
a bit of algebra leads to

Work c

P1

P2

P
P

P b
d

Work 0.516
J

gm
Ans.

Alternatively, formal integration leads to

Work c P2 P1 b ln
P2 b

P1 b
Work 0.516

J

gm
Ans.

3.5 a b P= a 3.9 10
6
atm

1
b 0.1 10

9
atm

2

P1 1 atm P2 3000 atm V 1 ft
3

(assume const.)

Combine Eqs. (1.3) and (3.3) for const. T:

Work V

P1

P2

Pa b P( )P d Work 16.65atm ft
3

Ans.

Chapter 3 - Section A - Mathcad Solutions

3.1
1

T

d

d
=

1

P

d

d
=

P T

At constant T, the 2nd equation can be written:

d
dP= ln

2

1

P= 44.1810
6
bar

1
2 1.01 1=

P
ln 1.01( )

P 225.2bar P2 226.2 bar= Ans.

3.4 b 2700 bar c 0.125
cm
3

gm
P1 1 bar P2 500 bar

Since Work

V1

V2

VP d=
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P2 1 bar T1 600 K CP
7

2
R CV

5

2
R

(a)  Constant V: W 0= and U Q= CV T=

T2 T1
P2

P1
T T2 T1 T 525K

U CV T Q and U 10.91
kJ

mol
Ans.

H CP T H 15.28
kJ

mol
Ans.

(b)  Constant T: U H= 0= and Q W=

Work R T1 ln
P2

P1
Q and Work 10.37

kJ

mol
Ans.

(c)  Adiabatic: Q 0= and U W= CV T=

3.6 1.2 10
3
degC

1
CP 0.84

kJ

kg degC
M 5 kg

V1
1

1590

m
3

kg
P 1 bar t1 0 degC t2 20 degC

With beta independent of T and with P=constant,

dV

V
dT= V2 V1 exp t2 t1 V V2 V1

Vtotal M V Vtotal 7.638 10
5
m
3

Ans.

Work P Vtotal (Const. P) Work 7.638 joule Ans.

Q M CP t2 t1 Q 84kJ Ans.

Htotal Q Htotal 84kJ Ans.

Utotal Q Work Utotal 83.99kJ Ans.

3.8
P1 8 bar
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Step 41: Adiabatic T4 T1
P4

P1

R

CP

T4 378.831K

U41 CV T1 T4 U41 4.597 10
3 J

mol

H41 CP T1 T4 H41 6.436 10
3 J

mol

Q41 0
J

mol
Q41 0

J

mol

W41 U41 W41 4.597 10
3 J

mol

P2 3bar T2 600K V2
R T2

P2
V2 0.017

m
3

mol

Step 12: Isothermal U12 0
J

mol
U12 0

J

mol

H12 0
J

mol H12 0
J

mol

CP

CV
T2 T1

P2

P1

1

T2 331.227K T T2 T1

U CV T H CP T

W and U 5.586
kJ

mol
Ans. H 7.821

kJ

mol
Ans.

3.9 P4 2bar CP
7

2
R CV

5

2
R

P1 10bar T1 600K V1
R T1

P1
V1 4.988 10

3 m
3

mol

23



Step 34: Isobaric U34 CV T4 T3 U34 439.997
J

mol

H34 CP T4 T3 H34 615.996
J

mol

Q34 CP T4 T3 Q34 615.996
J

mol

W34 R T4 T3 W34 175.999
J

mol

3.10  For all parts of this problem: T2 T1= and

U H= 0= Also Q Work= and all that remains is

to calculate Work.  Symbol V is used for total volume in this problem.

P1 1 bar P2 12 bar V1 12 m
3

V2 1 m
3

Q12 R T1 ln
P2

P1
Q12 6.006 10

3 J

mol

W12 Q12 W12 6.006 10
3 J

mol

P3 2bar V3 V2 T3
P3 V3

R
T3 400K

Step 23: Isochoric U23 CV T3 T2 U23 4.157 10
3 J

mol

H23 CP T3 T2 H23 5.82 10
3 J

mol

Q23 CV T3 T2 Q23 4.157 10
3 J

mol

W23 0
J

mol
W23 0

J

mol

P4 2bar T4 378.831K V4
R T4

P4
V4 0.016

m
3

mol
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Pi P1
V1

V2
(intermediate P) Pi 62.898bar

W1

Pi V2 P1 V1

1
W1 7635kJ

Step 2: No work. Work W1 Work 7635kJ Ans.

(d)  Step 1: heat at const V1 to P2 W1 0=

Step 2: cool at const P2 to V2

W2 P2 V2 V1 Work W2 Work 13200kJ Ans.

(e)  Step 1: cool at const P1 to V2

W1 P1 V2 V1 W1 1100kJ

(a) Work n R T ln
P2

P1

= Work P1 V1 ln
P2

P1

Work 2982kJ Ans.

(b)  Step 1: adiabatic compression to P2

5

3
Vi V1

P1

P2

1

(intermediate V) Vi 2.702m
3

W1

P2 Vi P1 V1

1
W1 3063kJ

Step 2: cool at const P2 to V2

W2 P2 V2 Vi W2 2042kJ

Work W1 W2 Work 5106kJ Ans.

(c)  Step 1: adiabatic compression to V2
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P1 100 kPa P2 500 kPa T1 303.15 K

CP
7

2
R CV

5

2
R

CP

CV

Adiabatic compression from point 1 to point 2:

Q12 0
kJ

mol
U12 W12= CV T12= T2 T1

P2

P1

1

U12 CV T2 T1 H12 CP T2 T1 W12 U12

U12 3.679
kJ

mol
H12 5.15

kJ

mol
W12 3.679

kJ

mol
Ans.

Cool at P2 from point 2 to point 3:

T3 T1 H23 CP T3 T2 Q23 H23

U23 CV T3 T2 W23 U23 Q23

Step 2: heat at const V2 to P2 W2 0=

Ans.
Work W1 Work 1100kJ

3.17(a) No work is done; no heat is transferred.

