# High Specific Capacity Nanomaterials as Lithium ion battery anodes

# Hsing-Yu Tuan(段興宇)

Professor, Department of Chemical Engineering, National Tsing Hua University, Taiwan, R.O.C.



Representative Publications of Nanomaterial Synthesis in Tuan research group

Angew Chem.Int.2006, 45, 5184 J. Am. Chem. Soc, 2008, 130, 8900 J. Am. Chem. Soc, 2008, 130, 5436 J. Am. Chem. Soc, 2007, 129, 1733 Nano Letters., 2005,5,681 Chem. Mater., 2008, 20, 2306J. Phys. Chem. C, 2013, 117, 21955Chem. Mater., 2008, 20, 1239Nanoscale, 2013, 5, 9875Chem. Com., 2010, 46, 6105Nanoscale, 2012, 4, 4562J. Phys. Chem. C, 2011, 115, 1592 J. Mater. Chem., 2011, 21, 13793Cry. Growth. Des., 2010, 10, 4741

#### **Nanomaterials-based applications**



#### Representative Publications of Nanomaterial Applications in Tuan research group Chem. Mater., 2014, 26, 2172

Nano Letters, 2013, 13, 4036 Nano Letters, 2012, 12 6372 Nano Letters, 2017, 17, 1240-1247 Energy&Environ. Science, 2011, 4, 4929 ACS Nano, 2016, accepted ACS Nano, 2013, 7, 9443

ACS Nano, 2012, 6, 9932 ACS Nano, 2010, 4, 6278 ACS Nano, 2012, 6, 5710 Biomaterials, 2012, 33, 6559 Biomaterials, 2012, 33, 4108 Chem. Mater., 2015, 12, 4 Chem. Mater., 2014, 26, 2172 Chem. Mater., 2014, 26, 1785 J. Materi. Chem. A, 2017 in press J. Mater. Chem. A, 2016, 4, 12921 J. Mater. Chem., (cover story) 2012, 22, 2215 ACS AMI, 2016, 5, 5 ACS AMI, 2016, 12, 2

#### Development of the lithium ion battery

Macbook Air 2008



#### 37 Wh lithium ion battery

New macbook 2015



#### **39.7 Wh lithium ion battery**



Representative Publications of Nanomaterial Synthesis in Tuan research group

Angew Chem.Int.2006, 45, 5184 J. Am. Chem. Soc, 2008, 130, 8900 J. Am. Chem. Soc, 2008, 130, 5436 J. Am. Chem. Soc, 2007, 129, 1733 Nano Letters., 2005,5,681 Chem. Mater., 2008, 20, 2306J. Phys. Chem. C, 2013, 117, 21955Chem. Mater., 2008, 20, 1239Nanoscale, 2013, 5, 9875Chem. Com., 2010, 46, 6105Nanoscale, 2012, 4, 4562J. Phys. Chem. C, 2011, 115, 1592 J. Mater. Chem., 2011, 21, 13793Cry. Growth. Des., 2010, 10, 4741

#### **Nanomaterials-based applications**



#### Representative Publications of Nanomaterial Applications in Tuan research group

Nano Letters, 2013, 13, 4036 Nano Letters, 2012, 12 6372 Energy&Environ. Science, 2011, 4, 4929 ACS Nano, 2016, accepted ACS Nano, 2013, 7, 9443

ACS Nano, 2012, 6, 9932 ACS Nano, 2010, 4, 6278 ACS Nano, 2012, 6, 5710 Biomaterials, 2012, 33, 6559 Biomaterials, 2012, 33, 4108 Chem. Mater., 2015, 12, 4 Chem. Mater., 2014, 26, 2172 Chem. Mater., 2014, 26, 1785 J. Mater. Chem. A, 2016, 4, 12921 J. Mater. Chem., (cover story) 2012, 22, 2215 ACS AMI, 2016, 5, 5 ACS AMI, 2016, 12, 2

### Development trend of energy density of lithium ion batteries



Source: ITRI

Year

#### **LIB: Mechanism and Anode Capacity**



charge reaction :

