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Abstract—Existing indoor positioning technologies aim at 

providing location information of extremely high accuracy, but are 

limited by the requirement for infrastructure with high installation 

and maintenance costs. Thus, for indoor human tracking 

applications, a suitable indoor positioning technique should be 

selected by taking into account practical considerations of 

adequate accuracy as well as cost-effectiveness. Based on this 

observation, an indoor, room-level tracking method is presented, 

which is characterized by an infrastructure that is cost-effective to 

build and maintain with no need to deal with calibration issues of 

the fingerprint map caused by hardware heterogeneity. A mobile 

device tracks variations in the radio signal strength from nearby 

Bluetooth beacons to determine the entry and exit of the user’s 

device from a given room or hallway. Therefore, by determining 

the sequence of users’ movements, their moving path can be 

recorded for indoor tracking or navigation. Experiments revealed 

that the proposed method attains an average hit rate, false alarm 

rate, and miss rate of 94.2%, 3.6%, and 5.8%, respectively.  

 

Keywords—indoor, map, tracking, positioning, radio signal strength, 

RSS, Bluetooth, smartphone, heterogeneous hardware. 

I. INTRODUCTION 

 The aim of indoor positioning is to provide a subject's 

location and directions to a desired destination in an indoor 

environment where Global Positioning System (GPS) is 

unavailable. In previous studies, researchers investigated radio 

received signal strength (RSS) approaches with RFID[1]; WiFi 

[2][3][4]; Bluetooth [5][6][7][8]; IEEE 802.15.4/ZigBee[9]; 

FM radio[10]; and a geomagnetic field [11] by using distance 

estimation or fingerprint-based techniques to achieve indoor 

positioning.  

The proximity approach [5] determines the radio receiver’s 

location according to the beacon with the strongest RSS from a 

Bluetooth beacon (i.e., Apple’s iBeacon) or WiFi AP. This 

approach is simple and intuitive, but different types of receivers 

(i.e., different smartphone models) may receive different RSS 

levels from the same groups of beacons at the same location. 

Other approaches, such as a light-sensor-based positioning 

system [12][13] and an ultrasonic time-of-flight [14] approach, a 

camera system [15], and a 3D laser scanner approach [16], are 

useful, but these approaches may necessitate additional 

infrastructure and a handheld device support, i.e., modification 

of lamps to provide location information or installation of 

cameras on the ceiling. In addition, a suitable sensor (i.e., a 

special light sensor, an ultrasonic sensor, a 3D laser scanner) 

also may be unavailable in commercial off-the-shelf 

smartphones; thus, specially designed handheld equipment is 

required to use this system.  

Several indoor positioning technologies aim at providing high 

location accuracy. However, currently, no technique can 

provide extremely high location accuracy (i.e., error < 1 cm), 

high reliability, and a low response time while simultaneously 

considering the costs of infrastructure, handheld equipment (no 

need for specially designed smartphones), and maintenance (no 

need for building and updating radio fingerprint maps). The 

radio fingerprinting approach can provide good positioning 

accuracy by using RSS from WiFi[3][4], Bluetooth[6][7][8], 

IEEE 802.15.4/ZigBee[9], FM radio[10], a geomagnetic field 

[11], and WiMAX [22]. However, a radio fingerprint map may 

be outdated if the environment changes after the radio 

fingerprint map is built. For example, changes in the location of 

the WiFi access point or furniture can lead to an incorrect map 

and may require building the radio fingerprint map again. In 

addition, different radio receivers may record different levels of 

RSS at the same location, which must be calibrated for matching 

to a radio fingerprint map. Consequently, researchers developed 

several algorithms to perform RSS calibration for handling 

heterogeneous hardware problems [17][18]. The maintenance of 

an up to date, accurate radio fingerprint map is labor-intensive, 

expensive, and possibly impractical in real life. Meanwhile, this 

approach typically requires a large number of beacons (i.e., 

WiFi access points or RFID), leading to high costs for the 

installation and maintenance of the necessary infrastructure.  

