Chapter S - Section A - Mathcad Solutions

5.2 Let the symbols Q and Work represent rates in kJ/s. Then by Eq. (5.8)

| Work| Tc
n= =1 -—
|QH| TH
kJ
Tc = 323.15K Ty := 798.15-K Qy := 250-—
S
Work := QH-(I ——C\ |Work| = 14878
TH) s
or |Work| = 148.78kW which is the power. Ans.
kJ
By Eq. (5.1), Qc = |Qu| - [Work] Qc = 101.22—=  Ans.
s

5.3 (a) Letsymbols Q and Work represent rates in kJ/s

Ty = 750-K Tc = 300-K
Tc
By Eq. (5.8): n=1-—
TH
But = |Work| Whence
Q4

Qc := |Qu| — |Work]

— |Work|
oo
Qc = |Qu| - [Work]

(b) n:=035 Qu

Work := —95000-kW
n = 0.6

. |W0rk|
n

Qu

Qp = 1.583 x 10°kW Ans.
Qc = 6.333 % 104kW Ans.
Qp = 2.714x 10°kW Ans.

Qc = 1.764x 10°kW Ans.

54 (a) Tc:=303.15K Ty = 623.15-K
Tc
NCarnot = 1 — p N = 0.55M Carnot n = 0.282 Ans.
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n
(b) n:=035 MNCarnot = - NCarnot = 0.636
0.55
Tc
By Eq. (5.8), T = —— Ty = 833.66K Ans.
1 =M carnot

5.7 Let the symbols represent rates where appropriate. Calculate mass rate of

LNG evaporation:
m3
V = 9000-— P := 1.0133-bar T :=298.15-K
]
P-V k
molwt = 17g mpNG = —— -molwt mpNG = 6254—g
mol R-T s

Maximum power is generated by a Carnot engine, for which

|Work] _ |Qu| - |Qc| _ |QH] | = TH .
Q¢ Q¢ Q| Tc
Ty = 303.15-K Tc:=113.7.K
kJ 6
Qc = 512-k—-mLNG Qc = 3.202 x 10" kW
g
Th ) 6
Work := Qc:| — -1 Work = 5.336 x 10" kW Ans.
Tc )
Qn = Qc + Work Qp = 8.538 x 10°kW Ans.
. kJ
5.8 Take the heat capacity of water to be constant at the valu Cp := 4,184-k—
gk
kJ
(a) Ty =273.15K T:=373.15K Q:=Cp(J2-T; Q= 418.4k—
g
T2 kJ
AS = Cp-In| — AS =1.305——
H20 P (T1 ) H20 kg K
- kJ
ASyo = 2 AS;es = —1.121——  Auns.
Ty kg K
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ASiotal := ASH20 + AStes ASiota] = 0.184i Ans.

kg-K

(b) The entropy change of the water is the same as in (a), and the total
heat transfer is the same, but divided into two halves.

— 1 1 kJ
ASye = = + ) ASpes = —1.208 ——
2 (323.15K 373.15K) kg K
kJ
AStotal = ASres + ASH20 AStotal = 0.097kg—-K Ans.

(c) The reversible heating of the water requires an infinite number of heat
reservoirs covering the range of temperatures from 273.15 to 373.15 K,
each one exchanging an infinitesimal quantity of heat with the water and
raising its temperature by a differential increment.

59 Py = l-bar T} == 500-K V = 0.06-m°
PV 5
n.=—— n = 1.443mol Cy:=—R Q = 15000-J
R- Ty 2

(a) Const.-V heating; AU=Q+W=Q= n-Cv-()Tz -T

Ty = Ty + T, = 1x 10°K
n-Cy
T2 Py
By Eq. (5.18), AS = n:| Cp:In —\ - R:In —\\
Ti) P1))
P, T» T
But — =—  Whence AS:=nCyln —\ AS = 20.794l Ans.
P T le K

(b) The entropy change of the gas is the same as in (a). The entropy
change of the surroundings is zero. Whence

J
AStOtal = 10.794.-— Ans.
K
The stirring process is irreversible.
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5.10 (a) The temperature drop of the second stream (B) in either 7
case is the same as the temperature rise of the first stream Cp = —R
(A), i.e., 120 degC. The exit temperature of the second 2
stream is therefore 200 degC. In both cases we therefore

have:

463.15)
343.15)

ASp = Cp-ln(

J

AS A = 8.726
A mol-K

(b) For both cases:

AStOtal = ASA + ASB

473.15)
ASR = Cp-In
B= P (593.15 )
J
ASg = —-6.577 Ans.
mol-K
J
ASiota] = 2.149 Ans.

mol-K

(c) In this case the final temperature of steam B is 80 degC, i.e., there is
a 10-degC driving force for heat transfer throughout the exchanger.