#### Cathode : $\text{LiCoO}_2 \rightarrow \text{Li}_{1-x}\text{CoO}_2 + x\text{Li} + xe^-$ Anode : $6\text{C} + x\text{Li} + xe^- \rightarrow \text{Li}_x\text{C}_6$

**Graphite capacity: only 372 mAh/g** 

ACS App. Mater. Inter., 2012, 4, 4658 Angew. Chem. Int. Ed. 2008, 47, 2930

#### Graphite alternative :lithium-alloy type materials



# Morphological Changes in high-capacity materials During Electrochemical Cycling



# Nanowires as LIB anodes

- •Effectivly accommodate the volume changes
- •Tolerate reaxed mechanical strain
- •Provide channels for
- •Efficient electron transport

- Diameter: 1 to 100 nm
- High surface area
- Unique morphology
- Tunable surface chemistry
- Colloid solution

### Raw Ge nanowires for Lithium-Ion Batteries





GeNW



TEM image of Ge nanowires after 30 cycles



Pulverization

### Our approach: alkanethiol-passivated Ge nanowires as LIB anode

Nanowire structure can tolerate relaxed mechanical strain

Sector : dodecanethiol

Organic surfactant can make a better bonding with PVdF (binder) to form good composites

#### Germanium nanowires for LIB applications





#### Alkanethiol-passivated Ge nanowires



# Performance of Ge nanowire anode



# High-rate capability of Ge nanowire anode



# High-temperature performance (55 °C) of Ge nanoiwre anode



## Performance of a Full Cell



Capacity versus cycle number of a coin full cell between 2.0 and 3.8 V with dodecanethiol-passivated Ge nanowire as the anode and LiFePO<sub>4</sub> as the cathode

|          | anode                  | cathode                |
|----------|------------------------|------------------------|
| Material | GeNWs                  | LFP                    |
| Loading  | ~ 1 mg/cm <sup>2</sup> | ~ 8 mg/cm <sup>2</sup> |
| Capacity | 1100 mAh/g             | 140 mAh/g              |

# Structure evolution of dodecanethiolpassivated Ge nanowires



After 100 cycles at 0.1 C



### Reduced Graphene Oxide as a supportive materials for performance improvement of high-capacity lithium ion materials



#### Ge/RGO nanocomposites Large-scale synthesis Crystalline&monodisperse



#### High-density coverageSmall, uniform distribution

## Ge/RGO/C nanocomposites



## LIB Performance of Ge/RGO/C



## Cycling performance at 1C



### Cycling performance at high rates



## Robust Ge/RGO/C nanocomposites



## Full cell performance



Capacity versus cycle number of a full cell between 2.5 and 4.2 V Anode: Ge/RGO/C Cathode: LiCoO2

# MoS2 nanoflower sheets as supportive materials for high-capacity anodes



MoS2 nanoflower sheets



#### Ge/MoS2 and Ge/MoS2/C nanocomposite



#### Performance of Ge/MoS2 nanocomposites



1362 mAh/g: ~98.4% of theoretical capacity of germanium (1384 mAh/g)

## Structure evolution of Ge/MoS2 composites after cycling



#### Performance comparison with other work



Updated to August, 2016

# Full cell with high-areal-volumetric capacity using Ge/MoS2 as anode



# GeO2 (Germania) nanoparticles



Germania is much less expansive than germanium Nearly 100 % yield and good crystallinity germanium oxide (GeO<sub>2</sub>) nanoparticles in a reverse micelle system at ambient temperature
# Nearly 100% yield, single crystallinity of germania nanoparticles



#### GeO2 anode performance



# A flexible all inorganic nanowire bilayer mesh as a high-performance lithium-ion battery anode



## Photographs of the mass of Cu foil and Cu nanowire mesh



Cu nanowire mesh is only 16% of weight compared to Cu foil

### Cycling performance of Ge/Cu nanowire fabric



#### Ge/Cu Nanowire fabric after cycling



# Half-cell test at high loadings of active materials



# Theoretical Volumetric capacities and full cell demonstration



# High-performance lithium-ion batteries with 1.5 mm thin copper nanowire foil as a current collector



Schematic of the process of (a) conventional Cu foil fabrication process using rolling-annealing or electrodeposition methods and (b) CuNW foil fabrication process using a rolling press method.