 Nevertheless, in most real-world applications (such as indoor 

human tracking or navigation), the selection of a suitable indoor 

positioning technique might depend on finding an economical 

option that provides just sufficient accuracy for specific 

applications. This study is extended from our previous study 

[19]. This study presents a more comprehensive introduction of 

the design and implementation of the proposed indoor human 

tracking system for room-level navigation. Fig. 1 shows a 

diagram describing the method. A Bluetooth beacon is installed 

on the doorframe in the middle of the hallway and in a room 

designated as #202. When a user carrying a mobile device enters 
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the room from the hallway, the mobile device receives the RSS 

ramp-up and ramp-down period (as depicted in the upper-right 

inset in Fig. 1), indicating that the mobile device is currently 

moving toward (approaching)/leaving from the beacon. Hence, 

the greater the distance between the user and beacon, the lower 

the RSS. The beacon message comprises the beacon’s ID, 

indicating its corresponding room number,  and the entry or exit 

directions in a range of degrees (i.e., 5° to 85° for entry and −95° 

to −175° for exit); all information is programmed in the beacon. 

In this design, the building owner provides the building’s floor 

plan to create an indoor map for users, e.g., Google Maps 

allowing building owners to upload their floor plans for indoor 

tracking [20]. The indoor map defines the location of each room 

corresponding to the beacon’s ID. Therefore, the proposed 

method determines the users’ movement and then indicates their 

location on the off-line indoor map. 

Room #202Hallway

Beacon

ID:Room #202

Enter:degree5°~85°
Leave:degree-95°~-175°

Mobile 

device

Received Bluetooth Beacon

ID：Room#202

RSS ramp up：detected

Direction：Enter

Result: user enters #202

Moving path

RSS 

time

 
Fig. 1 Use of RSS variation to estimate the location of a mobile device. 

 

The mobile device can determine that the user is entering or 

exiting the room according to its own moving direction, 

provided by its compass sensor. By installing beacons at the 

intersections of hallways and rooms, the mobile device can 

determine whether the user is entering or exiting a specific room 

for the purpose of determining the user’s moving path on the 

indoor map. This proposed method, which determines the user’s 

movement by the variations in the received radio signal strength 

(RSS) of his/her mobile device, avoids the inconvenience of 

having to build and maintain radio fingerprint maps and 

performing sophisticated RSS calibration. In summary, the 

contributions of this study are as follows: 

1) A novel method that uses RSS variations in a mobile 

device to determine the moving event, which can 

improve the performance of indoor tracking and 

navigation and avoid heterogeneous hardware problems, 

is proposed. 

2) The proposed method utilizes Bluetooth Low Energy 

(BLE) as the beacon, which consumes less energy than 

WiFi or other wireless interfaces in a smartphone and 

does not significantly shorten a smartphone’s battery 

life.  

3) The installation and deployment of beacons are easy and 

cost-effective and can operate for several years with a 

battery pack.  

4) This approach does not need a radio fingerprint map for 

location estimation, considerably reducing the cost of 

building and maintaining infrastructure given that the 

indoor environment and interference can change. 

II. PROOF-OF-CONCEPT EXPERIMENT 

 In this section, a proof-of-concept experiment was 

designed and executed to examine whether the above-described 

idea was feasible and practical in the real world. An Android app 

was designed to run on an Android smartphone that would 

record the date, time, RSS of the beacon, acceleration, and 

azimuth. The azimuth value reported by a smartphone’s 

compass indicates the angle between the magnetic North 

direction. For example, azimuth values of 0, 90, 180, and 270 

indicate that the smartphone is aimed to the North, East, South, 

and West. The Bluetooth beacon (hereafter called the Beacon) 

used in this experiment is based on Nordic nRF51822. Its 

advertisement’s broadcast frequency is set to 10 Hz.  
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Fig. 2 Scenario 1: Entering/exiting a room/hallway. 

 

 
 Fig. 3 Two beacons installed on the walls of a staircase. 