U
t

T= 0= T2 T1= 100 degC= Not reversible

(b) The gas is returned to its initial state by isothermal compression.

Work n R T ln
V1

V2
= but n R T P2 V2=

V1 4 m
3

V2
4

3
m
3

P2 6 bar

Work P2 V2 ln
V1

V2
Work 878.9kJ Ans.

3.18 (a)
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Work 1.094
kJ

mol

(b) If each step that is 80% efficient accomplishes the same change of state,

all property values are unchanged, and the delta H and delta U values

are the same as in part (a).  However, the Q and W values change.

Step 12: W12
W12

0.8
W12 4.598

kJ

mol

Q12 U12 W12 Q12 0.92
kJ

mol

Step 23: W23
W23

0.8
W23 1.839

kJ

mol

Q23 U23 W23 Q23 5.518
kJ

mol

Step 31: W31 W31 0.8 W31 3.245
kJ

mol

Q31 W31 Q31 3.245
kJ

mol

H23 5.15
kJ

mol
U23 3.679

kJ

mol Ans.

Q23 5.15
kJ

mol
W23 1.471

kJ

mol Ans.

Isothermal expansion from point 3 to point 1:

U31 H31= 0= P3 P2 W31 RT3 ln
P1

P3

Q31 W31

W31 4.056
kJ

mol
Q31 4.056

kJ

mol
Ans.

FOR THE CYCLE: U H= 0=

Q Q12 Q23 Q31 Work W12 W23 W31

Q 1.094
kJ

mol
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(b) Adiabatic: P2 P1
V1

V2
T2 T1

P2

P1

V2

V1

T2 208.96K P2 69.65kPa Ans.

Work
P2 V2 P1 V1

1
Work 994.4kJ Ans,

(c) Restrained adiabatic: Work U= Pext V=

Pext 100 kPa Work Pext V2 V1 Work 400kJ Ans.

n
P1 V1

R T1
U n CV T=

T2
Work

n CV
T1 T2 442.71K Ans.

P2 P1
V1

V2

T2

T1
P2 147.57kPa Ans.

FOR THE CYCLE:

Q Q12 Q23 Q31 Work W12 W23 W31

Q 3.192
kJ

mol
Work 3.192

kJ

mol

3.19Here, V represents total volume.

P1 1000 kPa V1 1 m
3

V2 5 V1 T1 600 K

CP 21
joule

mol K
CV CP R

CP

CV

(a) Isothermal: Work n R T1 ln
V1

V2
= P2 P1

V1

V2

T2 T1 T2 600K P2 200kPa Ans.

Work P1 V1 ln
V1

V2
Work 1609kJ Ans.
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W23 0
kJ

mol
U23 CV T3 T2

Q23 U23 H23 CP T3 T2

Q23 2.079
kJ

mol
U23 2.079

kJ

mol
H23 2.91

kJ

mol

Process: Work W12 W23 Work 2.502
kJ

mol
Ans.

Q Q12 Q23 Q 0.424
kJ

mol
Ans.

H H12 H23 H 2.91
kJ

mol
Ans.

U U12 U23 U 2.079
kJ

mol
Ans.

3.20 T1 423.15 K P1 8bar P3 3 bar

CP
7

2
R CV

5

2
R T2 T1 T3 323.15 K

Step 12: H12 0
kJ

mol
U12 0

kJ

mol

If r
V1

V2
=

V1

V3
= Then r

T1

T3

P3

P1
W12 R T1 ln r()

W12 2.502
kJ

mol
Q12 W12 Q12 2.502

kJ

mol

Step 23:
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P1 1 bar P3 10 bar

U CV T3 T1 H CP T3 T1

U 2.079
kJ

mol
Ans. H 2.91

kJ

mol
Ans.

Each part consists of two steps, 12 & 23.

(a) T2 T3 P2 P1
T2

T1

W23 R T2 ln
P3

P2
Work W23

Work 6.762
kJ

mol
Ans.

Q U Work

Q 4.684
kJ

mol
Ans.

3.21   By Eq. (2.32a), unit-mass basis: molwt 28
gm

mol
H

1

2
u
2

0=

But H CP T= Whence T
u2
2
u1
2

2 CP
=

CP
7

2

R

molwt
u1 2.5

m

s
u2 50

m

s
t1 150 degC

t2 t1
u2
2
u1
2

2 CP
t2 148.8degC Ans.

3.22 CP
7

2
R CV

5

2
R T1 303.15 K T3 403.15 K
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Q23 H23

U23 CV T3 T2 W23 U23 Q23

Work W12 W23 Work 4.972
kJ

mol
Ans.

Q U Work Q 2.894
kJ

mol
Ans.

For the second set of heat-capacity values, answers are (kJ/mol):

U 1.247= U 2.079=

(a) Work 6.762= Q 5.515=

(b) Work 6.886= Q 5.639=

(c) Work 4.972= Q 3.725=

(b) P2 P1 T2 T3 U12 CV T2 T1

H12 CP T2 T1 Q12 H12

W12 U12 Q12 W12 0.831
kJ

mol

W23 R T2 ln
P3

P2
W23 7.718

kJ

mol

Work W12 W23 Work 6.886
kJ

mol
Ans.

Q U Work Q 4.808
kJ

mol
Ans.

(c) T2 T1 P2 P3 W12 R T1 ln
P2

P1

H23 CP T3 T2
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For the process: Work W12 W23

Q Q12 Q23 Work 5.608
kJ

mol
Q 3.737

kJ

mol
Ans.

3.24 W12 0= Work W23= P2 V3 V2= R T3 T2=

But T3 T1= So... Work R T2 T1=

Also W R T1 ln
P

P1
= Therefore

ln
P

P1

T2 T1

T1
= T2 350 K T1 800 K P1 4 bar

P P1 exp
T2 T1

T1
P 2.279bar Ans.

3.23 T1 303.15 K T2 T1 T3 393.15 K

P1 1 bar P3 12 bar CP
7

2
R CV

5

2
R

For the process: U CV T3 T1 H CP T3 T1

U 1.871
kJ

mol
H 2.619

kJ

mol
Ans.

