
Work

QH
= Whence QH

Work

QH 1.583 10
5
kW Ans.

QC QH Work
QC 6.333 10

4
kW Ans.

(b) 0.35 QH
Work

QH 2.714 10
5
kW Ans.

QC QH Work QC 1.764 10
5
kW Ans.

5.4 (a) TC 303.15 K TH 623.15 K

Carnot 1
TC

TH
0.55 Carnot 0.282 Ans.

Chapter 5 - Section A - Mathcad Solutions

5.2 Let the symbols Q and Work represent rates in kJ/s.  Then by Eq. (5.8)

Work

QH
= 1

TC

TH
=

TC 323.15 K TH 798.15 K QH 250
kJ

s

Work QH 1
TC

TH
Work 148.78

kJ

s

or Work 148.78kW which is the power. Ans.

By Eq. (5.1), QC QH Work QC 101.22
kJ

s
Ans.

5.3 (a) Let symbols Q and Work represent rates in kJ/s

TH 750 K TC 300 K Work 95000 kW

By Eq. (5.8): 1
TC

TH
0.6

But
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QC 3.202 10
6
kW

Work QC
TH

TC
1 Work 5.336 10

6
kW Ans.

QH QC Work QH 8.538 10
6
kW Ans.

5.8 Take the heat capacity of water to be constant at the valueCP 4.184
kJ

kg K

(a) T1 273.15 K T2 373.15 K Q CP T2 T1 Q 418.4
kJ

kg

SH2O CP ln
T2

T1
SH2O 1.305

kJ

kg K

Sres
Q

T2
Sres 1.121

kJ

kg K
Ans.

(b) 0.35 Carnot
0.55

Carnot 0.636

By Eq. (5.8), TH
TC

1 Carnot

TH 833.66K Ans.

5.7 Let the symbols represent rates where appropriate.  Calculate mass rate of

LNG evaporation: 

V 9000
m
3

s
P 1.0133 bar T 298.15 K

molwt 17
gm

mol
mLNG

P V

R T
molwt mLNG 6254

kg

s

Maximum power is generated by a Carnot engine, for which

Work

QC

QH QC

QC
=

QH

QC
1=

TH

TC
1=

TH 303.15 K TC 113.7 K

QC 512
kJ

kg
mLNG
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Q 15000 J

(a) Const.-V heating; U Q W= Q= n CV T2 T1=

T2 T1
Q

n CV
T2 1 10

3
K

By Eq. (5.18), S n CP ln
T2

T1
R ln

P2

P1
=

But
P2

P1

T2

T1
= Whence S n CV ln

T2

T1
S 20.794

J

K
Ans.

(b) The entropy change of the gas is the same as in (a).  The entropy

change of the surroundings is zero.  Whence

Stotal 10.794
J

K
= Ans.

The stirring process is irreversible.

Stotal SH2O Sres Stotal 0.184
kJ

kgK
Ans.

(b) The entropy change of the water is the same as in (a), and the total

heat transfer is the same, but divided into two halves.

Sres
Q

2

1

323.15 K

1

373.15 K
Sres 1.208

kJ

kgK

Stotal Sres SH2O Stotal 0.097
kJ

kgK
Ans.

(c) The reversible heating of the water requires an infinite number of heat

reservoirs covering the range of temperatures from 273.15 to 373.15 K,

each one exchanging an infinitesimal quantity of heat with the water and

raising its temperature by a differential increment.

5.9 P1 1 bar T1 500 K V 0.06m
3

n
P1 V

R T1
n 1.443mol CV

5

2
R
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SA 8.726
J

mol K
SB 8.512

J

mol K
Ans.

Stotal SA SB Stotal 0.214
J

mol K
Ans.

5.16 By Eq. (5.8),
dW

dQ
1

T

T
= dW dQ T

dQ

T
=

dW dQ T dS=Since dQ/T = dS,

Integration gives the required result.