A. Testing Scenarios 

Two scenarios were examined: (1) enter/exit a room 

(designated as room #318 in this example), as depicted in the 

lateral view shown in Fig. 2; and (2) walk up/down a staircase, as 

shown in Fig. 3. In the proof-of-concept experiment, the 

data-collecting program was designed to make the subject/user 

intentionally push a button on the screen of the mobile device to 

mark his/her present location. These locations were marked on 
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the ground with colored sticks for reference. Referring to the 

Fig. 2, the 1st mark indicates the location (in the hallway), and 

its distance to the doorframe is 4 m. The user marked his/her 

location at 0 m, 1 m, 2 m, and 4 m from the doorframe (indicated 

by the red triangles in Fig. 2) and at the intersection where the 

floor meets the stairs. These location marks correlate log 

information to the corresponding physical location information 

during later analysis.  

To examine the manner in which the beacon’s height can 

affect the mobile device’s ability to receive a clear RSS 

ramp-up/ramp-down period, the beacons also were deployed at 

three locations, identified as P1 (at the top of door frame), P2 (at 

the height of the door knob), and P3 (on the ground), 

respectively, in Fig. 2. The experimental results indicated that 

location P2 gives the most significant and clear RSS ramp 

up/down period for passing mobile devices as this location is the 

nearest to the device in the user’s hand.  

In scenario 1, the time when a user enters/exits a room was 

determined. In Scenario 2, to determine when a person walks 

up/down a stairway, two beacons were used to improve the 

accuracy of detection, based on the first scenario. As illustrated 

in Fig. 3, two beacons designated Stair_L and Stair_R were 

installed on the walls of a staircase. By determining the sequence 

of movement with respect to these two beacons, whether the user 

is walking up or down the staircase can be determined.  

B. Scenario 1: Entering/Exiting a Room 

 Two android mobile devices Asus Zenfone and Asus 

Memopad, respectively, were used in this proof-of-concept 

experiment. Fig. 4 shows the test results of the Asus Zenfone in 

Scenario 1. In Fig. 4–Fig. 8, Received Signal Strength Indicator 

of a smartphone is abbreviated as RSSI, which is reported by the 

user carrying the smartphone.  

 As the user carries the smartphone and walks from one side 

to another across the doorframe (refer to Fig. 2), the distance 

between the user and beacon changes, and the smartphone’s 

RSSI varies, following an intuitive rule: the shorter the distance 

(between the radio transmitter and receiver), the higher the RSS. 

The RSS ramp-up period (refer to Fig. 4, from −87 dBm to −45 

dBm, from the 1st mark to the 4th mark, for which the mark 

indicates the time the user is at this location) is clear as the 

subject is moving closer to the beacon, with some fluctuations in 

the RSS ramp-down period (from the 4th mark to the 7th mark) 

as the subject moves farther from the beacon. Fig. 5 shows the 

same RSS features for the Asus Memopad; the RSS ramp-up and 

ramp-down periods are clear, indicated by orange dotted arrows. 

Even at the same location, the peak RSSs (at the 4th mark in Fig. 

4 and Fig. 5) of the two devices are different (−45 dBm and −62 

dBm, respectively), caused by the known heterogeneous 

hardware problems [17][18]. As two mobile devices receive the 

same RSS trend line, which the proposed method uses for 

determining whether a user enters or leaves the room, the 

performance of our method is not affected by different mobile 

devices. Thus, in the following paragraphs, only the results for 

the Asus Zenfone are presented, while those for other mobile 

devices exhibit the same RSS trend line. 
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Fig. 4 Entering room #318 (Asus Zenphone). 
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Fig. 5 Entering room #318 (Asus Memopad). 
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Fig. 6 Exiting room #318. 

 

In addition, in Fig. 4 and Fig. 5, the azimuth moving direction 

read from the smartphone’s compass is approximately −135 

degrees, indicating that it is entering the room—in this case, 

room #318. These figures show a clear moving direction that can 

help users to determine when they are entering a specific room. 