Now
463.15) 353.15)
ASp = Cp-ln ASg = Cp-In
AT (343-15] B (473.15)
J J
ASp = 8.726 ASg = —8.512 Ans.
mol-K mol-K
o J
AStotal := ASA + ASp ASiora] = 0.214 Ans.
mol-K
5.16 By Eq. (5.8) d—w—l—E dW=dQ-T Q
: dQ T °T
Since dQ/T = dS, dW = dQ - To-dS
Integration gives the required result.
T1 := 600-K Ty :=400-K Ts :=300-K

Q= —582x10°——
mol

Q:=Cp(J2-Ty
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Tz\
AS := Cp-In| — AS = -11.799
T ) mol-K
J
Work := Q — T5-AS Work = -2280 — Ans.
mol
Qo = |Qf ~ |Work Qo = 3540——
G or Ol mol Ans.
Qs
AS = — AS i = 11.8 Ans.
reservoir TG reservoir mol- K
J . .
AS + AS;eservoir = 0——— Process is reversible.
mol-K

517 Ty := 600K Tcp:=300K  Tpp:=300K Tco = 250-K

For the Carnot engine, use Eq. (5.8): |W| _ Th1 - Tcq

|Qui| TH1
The Carnot refrigerator is a reverse Carnot engine. |W| T2 — Teo
Combine Egs. (5.8) & (5.7) to get: =
Q| Tc2

Equate the two work quantities and solve for the required ratio of the heat

quantities: \
Tc2 (TH1—Tc1
ri= . r=25 Ans.
Thi \ Th2 - Tc2)

7
5.18 (a) T; := 300K P := 1.2bar Ty := 450K  Pp:=6bar Cp:= ER

J
AH = Cp(Jl2 - Ty AH = 4365 x 103m—01 Ans.
T2 Py J
AS := Cpln —\ —R-ln —\ AS = -1.582 Ans
Ti) P1) mol-K
(b) AH = 5.82-IO:SL AS = 1.484
mol mol-K
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J
© AH = -3.118-10°——  AS = 4.953

mol mol-K
J
(d) AH = —3.741.10° —— AS = 2.618
mol mol-K
@) AH = 6651100 AS = -3.607
mol mol-K

5.19 This cycle is the same as is shown in Fig. 8.10 on p. 305. The equivalent states
are A=3, B=4, C=1, and D=2. The efficiency is given by Eq. (A) on p. 305.

Temperature T, is not given and must be calaculated. The following equations
are used to derive and expression for T,.

For adiabatic steps 1 to 2 and 3 to 4:

TV = vy T3y = vy
For constant-volume step 4 to 1: Vi=Vy
Py P3
For isobaric step 2 to 3: — = —
T, T3
Tz\_y
Solving these 4 equations for T, yields: T4 = T;-| —
T3j
7 5 Cp
C, =—-R Cy=— =— =14
P M) URaaren !

Ty == (200 +273.15)K T, := (1000 +273.15)K T3 := (1700 + 273.15)K

Tz\_y
Ty = Ty — T, = 873.759K
T3)
1 (T4-T
Eq.(A)p.306 1 :=1-—. ) = 0.591 Ans.
n
vy \T3-T2)
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521 Cy:=Cp—-R Py := 2-bar Py := 7-bar Ty :=298.15-K

Cp
= v
With the reversible work given by Eq. (3.34), we get for the actual W:

Y y=14

-1
RTy|(Py) "
Work = 1.35—. P2) -1 Work = 3.6x 10°——
y—1 Pl] mol
Work
But Q=0,and W = AU = CV'()TZ ~T;  Whence Ty:=Tp+ o
Cv
T, = 471.374K
Ty P> J
AS := Cp-In T2)_ R-In P2) AS = 2914 Ans.
Tl) Pl} mol-K
525 P:=4 T := 800

Step 1-2: Volume decreases at constant P.
Heat flows out of the system. Work is done on the system.

