Chapter 2 - Section A - Mathcad Solutions

2.1 (a) Myt = 35-kg g = 9.8-22 Az :=5m
Work := My¢& z S Work = 1.715kJ Ans.
(b) AUjpta1 := Work AUjoal = 1.715k]  Ans.
(¢c) By Egs. (2.14) and (2.21): dU + d(PV) = Cp-dT

Since P is constant, this can be written:
Mp20:Cp-dT = My20-dU + Mpg20-P-dV

Take Cp and V constant and integrate: MHQO-CP-.@Q —t1 = Ustal
kJ

t1 ;= 20-degC Cp =418 — M = 30-k
1 g P kg dogC H20 g
AU¢otal
h=tj+—— 5 =20014degC Ans.
Mp20-Cp

(d) For the restoration process, the change in internal energy is equal but of
opposite sign to that of the initial process. Thus

Q = —AUjptq1 Q =-1.715k] Ans.

(e) In all cases the total internal energy change of the universe is zero.

2.2 Similar to Pb. 2.1 with mass of water = 30 kg.

Answers are: (a) W=1715kJ

(b) Internal energy change of
the water = 1.429 kJ

(¢) Final temp. =20.014 deg C
d Q=-1.715kJ
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2.5

The electric power supplied to the motor must equal the work done by the
motor plus the heat generated by the motor.

1:= 9.7amp E =110V Wdotmech = 1.25hp
Wdotejeer = iE Wdoteleet = 1.067 x 10° W

Eq.(23): AU'= Q+ W

Step 1to2:  AUtjp = —200] Wiz :=-6000J

Q2= AUt~ Wi2 Q2 =58x10"J Ans.
Step3tod: Q34 := —800J W3y := 300J

AUtz4 == Q34+ W34 AUtzy = =5007] Ans.

Step 1 to 2 to 3 to 4 to 1: Since AUt is a state function, AUt for a series of steps
that leads back to the initial state must be zero. Therefore, the sum of the

AUt values for all of the steps must sum to zero.
AUty == 4700] AUty3 := =AUt{p —A Utzy — Uty
AUty3 = —4000J Ans.

Step2to3: AUty = -4x 10°] Qo3 = —3800J

W33 = AUty — Q23 Wp3 = —2001] Ans.

For a series of steps, the total work done is the sum of the work done for each
step.

Wi2341 = —1400]
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Wa1 = Wi12341 — W12 — Wo3 - W3y Wy1 = 4.5x 10°]  Ans.

Step4tol: AUty == 4700] Wy1 = 4.5%10°]
Q41 = AUy - Wy Q41 = 2007 Ans.
Note: Q12341 = -W12341

2.11 The enthalpy change of the water = work done.

kJ
M := 20-kg Cp=418—— At := 10-degC
kg-degC
M-&p- t
Wdot := 0.25-kW At = —— At = 0.929hr  Ans.
Wdot

212 Q := 7.5:k] AU = —-12-k] W =AU-Q
W =-195k] Ans.
AU := —-12-k] Q: =AU Q=-12kJ Ans.

2.13 Subscripts: c, casting; w, water; t, tank. Then
mg- AU + my- AUy, + me AU = 0
Let C represent specific heat, C=Cp=Cy
Then by Eq. (2.18)

me Q¢ to+my By ty+mpe& =0

m; = 2-kg my, = 40-kg my = 5-kg

Ce = O.SO-kg.l;ﬁ Ci = O'S.IQg-l:i—ngC Cw = 4'18‘1(g-lc(1—ngC
te := 500-degC t; == 25-degC t) := 30-degC (guess)
Given —rnc~CC‘02 -t = ()nW-CW + my¢ Gy ()2 -t

t2 := Find(}2 =27.78degC  Ans.
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2.15

(@)

(b)

(©)

2.17

2.18 (a)

(b)

mass := 1-kg

AT = 1K
~ 9.8
g:=7°07
S
AEp
Az =
mass- g
AEg = AUt
Az := 50m
D :=2m
mdot = p-u-A

AUt := mass-&y- T

kJ

Cyi=4.18——

kg-K

AEp := AUt

—-mass
2
k
~1000-8 = 4.=52
3 S
m
A = %Dz A = 3.142m>
4kg

mdot = 1.571 x 10 —
S

Wt = mdot-g 2 Wt = 69T 10°KW  Ans.

kJ

Uy :=762.0-—
k

Hy=U;1+P1-Vy

kJ

Up = 2784.4-k—

Hy := Uy + P2 Vo

3
Vi = 11285

P; := 1002.7-kPa

gm
- Ans.
cm’
Py := 1500-kPa Vy :=169.7.—
gm
AU = Uy - Uy AH = Hy - H;

Ans.