T1 600 K T2 400 K T 300 K

Q CP T2 T1 Q 5.82 10
3 J

mol

5.10 (a) The temperature drop of the second stream (B) in either

case is the same as the temperature rise of the first stream

(A), i.e., 120 degC.  The exit temperature of the second

stream is therefore 200 degC.  In both cases we therefore

have:

CP
7

2
R

SA CP ln
463.15

343.15
SB CP ln

473.15

593.15

SA 8.726
J

mol K
SB 6.577

J

mol K
Ans.

(b) For both cases:

Stotal SA SB Stotal 2.149
J

mol K
Ans.

(c) In this case the final temperature of steam B is 80 degC, i.e., there is

a 10-degC driving force for heat transfer throughout the exchanger.

Now

SA CP ln
463.15

343.15
SB CP ln

353.15

473.15
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W

QC2

TH2 TC2

TC2
=

Equate the two work quantities and solve for the required ratio of the  heat

quantities:

r
TC2

TH1

TH1 TC1

TH2 TC2
r 2.5 Ans.

5.18 (a) T1 300K P1 1.2bar T2 450K P2 6bar Cp
7

2
R

H Cp T2 T1 H 4.365 10
3 J

mol
Ans.

S Cp ln
T2

T1
R ln

P2

P1
S 1.582

J

mol K
Ans.

(b) H 5.82 10
3 J

mol
= S 1.484

J

mol K
=

S CP ln
T2

T1
S 11.799

J

mol K

Work Q T S Work 2280
J

mol
Ans.

Q Q Work Q 3540
J

mol Ans.

Sreservoir
Q

T
Sreservoir 11.8

J

mol K
Ans.

S Sreservoir 0
J

mol K
Process is reversible.

5.17 TH1 600 K TC1 300 K TH2 300 K TC2 250 K

For the Carnot engine, use Eq. (5.8): W

QH1

TH1 TC1

TH1
=

The Carnot refrigerator is a reverse Carnot engine. 

 Combine Eqs. (5.8) & (5.7) to get: 
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For isobaric step 2 to 3:
P2

T2

P3

T3
=

Solving these 4 equations for T4 yields: T4 T1
T2

T3
=

Cp
7

2
R Cv

5

2
R

Cp

Cv
1.4

T1 200 273.15( )K T2 1000 273.15( )K T3 1700 273.15( )K

T4 T1
T2

T3
T4 873.759K

Eq. (A) p. 306 1
1 T4 T1

T3 T2
0.591 Ans.

(c) H 3.118 10
3 J

mol
= S 4.953

J

mol K
=

(d) H 3.741 10
3 J

mol
= S 2.618

J

mol K
=

(e) H 6.651 10
3 J

mol
= S 3.607

J

mol K
=

5.19This cycle is the same as is shown in Fig. 8.10 on p. 305.  The equivalent states

are A=3, B=4, C=1, and D=2.  The efficiency is given by Eq. (A) on p. 305.

Temperature T4 is not given and must be calaculated.  The following equations

are used to derive and expression for T4.

For adiabatic steps 1 to 2 and 3 to 4:

T1 V1
1

T2 V2
1

= T3 V3
1

T4 V4
1

=

For constant-volume step 4 to 1: V1 V4=
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S 2.914
J

mol K

Ans.

5.25 P 4 T 800

Step 1-2:  Volume decreases at constant P. 

Heat flows out of the system.  Work is done on the system.

W12 P V2 V1= R T2 T1=

Step 2-3:  Isothermal compression.  Work is done on the system.  Heat flows

out of the system.

