Exercise

4A.1(b)  The phase rule (eqn 4A.1) relates the number of phases (P). components (C). and degrees of
freedom (F) of a thermodynamic system:

F=C-P+2.
Restricting to pure substances (C=1) and rearranging for phases gives
P=3-F.

Areas in the phase diagram have two degrees of freedom: one can vary pressure and
temperature independently (within limits) and stay within the area. Thus, F=2 and P=1in
areas. Lines have one degree of freedom: one can vary pressure or temperature, but to stay
on the line the value of the other is determined by the line. Thus, ¥ =1 and P = 2 on lines.
Points on the phase diagram have zero degrees of freedom: one can vary neither pressure
nor temperature and on a given point. Thus, F =0 and P = 3 on points.
(a) 1s in an area, so there is a [single phase|. (b) and (c) are points, so there are [three phases

present. (d) 1s on a line, so there are [two Ehasegl' present.

4A.3(b) Use the phase rule (eqn 4A.1)
F=C-P+2
to solve for the number of phases:
P=C-F+2=4-F+2=6-F<[g.
The maximum number of phases in equilibrium occurs when the number of degrees of
freedom is at a minimum, namely zero: that number is six.

4B.1(b) The difference between the definition of normal and standard transition temperatures is the
pressure at which the transition takes place: normal refers to exactly 1 atm (101325 Pa),

while standard refers to exactly 1 bar (exactly 10° Pa). At the standard boiling temperature
and pressure, the liquid and gas phases are in equilibrium, so their chemical potentials are
equal:

ffliqmd(rstdapsrd) = )ugas(TstdapsId)
The same can be said at the normal boiling temperature and pressure:

/uliquid(Tnorlmp uorm) = /”gas(Tuormsp uonn)
Equations 4B.1 and 4B.2 show how the chemical potential changes with temperature and
pressure, so for small changes we can write

) 3
d,u:(%\ d]ﬂjﬂ\ dp=-8 dT +V dp
L@T ) L @pJT m m

Assuming that the differences between standard and normal boiling point are small enough,
we can equate the differences in the chemical potentials of the two phases:

A/ugas = 7Sm_gasAT + Vm.gasAp = 7Slll,llqllidAT + I'fln,llqui(lAp = A;”liqui(l >
where Ap is defined as ppom—psta- Rearrange to isolate AT:

(Sulhquidf Sm_gas)AT = (I'va,hqui(lfI"’m.gas)Ap »

(_AvapS)AT - (I"’m.liquicl_I';n.gas)Ap ~ _Vm.gasAp
Use the ideal gas law to find the molar volume of the gas. Also, we need to find A,,,S or to
use Trouton’s rule (eqn 3A.17):

Ve RTAp  RT;Ap  (8.3145 TK™' mol ")(373 K)*(1325 Pa)
A S pA_S pA_H (10° Pa)(40.656 x 10° )

vap vap vap
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That is, the normal boiling temperature is 0.38 K higher than the standard boiling
temperature.

AT =




4B.5(b)  Use the Clapeyron equation (eqn 4B.5a)

Assume that Ag,S and Ag, T are independent of temperature:

A S=A_V x [d—p) <A, V<22
15 15 dT 15 AT

(1.2x10°Pa—1.01x 10’ Pa)
42926 K -427.15K

A, S =(152.6 cm’ mol™ —142.0em’ mol™) x

lm’

( \
= (10.6cm” mol ™) x Lﬁj x(5.21x10°PaK™)
10° ecm’

—552Pam’ K 'mol™ = [+5.5] K  mol™

At the melting temperature
A, H=TA_ S=(427.15K) x (S.SEJ K" mol™)=|+2.4kImol™

4B.6(b) On the assumption that the vapour is a perfect gas and that A,/ is independent of
temperature. we may write [4B.11]

(A H) .
}JZ}Jme_?f* ;{/:‘ vap Jx[l_ 1,‘ hlp—:;{
. R I 1) p
l=i+ R mZ
T T A_H p
3145TK ' mol™ (58.0) _ .
_ 1 +8ﬂ4JK mol Xh][80J:3.378“0_,3{_1
293.2K 32.7x10° Tmol™ L 66.0
1

Hence T = . =296K =|23°C

4B.7(b) Integrating the Clausius-Clapeyron eqation (4B.10) yields an expression for In p:

[dmp=]- g
1p= -
P RT~
.A‘.'ﬁ
S0 In p = constant — ——

Theretore, AWPH =3036.8K x R=8.3145TK™ mol™ x (3036.8 K)=[+25.25kT mol™




4B.10(b) The rate of loss of mass of water may be expressed as

dm_ d (nM) where n= 4
d.f d.f ﬂ'vapH
dn _ dg/dr (0. "Wm” ‘m’) oo
Thus ' — ¢/dr _ (0.87x10°W = ) (}10 M) _ 200 mols™
d A H 44.0 x 10" T mol
dm

and d” = (200 mol s™) x (18.02 gmol™) = 3.6 kgs™
t

4B.12(b) (i) According to Trouton’s rule (eqn 3A.17)

A H~85TK  mol” xT, =85TK " mol ™ x342.2K =|29.1 kImol '

(ii) Use the integrated form of the Clausius—Clapeyron equation (eqn 4B.11) rearranged to
(pY A H (1 1)
hll£127wp [777‘
P1 4 R
At Ty = 3422 K, p; = 1.000 atm [normal boiling point]; thus at 25°C
p, ) _[291x10Jmol ) [ 1 1)

In [ - ] l e J =-1.51
1.000 atm/ | 8.3145TK™' mol 22K 2982K
and p,=elatm= .
( o) ¢ T |
At 60°C. hl{ b, 1 291x10 Jmol ( 1 1 |

1.000 qrml ls 3145 7K mol™) ‘X{ 322K 3332K,

and  p,=e?¥am=0.76 arm|.

Problem

4B4  (a) [ L0} —[ )| _ _S_()+S_(s)=-A, S= _Ari [4B.12]

cor )\ er )
p P '
_6 01x10° Tmol™ ‘_,,2 0 J K 'mol™ ‘
273.15K - .
-AN H
! 2 v
(b) C’[ ( ) l =5, (& +5,N)=-4,8=—"—

b

_ —40.6x10° Tmol™
- 373.15K
(c) 1(1.-5°C) — 1(5.—5°C) = 1(1.-5°C) — 1(1.0°C) — {4(3.—5°C) — 14(s.0°C)}
because (1.0°C) = 1(s.0°C)
Thus  (1.-5°C) — 1(5.—5°C) = A1) — Aga(s)
where Ay is the difference in chemical potential of a given phase at —5°C compared to that at
normal freezing temperature.

= \—108.8 JK™ mol™ \

A,ux[c’” - S AT [4B.1]
T . -
0 {i1-5°C) = i(LO°C)} —{ is—5°C) f(s.0°C)} =—AS AT

1(1,=5°C) — 11(s,—5°C) = —(+22.0J K" ' mol™) x (-=5K) = [+110 Jmol™

Since ((1.-5°C) = u(s.—-5°C), there is a thermodynamic tendency to freeze.




A, S A H
4B.6 B _ D g sy S - [4B.6]

dr AV TA,,
TA V
Thus d7'=—2-dp.
A_H

Integrate both sides:

Totat Pt T L\.qu T Aﬂ V . . i
AT = JI' dT = S —dp= % Ap [assuming the integrand is constant]
fop

Py A H A,
Now  Ap = pot — Prop = 02h -
‘o AT — T pghA_V
A H
_ (2343K) % (13.6gcm™) x (9.81ms™) x (10.0m) x (0.517 cm’® mol ™) kg
2.292 % 10° Tmol” 10° g
=0.071K

Therefore. the freezing point changes to |234.4 K

4B.16 In each phase the slopes of curves of chemical potential plotted against temperature are
{%j =5 [41]
P
The curvatures of the graphs are given by
(&u)  (aS,)
\ar) o \ar)

P

To evaluate this derivative, consider dS at constant p:
dg,, dH CdT ‘o () (a8s,) C,.
T T T \E’TI,F L aT ,JP T

Since C,,, is necessarily positive, the curvatures in all states of matter are necessarily
negative. G, 15 often largest for the liquid state, though not always. In any event. it is the

ratio C, /7 that determines the magnitude of the curvature. so no general answer can be given
for the state with the greatest curvature. It depends upon the substance.

Integrated activities



4.4 (a) The phase boundary is plotted in Figure 14.2.

Figure 14.2
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(b) The standard boiling point is the temperature at which the liquid is in equilibrium with the
standard pressure of 1 bar (0.1 MPa). Interpolation of the plotted points gives Ty, = .
(c) The slope of the liquid—vapor coexistence curve is given by

A_H
P _w 4po] so A H=TA P
dT  TAV e we JqT

The slope can be obtained graphically or by fitting the points nearest the boiling point. Then

P g 144107 MPa K"
ar

( 89-0.03 3 -1
50 A_H=(112K) X((S 8-0 03802@}3 mol | (8.14kPaK ™) =|8.07 kJ mol”’
? 1000dm” m )