- Ans.



2.22

2.23

Dq :=2.5cm up = 2E D7 := 5cm
S

(a) For an incompressible fluid, p=constant. By a mass balance,
mdot = constant = u,A,p = u,A,p.

2
Di
uz ==ur —\ uy = 0.5E Ans.
D) s
1 1 J
(b)  AEg = —uw’ — —uj’ AEg = —1.875—  Ans.
2 2 kg

Energy balance: mdot3-Hz — ()ﬂdotl-Hl + mdoty-Hy = Qdot
Mass balance: mdot3z — mdot; — mdoty = 0
Therefore: mdotl-(}l3 -H; + mdotz-()—h —Hy = Qdot

or mdot-Cp-()T3 -T1 + mdotz-Cp-()1‘3 — Ty = Qdot

T3~Cp~()nd0t1 + mdoty = Qdot + mdot;-Cp-T1 + mdoty-Cp-To

k k
mdot; := 1.0—g T := 25degC mdoty := 0.8—g Ty := 75degC
S S

KJ
KJ L
Quot := 30 Cr=a187K

Qdot + mdot;-Cp-T] + mdoty-Cp-T>

T3 = 43.235degC  Ans.
()‘ndotl + mdotp -Cp

T3 =

2

A
2.25 By Eq. (2.32a): AH + Tu =0  AH= CpAT

By continuity, W= u ﬁ Cp = 4.18- kJ
incompressibility 2= Ar P kg-degC
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2 2 (Al\z 2 2 (2\41

Au = u — -1 Au = u;
Az) D2)
. m
SI units: uj = 14— D; =25-cm Dj; := 3.8-cm
]
2 4
uj D1 )
AT = J =] — AT = 0.019degC  Ans.
2-Cp D2)
Dy = 7.5cm
4
up D1
AT = | 1= — AT = 0.023 degC Ans.
2-Cp D2)
Maximum T change occurrs for infinite D2:
Dy = oo-cm
4
up D1)
AT = | 1T-|— AT = 0.023 degC Ans.
2-Cp D2)
k
226 T = 300K Tp:= 520K =102 wp:=352  molwt:=20—2
s S kmol
kmol 7
Wsdot := 98.8kW ndot := 50 o Cp:=—R
hr 2
3 kJ
AH := Cp- -T AH = 6.402 x 10
P ()Fz : kmol
By Eq. (2.30):
2)
up uj
Qdot :=| AH + - 5 )-molwt -ndot — Wsdot |Qdot = —9.904kW Ans.
Au Vo Tz Py
2.27 By Eq. (2.32b): AH = — also ——=_—._
2-g¢ Vi T1 P2
By continunity, _ V2 _ Tz Py 2_ 2
uy = upr— uy = up—-— Au =upy —up
constant area Vi T; Py
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2 2 (Tz 2\2_1

AH = Cp-AT = ;ROTZ ~Ty

Au =up || —-
Ty sz
. : ft ,
Py := 100-psi Py = 20-psi up = 20-— Ty := 579.67-rankine
S
ft-1bg
R=3407— molwt == 28 2=
mol-rankine mol
T := 578-rankine (guess)
2 2
7 ur | (T2 Py
Given —~R~()T2—T1 = — ——\ — 1 [-molwt
2 2 T Pz}
T := Find()2 T, = 578.9rankine Ans.
(119.15-degF)
kJ kJ
228 up == 3= Uy = 200-= Hy = 3349—  Hy = 27265 —
s s kg kg
2 2
u —uj kJ
By Eq. (2.32a): Q=H)-H{+ — Q= 2411_6k_ Ans.
g
kJ kJ
229 u; = 30-2 Hp :=3112.5-— Hy :=2945.7-—
s kg kg
u = 500-E (guess)
S
2
up —uz
By Eq. (2.322):  Given Hy,-H; = > up := Find(ji2
W = 57836—  Ans.
S
3 3
cm cm
Dp :=5-cm V1 :=388.61-— Vj = 667.75-—
gm gm
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ur-Vp