W23 R T2 ln
P3

P2

= R T2 ln
P3

P1

=

Step 3-1:  Expansion process that produces work.  Heat flows into the

system.  Since the PT product is constant,

P dT T dP 0= T
dP

P
dT= (A)

P V R T= P dV V dP R dT=

P dV R dT V dP= R dT R T
dP

P
=

5.21 CV CP R P1 2 bar P2 7 bar T1 298.15 K

CP

CV

1.4

With the reversible work given by Eq. (3.34), we get for the actual W: 

Work 1.35
R T1

1

P2

P1

1

1 Work 3.6 10
3 J

mol

But Q = 0, and W U= CV T2 T1= Whence T2 T1
Work

CV

T2 471.374K

S CP ln
T2

T1

R ln
P2

P1
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Ans.0.068
W12 W23 W31

Q31

Q31 1.309 10
4 J

mol
Q31 CP R T1 T2

W31 5.82 10
3 J

mol
W31 2 R T1 T2

W23 2.017 10
3 J

mol
W23 R T2 ln

P3

P1

W12 2.91 10
3 J

mol
W12 R T2 T1

P3 P1
T1

T2
P1 1.5 bar

T2 350 KT1 700 KCP
7

2
R

Wnet

Qin
=

W12 W23 W31

Q31
=

Q31 CV 2 R T1 T3= CP R T1 T2=

Q31 U31 W31= CV T1 T3 2 R T1 T3=

W31
V3

V1

VP d= 2 R T1 T3= 2 R T1 T2=

P3 P1
T1

T3
= P1

T1

T2
=Moreover,

P dV R dT R dT= 2 R dT=

In combination with (A) this becomes
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Ans.

Stotal S Sres Stotal 6.02
J

mol K
Ans.

5.27 (a) By Eq. (5.14) with P = const. and Eq. (5.15), we get for the entropy change

of 10 moles

n 10 mol

S n R ICPS 473.15K 1373.15K 5.699 0.640 10
3
0.0 1.015 10

5

S 536.1
J

K
Ans.

(b) By Eq. (5.14) with P = const. and Eq. (5.15), we get for the entropy

change of 12 moles

n 12 mol

S n R ICPS 523.15K 1473.15K 1.213 28.785 10
3
8.824 10

6
0.0

S 2018.7
J

K
Ans.

5.26 T 403.15 K P1 2.5 bar P2 6.5 bar Tres 298.15 K

By Eq. (5.18), S R ln
P2

P1
S 7.944

J

mol K
Ans.

With the reversible work given by Eq. (3.27), we get for the actual W:

Work 1.3 R T ln
P2

P1
(Isothermal compresion) Work 4.163 10

3 J

mol

Q Work Q here is with respect to the system.

So for the heat reservoir, we have

Sres
Q

Tres
Sres 13.96

J

mol K
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(guess)x 0.3

x CP T1 T0 1 x( )CP T2 T0 0=

Temperature of warm airT2 348.15 K

Temperature of chilled airT1 248.15 K

Temperature of entering airT0 298.15 K

The relative amounts of the two streams are determined by an energy

balance.  Since Q = W = 0, the enthalpy changes of the two streams must

cancel. Take a basis of 1 mole of air entering, and let x = moles of chilled air.

Then 1 - x = the moles of warm air.

5.29

Ans.S 1.2436 10
6 J

K

S n R ICPS 533.15K 1202.9K 1.424 14.394 10
3
4.392 10

6
0.0

n 18140 mol

The final temperature for this process was found in Pb. 4.2c to be 1202.9 K.

The entropy change for 18.14 kg moles is then found as follows

(c)

Ans.S 2657.5
J

K

S n R ICPS 533.15K 1413.8K 1.967 31.630 10
3
9.873 10

6
0.0

n 15 mol

The final temperature for this process was found in Pb. 4.2b to be 1413.8 K.

The entropy change for 15 moles is then found as follows:

(b)

Ans.S 900.86
J

K

S n R ICPS 473.15K 1374.5K 1.424 14.394 10
3
4.392 10

6
0.0

n 10 mol

The final temperature for this process was found in Pb. 4.2a to be 1374.5 K.

The entropy change for 10 moles is then found as follows

(a)5.28
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PROCESS IS POSSIBLE.Stotal 3.42
J

mol K
Stotal S Sres

S 2.301
J

mol K
S CP ln

T2

T1
R ln

P2

P1

Q 1.733 10
3 J

mol
Sres 5.718

J

mol K
Sres

Q

Tres

Q CV T2 T1 WorkQ U Work=CV CP R

CP
7

2
RWork 1800

J

mol
Tres 303.15 K

P2 1 bar

Given
x

1 x

T2 T0

T1 T0
= x Findx() x 0.5

Thus x = 0.5, and the process produces equal amounts of chilled and warmed

air.  The only remaining question is whether the process violates the second

law.  On the basis of 1 mole of entering air, the total entropy change is as

follows.