 Fig. 6 shows the results when a user carries the smartphone 

while exiting room #318. The trends in the RSS ramp-up and 

ramp-down periods are clear, from the 1st to the 4th mark and 

from the 4th to the 7th mark (in Fig. 6, the RSS is from −83 dBm 

to −48 dBm and −48 dBm to −80 dBm), although some 

fluctuations are still observed. The moving direction in the 

figure is in the range of 25–60 degrees (the direction of exiting 

room #318), indicating that the user is exiting the room. 
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C. Scenario 2: Walking up/down a stairway 
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Fig. 7 Walking down the stairs. 

 

80

95

110

125

140

155

170

-90

-84

-78

-72

-66

-60

-54

-48

31
:0

3

31
:0

4

31
:0

4

31
:0

5

31
:0

6

31
:0

6

31
:0

7

31
:0

7

31
:0

8

31
:0

8

31
:0

9

31
:0

9

31
:1

0

31
:1

0

31
:1

1

31
:1

2

31
:1

2

31
:1

3

31
:1

3

31
:1

4

31
:1

5

31
:1

5

31
:1

5

31
:1

6

31
:1

7

signal
stairs_R
stairs_L
degrees

Mark

Stairs_R RSSI

Stairs_L RSSI

Degree

R
S

S
I 

(d
B

m
)

A
zi

m
u

th
 (

d
eg

)

Time
 

Fig. 8 Walking up the stairs. 
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Fig. 9 Example of interpolated and moving average RSS curves. 

 

For this scenario, beacons were installed on walls close to the 

staircase (as shown in Fig. 3), and the user walked up and down 

the stairs carrying a smartphone. As in the previous scenario, the 

data-collecting program required the subject to push a button on 

the screen of the mobile device, marking their location at 0 m, 1 

m, 2 m, and 4 m from the intersection of a floor in the building 

and stairs. 

 Fig. 7 shows data from the user’s walk down the stairs. The 

user walks on the right side of the stairway, near beacon Stair_R, 

and that beacon’s RSS ramp-up and ramp-down periods are 

significant in comparison with the RSS of Stair_L. The direction 

of movement is toward the West as it fluctuates between −40 and 

−115 degrees, indicating that the user is walking down the stairs.  

 Fig. 8 shows the user’s walk up the stairs on the right side, 

which is near beacon Stair_R. The RSS of Stair_R is greater 

than the RSS of Stair_L as the user is nearer to Stair_R. The 

moving direction is in the range of 110–160 degrees, indicating 

that the user is walking up the stairs. 

By this experiment, the proposed idea is feasible, and this 

method can be utilized to determine the location of a mobile 

device user for indoor navigation. In the next section, issues of 

the algorithm’s design are discussed.  

III. SYSTEM DESIGN 

A. Design Issues  

Before discussing the algorithm, it is useful to review some 

lessons learned in the experiment and propose countermeasures 

to address them (see Fig. 9): 

1) The received beacon samples can be used to determine 

the moving path of the user, but some beacon samples 

are missing, and RSS is often unstable. Data 

pre-processing is mandatory to produce a smooth RSS 

curve before movement detection. Therefore, 

interpolation and moving average are applied to the 

received samples to generate an RSS curve with a clear 

trend line, as shown in RSSI_MA in Fig. 9. 

2) The moving direction changes while the user is moving. 

The peak point of RSSI_MA indicates the closest 

distance between the user and beacon, which is installed 

on a doorframe or entrance to a stairway. The moving 

direction in this moment can be seen as the user’s major 

moving direction. 

The algorithm shown in Fig. 10 illustrates the procedure of 

the method. During the experiment, the subject logs the date, 

time, RSS of the beacon, and moving direction, as in the 

previous proof-of-concept experiment. In addition, the user 

records the time and location at which they pass the beacon as 

the ground truth. 