Continuity: Dy :=Dy- Dy = 1.493cm Ans.
uy-Vi
230 (a) t1 := 30-degC ty = 250-degC n = 3-mol
J
Cy =208——
mol-degC
ByEq.(2.19):  Q:=nCy(h-1t Q = 13.728k]  Ans.

Take into account the heat capacity of the vessel; then

kJ
my, = 100-kg cy =05———
kg-degC
Q = (Jny-ey+nCy (-t Q = 11014kJ Ans.
(b)  t; :=200-degC ty := 40-degC n := 4-mol
joul
Cp = 29.1.—322° _
mol-degC
ByEq.(2.23):  Q:=nCp(p-t Q = -18.62kJ Ans.
231 (a) t; := 70-degF ty := 350-degF n := 3-mol
BTU
Cy =5—- By Eq. (2.19):
mol-degF
Q:=nCy(p-t Q = 4200BTU  Ans.
Take account of the heat capacity of the vessel:
BTU
Ibyy,-degF
Q = (Jny-cy +n-Cy (2 -1 Q = 10920BTU  Ans.
(b) t; :=400-degF ty := 150-degF n := 4-mol
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2.33

2.34

BTU

Cp=7T—— By Eq. (2.23):
F mol-degF
Q:=nCp(-1t Q = ~7000BTU Ans,
BTU BTU ft
Hy :=1322.6.—— Hy = 1148.6-—— uy = 10-—
m m S
3 3
ft ft
Vi :=3.058— Vy = 78.14— Dy :=3in D3 :=10-in
by, Ibm
T 2
- mdot = 3.463 x 10 —
mdot := sec
1
Va ft
uyp := mdot- uy = 22997 —
T 2 sec
-.D
7 D2
u22 - u12 BTU
Eq. (2.32a): Wy:=H,-H{+ ——— Wy =-173.99——
2 1b
Wdot := —Wg-mdot Wdot = 39.52hp Ans.
BTU BTU ft
Hj = 307——  Hp:=330——  u:=20—  molwt := 44. 55
by Iby S mol
3 3
ft ft
Vi:=9.25— Vy :=0.28—— D; =4in Dy == 1-in
by b
For Ib
mdot := mdot = 679.263 —
1 hr
V2 ft BTU
up := mdot- uy = 9.686 — Wg = 5360-
T2 sec Ibmol
_-D2
4
2 2
u —up W, BT
Eq.(2.32a): Q :=Hy-Hj + - : Q= —98.82—U
2 molwt b,
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BTU

Qdot := mdot:Q  Qdot = —-67128 - Ans.
r
1-kg
236 Tp:=300-K P := 1-bar n=—— n = 34.602 mol
28.9. £
mol
3 3
bar- T
Vi = 83142 Vi = 24942 M
mol-K P mol

Vi
Whence W = —n-P-2-V; W =-172.61kJ Ans.
. Va
Given: Ty = Tl-V— =T-3 Whence Ty :=3-Ty
1
joule kJ
Cp = 29- AH = Cp- -T AH = 174——  Ans.
P e p-(Jr2— T —
Q :=n-AH Q = 602.08kJ Ans.
+ W kJ
AU := Q AU = 12,41 — Ans.
n mol

2.37 Work exactly like Ex. 2.10: 2 steps, (a) & (b). A value is required for PV/T,

namely R.
Ty = 293.15-K T := 333.15K
R =8.314
mol-K Py := 1000-kPa P, := 100-kPa
(a) Cool at const V1 to P2 _ 7 _3
(b) Heat at const P2 to T2 G = ) Cv := 7 =
P