#### Cu NW fabric with tunable thickness



### Cu NW foil and their density



#### Cu nanowire foil for LIB current collector





### Cycling performance of graphite-CuNW foil



## Full cell performance of graphite-CuNW foil



# Pouch type full cells using graphite-CuNW foil anodes



# Metal phosphide as anodes for LIB



#### Metal phosphide :

- High gravimetric capacities
- High volumetric capacities
- Smaller volume expansion
- Low polarization
- Avoid lithium plating during fast charging.

#### P: 2596 mA h g<sup>-1</sup>

- Poor conductivity
  - large volume expansion

**Goal: Synthesis of CuP<sub>2</sub> Nanowires and applied on Lithium ion Batteries** 

#### CuP<sub>2</sub> nanowires seeded by Bi nanoparticles



#### CuP<sub>2</sub> nanowires seeded by Bi nanoparticles



#### CuP<sub>2</sub> anode performance



### Full cell performance



#### Red phosphorus Nanoparticles (RPNPs)



# Morphology of RPNPs



# Characterization of RPNP : size dependent and lodine doping



# Significantly improved conductitivy



#### Half-Cell battery test



#### Half-cell battery test



#### Full cell tests



# C&EN News: Phosphorus boosts lithium-ion battery charge capacity



*C&EN*, **2017**, *95*, pp 8–9

# Pouch type full cells as proof-of-concept demonstration for practical applications



















Nanoscale kerf loss Si :A top-down approach to make high-capacity nanomaetrials

Kerf loss silicon collected from the sawing process of solar-grade silicon



Ingot Coolant

□ Nanoscale kerf loss silicon □Low cost (1 USD / kg) **D**A solar cell wafer company can produce  $\sim 1000 \text{ MT/Y}$ Sufficient supply : annual consumption of polysilicon: 157000 tons with 20% growth rate

# The capacity influence of Si addition into graphite anode full



# Proposed battery components with volumetric capacity higher than 600 mAh/cm<sup>3</sup>

**Cathode : Li(NiCoMn)O<sub>2</sub>** Double-sided coating 135 μm X 8

Anode : Si/graphite or MCMB double-sided coating 110 μm X 8

Areal capacity  $3.2 \text{ mA h/cm}^2$ 

single layer 25 µm





# Characterization of kerf loss silicon



Element

Si

Ρ

Ca

В

Concentration. (ppb)

1000000

440

370

190

- Average size around 300-600 nm
- Slightly oxidized
- Polycrystalline
- No other metal impurity

# Coated film of Si/Graphite



#### Half-cell performance of Si/graphite anode


### **Electrode Appearance-Front view**

#### **Before cycle**



#### After 100 cycles



Carbon



Silicon





Carbon



Silicon

#### **Electrode Appearance-Side view**



~40%

Copper foil

**Ni-Si-Graphite** 





~25%

# Positive electrode



 $Li(NiCoMn)O_2(NCM)$ :

- Theoretical capacity : ~160 mA h/g), 4.2V
- Operation range:  $4.4V \sim 4.5V(4.4V \sim 192 \text{ mA h/g})$
- Areal capacity :3.6 mA h cm<sup>-2</sup> °

### Full cell: Si/Graphite-NCM



### Full cell : Si/MCMB-NCM



# The effect of electrolyte on battery performance



### **Pouch-type full cell: Si/Graphite -NCM**



### Double sided coating of active materials



## Power bank preparation



Charge (4.3V)

Second cycle charge capacity: 2731 mA h Average charge voltage : 3.90 V Areal capacity : 3.03 mA h cm<sup>-2</sup> thickness: 3.435 mm Volumetric energy density : 620.1 Wh l<sup>-1</sup> Discharge 2.5V Second cycle charge capacity 2703 mA h Average charge voltage : 3.50 V Areal capacity  $\therefore$  3.00 mA h cm<sup>-2</sup>

thickness: 3.069 mm

Volumetric energy density : 616.5 Wh l<sup>-1</sup>

# Conclusion





- high heat value of 141.79 MJ/kg
- Benign emission after combustion

http://www.ln.edu.hk/projects/ecfp/ecfp/Environmental%20attitudes/Greenhouse%20Effect.htm http://baike.sogou.com/v582173.htm

# Hydrogen Production Method Chemical process

• Metal-hydride (e.g. NaBH<sub>4</sub> and MgH<sub>2</sub>)



Yavor, Y., Int. J. Hydrogen Energy 2015, 40 (2), 1026-1036.

