it can be discriminated in high accuracy. 

The details follow.  
3.3.2 Packet Reception Ratio  

In the proposed system, multiple runners will carry their own 

BLE tags and pass the CP at the same time. This will allow us 

to determine whether the transmission data will be lost due to 

packet collision due to multiple BLE tags broadcasting BLE 

advertisements at the same time. In the following experiment, 

multiple runners were asked to carry different numbers of BLE 

tags, from 1 to 20, and run past the CP to see if different 

numbers of BLE tags will lower the packet reception ratio (PRR) 

received by the CP. Please note that the calculation here is based 

on the BLE tags broadcast advertisement in 10 Hz, and the CP 

can completely receive these packets. We conducted the same 

experiments in indoor and outdoor environments. However, in 

our experiments, whether indoors or outdoors, there is no 

consistent impact on PRR. Even if there is only one BLE tag, 

the PRR will not be 100% in our environment due to a variety 

of radio equipment working in the area. The range of PRR 
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fluctuates between 79% and 87%. This result shows that the 

number of BLE tags does not have a significant impact on the 

PRR of the CP, due to the fact that BLE has some random 

mechanism to broadcast packets on three different BLE 

channels: 37, 38, and 39. In subsequent data analysis, the lost 

packet information will be compensated for by linear 

interpolation. As the example shown in Fig. 9, in this case, the 

packet in 2nd second is lost, only the packets in the first and third 

second are received. Assuming that the runner's running 

direction and speed remain unchanged, the RSSI of the lost 

packet in 2nd second can be approximated with linear 

interpolation by these two known values, and can still maintain 

correct detection that the runner passed through the CP. 

  
Fig. 8 PRR of the CP vs. number of BLE tags.  

 

 

   
Fig. 9 The linear interpolation of the lost packet. 

 

 

3.4 Full-Scale Experiment  
As in the previous section, the preliminary experiment 

verified that our idea to build a BLE-based timing system is 

feasible. In this section, we further expand the scale of the 

experiment to verify the proposed system. The goals of this 

experiment are to evaluate different deep learning algorithms 

and their accuracy in different parameter sizes and training sets. 

The full-scale experiment was conducted in our university 

campus. We collected runners’ RSS in the following four 

locations:  

L1: The driveway at the entrance of the building  

L2: The corridor inside the building 

L3: The sidewalk next to the building 

L4: The driveway next to the sports field (where the 

preliminary experiment was conducted) 

 

These locations will be referred to below as L1, L2, L3, and 

L4. The equipment settings of the above experimental locations 

are the same to the ones in Fig. 5. The runner runs across the 

CP at a distance of 1 to 10 m; the runner’s running direction is 

from ANT1 to ANT5 of the CP. Twenty runners participated in 

the experiments and collected 120 RSS logs among these four 

locations.  

 

3.4.1 Deep Learning Algorithms 

After the CP received RSS from BLE tags, the data was then 

forwarded to the edge server and used deep learning algorithms 

to determine the runners’ behaviors. We evaluated the deep 

neural network (DNN) and long short-term memory (LSTM) at 

two parameter sizes of about 1,000 (hereafter called “the small 

model”) and about 13,000 (hereafter called “the big model”). In 

this system, simpler algorithms and parameter sizes must be 

considered, since we may implement deep learning algorithms 

in memory-constrained embedded systems, such as the ESP32 

we use in CP. Therefore, the selection of deep learning models 

with different parameter sizes is an important topic and will be 

discussed below. 

 
Fig. 10 Ground truth and the algorithm output explanation. 

 

We use Fig. 10 to illustrate the working mechanism of our 

deep learning algorithm. The runner will press the button on 

their BLE tag to record the exact time they pass the CP during 

their run. We establish ground truth based on the above method 

(refer to the table in the above figure). “0” indicates that the 

runner has not yet passed the CP, and “1” indicates that the 

runner has passed the CP. The 0 and 1 in the “ground truth” row 

represent the real runner status. In our system, the deep learning 

algorithm will input the current RSS of multiple directional 

antennas and use it to determine and output whether at this 

moment, the runner “has” or “has not yet” passed through the 

CP. Therefore, in the “correct detection” row, the algorithm 

accurately outputs the same runner status as the ground truth, 

which means that the algorithm’s decision is exactly the same 

as the actual behavior and is 100% correct. 

In the row “Correct detection with an error of 1 sec,” it is 

shown that the algorithm determines that the runner passed the 

CP 1 sec earlier (please refer to the green dotted circle); in this 

case, the system correctly determined that the runner had passed, 

but the time recorded for passing had an error of 1 sec. The row 

“correct detection with an error of 2 sec” shows that the 

algorithm determined that the runner passed the CP two seconds 

late (refer to the blue dotted circle); in this case, the system 

correctly determined that the runner passed the CP, but the 

recorded time is off by 2 sec. 

The “incorrect detection” row shows that the algorithm first 
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determines that the runner has passed the CP, but then suddenly 

determines that they have “not passed the CP” for 1 sec (refer 

to the red dotted circle), and then subsequently judges that they 

have “passed the CP.” Although the algorithm outputs most of 

the runner’s states correctly, there are still 1 sec errors. 