CP
7

2
R P0 5 bar P 1 bar

Stotal x CP ln
T1

T0
1 x( )CP ln

T2

T0
R ln

P

P0

Stotal 12.97
J

mol K Ans.

Since this is positive, there is no violation of the second law.

5.30 T1 523.15 K T2 353.15 K P1 3 bar
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By Eq. (5.28):
Wdot

Wdotideal

t

Wdot 951.6kW Ans.

5.34 E 110 volt i 9.7 amp T 300 K

Wdotmech 1.25 hp Wdotelect i E Wdotelect 1.067 10
3
W

At steady state: Qdot Wdotelect Wdotmech
t
U
td

d
= 0=

Qdot

T
SdotG

t
S
td

d
= 0=

Qdot Wdotelect Wdotmech Qdot 134.875W

SdotG
Qdot

T
SdotG 0.45

W

K
Ans.

5.33 For the process of cooling the brine:

CP 3.5
kJ

kg K
T 40 K mdot 20

kg

sec
t 0.27

T1 273.15 25( ) K T1 298.15K

T2 273.15 15( ) K T2 258.15K

T 273.15 30( ) K T 303.15K

H CP T H 140
kJ

kg

S CP ln
T2

T1
S 0.504

kJ

kg K

Eq. (5.26): Wdotideal mdot H T S Wdotideal 256.938kW
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S

R
T1

T2

T
Cp

R

1

T
d ln

P2

P1
= Eq. (5.14)

S
7

2
R ln

T2

T1
R ln

P2

P1
S 17.628

J

mol K
Ans.

(c) SdotG mdot S SdotG 48.966
W

K
Ans.

(d) T 20 273.15( )K Wlost T S Wlost 5.168 10
3 J

mol
Ans.

5.39(a) T1 500K P1 6bar T2 371K P2 1.2bar Cp
7

2
R

T 300K Basis: 1 mol n 1mol

H n Cp T2 T1 Ws H Ws 3753.8 J Ans.

5.35 25 ohm i 10 amp T 300 K

Wdotelect i
2

Wdotelect 2.5 10
3
W

At steady state: Qdot Wdotelect
t
U
td

d
= 0= Qdot Wdotelect

Qdot

T
SdotG

t
S
td

d
= 0= SdotG

Qdot

T

Qdot 2.5 10
3
watt SdotG 8.333

watt

K
Ans.

5.38 mdot 10
kmol

hr
T1 25 273.15( )K P1 10bar P2 1.2bar

Cp
7

2
R Cv Cp R

Cp

Cv

7

5

(a) Assuming an isenthalpic process: T2 T1 T2 298.15K Ans.

(b)
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(d) 3853.5J 4952.4J 1098.8J 3.663
J

K

(e) 3055.4J 4119.2J 1063.8J 3.546
J

K

5.41 P1 2500kPa P2 150kPa T 300K mdot 20
mol

sec

S R ln
P2

P1

actual 0.45actual
W

QH

TC 298.15KTC 25 273.15( )K

TH 523.15KTH 250 273.15( )KW 0.45kJQH 1kJ5.42

Ans.Wdotlost 140.344kW
Wdotlost T SdotG

Ans.SdotG 0.468
kJ

sec K
SdotG mdot S

S 0.023
kJ

mol K

WidealWs

Ans.SG 4.698
J

K
SG

Wlost

T
Eq. (5.39)

Ans.Wlost 1409.3 JWlost Wideal WsEq. (5.30)

Ans.Wideal 5163JWideal H T SEq. (5.27)

S 4.698
J

K
S n Cp ln

T2

T1
R ln

P2

P1

3.767
J

K
1130J4193.7J3063.7J(c)

1.643
J

K
493J2953.9J2460.9J(b)

4.698
J

K
1409.3J5163J3753.8J(a)

SGWlost
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TC 293.15K

(a) max 1
TC

TH
max 0.502 Ans.