# Hydrogen Economy

Characteristics of H<sub>2</sub> Heating value (142 MJ/kg) Benign end production (i.e. H<sub>2</sub>O) Extremely low density (0.081 kg/m<sup>3</sup>)



#### H<sub>2</sub> production method

 $\square$  Fossil fuel reforming : CO, CO<sub>2</sub> emit

Electrolysis : Energy intensive

**Chemical process : Safe Transportation** 

Photocatalysis : small-scale

Fermemtative : small-scale

# Metal-Water reaction Silicon versus Aluminum



|    | (MJ kg <sup>-1</sup> ) |   | crust (wt%) |
|----|------------------------|---|-------------|
| Si | 33                     | 2 | 27.7        |
| Al | 31                     | 2 | 8.2         |

150 100 50 B Mg Al Si Ti Cr Mn Fe Ni Cu Zn Se Zr Mo Sn W

<sup>1</sup>Total energy of metal-water reaction heat and hydrogen released from it.

Yavor, Y., Int. J. Hydrogen Energy 2015, 40 (2), 1026-1036.



$$Si \xrightarrow{OH ++} + 2 OH \longrightarrow Si(OH)_4$$
 (3)

$$Si(OH)_4 \longrightarrow SiO_2(OH)_2^- + 2 H^+$$
 (4)

$$4 H_2 O + 4 e^- \longrightarrow 4 OH^- + 2H_2$$
 (5)

Overall reaction : Si + 2 OH + 2H<sub>2</sub>O  $\longrightarrow$  SiO<sub>2</sub>(OH)<sub>2</sub> + 2 H<sub>2</sub> (6)

# Scheme Diagram of using kerf loss as energy carrier



# Mesoporous Si



580 m<sup>2</sup> g<sup>-1</sup>



#### Advantages

□ High specific surface area : 580 m<sup>2</sup> g<sup>-1</sup>

**D** Hydrogen production rate (  $9.5 \times 10^{-2} g_{H2} s^{-1} g_{Si}^{-1}$ )

**•** Yield ( 90%)

#### Disadvantages

□ Highly active NaK was used

**\Box** Toxic SiCl<sub>4</sub> was used



Dai, Fang, et al. "Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance." *Nature communications* 5 (2014).

# Si Nanoparticles



#### **Process description:**

Laser-driven chemical reaction using  $SiH_4$  to generate hydrogen-bonded Si nanoparticles.



Erogbogbo, Folarin, et al. "On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity." *Nano letters* 13.2 (2013): 451-456.

# Motivation

Kerf loss silicon collected from the sawing process of solar-grade silicon



Micro-sized kerf loss silicon
Additives-mediated
Low cost (1 USD / kg)
Environmental-friendly process

# Time-resolved small-scale hydrogen production set-up

Volumetric calculation for small scale (70ml) hydrogen production





Remove water vapor



# Characterization of kerf loss silicon



- Average size around 0.5 μm
- Slightly oxidized
- Polycrystalline
- No other metal impurity

| Element | Concentration. (ppb) |
|---------|----------------------|
| Si      | 1000000              |
| Р       | 440                  |
| Ca      | 370                  |
| В       | 190                  |

# Real-time observation



(f) Si(elemental) Si 2p Si(oxide) Intensity 0 min 2.5 min 5 min 10 min 110 105 100 95 **Binding Energy(eV)** 

- As reaction time went by, the color of etching solution became lighter gradually.
- The oxide peak at 103.3 eV became relatively strong as reaction time proceeded, indicating the concentration of silicate increased.