Based on this explanation, in the following, we use DNN and 

LSTM (refer to Fig. 11) to predict the runner’s state. In DNN, 

the input data to the model is the RSS values of five directional 

antennas in 1 sec, and the output is whether the runner’s status 

has passed CP (0 or 1). In LSTM, the input data to the model 

are the RSS values of five directional antennas in 3 sec, and the 

output is whether the runner’s status has passed CP (0 or 1). 

 
Fig. 11 The DNN and LSTM architectures used in our experiment. 

 

3.4.2 Analysis Results 

 
Fig. 12 The performance of DNN and LSTM (small models). 

 

In the evaluation, in all analytic combinations, we select the 

RSS data from two locations as a training set, and select RSS 

data from one location each for the validation set and the test 

set. For example, referring to Fig. 12, the first test combination 

in small model DNN used L1 and L3 for the training set, L2 for 

the validation set, and L4 for the test set. In this figure, the 

average training accuracy, validation accuracy, and test 

accuracy of the small model DNN are 98.69%, 98.59%, and 

97.57% respectively, and 13÷(13+15) = 46% is the “correct 

detection with timing error.” 

Please note that the unit for “correct detection with timing 

error” and “incorrect detection” is second, as in our design the 

model will output a prediction every second. For small model 

LSTM, the average training accuracy, validation accuracy, and 

test accuracy are 95.76%, 92.72%, and 92.14%, respectively, 

and 17÷(17+43) = 28% is the error in detecting whether the 

runner has passed. Comparing the two, DNN has good results 

when the number of parameters is small, and overall it beats the 

LSTM. 

  

 
 Fig. 13 The performance of DNN and LSTM (big models) 

 

Referring to Fig. 12, the training accuracy, validation 

accuracy, and test accuracy of the big model DNN is very 

similar to the small model DNN. However, for the big model 

LSTM, the average test accuracy is raised from 92.14% to 

97.4% compared to the small model LSTM. Meanwhile, 

“incorrect detection” for big model LTSM is 0%. This is an 

important advantage because we know that “incorrect detection” 

is not acceptable for the runner timing system (i.e., especially 

from the aspect of providing anti-cheating features) and should 

be avoided at all costs. For “correct detection with timing error,” 

after investigation, we found that all timing errors are less than 

1 sec.  
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The parameter size of the DNN has less impact on the 

accuracy, and although both DNN models do not perform very 

well in the L1 and L4 cases, they still have an accuracy of over 

92.86%. The reason may simply be that the L1 and L2 

environments are relatively wide and the distance between the 

runner and the CP is relatively long, resulting in less significant 

RSS changes when running by the CP. DNNs are less able to 

cope with such insignificant RSS changes, resulting in slightly 

lower accuracy. 

For small model LSTM, the worst test accuracy for L2 only 

reaches 72%, which is an unacceptable level. This might be due 

to the fact that LSTM is more affected by the temporal 

relationship between sequence data and that too much RSS 

noise leads to noisy RSS data, resulting in bad accuracy. 

However, for the LSTM of large models, the test accuracy 

improves significantly. The minimum test accuracy increases to 

92.96% when using L4 as the test set. This evaluation shows 

that the LSTM with a big model is a good candidate for this 

application and will be applied in the following analysis. The 

parameter size of the big model LSTM is 13,217, and if each 

parameter is a 4-byte floating-point variable, the model requires 

about 13,217 x 4 = 52,868 bytes of memory space, or about 53 

kBs. This memory requirement is acceptable in embedded 

systems and further supports the portability of our design to 

memory-constrained architectures. 

 

 
Fig. 14 Additional 20-runner experiment and analysis of the result. 

 

In order to further understand the performance of this system, 

we once again invited 20 runners to conduct experiments in the 

driveway at the entrance to the Innovation Building (L1). We 

collected the RSS data of these runners for analysis to see 

whether the performance of the LSTM system is accurate. At 

the same time, we set up the high-speed camera to record 

ground truths and confirmed that the time of running through 

CP was close to the ground truth from the BLE tags. In the end, 

only 19 people actually participated in the experiment, due to a 

faulty BLE tag device. Among the 19 runners who participated 

in the run, 14 were sports majors and 5 were non-sports majors. 

The collected data was used as test set to the big model LSTM 

with the RSS from all the previous experiments (L1, L2, L3 and 

L4) as the training set.  

The analytic result showed the average test accuracy was 

95.8%. Of the remaining 4.2% error cases, 99.71% were 

“correct detection with timing error,” and all the timing errors 

were less than 1 sec. Only 0.29% is “incorrect detection” in this 

experiment. An in-depth analysis of the reason for this 0.29% 

error shows that in some cases, the signal generated by distant 

runners is very weak (i.e., less than -95 dBm) and is susceptible 

to interference, resulting in an RSS curve that has 

characteristics similar to when passing by CP. Therefore, we 

filtered out excessively weak signals in the data preprocessing 

stage and removed all signals with an RSS less than -95 dBm. 