Wiz = JP(V2=Vi = {R(F2-T1 ]

Step 2-3: Isothermal compression. Work is done on the system. Heat flows
out of the system.

P P
Wo3 = R-Tz-ln(—3\ = R-Tz-ln(i\

Pz} Pl)

Step 3-1: Expansion process that produces work. Heat flows into the
system. Since the PT product is constant,

dP
P-dT+T-dP =10 T-? = —dT (A)
P-V=R-T P-dV +V.dP = R.dT

P-dV = R.dT - V.dP = R-dT - R-T-d—;
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In combination with (A) this becomes

P-dV = R-dT + R-dT = 2-R-dT

Moreover, P3=P;— =P —
T3 T2

Vi
W31 = —J PdV = 2.R-(J'; - T3 = -2R(J1 - T2
V3

Q31 = AUz — W31 = Cy+(l1 - T3 +2-R(J1 - T3

Q31 = (Lv+2R (1 -T3 = (Lp+R (1 -T2

_ |We _ | W12+ Wa3 + W3y

n
Qin Q31
7
Cp = E-R T; = 700-K Ty := 350-K
T,
Py := 1.5-bar P3 :=P-—
Tz
3 J
Wi2 =R -T Wi =291 x 100 —
12:=-R(F2-Ty | 12 p—
P3 J
Ws3 :=R-Ty:In —\ Wo3 =2.017 x 103—
Pl] mol
J
Wit = 2R - T2 Wip = —5.82x 10° —
mol
4 J
Q31 = (Fp+R (I -T2 Q31 = 1.309x 10 —
mol
Wiz + Wa3 + W3y
n:= | | n = 0.068 Ans.

Q31
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526 T :=403.15K  Pj:=2.5bar Py = 6.5bar  Treg i= 298.15-K

P2) J
By Eq. (5.18), AS := —R.In| — AS = -7.944
Py ) mol-K

Ans.

With the reversible work given by Eq. (3.27), we get for the actual W:

Py J
Work := 1.3-R-T-In —\ (Isothermal compresion) Work = 4.163 x 103—
P ) mol

Q := —Work Q here is with respect to the system.

So for the heat reservoir, we have

- J
ASres = _Q ASreS = 13.96 Ans.
Tres mol-K
J
AStotal = AS + ASyeq ASiota] = 6.02 Ans.
mol-K

5.27 (a) By Eq. (5.14) with P = const. and Eq. (5.15), we get for the entropy change
of 10 moles

n := 10-mol
AS = n-RICPS(173.15K . 1373.15K . 5.699.0.640- 10~ >,0.0,-1.015-10°

AS = 536.ll Ans.
K

(b) By Eq. (5.14) with P = const. and Eq. (5.15), we get for the entropy
change of 12 moles

n = 12-mol

3 6

AS = n-R-ICPS()523.15K,1473.15K,1.213,28.785-10_ ,—8.824-10 ~,0.0

AS = 2018.7i Ans.
K
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5.28 (a) The final temperature for this process was found in Pb. 4.2a to be 1374.5 K.
The entropy change for 10 moles is then found as follows

n := 10-mol
AS = n-RICPS(173.15K | 1374.5K . 1.424.14.394-107 %, —4.392-10~ . 0.0

AS = 900.86i Ans.
K

(b) The final temperature for this process was found in Pb. 4.2b to be 1413.8 K.
The entropy change for 15 moles is then found as follows:

n := 15-mol

3 6

AS = n-R-ICPS()533.15K,1413.8K,1.967,31.630-10_ ,—9.873-10 ~,0.0

AS = 2657.5i Ans.
K

(¢) The final temperature for this process was found in Pb. 4.2¢ to be 1202.9 K.
The entropy change for 18.14 kg moles is then found as follows

n := 18140-mol

AS == n-RICPS(533.15K . 1202.9K 1424, 14.394-1073,-4.392-10~ 0.0

AS = 1.2436 x 106% Ans.

