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Graphene oxide (GO) is a nanomaterial that provokes autophagy in CT26 colon cancer cells and confers
antitumor effects. Here we demonstrated that both GO and the chemotherapy drug cisplatin (CDDP)
induced autophagy but elicited low degrees of CT26 cell death. Strikingly, GO combined with CDDP (GO/
CDDP) potentiated the CT26 cell killing via necrosis. GO/CDDP not only elicited autophagy, but induced
the nuclear import of CDDP and the autophagy marker LC3. The nuclear LC3 did not co-localize with p62

11:33; W";ds" or Lamp-2, neither did blocking autolysosome formation significantly hinder the nuclear import of LC3/
Ci‘;;lzﬁigy CDDP and necrosis, indicating that autophagosome and autolysosome formation was dispensable.
Chemoresistance Conversely, suppressing phagophore formation and importin-o/f significantly alleviated the nuclear

import of LC3/CDDP and necrosis. These data suggested that GO/CDDP diverted the LC3 flux in the early
phase of autophagy, resulting in LC3 trafficking towards the nucleus in an importin-o/B-dependent
manner, which concurred with the CDDP nuclear import and necrosis. Intratumoral injection of GO/
CDDP into mice bearing CT26 colon tumors potentiated immune cell infiltration and promoted cell death,
autophagy and HMGBI release, thereby synergistically augmenting the antitumor effects. Altogether, we
unveiled a mechanism concerning how nanomaterials chemosensitize cancer cells and demonstrated the
potentials of GO as a chemosensitizer.
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1. Introduction cytoplasmic materials involve multiple proteins. For instance,

microtubule-associated light chain 3 (LC3) plays roles in the

Macroautophagy (henceforth referred to as autophagy) is a
cellular process by which cytoplasmic materials are delivered to
lysosomes for degradation [1]. Autophagy induction through the
inhibition of mammalian target of rapamycin (mTOR) results in
translocation of the mTOR substrate complex from the cytosol to
the endoplasmic reticulum (ER). This leads to the recruitment of
class III phosphatidylinositol-3-OH kinase (PI(3)K) complex to the
ER and induces the formation of phagophore. Ensuing phagophore
elongation, autophagosome formation and engulfment of
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completion of autophagosome formation, during which lipid
conjugation converts LC3 from the soluble form (LC3-I) to the form
attached to the phagophore membrane (LC3-II). The adaptor pro-
tein p62 interacts with polyubiquitinated targets and the p62-cargo
complex is selectively tethered to autophagosomes by the inter-
action of p62 and LC3. At the late stage, autophagosomes undergo
fusion with lysosomes to form autolysosomes, which is mediated
by a receptor in the lysosomal membrane, the lysosome-associated
membrane protein 2 (Lamp-2). In the autolysosomes, the lumenal
cargo is degraded by lysosomal enzymes (for review see
Refs. [1—3]). Autophagy is frequently activated in cancer cells in
response to chemotherapy [2]. Although the roles of autophagy in
cancer therapy remain elusive, it is known that autophagy has two
primary and opposing functions in tumor cells in response to
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chemotherapy. One is the cytoprotective function that enables cells
to survive the stress; the other is the cytotoxic function that may
promote tumor cell killing [4].

Graphene oxide (GO) is a derivative of graphene and has drawn
intense attention for many bioapplications including cellular
growth and differentiation [5] gene and drug delivery [6,7] and
photothermal therapy [8,9]. GO can simultaneously activate toll-
like receptor (TLR)-4 and -9 responses as well as autophagy in
macrophages [10] and colon cancer cell CT26 [11]. Furthermore,
injection of GO alone stimulates the immune cell infiltration into
the tumor bed and inhibits colon cancer growth in mice [11].

Chemotherapy is one of the cancer therapy modalities and
numerous drugs such as irinotecan (CPT-11), doxorubicin (DOX),
oxaliplatin (OXA) and cisplatin (CDDP) have been used for
chemotherapy [12,13]. Treatment of colon cancer cells with CPT-11
(10—50 pg/mL), CDDP (100 pg/mL), OXA (5—120 pg/mL) or DOX
(2—10 pg/mL) for 24 h can cause cell death [14—16]. However, a
variety of tumor and cancer cell types have evolved resistance to
chemotherapy drugs, thus entailing the need of new drugs or
combination therapies to overcome the chemoresistance. In this
regard, nanomaterials such as fullerene C60 nanocrystal (Nano-
C60) may be a new chemosensitizer, because CDDP at 10 pg/mL
only kills 6.3% of HeLa cells but combination of CDDP with Nano-60
greatly enhances the killing of HeLa cells to 34.2% [17]. Such che-
mosensitization depends on autophagy induced by Nano-60, but
the underlying mechanism remains unknown [17]. Also, GO con-
jugated with chemotherapy drugs (DOX and CPT-11) can enhance
the killing of MCF-7 cells that are resistant to DOX and CPT [7].