As a result, we found that the test accuracy could be improved 

to 96.8%, and the remaining 3.2% were “correct detection with 

timing error,” and the time errors were all less than 1 sec. If we 

can relax the time accuracy requirement to plus or minus 1 sec, 

the test accuracy of this system will become 100%, which is 

completely correct. In fact, our system meets the needs of 

marathon races, as seconds are used as the smallest unit for 

marathon recording. 

IV. CONCLUSION AND FUTURE WORKS 

This paper proposes a marathon runner timing system based 

on BLE with multidirectional antenna architecture. Compared 

with previous related research, this design has the advantages 

of high accuracy and resistance to environmental changes. We 

conducted experiments in four different locations to collect data 

and used deep learning algorithms to determine runner’s 

behaviors. DNN and LTSM with different parameter sizes were 

evaluated, and the results show that the big model LTSM is 

suitable for our application, and this model can be ported to a 

memory-constrained embedded system as it only needs about 

53 kBs for the model parameters. In order to further confirm the 

stability and accuracy of our system, we conducted another 

experiment with 20 runners passing by the CP at the same time. 

The results indicate, after adding a threshold to filter weak RSS 

in CP, the accuracy of correctly determining “passing by” 

behavior can reach 100%, and the passing time error is plus or 

minus 1 sec. Since the current timing of general marathon 

events is based on seconds as the smallest unit, the timing 

accuracy provided by this system is sufficient for use in 

marathons. For higher accuracy requirements, traditional high-

speed cameras still must be used to determine final timing and 

sequence.  

At the same time, in this study, we only briefly used two 

commonly used deep learning algorithms to demonstrate the 

feasibility of our timing system and show that it is small enough 

to run on an embedded system. Subsequent research can further 

optimize the algorithms to see if the accuracy and timing error 

can be further improved. 

CPs are not placed on the ground like the RFID or BLE mats 

used in the previous studies. As our CP is relatively lightweight 

and easy to install, like a traffic cone, this creates the incentive 

for use in real marathon events. In addition, in the current 

design, the CP’s edge server is run using a laptop computer, 

which executes a deep learning algorithm to analyze the 

runner’s behavior. In the future, we can use embedded systems 

or even MCU-level systems instead of ESP32 to design the 

edge server, so that we can further reduce the power 

consumption, physical size, and hardware cost of the system.  

Edge Server

CP

BLE tag

Before filtering weak signals:

LSTM (big model) Test accuracy: 95.8%

* Error: 4.2%:

(1) 'correct detection with timing error' : 99.7%

(time errors are all less than 1 second)

(2) 'incorrect detection' : 0.29%

After filtering weak signals (-95 dBm):

Test accuracy: 96.8%

* Error: 3.2%:

(1) 'correct detection with timing error' : 100%

(time errors are all less than 1 second)

(2) 'incorrect detection' : 0%
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Meanwhile, in our implementation, the runner status output 

by edge server is shown on the screen. In the future, in the actual 

sports system, this information can be sent to the remote server 

through mobile networks such as 4G/5G, so that the audience 

and sports coaches can view the information in real time. 

Having the real-time status of all runners will make the 

marathon more interesting and credible. 

In this study, the main reason for reducing the 10 Hz RSS to 

1 Hz is to lower the amount of data in the CP’s buffer (using an 

ESP32 microprocessor), after which the data in the buffer is 

sent to the edge server for computation. Another reason is that 

marathon races only require timing to be accurate to a matter of 

seconds. To meet this requirement, this study used the smallest 

unit of seconds in designing the system. If necessary, this 

system can also be used to design the system directly with 10 

Hz RSS.  

In our experiments, we currently use five directional 

antennas to judge runners’ behavior. In the future, we may be 

able to consider different placements and arrangements of 

directional antennas or use different numbers of directional 

antennas to see if it will affect the final accuracy. Also, 

currently we use discrete directional antennas to collect RSS. In 

the future, we may consider designing a printed circuit board 

antenna to integrate multiple directional antennas on one circuit 

board and further reduce costs and the space.  

Regarding comparing the proposed system to related timing 

systems, RFID is the most commonly used method in actual 

marathons. Nevertheless, even disregarding equipment and 

installation costs, missed detection is still possible under some 

circumstances. Furthermore, conventional BLE-based timing 

systems suffer from an inability to determine malicious 

behaviors, not to mention having similar problems to RFID-

based systems. Among the marathon timing systems, there is no 

doubt that the most accurate are optical methods, that is, high-

speed cameras, for measuring when runners pass the station 

(assuming high equipment and labor costs are not a concern). 

Therefore, in our study, we use the camera as the ground truth 

to compare and validate our system in the final experiment and 

show that our design is viable. In short, it may not be reasonable 

to compare different marathon timing techniques without 

considering their limitations.  

In summary, this study opens up a new direction, using 

multiple directional antennas to collect wireless signal RSS to 

determine the behavior of marathon runners. This study 

designed the system and conducted experiments to verify that 

the ideas we proposed are correct and feasible. In the future, we 

hope to further improve and optimize the abovementioned 

issues of this system, and use this system in real-world 

marathons.  
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