# Hydrogen Production Video







# Ideal gas and real gas

• Table 2 Density table of real gas and ideal gas regarding hydrogen

| P(atm) | <b>T</b> ( <b>K</b> ) | density( ideal gas, kg m <sup>-3</sup> ) | density( NIST, kg m <sup>-3</sup> ) | deviation percentage(%) |
|--------|-----------------------|------------------------------------------|-------------------------------------|-------------------------|
| 1      | 273                   | 0.089990                                 | 0.089934                            | 0.063                   |
| 1      | 283                   | 0.086811                                 | 0.086758                            | 0.061                   |
| 1      | 293                   | 0.083848                                 | 0.083798                            | 0.059                   |
| 1      | 303                   | 0.081080                                 | 0.081033                            | 0.059                   |
| 1      | 313                   | 0.078490                                 | 0.078445                            | 0.057                   |
| 1      | 323                   | 0.076060                                 | 0.076017                            | 0.057                   |
| 1      | 333                   | 0.073776                                 | 0.073735                            | 0.056                   |
| 1      | 343                   | 0.071625                                 | 0.071586                            | 0.055                   |
| 1      | 353                   | 0.069596                                 | 0.069559                            | 0.053                   |
| 1      | 363                   | 0.067679                                 | 0.067644                            | 0.051                   |
| 1      | 373                   | 0.065864                                 | 0.065831                            | 0.051                   |

# Effects of Na<sub>2</sub>SiO<sub>3</sub> and H<sub>2</sub>SiO<sub>3</sub> on the base-catalyzed etching of kerf loss silicon at 303 K



Time (sec)

| Additives Hydrogen production rate , g(H <sub>2</sub> ) s <sup>-1</sup> g <sup>-1</sup> (Si) |                      | Yield (%) |    |
|----------------------------------------------------------------------------------------------|----------------------|-----------|----|
| K (0.57 M)                                                                                   | 6.0×10 <sup>-5</sup> |           | 73 |
| K (0.57 M) + S (0.5 g dm <sup>-3</sup> )                                                     | 6.3×10⁻⁵             | 123 %     | 64 |
| K (0.57 M) + M (5 g dm <sup>-3</sup> )                                                       | 6.8×10⁻⁵             | 123 /0    | 71 |
| K (0.57 M) + M (5 g dm <sup>-3</sup> ) + S (0.5 g dm <sup>-3</sup> )                         | 7.4×10 <sup>-5</sup> |           | 83 |
| K (0.57 M) + M (5 g dm <sup>-3</sup> ) + S (0.5 g dm <sup>-3</sup> ) w/o kerf loss silicon   | 0                    |           | 0  |

# Effects of reaction temperature on the base-catalyzed etching of kerf loss silicon



|                                                                               | Hydrogen production rate , $g(H_2) s^{-1} g^{-1}(Si)$ | Yield (%) |
|-------------------------------------------------------------------------------|-------------------------------------------------------|-----------|
| K (0.57 M) + M (5 g dm <sup>-3</sup> ) + S (0.5 g dm <sup>-3</sup> ) at 303 K | 1.1×10 <sup>-4</sup>                                  | 79        |
| K (0.57 M) + M (5 g dm <sup>-3</sup> ) + S (0.5 g dm <sup>-3</sup> ) at 343 K | 2.6×10 <sup>-4</sup>                                  | 78        |

### Result and Discussion Small scale – Optimal quantity of additives

|                    |   |   | U |
|--------------------|---|---|---|
| No. of experiments | K | М | S |
| 1                  | - | - | - |
| 2                  | - | + | - |
| 3                  | + | - | - |
| 4                  | + | + | - |
| 5                  | - | - | + |
| 6                  | - | + | + |
| 7                  | + | - | + |
| 8                  | + | + | + |

-: low level +: High level

#### Abbreviation

K: Potassium hydroxide (KOH) M: Sodium metasilicate (Na<sub>2</sub>SiO<sub>3</sub>) S: Silicic acid (H<sub>2</sub>SiO<sub>3</sub>)