QdotH
Wdot

max

QdotC QdotH Wdot

QdotC 745.297MW (minimum value)

(b) 0.6 max QdotH
Wdot

QdotH 2.492 10
9
W

QdotC QdotH Wdot QdotC 1.742 10
3
MW (actual value)

River temperature rise: Vdot 165
m
3

s
1
gm

cm
3

Cp 1
cal

gm K
T

QdotC

Vdot Cp
T 2.522K Ans.

max 1
TC

TH
max 0.43

Since actual
> max

, the process is impossible.

5.43 QH 150 kJ Q1 50 kJ Q2 100 kJ

TH 550 K T1 350 K T2 250 K T 300 K

(a) SG
QH

TH

Q1

T1

Q2

T2
SG 0.27

kJ

K
Ans.

(b) Wlost T SG Wlost 81.039kJ Ans.

5.44 Wdot 750 MW TH 315 273.15( )K TC 20 273.15( )K

TH 588.15K
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(a) With d QC = C t
C dTC , Eq. (B) becomes:

d Q H

C t
C dTC

= −
TH

TC
or d Q H = −C t

C
TH

TC
dTC

Substitute for d Q H and d QC in Eq. (A):

dW = −C t
C TH

dTC

TC
+ C t

C dTC

Integrate from TC0 to TC :

W = −C t
C TH ln

TC

TC0

+ C t
C(TC − TC0) or W = C t

C

(

TH ln
TC0

TC
+ TC − TC0

)

(b) For infinite time, TC = TH , and the boxed equation above becomes:

W = C t
C

(

TH ln
TC0

TH
+ TH − TC0

)

5.15 Write Eqs. (5.8) and (5.1) in rate form and combine to eliminate |
...

Q H |:

|
...

W |

|
...

W | + |
...

QC |
= 1 −

TC

TH
= 1 − r or

|
...

W |

1 − r
= |

...
W | + |

...
Q| where r ≡

TC

TH

With |
...

QC | = k A(TC)4 = k A(rTH )4, this becomes:

|
...

W |

(

1
1 − r

− 1
)

= |
...

W |

(

r
1 − r

)

= k Ar4(TH )4 or A =

[

|
...

W |

k(TH )4

]

1
(1 − r)r3

Differentiate, noting that the quantity in square brackets is constant:

d A
dr

=

[

|
...

W |

k(TH )4

]

[

−3
(1 − r)r4

+
1

(1 − r)2r3

]

=

[

|
...

W |

k(TH )4

]

[

4r − 3
(1 − r)2r4

]

Equating this equation to zero, leads immediately to: 4r = 3 or r = 0.75

5.20 Because W = 0, Eq. (2.3) here becomes:

Q = �U t = mCV �T

A necessary condition for �T to be zero when Q is non-zero is that m = ∞ . This is the reason that
natural bodies (air and water) that serve as heat reservoirs must be massive (oceans) or continually
renewed (rivers).

5.22 An appropriate energy balance here is: Q = �H t = 0

Applied to the process described, with T as the final temperature, this becomes:

m1CP(T − T1) + m2CP(T − T2) = 0 whence T =
m1T1 + m2T2

m1 + m2
(1)

If m1 = m2, T = (T1 + T2)/2
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The total entropy change as a result of temperature changes of the two masses of water:

�St = m1CP ln
T
T1

+ m2CP ln
T
T2

(2)

Equations (1) and (2) represent the general case. If m1 = m2 = m,

�St = mCP ln
T 2

T1T2
or �St = 2mCP ln

T
√

T1T2

Because T = (T1 + T2)/2 >
√

T1T2, �St is positive.