Step 12: P2 P3
T1

T3
W12 R T1 ln

P2

P1

W12 5.608
kJ

mol
Q12 W12 Q12 5.608

kJ

mol

Step 23: W23 0
kJ

mol
Q23 U

32



TB final( ) TB=

nA nB= Since the total volume is constant,

2 nA R T1

P1

nA R TA TB

P2
= or

2 T1

P1

TA TB

P2
= (1)

(a) P2 1.25 atm TB T1
P2

P1

1

(2)

TA 2 T1
P2

P1
TB Q nA UA UB=

Define q
Q

nA
= q CV TA TB 2 T1 (3)

TB 319.75K TA 430.25K q 3.118
kJ

mol
Ans.

3.25 VA 256 cm
3

Define:
P

P1
r= r 0.0639

Assume ideal gas; let V represent total volume:

P1 VB P2 VA VB= From this one finds:

P

P1

VA

VA VB
= VB

VA r 1( )

r
VB 3750.3cm

3
Ans.

3.26 T1 300 K P1 1 atm CP
7

2
R CV CP R

CP

CV

The process occurring in section B is a reversible, adiabatic compression. Let

P final( ) P2= TA final( ) TA=
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TA 2 T1
P2

P1
TB (1) TA 469K Ans.

q CV TA TB 2 T1 q 4.032
kJ

mol
Ans.

(d) Eliminate TA TB from Eqs. (1) & (3):

q 3
kJ

mol
P2

q P1

2 T1 CV
P1 P2 1.241atm Ans.

TB T1
P2

P1

1

(2) TB 319.06K Ans.

TA 2 T1
P2

P1
TB (1) TA 425.28K Ans.

(b) Combine Eqs. (1) & (2) to eliminate the ratio of pressures:

TA 425 K (guess) TB 300 K

Given TB T1
TA TB

2 T1

1

= TB Find TB

TB 319.02K Ans.

P2 P1
TA TB

2 T1
(1) P2 1.24atm Ans.

q CV TA TB 2 T1 q 2.993
kJ

mol
Ans.

(c) TB 325 K By Eq. (2),

P2 P1
TB

T1

1

P2 1.323atm Ans.
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Solve virial eqn. for final V. 

Guess: V2
R T

P2

Given
P2 V2

R T
1

B

V2

C

V2
2

= V2 Find V2 V2 241.33
cm
3

mol

Eliminate P from Eq. (1.3) by the virial equation:

Work R T

V1

V2

V1
B

V

C

V
2

1

V
d

Work 12.62
kJ

mol

Ans.

(b) Eliminate dV from Eq. (1.3) by the virial equation in P:

dV R T
1

P
2

C' dP= W R T

P1

P2

P
1

P
C' P d

W 12.596
kJ

mol

Ans.

3.30 B 242.5
cm
3

mol
C 25200

cm
6

mol
2

T 373.15 K

P1 1 bar P2 55 bar

B'
B

R T B' 7.817 10
3 1

bar

C'
C B

2

R
2
T
2 C' 3.492 10

5 1

bar
2

(a) Solve virial eqn. for initial V.

Guess: V1
R T

P1

Given
P1 V1

R T
1

B

V1

C

V1
2

= V1 Find V1 V1 30780
cm
3

mol
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(b) B0 0.083
0.422

Tr
1.6

B0 0.304

B1 0.139
0.172

Tr
4.2

B1 2.262 10
3

Z 1 B0 B1
Pr

Tr
Z 0.932 V

Z R T

P
V 1924

cm
3

mol
Ans.

(c) For Redlich/Kwong EOS:

1 0 0.08664 0.42748 Table 3.1

Tr( ) Tr
0.5

Table 3.1 q Tr
Tr

Tr

Eq. (3.54)

Tr Pr
Pr

Tr
Eq. (3.53)

Note: The answers to (a) & (b) differ because the relations between the two

sets of parameters are exact only for infinite series.

3.32 Tc 282.3 K T 298.15 K Tr
T

Tc
Tr 1.056

Pc 50.4 bar P 12 bar Pr
P

Pc
Pr 0.238

0.087 (guess)

(a) B 140
cm
3

mol
C 7200

cm
6

mol
2

V
R T

P
V 2066

cm
3

mol

Given P V

R T
1

B

V

C

V
2

=

V Find V( ) V 1919
cm
3

mol
Z

P V

R T
Z 0.929 Ans.
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Calculate Z Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z FindZ( ) Z 0.928 V
Z R T

P
V 1918

cm
3

mol
Ans.

(e) For Peng/Robinson EOS:

1 2 1 2 0.07779 0.45724 Table 3.1

Table 3.1
Tr 1 0.37464 1.54226 0.26992

2
1 Tr

1

2

2

q Tr
Tr

Tr

Eq. (3.54) Tr Pr
Pr

Tr
Eq. (3.53)

Calculate Z Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z FindZ( ) Z 0.928 V
Z R T

P
V 1916.5

cm
3

mol
Ans.

(d) For SRK EOS:

1 0 0.08664 0.42748 Table 3.1

Table 3.1
Tr 1 0.480 1.574 0.176

2
1 Tr

1

2

2

q Tr
Tr

Tr

Eq. (3.54) Tr Pr
Pr

Tr
Eq. (3.53)
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V 1791
cm
3

mol

Given P V

R T
1

B

V

C

V
2

=

V Find V( ) V 1625
cm
3

mol
Z

P V

R T
Z 0.907 Ans.

(b) B0 0.083
0.422

Tr
1.6

B0 0.302

B1 0.139
0.172

Tr
4.2

B1 3.517 10
3

Z 1 B0 B1
Pr

Tr
Z 0.912 V

Z R T

P
V 1634

cm
3

mol
Ans.

(c) For Redlich/Kwong EOS:

1 0 0.08664 0.42748 Table 3.1

Calculate Z Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z Find Z( ) Z 0.92 V
Z R T

P
V 1900.6

cm
3

mol
Ans.