5.29 The relative amounts of the two streams are determined by an energy
balance. Since Q =W = (), the enthalpy changes of the two streams must
cancel. Take a basis of 1 mole of air entering, and let x = moles of chilled air.
Then 1 - x = the moles of warm air.

Tp :=298.15-K Temperature of entering air
T = 248.15-K Temperature of chilled air
Ty := 348.15-K Temperature of warm air

x-Cp-(J1 =T +(1-x)-Cp-(J2-Top =0
x:=03 (guess)
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5.30

Given x = Find(x) x =0.5

x _ (T2=To)
X

TI_TOj

Thus x = 0.5, and the process produces equal amounts of chilled and warmed
air. The only remaining question is whether the process violates the second
law. On the basis of 1 mole of entering air, the total entropy change is as
follows.

CP = %.R PO = 5~ba1‘ P = l.bar
T T

ASita1 = Xx-Cp-In —1\ + (1 -x)-Cp-In —2\ —R-In 3\
To) To)) P )
J

AStOtal = 1297

mOlK Ans.

Since this is positive, there is no violation of the second law.

Ty = 523.15-K Ty :=353.15:K Py :=3-bar Py := 1-bar
J 7
Tres := 303.15-K Work := —1800-——  Cp := —R
mol 2
Cy:=Cp-R Q = AU — Work Q = Cy-(f2-T; — Work
— J J
ASoq = —2 AS;es = 5.718 Q=-1733x 10—
Tres mol-K mol
T> P2 J
AS := Cp-In —\ —R:In —\ AS = -2.301
le Pl) mol-K
J
ASiotal = AS + AS,eq ASiotal = 3.42 K PROCESS IS POSSIBLE.
mol-
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5.33 For the process of cooling the brine:

5.34

Cp:=35—7
P kg-K

Ty = (273.15 + 25)-K
Ty == (273.15 - 15)-K
To := (273.15 + 30)-K

AH := Cp-AT

T
AS = Cp:In —2\
le

k
AT = —40-K mdot := 20 -2
SeC
T = 298.15K
T, = 258.15K
Ts = 303.15K
AH = —140&
kg
k
AS = —0.504
kg-K

n¢ = 0.27

Eq.(5.26):  Wdotigeql := mdot-(AH — Tg-AS  Wdotigeal = 256.938kW

By Eq. (5.28): . Wdotigeal

E = 110-volt

Wdotmech = _1.25'hp

Nt

i:=9.7-amp Ts :=300-K

Wdot = 951.6kW  Ans.

Wdotejeer = i'E Wdoteleet = 1.067 x 10° W

At steady state: Qdot + Wdotgject + Wdotmech = iUt =0
dt

Qdot

(&}

d .t

+Sdotg=—=-S" =0

dt

Sdotg = —Qdot

(&}

W
Sdotg = 0.45E Ans.
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5.35 Q :=25-0ohm i:= 10-amp Ts := 300-K

Wdotejeet = i2-Q Wdotejeet = 2.5 % 10° W
At steady state: Qdot + Wdotgject = iUt =0 Qdot := —Wdotg]ect
dt
dot —Qdot
Qot | Sgotg = 48t = 0 Sdotg = —2%°
c dt c
tt
Qdot = —2.5 x 10° watt Sdotg = 8. 333% Ans.
5.38 mdo Ty :=(25+273.15K  Pjp := 10bar Py = 1.2bar
7 Cp 7
Ch, = —R Cy:=Ch—R = = —
p 7 v P Y C, Y

(a) Assuming an isenthalpic process: T, := T Ty = 298.15K Ans.

T2
A Cp 1 Py
(b) AS P 4T - —\ Eq. (5.14)
R RT P,
Ty
2 Py
AS = —R-l —\ —R:In —\ AS = 17.628 ] Ans.
2 T4 Pl) mol-K
\\%
(¢) Sdotg := mdot-AS Sdotg = 48.966E Ans.