Given that autophagy may attenuate the chemoresistance of
cancer cells [7,17] and GO is a potent autophagy inducer in colon
cancer cell CT26, we were inspired to explore whether GO can act in
concert with chemotherapy drugs to overcome the chemo-
resistance, enhance the CT26 cell killing and ameliorate colon
cancer treatment. We first evaluated which combination of GO and
chemotherapy drug enhanced the killing of CT26 cells and explored
the death mechanism. We next examined the correlation of cell
death, autophagy and intracellular trafficking after treatment with
GO and the drug. Finally, we assessed the antitumor effects after co-
injection of GO and the drug into immunocompetent mice bearing
CT26 tumors.

2. Materials and methods
2.1. Cell culture

Mouse colorectal carcinoma cell CT26 (ATCC CRL-2638) was routinely cultured
and passaged in T75 flasks at 37 °C and 5% CO,, using RPMI-1640 medium (Gibco)
supplemented with 10% fetal bovine serum (FBS, Biological Industries) and 1% an-
tibiotics (PEN-STREP-AMPHO SOL, Biological Industries).

2.2. Preparation of GO nanosheets and chemotherapy drug stock solutions

The GO nanosheets (thickness<2 nm) with characteristic functional groups and
a lateral size of =450 nm in mean diameter (size range=100—800 nm) were pre-
pared and characterized as described previously [10] and dispersed in water at
250 pg/mL as the stock solution. To determine the subcellular distribution, GO was
labeled with rhodamine 6G (R6G) as described previously [18,19] and dispersed in
water (250 pg/mL). The chemotherapy drugs CPT-11 (Sigma) and CDDP (Millipore)
were dissolved in dimethyl sulfoxide (DMSO) at 50 and 25 mg/mL, respectively. DOX
(Millipore) and OXA (Sigma) were dissolved in water at 10 and 5 mg/mL,
respectively.

2.3. Treatment of cells with GO and chemotherapy drugs

For all treatments, CT26 cells were seeded to 6-well plates (3 x 10° cells/well),
12-well plates (1.5 x 10 cells/well) or 10 cm plates (1.8 x 10° cells/dish) overnight.
For GO treatment, the GO stock solution (250 pg/mL) was mixed with equal volume
of concentrated complete medium (2x), and further diluted to 50 pg/mL by mixing
with complete RPMI-1640 medium (1x). After PBS washes, the cells were treated
with GO (50 pg/mL) by culturing in the GO-containing medium for 24 h. For
chemotherapy drug treatment, the drug stock solution was added to the complete
RPMI-1640 medium containing 10% FBS (1x ) to the final concentration (see Results)

and the cells were cultured in the drug-containing medium for 24 h. For co-
treatment with GO and the drug, the drug stock solution was added to the GO-
containing medium to the final concentration (see Results) and the cells were
cultured for 24 h. For the untreated control, the cells were simply cultured using the
complete medium (1x) for 24 h.

For pretreatment with inhibitors, CT26 cells were cultured in 6-well plates
overnight and the inhibitor stock solution was directly added to the RPMI-1640
medium to final concentrations (1 mm for 3-MA; 50 nm for BafA1; 50 um for IVM;
100 pm for Nec-1). As the control, DMSO used for dissolving CDDP was added to the
medium (20 pg/mL). After gentle shaking, the cells were incubated at 37 °C for 1 h
(for DMSO, BafA1, IVM and Nec-1) or 12 h (for 3-MA). After PBS washes, the cells
were co-treated with GO/CDDP as described above.

2.4. Cell death analyses

CT26 cells cultured in 12-well plates were treated with chemotherapy drugs
with or without GO as described above. After 24 h incubation, the cell viability was
evaluated by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide,
Sigma) assays. Alternatively, the cells cultured in 6-well plates were co-treated with
GO/CDDP for 24 h as described above. Apoptosis and necrosis were quantified by
two-dimensional flow cytometry, using the PE Annexin V/7 amino-actinomycin (7-
AAD) Apoptosis Detection Kit I (BD Biosciences).

2.5. Immunofluorescence microscopy and analysis

CT26 cells were seeded to coverslips in the 6-well plates (3.0 x 10° cells/well)
and co-treated with GO/CDDP for 24 h, with or without inhibitor pretreatment. After
PBS washes, the cells were fixed and permeabilized as described [10], washed with
PBS and incubated with the primary antibody (1:100 dilution) for 1 h at room
temperature. The primary antibody was specific for active caspase 3 (ab2302,
abcam), HMGB1 (ab18256, abcam), LC3 (LC3B isoform, 3868, Cell Signaling), p62
(H00008878, Abnova) or Lamp-2 (GTX13524, GeneTex). After PBS washes, the cells
were incubated with the secondary antibody (1:100 dilution) for 1 h at room tem-
perature in the dark. The secondary antibodies purchased from Jackson ImmunoR-
esearch included Cy3-conjugated goat anti-mouse (for p62) or anti-rat (for Lamp-2)
IgG, or Alexa 488 goat anti-rabbit antibody (for LC3, caspase 3 and HMGB1). For LC3
labeling and blue fluorescence emission, Alexa Fluor® 405-conjugated goat anti-
rabbit IgG (Invitrogen) was used as the secondary antibody. After washing, the
cells were counterstained with 4,6-diamidino-2-phenylindole (DAPI, Vector Labs)
and visualized with a confocal microscope. The images were captured and analyzed
using Image-Pro Plus 6.0 (Media Cybernetics).