3.33 Tc 305.3 K T 323.15 K Tr
T

Tc
Tr 1.058

Pc 48.72 bar P 15 bar Pr
P

Pc
Pr 0.308

0.100 (guess)

(a) B 156.7
cm
3

mol
C 9650

cm
6

mol
2

V
R T

P
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Table 3.1
Tr 1 0.480 1.574 0.176

2
1 Tr

1

2

2

q Tr
Tr

Tr

Eq. (3.54) Tr Pr
Pr

Tr
Eq. (3.53)

Calculate Z Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z FindZ( ) Z 0.907 V
Z R T

P
V 1624.8

cm
3

mol
Ans.

(e) For Peng/Robinson EOS:

1 2 1 2 0.07779 0.45724 Table 3.1

Tr( ) Tr
0.5

Table 3.1 q Tr
Tr

Tr

Eq. (3.54)

Tr Pr
Pr

Tr
Eq. (3.53)

Calculate Z Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z FindZ( ) Z 0.906 V
Z R T

P
V 1622.7

cm
3

mol
Ans.

(d) For SRK EOS:

1 0 0.08664 0.42748 Table 3.1
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Pc 37.6 bar P 15 bar Pr
P

Pc
Pr 0.399

0.286

(guess)

(a) B 194
cm
3

mol
C 15300

cm
6

mol
2

V
R T

P
V 1930

cm
3

mol

Given P V

R T
1

B

V

C

V
2

=

V Find V( ) V 1722
cm
3

mol
Z

P V

R T
Z 0.893 Ans.

(b) B0 0.083
0.422

Tr
1.6

B0 0.283

Table 3.1
Tr 1 0.37464 1.54226 0.26992

2
1 Tr

1

2

2

q Tr
Tr

Tr

Eq. (3.54) Tr Pr
Pr

Tr
Eq. (3.53)

Calculate Z Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z Find Z( ) Z 0.896 V
Z R T

P
V 1605.5

cm
3

mol
Ans.

3.34 Tc 318.7 K T 348.15 K Tr
T

Tc
Tr 1.092
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Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z FindZ( ) Z 0.888 V
Z R T

P
V 1714.1

cm
3

mol
Ans.

(d) For SRK EOS:

1 0 0.08664 0.42748 Table 3.1

Table 3.1
Tr 1 0.480 1.574 0.176

2
1 Tr

1

2

2

q Tr
Tr

Tr

Eq. (3.54) Tr Pr
Pr

Tr
Eq. (3.53)

B1 0.139
0.172

Tr
4.2

B1 0.02

Z 1 B0 B1
Pr

Tr
Z 0.899 V

Z R T

P
V 1734

cm
3

mol
Ans.

(c) For Redlich/Kwong EOS:

1 0 0.08664 0.42748 Table 3.1

Tr( ) Tr
0.5

Table 3.1 q Tr
Tr

Tr

Eq. (3.54)

Tr Pr
Pr

Tr
Eq. (3.53)

Calculate Z Guess:
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Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z Find Z( ) Z 0.882 V
Z R T

P
V 1701.5

cm
3

mol
Ans.

3.35 T 523.15 K P 1800 kPa

(a) B 152.5
cm
3

mol
C 5800

cm
6

mol
2

V
R T

P
(guess)

Given
P V

R T
1

B

V

C

V
2

= V Find V( )

Z
P V

R T
V 2250

cm
3

mol
Z 0.931 Ans.

Calculate Z Guess: Z 0.9

Given Eq. (3.52)

Z 1 Tr Pr q Tr Tr Pr
Z Tr Pr

Z Tr Pr Z Tr Pr
=

Z Find Z( ) Z 0.895 V
Z R T

P
V 1726.9

cm
3

mol
Ans.

(e) For Peng/Robinson EOS:

1 2 1 2 0.07779 0.45724 Table 3.1

Table 3.1
Tr 1 0.37464 1.54226 0.26992

2
1 Tr

1

2

2

q Tr
Tr

Tr

Eq. (3.54) Tr Pr
Pr

Tr
Eq. (3.53)

Calculate Z
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V 2252
cm
3

mol
Ans.

3.37 B 53.4
cm
3

mol
C 2620

cm
6

mol
2

D 5000
cm
9

mol
3

n mol

T 273.15 K

Given
P V

R T
1

B

V

C

V
2

D

V
3

= fP V( ) FindV( )

i 0 10 Pi 10
10

20 i bar Vi
R T

Pi
(guess)

Zi
fPi Vi Pi

R T
Eq. (3.12)

Eq. (3.39)
Z1i 1

B Pi

R T
Eq. (3.38) Z2i

1

2

1

4

B Pi

R T

(b) Tc 647.1 K Pc 220.55 bar 0.345

Tr
T

Tc
Pr

P

Pc
B0 0.083

0.422

Tr
1.6

Tr 0.808 Pr 0.082 B0 0.51

B1 0.139
0.172

Tr
4.2

B1 0.281 Z 1 B0 B1
Pr

Tr

V
Z R T

P
Z 0.939 V 2268

cm
3

mol
Ans.

(c)  Table F.2: molwt 18.015
gm

mol
V 124.99

cm
3

gm
molwt

or
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Chapter 3 - Section B - Non-Numerical Solutions

3.2 Differentiate Eq. (3.2) with respect to P and Eq. (3.3) with respect to T :

(

πξ

π P

)

T
= −

1
V 2

(

πV
π P

)

T

(

πV
πT

)

P
+

1
V

(

π2V
π PπT

)

= ξε +

(

π2V
π PπT

)

(

πε

πT

)

P
=

1
V 2

(

πV
πT

)

P

(

πV
π P

)

T
−

1
V

(

π2V
πT π P

)

= −ξε −

(

π2V
π PπT

)

Addition of these two equations leads immediately to the given equation.

One could of course start with Eq. (3.4) and apply the condition for an exact differential, but this topic
is not covered until Chapter 6.