J
(d) Tg == (20+273.155 K Wioet := To'AS  Wiost = 5.168 x 103_1 Ans.
mo

7
539(@) Ty := 500K Py:=6bar  Tp:=37IK  Pp:=12bar  Cpi= R
To :=300K  pBasis: 1mol  'n:= 1mol

AH := n-Cp(Jr2 - Ty W, == AH W, = —3753.8] Ans.
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T P

T1) P1))
Eq. (5.27) Wideal = (NH - To-AS Wideal = —51637 Ans.
Eq. (5.30) Wiost := |Wideal = Wy Wiost = 1409.37 Ans.
Wi
Eq.(539)  Sgi= —= SG = 4698 Ans.
Ts K
Ws Wideal Wlost SG
J
(a) —3753.8J ~5163] 1409.37 4.698E
]
(b) —2460.9] —2953.9] 493] 1.643E
J
(¢) —3063.7J —4193.7J 11307 3.767E
]
(d) -3853.5) —4952.4] 1098.87 3.663E
J
(€) —3055.4] —4119.2) 1063.87 3.546E
mol
5.41 Pj = 2500kPa P, := 150kPa Ts := 300K mdot := 20—
secC
P> kJ
AS := —R-In —\ AS = 0.023
Py ) mol-K
kJ
Sdotg = mdot-AS Sdotg = 0.468 Ans.
sec-K

Wdotiost = To-SdolG  Ryqofoq = 140.344kW ~ Ans.

542 Qp:=1k] W :=045kJ Ty = (250 + 273.15)K Ty = 523.15K

Tc := (25 + 273.15)K Tc = 298.15K
W]

m Nactual = 0.45

Nactual =
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Tc

-— =0.43
Ty N max

Nmax = |

Since 1, yar” Nmaye the process is impossible.

543 Qp:=-150k]  Qp:=50kJ Q; := 100-kJ

Ty := 550-K Tq := 350-K Ty := 250-K  Tg := 300-K
Qu Q1 Q2 kJ
(@ Sg=—+—+— SGg = 027— Ans.
Ty Ty Tr K
(b)) Wit := Ts-Sg Wiost = 81.039kJ Ans.

544  Wdot := —750-MW Ty = (315 +273.15) K Tc := (20 + 273.15)-K

Ty = 588.15K Tc = 293.15K
Tc
(@) Npax =1 —— Nmax = 0.502 Ans.
Th
Wdot
Qdotyy = [Wdot Qdotc = Qdotyy — |Wdot]
MNmax
Qdotc = 745.297MW  (minimum value)
Wdot
(b) N = 0.6:Nmax Qdoty = M Qdoty = 2.492 x 10°W
n

Qdotc = Qdotyy — |Wdof]  Qdote = 1.742x 10°MW  (actual value)
3

River temperature rise: Vdot := 165-— p = 1-—gm
S cm3
1 Qdotc
Cp =1 = AT = ———— AT = 2.522K  Ans.
gm-K Vdot-p-Cp
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5.15

5.20

5.22

(a) With dQ¢ = CidT¢, Eq.(B)becomes:

dQy Ty Ty
—_— = - — d = —CL—dT,
CthTC TC or QH ¢ TC ¢
Substitute for d Qg and d Q¢ in Eq. (A):
dT,
AW = —chTHT—C + CLA T,
c

Integrate from 7¢, to T¢:

t Tc t t TCo
W = —CCTHln——i-CC(TC—TCO) or WZCC Ty 1H——|—Tc—TCO
TC() TC

(b) For infinite time, 7¢c = Ty, and the boxed equation above becomes:

t T,
W=CC THIHT—H+TH—TC0

Write Egs. (5.8) and (5.1) in rate form and combine to eliminate | Q "l

14 T, W . X
%=1——C=l—r or u=|W|—i—|Q| where r=
IWI+1Qcl Ty I—r

Tc
Ty

With |QC| = kA(Tc)* = kA(rTy)*, this becomes:

. 1 . r _ 4 4 = W] !
|W| <m_1)_|W|(1—}’)_kAr (Th) or A= |:k(TH)4i| (1_,-),,-3

Differentiate, noting that the quantity in square brackets is constant:

dA | |W| -3 1 | ow 4r —3
dr | k(Ty)* |:(1—r)r4+(1—r)2r3:|_ k(Ty)* |:(1—r)2r4:|

Equating this equation to zero, leads immediately to: 4r =3 or |r =0.75

Because W = 0, Eq. (2.3) here becomes:
Q = AU"=mCyAT

A necessary condition for AT to be zero when Q is non-zero is that m = oo. This is the reason that
natural bodies (air and water) that serve as heat reservoirs must be massive (oceans) or continually
renewed (rivers).