5.23 Isentropic processes are not necessarily reversible and adiabatic. The term isentropic denotes a pro-
cess for which the system does not change in entropy. There are two causes for entropy changes in a
system: The process may be internally irreversible, causing the entropy to increase; heat may be trans-
ferred between system amd surroundings, causing the entropy of the system to increase or decrease.
For processes that are internally irreversible, it is possible for heat to be transferred out of the system
in an amount such that the entropy changes from the two causes exactly compensate each other. One
can imagine irreversible processes for which the state of the system is the same at the end as at the
beginning of the process. The process is then necessarily isentropic, but neither reversible nor adia-
batic. More generally, the system conditions may change in such a way that entropy changes resulting
from temperature and pressure changes compensate each other. Such a process is isentropic, but not
necessarily reversible. Expansion of gas in a piston/cylinder arrangement is a case in point. It may be
reversible and adiabatic, and hence isentropic. But the same change of state may be irreversible with
heat transfer to the surroundings. The process is still isentropic, but neither reversible nor adiabatic.
An isentropic process must be either reversible and adiabatic or irreversible and non-adiabatic.

5.24 By definition, 〈CP〉H =

∫ T
T0

CPdT

T − T0
=

∫ T0
T CPdT
T0 − T

By inspection, one sees that for both T > T0 and T0 > T the numerators and denominators of the
above fractions have the same sign. Thus, for both cases 〈CP〉H is positive.

Similarly, 〈CP〉S =

∫ T
T0

CP
dT
T

ln(T/T0)
=

∫ T0
T CP

dT
T

ln(T0/T )

By inspection, one sees that for both T > T0 and T0 > T the numerators and denominators of the
above fractions have the same sign. Thus, for both cases 〈CP〉S is positive.

When T = T0, both the numerators and denominators of the above fractions become zero, and the
fractions are indeterminate. Application of l’Hôpital’s rule leads to the result: 〈CP〉H = 〈CP〉S = CP .

5.31 The process involves three heat reservoirs: the house, a heat sink; the furnace, a heat source; and the
surroundings, a heat source. Notation is as follows:

|Q| Heat transfer to the house at temperature T
|QF | Heat transfer from the furnace at TF

|Qσ | Heat transfer from the surroundings at Tσ

The first and second laws provide the two equations:

|Q| = |QF | + |Qσ | and
|Q|
T

−
|QF |
TF

−
|Qσ |
Tσ

= 0
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Combine these equations to eliminate |Qσ |, and solve for |QF |:

|QF | = |Q|
(

T − Tσ

TF − Tσ

)

TF

T

With T = 295 K TF = 810 K Tσ = 265 K and |Q| = 1000 kJ

The result is: |QF | = 151.14 kJ

Shown to the right is a scheme designed to ac-
complish this result. A Carnot heat engine op-
erates with the furnace as heat source and the
house as heat sink. The work produced by the en-
gine drives a Carnot refrigerator (reverse Carnot
engine) which extracts heat from the surround-
ings and discharges heat to the house. Thus the
heat rejected by the Carnot engine (|Q1|) and by
the Carnot refrigerator (|Q2|) together provide the
heat |Q| for the house. The energy balances for
the engine and refrigerator are:

|W |engine = |QF | − |Q1|

|W |refrig = |Q2| − |Qσ |

Equation (5.7) may be applied to both the engine
and the refrigerator:

|QF |
|Q1|

=
TF

T
|Qσ |
|Q2|

=
Tσ

T
Combine the two pairs of equations:

|W |engine = |Q1|
(

TF

T
− 1

)

= |Q1|
TF − T

T
|W |refrig = |Q2|

(

1 −
Tσ

T

)

= |Q2|
T − Tσ

T

Since these two quantities are equal,

|Q1|
TF − T

T
= |Q2|

T − Tσ

T
or |Q2| = |Q1|

TF − T
T − Tσ

Because the total heat transferred to the house is |Q| = |Q1| + |Q2|,

|Q| = |Q1| + |Q1|
TF − T
T − Tσ

= |Q1|
(

1 +
TF − T
T − Tσ

)

= |Q1|
TF − Tσ

T − Tσ

But |Q1| = |QF |
T
TF

whence |Q| = |QF |
T
TF

(

TF − Tσ

T − Tσ

)

Solution for |QF | yields the same equation obtained more easily by direct application of the two laws
of thermodynamics to the overall result of the process.