3.3 The Tait equation is given as: V = V0

(

1 −
AP

B + P

)

where V0, A, and B are constants. Application of Eq. (3.3), the definition of ε , requires the derivative
of this equation:

(

πV
π P

)

T
= V0

[

−
A

B + P
+

AP
(B + P)2

]

=
AV0

B + P

(

−1 +
P

B + P

)

Multiplication by −1/V in accord with Eq. (3.3), followed by substitution for V0/V by the Tait equa-
tion leads to:

ε =
AB

(B + P)[B + (1 − A)P]

3.7 (a) For constant T , Eq. (3.4) becomes:
dV
V

= −εd P

Integration from the initial state (P1, V1) to an intermediate state (P, V ) for constant ε gives:

ln
V
V1

= −ε(P − P1)

Whence, V = V1 exp[−ε(P − P1)] = V1 exp(−ε P) exp(ε P1)

If the given equation applies to the process, it must be valid for the initial state; then, A(T ) =

V1 exp(ε P1), and

V = A(T ) exp(−ε P)

(b) Differentiate the preceding equation: dV = −ε A(T ) exp(−ε P)d P

Therefore, W = −

∫ V2

V1

P dV = ε A(T )

∫ P2

P1

P exp(−ε P)d P

=
A(T )

ε
[(ε P1 + 1) exp(−ε P1) − (ε P2 + 1) exp(−ε P2)]
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With V1 = A(T ) exp(−κ P1) and V2 = A(T ) exp(−κ P2), this becomes:

W =
1
κ

[(κ P1 + 1)V1 − (κ P2 + 1)V2]

or W = P1V1 − P2V2 +
V1 − V2

κ

3.11 Differentiate Eq. (3.35c) with respect to T :

T
(

1 − δ

δ

)

P [(1−δ)/δ]−1 d P
dz

+ P (1−δ)/δ dT
dz

= T
(

1 − δ

δ

)

P (1−δ)/δ

P
d P
dz

+ P (1−δ)/δ dT
dz

= 0

Algebraic reduction and substitution for d P/dz by the given equation yields:

T
P

(

1 − δ

δ

)

(−Mρg) +
dT
dz

= 0

For an ideal gas Tρ/P = 1/R. This substitution reduces the preceding equation to:

dT
dz

= −
Mg

R

(

δ − 1
δ

)

3.12 Example 2.13 shows that U2 = H ′. If the gas is ideal,

H ′
= U ′

+ P ′V ′
= U ′

+ RT ′ and U2 − U ′
= RT ′

For constant CV , U2 − U ′
= CV (T2 − T ′) and CV (T2 − T ′) = RT ′

Whence,
T2 − T ′

T ′
=

R
CV

=
CP − CV

CV

When CP/CV is set equal to γ , this reduces to: T2 = γ T ′

This result indicates that the final temperature is independent of the amount of gas admitted to the
tank, a result strongly conditioned by the assumption of no heat transfer between gas and tank.

3.13 Isobaric case (δ = 0). Here, Eqs. (3.36) and (3.37) reduce to:

W = −RT1(1∞
− 1) and Q =

γ RT1

γ − 1
(1∞

− 1)

Both are indeterminate. The easiest resolution is to write Eq. (3.36) and (3.37) in the alternative but
equivalent forms:

W =
RT1

δ − 1

(

T2

T1
− 1

)

and Q =
(δ − γ )RT1

(δ − 1)(γ − 1)

(

T2

T1
− 1

)

from which we find immediately for δ = 0 that:

W = −R(T2 − T1) and Q =
γ R

γ − 1
(T2 − T1) = CP(T2 − T1)
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Isothermal case (δ = 1). Equations (3.36) and (3.37) are both indeterminate of form 0/0. Application
of l’Hôpital’s rule yields the appropriate results:

W = RT1 ln
P2

P1
and Q = −RT1 ln

P2

P1

Note that if y ≡

(

P2

P1

)(δ−1)/δ

then
dy
dδ

=
1
δ2

(

P2

P1

)(δ−1)/δ

ln
P2

P1

Adiabatic case (δ = γ ). In this case simple substitution yields:

W =
RT1

γ − 1

[

(

P2

P1

)(γ−1)/γ

− 1

]

and Q = 0

Isochoric case (δ = ∞). Here, simple substitution yields:

W = 0 and Q =
RT1

γ − 1

(

P2

P1
− 1

)

=
RT1

γ − 1

(

T2

T1
− 1

)

= CV (T2 − T1)

3.14 What is needed here is an equation relating the heat transfer to the quantity of air admitted to the tank
and to its temperature change. For an ideal gas in a tank of total volume V t at temperature T ,

n1 =
P1V t

RT
and n2 =

P2V t

RT

The quantity of air admitted to the tank is therefore:

n′
=

V t(P2 − P1)

RT
(A)

The appropriate energy balance is given by Eq. (2.29), which here becomes:

d(nU )tank

dt
− ṅ′ H ′

= Q̇

where the prime (′) identifies the entrance stream of constant properties. Multiplying by dt and inte-
grating over the time of the process yields:

n2U2 − n1U1 − n′ H ′
= Q

With n′ = n2 − n1, n2(U2 − H ′) − n1(U1 − H ′) = Q

Because U2 = H2 − RT and U1 = H1 − RT , this becomes:

n2(H2 − H ′
− RT ) − n1(U1 − H ′

− RT ) = Q

or n2[CP(T − T ′) − RT ] − n1[CP(T − T ′) − RT ] = Q

Because n′ = n2 − n1, this reduces to:

Q = n′[CP(T − T ′) − RT ]

Given: V t
= 100, 000 cm3 T = 298.15 K T ′

= 318.15 K P1 = 101.33 kPa P2 = 1500 kPa
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By Eq. (A) with R = 8, 314 cm3 kPa mol−1 K−1,

n′
=

(100, 000)(1500 − 101.33)

(8, 314)(298.15)
= 56.425 mol

With R = 8.314 J mol−1 K−1 and CP = (7/2)R, the energy equation gives:

Q = (56.425)(8.314)

[

7
2
(298.15 − 318.15) − 298.15

]

= −172, 705.6 J

or Q = −172.71 kJ

3.15 (a) The appropriate energy balance is given by Eq. (2.29), here written:

d(nU )tank

dt
− ṅ′ H ′

= Q̇

where the prime (′) identifies the entrance stream of constant properties. Multiplying by dt and
integrating over the time of the process yields:

n2U2 − n1U1 − n′ H ′
= Q

Since n′ = n2 − n1, rearrangement gives:

n2(U2 − H ′) − n1(U1 − H ′) = Q

(b) If the gas is ideal, H ′ = U ′ + P ′V ′ = U ′ + RT ′

Whence for an ideal gas with constant heat capacities,

U2 − H ′
= U2 − U ′

− RT ′
= CV (T2 − T ′) − RT ′

Substitute R = CP − CV : U2 − H ′ = CV T2 − CV T ′ − CP T ′ + CV T ′ = CV T2 − CP T ′

Similarly, U1 − H ′ = CV T1 − CP T ′

and n2(CV T2 − CP T ′) − n1(CV T1 − CP T ′) = Q

Note also: n2 =
P2Vtank

RT2
n1 =

P1Vtank

RT1

(c) If n1 = 0, n2(CV T2 − CP T ′) = Q

(d) If in addition Q = 0, CV T2 = CP T ′ and T2 =
CP
CV

T

Whence, T2 = γ T ′

(e) 1. Apply the result of Part (d), with γ = 1.4 and T ′ = 298.15 K:

T2 = (1.4)(298.15) = 417.41 K
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Then, with R = 83.14 bar cm3 mol−1 K−1:

n2 =
P2Vtank

RT2
=

(3)(4 × 106)

(83.14)(417.41)
= 345.8 mol

2. Heat transfer between gas and tank is: Q = −m tankC(T2 − T ′)

where C is the specific heat of the tank. The equation of Part (c) now becomes:

n2(CV T2 − CP T ′) = −m tankC(T2 − T ′)

Moreover n2 =
P2Vtank

RT2

These two equations combine to give:

P2Vtank

RT2
(CV T2 − CP T ′) = −m tankC(T2 − T ′)

With CP = (7/2)R and CV = CP − R = (7/2)R − R = (5/2)R, this equation becomes:

P2Vtank

RT2
(5T2 − 7T ′)

R
2

= −m tankC(T2 − T ′)

Note: R in the denominator has the units of PV ; R in the numerator has energy units.
Given values in the appropriate units are:

m tank = 400 kg C = 460 J mol−1 kg−1 T ′
= 298.15 K

P2 = 3 bar Vtank = 4 × 106 cm3

Appropriate values for R are therefore:

R(denominator) = 83.14 bar cm3 mol−1 K−1 R(numerator) = 8.314 J mol−1 K−1

Numerically,

(3)(4 × 106)

(83.14)(T2)
[(5)(T2) − (7)(298.15)]

8.314
2

= −(400)(460)(T2 − 298.15)

Solution for T2 is by trial, by an iteration scheme, or by the solve routine of a software package.
The result is T2 = 304.217 K. Then,

n2 =
P2Vtank

RT2
=

(3)(4 × 106)

(83.14)(304.217)
= 474.45 mol

3.16 The assumption made in solving this problem is that the gas is ideal with constant heat capacities.

The appropriate energy balance is given by Eq. (2.29), here written:

d(nU )tank

dt
+ H ′ṅ′

= Q̇

Multiplied by dt it becomes: d(nU ) + H ′dn′ = d Q
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where n and U refer to the contents of the tank, and H ≡ and n≡ refer to the exit stream. Since the stream
bled from the tank is merely throttled, H ≡ = H , where H is the enthalpy of the contents of the tank.
By material balance, dn≡ = −dn. Thus,

n dU + U dn − H dn = Q or n dU − (H − U )dn = d Q

Also, dU = CV dT H − U = PV = RT d Q = −mC dT

where m is the mass of the tank, and C is its specific heat.

Thus, nCV dT − RT dn = −mC dT

or dT
T

=
R

nCV + mC
dn =

R
CV

d(nCV )

nCV + mC
=

R
CV

d(nCV + mC)

nCV + mC

Integration yields: ln
(

T2

T1

)

=
R

CV
ln

(

n2CV + mC
n1CV + mC

)

or T2

T1
=

(

n2CV + mC
n1CV + mC

)R/CV

In addition, n1 =
P1Vtank

RT1
and n2 =

P2Vtank

RT2

These equations may be solved for T2 and n2. If mC >>> nCV , then T2 = T1. If mC = 0, then we
recover the isentropic expansion formulas.

3.27 For an ideal gas, �U = CV �T PV = RT �(PV ) = R �T

Whence, �U =
CV

R
�(PV )

But
CV

R
=

CV

CP − CV
=

1
γ − 1

Therefore : �U =
1

γ − 1
�(PV )

3.28 Since Z = PV/RT the given equation can be written: V =
RT
P

+ B ≡ RT

Differentiate at constant T : dV = −
RT
P2

d P

The isothermal work is then: W = −

∫ V2

V1

P dV = RT
∫ P2

P1

1
P

d P

Whence, W = RT ln
P2

P1
Compared with Eq. (3.27)

3.29 Solve the given equation of state for V : V =
RT
P

+ b −
θ

RT
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Whence,
(

∂V
∂ P

)

T
= −

RT
P2

By definition [Eq. (3.3)]: κ ≡
−1
V

(

∂V
∂ P

)

T

Substitution for both V and the derivative yields:

κ =
RT

P2

(

RT
P

+ b −
θ

RT

)

Solve the given equation of state for P: P =
RT

V − b +
θ

RT

Differentiate:
(

∂ P
∂T

)

V
=

R
(

V − b +
θ

RT

) +

(

θ

T
−

dθ

dT

)

(

V − b +
θ

RT

)2

By the equation of state, the quantity in parentheses is RT/P; substitution leads to:

(

∂ P
∂T

)

V
=

P
T

+

(

P
RT

)2 (

θ

T
−

dθ

dT

)

3.31 When multiplied by V/RT , Eq. (3.42) becomes:

Z =
V

V − b
−

a(T )V/RT
(V + εb)(V + σb)

=
V

V − b
−

a(T )V/RT
V 2 + (ε + σ)bV + εσb2

Substitute V = 1/ρ: Z =
1

1 − bρ
−

a(T )ρ

RT
1

1 + (ε + σ)bρ + εσ (bρ)2

Expressed in series form, the first term on the right becomes:
1

1 − bρ
= 1 + bρ + (bρ)2

+ ···

The final fraction of the second term becomes:

1
1 + (ε + σ)bρ + εσ (bρ)2

= 1 − (ε + σ)bρ + [(ε + σ)2
− εσ ](bρ)2

+ ···

Combining the last three equations gives, after reduction:

Z = 1 +

(

b −
a(T )

RT

)

ρ +

[

b2
+

(ε + σ)a(T )b
RT

]

ρ2
+ ···

Equation (3.12) may be written: Z = 1 + Bρ + Cρ2 + ···

Comparison shows: B = b −
a(T )

RT
and C = b2

+
(ε + σ)ba(T )

RT
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For the Redlich/Kwong equation, the second equation becomes:

C = b2 +
ba(T )

RT
= b

(

b +
a(T )

RT

)

Values for a(T ) and b are found from Eqs. (3.45) and (3.46), with numerical values from Table 3.1:

b =
0.08664RTc

Pc

a(T )

RT
=

0.42748RTc

T 1.5
r Pc

The numerical comparison is an open-ended problem, the scope of which must be decided by the
instructor.

3.36 Differentiate Eq. (3.11):
(

∂ Z
∂ P

)

T
= B ′ + 2C ′ P + 3D′ P2 + · · ·

Whence,
(

∂ Z
∂ P

)

T,P=0
= B ′

Equation (3.12) with V = 1/ρ: Z = 1 + Bρ + Cρ2 + Dρ3 + · · ·

Differentiate:
(

∂ Z
∂ρ

)

T
= B + 2Cρ + 3Dρ2 + · · ·

Whence,
(

∂ Z
∂ρ

)

T,ρ=0
= B

3.56 The compressibility factor is related to the measured quantities by:

Z =
PV t

n RT
=

M PV t

m RT
(A)

By Eq. (3.39), B = (Z − 1)V =
(Z − 1)MV t

m
(B)

(a) By Eq. (A), d Z
Z

=
d M
M

+
d P
P

+
dV t

V t
−

dm
m

−
dT
T

(C)

Thus Max |% δZ | ≈ |% δM | + |% δP| + |% δV t | + |% δm| + |% δT |

Assuming approximately equal error in the five variables, a ±1% maximum error in Z requires
errors in the variables of <0.2%.

(b) By Eq. (B),
d B
B

=
Z

Z − 1
d Z
Z

+
dV t

V t
+

d M
M

−
dm
m

By Eq. (C),
d B
B

=
Z

Z − 1

(

d P
P

−
dT
T

)

+
2Z − 1
Z − 1

(

dV t

V t
+

d M
M

−
dm
m

)

Therefore
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Max |% δB| ≈

∣

∣

∣

∣

Z
Z − 1

∣

∣

∣

∣

(

|% δP| + |% δT |
)

+

∣

∣

∣

∣

2Z − 1
Z − 1

∣

∣

∣

∣

(

|% δV t | + |% δM | + |% δm|
)

For Z ≈ 0.9 and for approximately equal error in the five variables, a ±1% maximum error in B
requires errors in the variables of less than about 0.02%. This is because the divisor Z − 1 ≈ 0.1.
In the limit as Z → 1, the error in B approaches infinity.

3.57 The Redlich/Kwong equation has the following equivalent forms, where a and b are constants:

Z =
V

V − b
−

a
RT 3/2(V + b)

P =
RT

V − b
−

a
T 1/2V (V + b)

From these by differentiation,
(

∂ Z
∂V

)

T
=

a(V − b)2 − bRT 3/2(V + b)2

RT 3/2(V − b)2(V + b)2
(A)

(

∂ P
∂V

)

T
=

a(2V + b)(V − b)2 − RT 3/2V 2(V + b)2

T 1/2V 2(V − b)2(V + b)2
(B)

In addition, we have the mathematical relation:
(

∂ Z
∂ P

)

T
=

(∂ Z/∂V )T

(∂ P/∂V )T
(C)

Combining these three equations gives
(

∂ Z
∂ P

)

T
=

aV 2(V − b)2 − bRT 3/2V 2(V + b)2

a RT (2V + b)(V − b)2 − R2T 5/2V 2(V + b)2
(D)

For P → 0, V → ∞, and Eq. (D) becomes: lim
P→0

(

∂ Z
∂ P

)

T
=

b − a/RT 3/2

RT

For P → ∞, V → b, and Eq. (D) becomes: lim
P→∞

(

∂ Z
∂ P

)

T
=

b
RT

3.60 (a) Differentiation of Eq. (3.11) gives:
(

∂ Z
∂ P

)

T
= B ′ + 2C ′ P + 3D′ P2 + · whence lim

P→0

(

∂ Z
∂ P

)

T
= B ′

If the limiting value of the derivative is zero, then B ′ = 0, and B = B ′ RT = 0

(b) For simple fluids, ω = 0, and Eqs. (3.52) and (3.53) combine to give B0 = B Pc/RTc. If B = 0,
then by Eq. (3.65),

B0 = 0.083 −
0.422
T 1.6

r
= 0
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and Tr =

(

0.422
0.083

)(1/1.6)

= 2.763

3.63 Linear isochores require that (γ P/γT )V = Constant.

(a) By Eq. (3.4) applied to a constant-V process:
(

γ P
γT

)

V
=

β

κ

(b) For an ideal gas PV = RT , and
(

γ P
γT

)

V
=

R
V

(c) Because a and b are constants, differentiation of Eq. (3.42) yields:
(

γ P
γT

)

V
=

R
V − b

In each case the quantities on the right are constant, and so therefore is the derivative.