An appropriate energy balance hereis: Q = AH' =0
Applied to the process described, with T as the final temperature, this becomes:
_mTy +mT

mCp(T —T)) +m,Cp(T —T5) =0 whence T
my + m;

(1)
If my=my, T=(T+T)/2
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5.23

5.24

5.31

The total entropy change as a result of temperature changes of the two masses of water:

- r r
AS = m1Cp In +m2Cp In (2)
Ti T,

Equations (1) and (2) represent the general case. If m; = m, = m,

T? T
AS"=mCpln — or AS' =2mCpn
P VT, T

Because T = (T + 1»)/2 > /TiT», AS'is positive.

Isentropic processes are not necessarily reversible and adiabatic. The term isentropic denotes a pro-
cess for which the system does not change in entropy. There are two causes for entropy changes in a
system: The process may be internally irreversible, causing the entropy to increase; heat may be trans-
ferred between system amd surroundings, causing the entropy of the system to increase or decrease.
For processes that are internally irreversible, it is possible for heat to be transferred out of the system
in an amount such that the entropy changes from the two causes exactly compensate each other. One
can imagine irreversible processes for which the state of the system is the same at the end as at the
beginning of the process. The process is then necessarily isentropic, but neither reversible nor adia-
batic. More generally, the system conditions may change in such a way that entropy changes resulting
from temperature and pressure changes compensate each other. Such a process is isentropic, but not
necessarily reversible. Expansion of gas in a piston/cylinder arrangement is a case in point. It may be
reversible and adiabatic, and hence isentropic. But the same change of state may be irreversible with
heat transfer to the surroundings. The process is still isentropic, but neither reversible nor adiabatic.
An isentropic process must be either reversible and adiabatic or irreversible and non-adiabatic.

[z, CpdT [V CpdT

T —-Ty To—T
By inspection, one sees that for both T > T and Ty > T the numerators and denominators of the
above fractions have the same sign. Thus, for both cases (Cp), is positive.

r . dT T dT
InCrg I Crg
In(T/To) — In(To/T)

By definition, (Cp)y =

Similarly,

(CP>S -

By inspection, one sees that for both T > T and 7y > T the numerators and denominators of the
above fractions have the same sign. Thus, for both cases (Cp)y is positive.

When T = T, both the numerators and denominators of the above fractions become zero, and the
fractions are indeterminate. Application of 1I’Hopital’s rule leads to the result: (Cp), = (Cp)g = Cp.

The process involves three heat reservoirs: the house, a heat sink; the furnace, a heat source; and the
surroundings, a heat source. Notation is as follows:

|O| Heat transfer to the house at temperature T
|Qr| Heat transfer from the furnace at Tp
|O,| Heat transfer from the surroundings at 7,

The first and second laws provide the two equations:

01 =10r 410, and 2121121,
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5.32

Combine these equations to eliminate |Q, |, and solve for |QF|:

0l =10l (=12 ) I
e Tr—T,) T
With T = 295K Tr = 810K T, = 265K and | Q| = 1000 kJ
The result is: |OFr| = 151.14KkJ

Shown to the right is a scheme designed to ac- —_—
complish this result. A Carnot heat engine op- FURNACE @ 7 |
erates with the furnace as heat source and the ' '

house as heat sink. The work produced by the en- |

gine drives a Carnot refrigerator (reverse Carnot ___H"L:“L..[.,L.
engine) which extracts heat from the surround- -

ings and discharges heat to the house. Thus the Tel

heat rejected by the Carnot engine (|Q;|) and by —_—

the Carnot refrigerator (| Q»|) together provide the L HOUSE @ T I

heat | Q| for the house. The energy balances for
the engine and refrigerator are:

|W|engine = |QF| - |Ql|
|W|refrig = |Q2| - |Qa|

Equation (5.7) may be applied to both the engine e i
and the refrigerator: | SURROUNDINGS @ 7, |