2
Ta = Tl-P— Tap = 29.315K
1
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ATy =Ty - Ty

AT, = 303.835K AT, :=Tas—T; AT, =—-263.835K

J
AHy = Cp-ATy, AHp, = 8.841 x 10° ——
mol
3 J
AU, = Cy-AT, AU, = —5.484 x 10° ——
mol
R-T) A m R-T 3
Vi=—— Vi =2437x10 "2 Vo= —2 vV, = 0028
Py mol Py mol

AH, := AU, + V1i-(P2 = Py

J
AH, = ~7.677 x 10° —

mol
J
AUy, := AHy — P2 (V2 - Vi AUy = 6.315x 10° ——
mol
kJ
AU := AU, + AU, AU = 0.831——  Ans.
mol
KJ
AH := AH, + AHy,  |AH = 1.164——  Ans.
mol
k 4k
— 9962 w=9010 "<&  ¢D = 0.0001 Note:cD=e/D
e LLLEE in this solution
2) N
5 1 |m
D = cm u = —
2 51s
5) 5)
22133 )
—
Do 55333
Re = pru Re = ‘
W 110667
276667 )

19



Re)

—
mdot := (p-u z Dz)
)
APAL = | == -u
(D )
K kJ
2.42 mdot == 4.5-2 Hy = 761.1—

S

v

0.00452
0.0039 )

0.00635 )
0.00517
=

Ans.

Ans.

Hp = 536.9-E

kg

Assume that the compressor is adiabatic (Qdot = 0). Neglect changes in

KE and PE.

Wdot := mdot-()—[z - H;

|Wd0t| \0.573

W)

Cost := 15200-(

20
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2.3

2.6

2.7

2.8

2.9

2.10

2.14

Chapter 2 - Section B - Non-Numerical Solutions

Equation (2.2) is here written: QU +0Ep+IdEx =0+ W

(a) In this equation W does not include work done by the force of gravity on the system. This is
accounted for by the 0 Eg term. Thus, W = 0.

(b) Since the elevation of the egg decreases, sign(d Ep) is (—).
(c) The egg is at rest both in its initial and final states; whence 0 Ex = 0.
(d) Assuming the egg does not get scrambled, its internal energy does not change; thus 3 U’ = 0.

(e) The given equation, with d U' = 9 Ex = W = 0, shows that sign(Q) is (—). A detailed exam-
ination of the process indicates that the kinetic energy of the egg just before it strikes the surface
appears instantly as internal energy of the egg, thus raising its temperature. Heat transfer to the
surroundings then returns the internal energy of the egg to its initial value.

If the refrigerator is entirely contained within the kitchen, then the electrical energy entering the re-
frigerator must inevitably appear in the kitchen. The only mechanism is by heat transfer (from the
condenser of the refrigerator, usually located behind the unit or in its walls). This raises, rather than
lowers, the temperature of the kitchen. The only way to make the refrigerator double as an air condi-
tioner is to place the condenser of the refrigerator outside the kitchen (outdoors).

According to the phase rule [Eq. (2.7)], F = 2 — k 4+ N. According to the laboratory report a pure
material (N = 1) is in 4-phase (x = 4) equilibrium. If this is true, then F =2 —4 + 1 = —1. This is
not possible; the claim is invalid.

The phase rule [Eq. (2.7)] yields: F =2 —«k + N =2 —2+72 = 2. Specification of 7" and P fixes the
intensive state, and thus the phase compositions, of the system. Since the liquid phase is pure species
1, addition of species 2 to the system increases its amount in the vapor phase. If the composition of
the vapor phase is to be unchanged, some of species 1 must evaporate from the liquid phase, thus
decreasing the moles of liquid present.

The phase rule [Eq. (2.7)] yields: F =2 —«x + N =2 -2+ 3 = 3. Withonly T and P fixed,
one degree of freedom remains. Thus changes in the phase compositions are possible for the given
T and P. If ethanol is added in a quantity that allows T and P to be restored to their initial values,
the ethanol distributes itself between the phases so as to form new equilibrium phase compostions and
altered amounts of the vapor and liquid phases. Nothing remains the same except 7 and P.