B. The Proposed Moving Event Detection Algorithm  

 A moving event detection (MED) algorithm was designed 

for determining when and where users change their location 

based on the concept described in the previous section. In the 

beginning, the algorithm starts to read the log data and tries to 

find the start point of an event (user entering or exiting a room, 

etc.). In Fig. 9, the start point of this event is at the 1st mark. In 

our current design, the criterion for determining the start point of 

the event is where the RSS of all three consecutive samples is 

greater than the predefined RSS threshold (RSSth = −85 dBm in 

the current design). Next, the algorithm continues to seek the 

stop point (i.e., the 7th mark in Fig. 9), where the RSS of all 

three consecutive samples is less than RSSth.  

 After the stop point is decided, the samples between the 

start point and stop point are copied to the temporary data array 

Temp_log. If the direction is valid (i.e., equal to the direction of 

entering or exiting the room), the algorithm generates another 

temporary data array Temp_a_log. It stores the interpolated and 

moving averaged (averaged with the last four samples in this 

experiment) RSS/moving direction of Temp_log in Temp_a_log 

to find the RSS peak point (i.e., the 4th mark in Fig. 9) between 

the start and stop points and uses this information to determine 

the major moving direction Sp.  
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 Subsequently, the algorithm tries to find the RSS 

descending phase in the Temp_a_log. If the descending phase 

(i.e., between the 4th mark and 7th mark) is found and the 

moving direction Sp is valid, then, the algorithm can use this 

RSS ramp-down period to determine the subject’s movement 

and output a message that an entering/exiting event is detected. 

Then, the algorithm goes back to its start to find the next 

movement event until the log ends. 

Start

Read  a sample from the log

Consecutive 3 sample 
RSS > RSSth?

No

Yes

Copy the sample to Temp_log,

Continue to read the log

Consecutive 3 sample 
RSS < RSSth?

No

Stop read log and copy to Temp_log,

find the direction of the sample Sp at the 

peak RSS in Temp_log

Yes

The direction of Sp is 
valid? 

Yes

No

Generate RSS moving averaged and interpolated

from Temp_log into a Temp_a_log

Detect the descending phase of 
RSS in Temp_a_log

Detected

Not detected

Output the detected event

 
Fig. 10  MED algorithm. 

C. Reconstructing Undetected Events 

After users tested our proposed algorithm, still some moving 

events went undetected. Fig. 12 shows an example of the moving 

path, which is based on the floor plan in Fig. 11. In the study, all 

beacons were installed at location P2 of a hallway of a room 

(refer to Fig.2) and at locations Stair_L and Stair_R of a 

staircase (refer to Fig.3). The left portion of Fig. 12 shows the 

ground truth, while the right portion shows the 

algorithm-generated moving paths. Two events (indicated by the 

red arrows) with the timestamp “xx:xx:xx:xxx” indicate 

undetected moving events, which can be reconstructed 

automatically. Some samples are lost and causes the RSS feature 

of the user’s movement to appear insignificant; hence, they are 

not recognized. Interpolated and moving average RSS data offer 

some improvement, but they still cannot detect all moving 

events due to the loss of some beacon samples.  
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Fig. 11 Floor plan of the test site. 
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Fig. 12 Comparison of the moving path from ground truth and the path 

generated by the algorithm. 

 

Import the generated moving path 

and the floor plan

Read the first event

Last two consecutive events are

valid according to the floor plan?

Yes

Read the next event

Reconstruct one moving event 

according to the floor plan

No

Last two consecutive events are

valid according to the floor plan?

No

Discard the last reconstruct event

Path end?
Yes

No

Yes

Output the reconstructed moving 

path

Start

 
Fig. 13 RUE algorithm.  

 

Nevertheless, some undetected moving events still can be 

automatically reconstructed by referring to the last and next 

moving event using the floor plan. For example, the first 

undetected event, “down to 3F” (indicated by red arrow 1 in Fig. 