#### Different compositions of additives at 343K



| No. of experiment | Composition of additives                                                               | 70% conversion rate , $g(H_2) s^{-1} g^{-1}(Si)$ | Yield (%) |      |
|-------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|-----------|------|
| 1                 | K (0.57 M) + M (5 g dm <sup>-3</sup> ) + S (0.5 g dm <sup>-3</sup> )                   | 9.88×10 <sup>-4</sup> 1,620/                     | 79        |      |
| 2                 | K (0.57 M) + M (40 g dm <sup>-3</sup> ) + S (0.5 g dm <sup>-3</sup> )                  | 1.61×10 <sup>-3</sup>                            | 83        |      |
| 3                 | K (2.14 M) + M (5 g dm <sup>-3</sup> ) + S (0.5 g dm <sup>-3</sup> )                   | 1.00×10 <sup>-3</sup>                            | 81        | 125% |
| 4                 | $K (2.14 \text{ M}) + M (40 \text{ g dm}^{-3}) + S (0.5 \text{ g dm}^{-3})$            | 4.72×10 <sup>-3</sup> 47270                      | 92        | 80%  |
| 5                 | $K (0.57 \text{ M}) + M (5 \text{ g dm}^{-3}) + S (4 \text{ g dm}^{-3})$               | $1.24 \times 10^{-3}$                            | 84        | 8070 |
| 6                 | $K (0.57 \text{ M}) + M (40 \text{ g dm}^{-3}) + S (4 \text{ g dm}^{-3})$              | 9.99×10 <sup>-4</sup>                            | 80        |      |
| 7                 | K $(2.14 \text{ M}) + \text{M} (5 \text{ g dm}^{-3}) + \text{S} (4 \text{ g dm}^{-3})$ | $8.03 \times 10^{-4}$                            | 82        |      |
| 8                 | $K (2.14 \text{ M}) + M (40 \text{ g dm}^{-3}) + S (4 \text{ g dm}^{-3})$              | 1.24×10 <sup>-3</sup>                            | 81        |      |

# Different hydrogen production methods.

| Туре                    | Catalyst                                | Temp.<br>(K) | Rate ( g <sub>H2</sub> s <sup>-1</sup> g <sub>Si</sub> <sup>-1</sup> ) | Ref       |
|-------------------------|-----------------------------------------|--------------|------------------------------------------------------------------------|-----------|
| Etching of Si           | КОН                                     | 343          | 4.72×10 <sup>-3</sup>                                                  | This work |
| Etching of Si           | NaOH                                    | N/A          | 9.33×10 <sup>-9</sup> (gH <sub>2</sub> s <sup>-1</sup> )               | 26        |
| Etching of Si           | NaOH                                    | 373          | 2.03×10 <sup>-4</sup>                                                  | 27        |
| Etching of Si           | NH <sub>3</sub>                         | 333          | 6.48×10 <sup>-5</sup>                                                  | 28        |
| Etching of Si           | NaOH                                    | 353          | 5.56×10 <sup>-4</sup>                                                  | 29        |
| Etching of Si           | КОН                                     | R. T.        | 1.48×10 <sup>-4</sup>                                                  | 30        |
| Electrochemical         | SiNWs/FeP                               | N/A          | 9.85×10 <sup>-9</sup> (gH <sub>2</sub> s <sup>-1</sup> )               | 31        |
| Photoelectrochemical    | TiO <sub>2</sub> /RGO/Cu <sub>2</sub> O | N/A          | 9.92×10 <sup>-10</sup> (gH <sub>2</sub> s <sup>-1</sup> )              | 32        |
| Photocatalytic          | Si                                      | 298          | 1.89×10 <sup>-7</sup>                                                  | 34        |
| Ethanol Steam Reforming | Meso-χLaNiAl                            | 873          | N/A                                                                    | 37        |
| Fermentative            | Microbes                                | 303          | N/A                                                                    | 39        |

### Demonstration



- In coordinate with a fuel cell converting the supplied hydrogen to electricity
- Connected to a gas tank for hydrogen storage

### Demonstration



• Enough to keep a small electric vehicle in motion for minutes.

# Conclusions



Additives-mediated rapid hydrogen generation  $Si+20H^-+2H_2O$ Na<sub>2</sub>SiO<sub>3</sub> / H<sub>2</sub>SiO<sub>3</sub>  $SiO_2(OH)_2^{--} + 2H_2$ The H<sub>2</sub> production rate :  $4.73 \times 10^{-3} g_{H2} s^{-1} g_{Si}^{-1}$ The yield of H<sub>2</sub> converted from Si: 92%

#### **Integrated system**