(a) Since F = 3, fixing T and P leaves a single additional phase-rule variable to be chosen.

(b) Adding or removing liquid having the composition of the liquid phase or adding or removing
vapor having the composition of the vapor phase does not change the phase compositions, and
does not alter the intensive state of the system. However, such additions or removals do alter the
overall composition of the system, except for the unusual case where the two phase compositions
are the same. The overall composition, depending on the relative amounts of the two phases, can
range from the composition of the liquid phase to that of the vapor phase.

If the fluid density is constant, then the compression becomes a constant-V process for which the work
is zero. Since the cylinder is insulated, we presume that no heat is transferred. Equation (2.10) then
shows that 9 U = 0 for the compression process.
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2.16

2.19

Electrical and mechanical irreversibilities cause an increase in the internal energy of the motor, man-
ifested by an elevated temperature of the motor. The temperature of the motor rises until a dynamic
equilibrium is established such that heat transfer from the motor to the srroundings exactly compen-
sates for the irreversibilities. Insulating the motor does nothing to decrease the irreversibilities in
the motor and merely causes the temperature of the motor to rise until heat-transfer equilibrium is
reestablished with the surroundings. The motor temperature could rise to a level high enough to cause
damage.

Let symbols without subscripts refer to the solid and symbols with subscript w refer to the water.
Heat transfer from the solid to the water is manifested by changes in internal energy. Since energy is
conserved, AU" = —AU/ . If total heat capacity of the solid is C’ (= mC) and total heat capacity of
the water is C! (= m,,C,,), then:

C(T — To) = —C,,(Tyy — Tuy)

t

C
of Ty = Tuy, — (T = Tp) (A)
Cw

This equation relates instantaneous values of 7, and T'. It can be written in the alternative form:
TC'—T,C'=T,,C., —T,C!

or T,,C!, + ToC' = T,C, + TC' (B)

wo >~ w

The heat-transfer rate from the solid to the water is given as Q = K (T,, — T). [This equation implies
that the solid is the system.] It may also be written:

,dT
C' = = KT, = T) (©)

In combination with Eq. (A) this becomes:

C’dT—K T, Ct(T Ty) — T
dr e 0
dT To —T T—T 1 1 T, To
— =K 2 — =-TK|—+— K|{—"+ —
o wr (e ) (@)
. — 1 1 _ Two TO
Define: ﬁ:K(E—i_C_’) O[:K(F—i_C_’)

where both « and 8 are constants. The preceding equation may now be written:

 —a—B8T
draﬂ

dT  1d(@—$T)

= — dt
o — BT B oa—pBT

Rearrangement yields:

Integration from 7 to T and from O to T gives:

| (a—ﬂT)
L Y (bl
B a— BT
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2.20

. . a— BT
which may be written: —— =exp(—f71)
o — ﬂT()

When solved for 7" and rearranged, this becomes:

T=3+<%—g%mem)

B B
Ty, C!, + ToC'
where by the definitions of « and S, ¢ LugCy + 1oC
B ci,+C

When 7 = 0, the preceding equation reduces to T = Ty, as it should. When t = oo, it reduces to
T = a/B. Another form of the equation for «/8 is found when the numerator on the right is replaced
by Eq. (B):

« T,C,+TC'

e
By inspection, T =a«a/f when T, =T, the expected result.

The general equation applicable here is Eq. (2.30):

A[(H + u? 4+ zg) ] = 0 + W,

(a) Write this equation for the single stream flowing within the pipe, neglect potential- and kinetic-
energy changes, and set the work term equal to zero. This yields:

(AH)m = Q

(b) The equation is here written for the two streams (I and II) flowing in the two pipes, again neglecting
any potential- and kinetic-energy changes. There is no work, and the the heat transfer is internal,
between the two streams, making QO = 0. Thus,

(AH)mi+ (AH)ymy =0

(c) For a pump operating on a single liquid stream, the assumption of negligible potential- and kinetic-
energy changes is reasonable, as is the assumption of negligible heat transfer to the surroundings.
Whence,

(AH)m = W
(d) For a properly designed gas compressor the result is the same as in Part (c).
(e) For a properly designed turbine the result is the same as in Part (c).