12), can be reconstructed by referring to “down from 4F” and 

“enter 312,” because the user must walk down the stairs from 4F 

to 3F and can then enter room #312. In addition, the user must 

leave room #312 (red arrow 2 in Fig. 12) before they can enter 

another room #318. In the proposed method, using the floor 

plan, the reconstruct undetected event (RUE) algorithm (shown 
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in Fig. 13) can be applied to generate a more complete moving 

path. In the example, the two undetected events are 

reconstructed using RUE. However, RUE is still limited by the 

inability to reconstruct two or more consecutive undetected 

events. The following section presents the experiment for 

verifying the proposed algorithm and its evaluation. 

IV. EXPERIMENT AND EVALUATION 

A. Performance Indexes  

 In this section, an experiment was conducted to evaluate 

the performance of the proposed method. Three performance 

indexes were evaluated: hit, miss, and false alarm. Hit indicates 

that the user’s moving event, which exists in the ground truth, is 

correctly detected by the proposed algorithm. Miss indicates 

that the moving event is in the ground truth, but it is not detected 

by the algorithm. False alarm indicates that the moving event 

does not appear in the ground truth, but the algorithm reports 

this non-exist moving event. These performance indexes are 

evaluated as the subjects move along the predefined paths listed 

in Table I, and the results are calculated on the basis of a 

per-moving-path basis, not per-moving-event (in the paths) 

basis. Therefore, the results can help to understand the manner 

in which the performance of the proposed method can be utilized 

to track subjects in indoor environments, as well as use for 

indoor navigation applications. An example calculation of the 

performance indexes for a specific moving path is shown as 

follows. 

1) Ground truth moving path:  Leave #318 → Enter #315 

→ Leave #315 → Enter #318 

2) The MED and RUE algorithm-generated moving path: 

Leave #318 (hit) → Enter #312 (false alarm) → 

Leave #312 (false alarm) → Enter #315 (hit) → 

Leave #315 (hit) 

 

In this example, the performance indexes of this path are as 

follows: 

 hit rate = 3/4 = 75% 

 miss rate = 1/4 = 25%  

 false alarm rate = 2/4 = 50% 

B. Experiment Configuration 

 The experiment was conducted in the building in our 

university, and the floor plan was preset in Fig. 11. Table I 

summarizes four test moving paths. Ten subjects were assigned 

to walk these predefined four paths 10 times each. The generated 

moving paths evaluated the performance of the proposed MED 

and RUE algorithms. The ground truth during the experiments 

was collected for later analysis. Table I shows the predefined 

test moving paths.  
TABLE I. TEST MOVING PATHS 

Path #1 
Leave #318 → Enter #315 → Leave #315 → Walk down stair from 3F → 

Walk to 2F → Enter #200 → Leave #200 → Walk up stair from 2F → 

Walk to 3F → Enter #312 → Leave #312 → Walk up stair from 3F → 

Walk to 4F → Enter #412 → Leave #412 → Walk down stair from 4F→ 

Walk to 3F → Enter #309 → Leave #309 → Enter #318 

Path #2 

Leave #318 → Enter #312 → Leave #312 → Enter #309→ Leave #309→ 

Walk down from 3F → Walk to 2F → Enter #200 → Leave #200 → Walk 

up stair from 2F→ Walk to 3F → Enter #309→ Leave #309→ Enter #318 

Path #3 

Leave #318 → Enter #309→ Leave #309→ Walk up stair from 3F → 

Walk to 4F → Enter #412 → Leave #412 → Walk down stair from 4F→ 

Walk to 3F → Enter #315 → Leave #315 → Enter #318 

Path #4 

Leave #318 → Walk down from 3F → Walk to 2F → Enter #200 → Leave 

#200 → Walk up stair from 2F → Walk to 3F → Enter #309→ Leave 

#309→ Walk up stair from 3F → Walk to 4F → Enter #412 → Leave #412 

→ Walk down stair from 4F→ Walk to 3F → Enter #318 
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Fig. 14 Hit rate in the first experiment. 
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Fig. 15 False alarm rate in the first experiment. 