1QFl _ Tr Q| _ T,
1O T 102l T
Combine the two pairs of equations:
TF TF -T Ta T— T(T
|W|engine=|Q1| ?_1 =|Q1| T |W|refrig=|Q2| 1_? =|Q2| T
Since these two quantities are equal,
o = ga 1021 = 1011 77—
= or =
L A 2 g T,

Because the total heat transferred to the house is |Q| = | Q1| + | Q»l,

Tr—T Tr—T Tr—T,
|Q| =101+ |Q1|T_ T, = Q] (1 + T _ T(,> = lQl'T——T(,
But Qi = |Qrl— whence |Q|=|QF|1<u>
TF TF T_T(T

Solution for |Q ¢| yields the same equation obtained more easily by direct application of the two laws
of thermodynamics to the overall result of the process.

The process involves three heat reservoirs: the house, a heat source; the tank, a heat source; and the
surroundings, a heat sink. Notation is as follows:
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| 0| Heat transfer from the tank at temperature 7
|Q’| Heat transfer from the house at 7’
|O,| Heat transfer to the surroundings at 7,

The first and second laws provide the two equations:

10,1 101 Q]
=10, d - — - =0
101+ 10" = Qs an T, T T
Combine these equations to eliminate |Q, |, and solve for |Q|:
o1=101(==L) I
B T-T,) T
With T =448.15K T'=297.15K T, = 306.15 K and |Q’| = 1500 kJ
The result is: |Q| = 143.38 k] . i
|| TANK @ T |
Shown to the right is a scheme designed to accom- o T
Q]

plish this result. A Carnot heat engine operates
with the tank as heat source and the surroundings
as heat sink. The work produced by the engine
drives a Carnot refrigerator (reverse Carnot en-
gine) which extracts heat | Q’| from the house and
discharges heat to the surroundings. The energy
balances for the engine and refrigerator are:

|W|engine = |Q| - |Q01|
|W|refrig = |Q02| - |Q/|
Equation (5.7) may be applied to both the engine
and the refrigerator:
|Q(71| — & .
10 T o' 1

Combine the two pairs of equations:

|QO’2| _ TU

W

~ ' Fengne

|Q{7|

SURROUNDINGS @ 7, §|

Qo

W

refng

| houst@ 7’ |

i

T, T-T, A Ts T =1
|W|engine=|Q| 1_? = 10| T |W|refrig=|Q| F = Q| T’
Since these two quantities are equal,
ot =tr _ oyl T o1=101(==E) 1
= or = —
T T’ T-T,)] T

5.36 For a closed system the first term of Eq. (5.21) is zero, and it becomes:

d(mS)ey
dt

o _
T;,;

+Y = =5

J

648

=

0



5.37

5.40

where Q j 1s here redefined to refer to the system rather than to the surroundings. Nevertheless, the sec-

ond term accounts for the entropy changes of the surroundings, and can be written simply as d S /dt:

d(mS)ey ds! . ds! dsT .
_ sur__ ¢ > () v s _ S > ()
d1 ar 0= o i dr 9=

Multiplication by dt and integration over finite time yields:

AS. 4+ ASL,. >0 or ASiorar = 0

surr

The general equation applicable here is Eq. (5.22):

ASris =) =862 0
il

(a) For a single stream flowing within the pipe and with a single heat source in the surroundings, this
becomes:

(AS)na—ngsczo

(b) The equation is here written for two streams (I and II) flowing in two pipes. Heat transfer is
internal, between the two streams, making Q = 0. Thus,

(AS)pity + (AS)riy = Sg = 0

(c) For a pump operatiing on a single stream and with the assumption of negligible heat transfer to
the surroundings:
(AS)m =S85>0
(d) For an adiabatic gas compressor the result is the same as for Part (c).
(e) For an adiabatic turbine the result is the same as for Part (c).
(f) For an adiabatic throttle valve the result is the same as for Part (¢).
(g) For an adiabatic nozzle the result is the same as for Part (c).
The figure on the left below indicates the direct, irreversible transfer of heat | Q| from a reservoir at T

to a reservoir at 7,. The figure on the right depicts a completely reversible process to accomplish the
same changes in the heat reservoirs at T; and T5.

T T 1

|Q] 10|
10| LA

T T,
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