(f) The purpose of a throttle is to reduce the pressure on a flowing stream. One usually assumes
adiabatic operation with negligible potential- and kinetic-energy changes. Since there is no work,
the equation is:

AH =0

(g) The sole purpose of the nozzle is to produce a stream of high velocity. The kinetic-energy change
must therefore be taken into account. However, one usually assumes negligible potential-energy
change. Then, for a single stream, adiabatic operation, and no work:

A[(H+ 3u*)m] =0
The usual case is for a negligible inlet velocity. The equation then reduces to:

AH + 3u3=0
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2.21

2.24

2.32

2.35

We reformulate the definition of Reynolds number, with mass flowrate m replacing velocity u:

. T 5
m=uAp=u—D"p
4
) ) 4 m
Solution for u gives: U=——
T D%p

D 4 n D 4
Whence, Re = i il mr = m

w wD pu  mDup
(a) Clearly, an increase in m results in an increase in Re.

(b) Clearly, an increase in D results in a decrease in Re.

With the tank as control volume, Egs. (2.25) and (2.29) become:

d d(mU
—m+n'1’=0 and (mU)

H/'/:O
dt dt +ham

Expanding the derivative in the second equation, and eliminating m’ by the first equation yields:

dUu dm dm

m— — —H—=0
dt dt dt
dU dm
Multiply by dt and : = —
ultiply by dt and rearrange 0 —U .

Substitution of H' for H requires the assumption of uniform (though not constant) conditions through-
out the tank. This requires the absence of any pressure or temperature gradients in the gas in the tank.

. . RT
From the given equation: P=—+—
V->b
Y2 " RT
By Eq. (1.3), W=— PdV=—/ —d(V —b)
v, vy, V—>b
Vi—b
Whence, W = RT In !
Vo—b
Recall: d(PV)=PdV +VdP and dW = —-PdV
Whence, dW =V dP —d(PV) and W=/[VdP— A(PV)

By Eq. (2.4), dQ =dU —dW
ByEq.(2.11), U=H—-PV and dU=dH —PdV —-VdP
With dW = —PdV the preceding equation becomes dQ =dH — VdP

Whence, Q=AH-— [VdP
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2.38 (a) By Eq. (2.24a), m=uAp With n1, A, and p all constant, # must also be constant. With
qg = uA, q is also constant.

(b) Because mass is conserved, m must be constant. But 7 = M/m may change, because M may
change. At the very least, p depends on 7" and P. Hence u and g can both change.

2.40 In accord with the phase rule, the system has 2 degrees of freedom. Once T and P are specified, the
intensive state of the system is fixed. Provided the two phases are still present, their compositions
cannot change.

2.41 In accord with the phase rule, the system has 6 degrees of freedom. Once T and P are specified, 4
remain. One can add liquid with the liquid-phase composition or vapor with the vapor-phase compo-
sition or both. In other words, simply change the quantities of the phases.

2.43 Let 7’ represent the moles of air leaving the home. By an energy balance,

Q- v d(nU) H o+ dUu +Udn
=n —_— n—— _—
d dt dt
. . . dn
But a material balance yields n=- 2
cn — — — - n—-
dt dt
or S = aa=
dt dt
2.44 (a) By Eq. (2.32a): H, — H + %(ug —uf) =0
By Eq. (2.24a) i 4 _m
. 24a). = — — ———
v Ap m pD?
Th 2 u? 4\ (] ! d gi H, — H 1(P P))
en us—-u=\—| —=|——-—— and given — = — —
2 1 T 02 DE‘ D? g 2 1 P 2 1
Lp —pys L(4 *m? (D} - D} o
p 2 VT 2\x) p2 piDd )
m\2( DD \1°
Solve for r: W= |20(P — P <_) P
olve for m m |: o (P ») 1 (D?—Dg)]

(b) Proceed as in part (a) with an extra term, Here solution for # yields:

2 D4D4 1/2
o= o= e G (2%
1 2

Because the quantity in the smaller square brackets is smaller than the leading term of the preced-
ing result, the effect is to decrease the mass flowrate.
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