C. First Experiment  

 Fig. 14 shows the hit rate of the experiment over different 

predefined paths. Path #4 exhibits the highest average hit rate, 

94.4%, while path #2 exhibits the lowest average hit rate and the 

highest standard deviation (SD) of 73.2% and 11.7%, 

respectively.  

 As shown in Fig. 15, the average false alarm rate over four 

paths is in the range of 2–5.3%, although in some cases, the false 

alarm rate is 0%. The SD of the false alarm rate varies from 4% 

to 6.6%. The false alarm rates of the four paths are similar. 

 Fig. 16 shows the miss rate. Again, the average miss rate of 

path #2, 26.7%, is greater than those of other paths. Path #2 

exhibits the highest miss rate of 35% and the highest SD of 

11.7%. It is assumed that there must be some reason for the 

unusual performance of path #2 compared to the other paths.  
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 The root cause was further examined, and the beacon at room 

#309 was found to be faulty and did not reliably broadcast 

beacons. Therefore, some beacon samples for room #309 are 

lost, and the RSS features are changed, implying that the 

algorithm cannot detect the entry/exit events for room #309. The 

average hit rate of path #2 is low as it contains four moving 

events related to room #309, while other paths each contain two 

room #309 moving events. This result demonstrates another 

merit of our method, i.e., a faulty beacon in the system can be 

easily located if all subjects fail to register the moving event for 

the same room. We can simply check the corresponding beacon 

and determine whether it is the root cause of the problem.  
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Fig. 16 Miss rate in the first experiment. 

D. Second Experiment After Fixing the Room #309 Beacon 

After the faulty beacon in room #309 was replaced with a 

working one, a new experiment was performed under the same 

configuration. Fig. 17 shows the hit rate of the second 

experiment. The hit rate of path #2 increases from 73.2% to 

89.9%, and the SD decreases from 11.7% to 8.5% compared to 

the data shown in Fig. 14. The average hit rate of the four 

moving paths is 94.2%. The highest hit rate is 100% for all four 

paths, and the lowest SD decreases to 3%. The results 

demonstrated that our proposed method could provide adequate 

performance for indoor tracking and navigation with an 

extremely cost-effective infrastructure support as each room 

merely requires a beacon.  

Fig. 18 shows the false alarm rate of the experiment: The 

algorithm generates a moving event, but the event is incorrect 

and does not exist in the ground truth. In the results, the lowest 

false alarm rate is 0%, and the highest rate is 28%. As shown in 

the figure, the average false alarm rates for all four paths are in 

the range of 0–7.1%, which is reasonably low and acceptable for 

this type of application. Fig. 19 shows the miss rate of the four 

paths. The average miss rate is 2.5–10%, and the SD is 3–8.5%. 

In all four paths, the minimal miss rate is 0%, and the maximum 

miss rate is 21.4%. The result indicated that, with the proposed 

method, the miss rate for detecting moving events is acceptable, 

and the generated moving path is sufficient for tracking or 

navigation applications. Even though some moving events are 

missed, the subject still can be tracked by the remaining moving 

paths.  
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Fig. 17 Hit rate after fixing the room #309 beacon. 
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Fig. 18 False alarm rate after fixing the room #309 beacon. 
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Fig. 19 Miss rate after fixing the room #309 beacon. 

V. DISCUSSION AND CONCLUSIONS 

 In this paper, the design and performance evaluation of a 

smartphone-based indoor tracking method are described. 

Experiments revealed that the proposed method exhibits an 

average hit rate, false alarm rate, and miss rate of 94.2%, 3.6%, 

and 5.8%, respectively. The results support the idea that the 

proposed method is useful and provides satisfactory 

performance for indoor navigation and tracking applications 

while considering practical issues, including the costs of 

building and maintaining infrastructure and hardware 

heterogeneous problems, among others. The idea of using RSS 

temporal variations to track a subject’s indoor movement is 

novel. If higher accuracy is needed, additional beacons can be 

added on the path to allow devices to collect more RSS samples 

from different beacons to help in determine the user’s movement 

with higher confidence. 
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