3.64 (a) Ideal gas: Low P , or low ρ, or large V and/or high T . See Fig. 3.15 for quantitative guidance.

(b) Two-term virial equation: Low to modest P . See Fig. 3.14 for guidance.

(c) Cubic EOS: Gases at (in principle) any conditions.

(d) Lee/Kesler correlation: Same as (c), but often more accurate. Note that corresponding states
correlations are strictly valid for non-polar fluids.

(e) Incompressible liquids: Liquids at normal T s and Ps. Inappropriate where changes in V are
required.

(f ) Rackett equation: Saturated liquids; a corresponding states application.

(g) Constant β, κ liquids: Useful where changes in V are required. For absolute values of V , a
reference volume is required.

(h) Lydersen correlation for liquids: a corresponding-states method applicable to liquids at extreme
conditions.

3.66 Write Eq. (3.12) with 1/ρ substituted everywhere for V . Subtract 1 from each side of the equation
and divide by ρ. Take the limit as ρ → 0.

3.68 Follow the procedure laid out on p. 93 with respect to the van der Waals equation to obtain from
Eq. (3.42) the following three more-general equations:

1 + (1 − ε − σ)� = 3Zc

εσ�2 − (ε + σ)�(� + 1) +  = 3Z2
c

εσ�2(� + 1) + � = Z3
c

where by definition [see Eqs. (3.45) and (3.46)]:

� ≡
bPc

RTc
and  ≡

ac Pc

R2T 2
c

For a given EOS, ε and σ are fixed, and the above set represents 3 equations in 3 unknowns, �, ,
and Zc. Thus, for a given EOS the value of Zc is preordained, unrelated to experimental values of Zc.
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(a, b) For the Redlich/Kwong and Soave/Redlich/Kwong equations, ε = 0 and σ = 1. Substitution
of these values into the 3-equation set allows their solution to yield:

Zc = 1
3

� = 0.086640  = 0.427480

(c) For the Peng/Robinson equation, ε = 1 −
√

2 and σ = 1 +
√

2. As for the Soave and SRK
equations the 3-equation set can be solved (with considerably greater difficulty) to yield:

Zc = 0.30740 � = 0.077796  = 0.457236

3.69 Equation (3.12): Z = 1 + Bρ + Cρ2 + . . . where ρ = P/Z RT

Eliminate ρ: Z = 1 + B P
Z RT

+ C P2

Z2 R2T 2
+ . . .

Z = 1 + B Pc

RTc
· Pr

Z Tr
+ C P2

c

R2T 2
c

· P2
r

Z2T 2
r

+ . . . = 1 + B̂ · Pr

Z Tr
+ Ĉ · P2

r

Z2T 2
r

+ . . .

Rearrange:
(Z − 1)Z Tr

Pr
= B̂ + Ĉ · Pr

Z Tr
+ . . .

B̂ = lim
Pr →0

(Z − 1)Z Tr/Pr

3.74 In a cylinder filled with 1 mole of an ideal gas, the molecules have kinetic energy only, and for a given
T and P occupy a volume V ig.

(a) For 1 mole of a gas with molecules having kinetic energy and purely attractive interactions at the
same T and P , the intermolecular separations are smaller, and V < V ig. In this case Z < 1.

(b) For 1 mole of a gas with molecules having kinetic energy and purely repulsive interactions at the
same T and P , the intermolecular separations are larger, and V > V ig. In this case Z > 1.

(c) If attractive and repulsive interactions are both present, they tend to cancel each other. If in bal-
ance, then the average separation is the same as for an ideal gas, and V = V ig. In this case
Z = 1.

3.75 van der Waals EOS: P = RT
V − b

− a
V 2

Z = V
V − b

− a
V RT

Set V = 1/ρ: Z = 1
1 − bρ

− aρ

RT
= 1 + bρ

1 − bρ
− aρ

RT

whence Zrep = bρ
1 − bρ

Zattr = aρ

RT

638



3.76 Write each modification in “Z -form,”

(a) Z = V
V − b

− a
RT

lim
V →∞

Z = 1 − a
RT

The required behavior is: lim
V →∞

Z = 1

(b) Z = V
(V − b)2

− a
RT

lim
V →∞

Z = − a
RT

The required behavior is: lim
V →∞

Z = 1

(c) Z = 1
V − b

− a
V RT

lim
V →∞

Z = 0

The required behavior is: lim
V →∞

Z = 1

(d) Z = 1 − a
V RT

= 1 − aρ

RT

Although lim
V →∞

Z = 1 as required, the equation makes Z linear in ρ; i.e., a 2-term virial EOS in

ρ. Such an equation is quite inappropriate at higher densities.

3.77 Refer to Pb. 2.43, where the general equation was developed;
...

Q = −PV
dn
dt

+ n
dU
dt

For an ideal gas, n = PV t

RT
and

dn
dt

= −
(

PV t

RT 2

)

dT
dt

Note that PV t/R = const.

Also for an ideal gas, dU = CV dT whence
dU
dt

= CV
dT
dt

...
Q = −RT

(

− PV t

RT 2

)

dT
dt

+ PV t

RT
CV

dT
dt

= CP
PV t

RT
dT
dt

Integration yields: ln
T2

T1
= R

CP PV t

∫ t2

t1

...
Q dt

3.78 By Eq. (3.4),
dV
V

= β dT − κ d P where β and κ are average values

Integrate: ln
V2

V1
= ln

V t
2

V t
1

= ln
D2

2

D2
1

= ln
(

D1 + δD
D1

)2

= ln
(

1 + δD
D1

)2

= β(T2 − T1)−κ(P2 − P1)

ln(1.0035)2 = 250 × 10−6(40 − 10) − 45 × 10−6(P2 − 6)

Solution for P2 yields: P2 = 17.4 bar
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