5.32 The process involves three heat reservoirs: the house, a heat source; the tank, a heat source; and the
surroundings, a heat sink. Notation is as follows:
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|Q| Heat transfer from the tank at temperature T
|Q′| Heat transfer from the house at T ′

|Qσ | Heat transfer to the surroundings at Tσ

The first and second laws provide the two equations:

|Q| + |Q′| = |Qσ | and
|Qσ |
Tσ

−
|Q|
T

−
|Q′|
T ′ = 0

Combine these equations to eliminate |Qσ |, and solve for |Q|:

|Q| = |Q′|
(

Tσ − T ′

T − Tσ

)

T
T ′

With T = 448.15 K T ′ = 297.15 K Tσ = 306.15 K and |Q′| = 1500 kJ

The result is: |Q| = 143.38 kJ

Shown to the right is a scheme designed to accom-
plish this result. A Carnot heat engine operates
with the tank as heat source and the surroundings
as heat sink. The work produced by the engine
drives a Carnot refrigerator (reverse Carnot en-
gine) which extracts heat |Q′| from the house and
discharges heat to the surroundings. The energy
balances for the engine and refrigerator are:

|W |engine = |Q| − |Qσ1 |

|W |refrig = |Qσ2 | − |Q′|

Equation (5.7) may be applied to both the engine
and the refrigerator:

|Qσ1|

|Q|
=

Tσ

T
|Qσ2 |
|Q′|

=
Tσ

T ′

Combine the two pairs of equations:

|W |engine = |Q|
(

1 −
Tσ

T

)

= |Q|
T − Tσ

T
|W |refrig = |Q′|

(

Tσ

T ′

)

= |Q′|
Tσ − t ′

T ′

Since these two quantities are equal,

|Q|
T − Tσ

T
= |Q′|

Tσ − T ′

T ′ or |Q| = |Q′|
(

Tσ − T ′

T − Tσ

)

T
T ′

5.36 For a closed system the first term of Eq. (5.21) is zero, and it becomes:

d(mS)cv

dt
+

∑

j

...
Q j

Tσ, j
=

...
SG ≥ 0
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where
...

Q j is here redefined to refer to the system rather than to the surroundings. Nevertheless, the sec-
ond term accounts for the entropy changes of the surroundings, and can be written simply as d St

surr/dt :

d(mS)cv

dt
−

d St
surr

dt
=

...
SG ≥ 0 or

d St
cv

dt
−

d ST
surr

dt
=

...
SG ≥ 0

Multiplication by dt and integration over finite time yields:

�St
cv + �St

surr ≥ 0 or �Stotal ≥ 0

5.37 The general equation applicable here is Eq. (5.22):

�(S ...m)fs −
∑

j

...
Q j

Tσ, j
=

...
SG ≥ 0

(a) For a single stream flowing within the pipe and with a single heat source in the surroundings, this
becomes:

(�S)
...m −

...
Q
Tσ

=
...
SG ≥ 0

(b) The equation is here written for two streams (I and II) flowing in two pipes. Heat transfer is
internal, between the two streams, making

...
Q = 0. Thus,

(�S)I
...mI + (�S)II

...mII =
...
SG ≥ 0

(c) For a pump operatiing on a single stream and with the assumption of negligible heat transfer to
the surroundings:

(�S)
...m =

...
SG ≥ 0

(d) For an adiabatic gas compressor the result is the same as for Part (c).

(e) For an adiabatic turbine the result is the same as for Part (c).

(f ) For an adiabatic throttle valve the result is the same as for Part (c).

(g) For an adiabatic nozzle the result is the same as for Part (c).

5.40 The figure on the left below indicates the direct, irreversible transfer of heat |Q| from a reservoir at T1

to a reservoir at T2. The figure on the right depicts a completely reversible process to accomplish the
same changes in the heat reservoirs at T1 and T2.
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