For quantitative analyses, =100—150 cells from 3 independent culture experi-
ments were counted for each group. Dividing the number of caspase 3 or cyto-
plasmic HMGB1™ cells by DAPI™ cells yielded the percentages of caspase 3" cells or
HMGBT1 release. The number of cells with LC3/p62 or LC3/Lamp-2 co-localizing in
the cytosol was also counted and divided by the number of DAPI™ cells. The cells
containing 3 or more LC3 puncta in the nucleus were scored as LC3*. Dividing the
number of LC3" cells by the number of DAPI* cells yielded the percentage of cells
with LC3 puncta in the nucleus.

2.6. Analysis of CDDP concentrations

CT26 cells cultured in 10 cm plates were treated with GO, CDDP or GO/CDDP,
trypsinized and lysed in RIPA buffer containing 1% Triton-X 100. Alternatively, the
nuclear fraction was separated as described [20]. The Pt concentrations in the whole
cell lysates and the nuclear fractions were analyzed by inductively coupled plasma
mass spectrometry (ICP-MS, Agilent, 7500ce).

2.7. Animal experiment

Animal experiments were performed in compliance with the Guide for the Care
and Use of Laboratory Animals (Ministry of Science and Technology, Taiwan), with
the approval of the National Tsing Hua University Institutional Animal Care and Use
Committee. Mouse CT26 cells were resuspended in PBS (1 x 10° cells/mL) and
injected (5 x 10* cells in 50 pL) subcutaneously into the front of the thigh of BALB/
cByJNarl male mice (6 weeks). The tumor volume reached =10 mm? in 5 days
(defined as day 0) and then PBS (n = 4), GO (2.5 mg/kg, n = 4), CDDP (10 mg/kg, n = 6)
or GO/CDDP (2.5 mg/kg GO+10 mg/kg CDDP, n = 6) was injected intratumorally
using the concentrations described previously [14,21,22]. The mice received the
second injection again at day 6 and were sacrificed at day 18. Alternatively, the mice
were sacrificed at day 5 and the tumors were removed and sectioned.

2.8. Histology and immunohistochemistry

The cryostat sections (5 pm thick) were stained using the Live/Dead viability
assay kit (Invitrogen). For immunohistochemical staining, the cryostat sections were
fixed in methanol, washed and blocked with the blocking buffer (0.1% Tween 20, 1%
bovine serum albumin, 1% goat serum in PBS, pH 7.4) for 30 min, followed by in-
cubation with the primary antibody (1:50 dilution) for 1 h at room temperature. The
primary antibodies specific for active caspase 3, HMGB1, L1/calprotectin (for
macrophage), CD4, CD8 and CD11c (for DCs) were purchased from abcam. The
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primary antibody specific for LC3 was purchased from Cell Signaling. After 3 PBS
washes, the sections were incubated with the secondary antibody for 1 h at room
temperature in the dark. The secondary antibodies were Alexa 488-conjugated goat
anti-rabbit (for HMGB1 and LC3, Jackson ImmunoResearch) or anti-mouse (for CD4,
L1/calprotectin and CD11c, Jackson ImmunoResearch) antibody or Cy3-conjugated
goat anti-rat IgG (for CD8, Invitrogen). The sections were counterstained with
DAPI, examined using the confocal microscope and 7—10 images for each group
were quantified using Image-Pro Plus 6.0. Dividing the green or red fluorescence
intensity (antigen) by the blue fluorescence intensity (DAPI) yielded the percentages
(e.g. the percentage of HMGBI1 release).

2.9. Statistical analysis

The quantitative in vitro data were statistically analyzed by one-way ANOVA and
represented the mean + standard deviation (s.d.) of at least 3 independent culture
experiments. The in vivo image analysis data were also analyzed by one-way ANOVA.
p < 0.05 was considered significant.

3. Results

3.1. Combination of GO and chemotherapy drugs for improved
cytotoxicity on colon cancer cell

To explore whether GO enhanced the cytotoxic effects of
chemotherapy drugs, we separately treated CT26 cells for 24 h with
4 drugs (CPT-11, DOX, OXA and CDDP) at concentrations that
reportedly impart cytotoxicity [14—16]. Without GO co-treatment,
CPT-11 (50 pg/mL), DOX (5 pug/mL) and OXA (100 pug/mL) impar-
ted cytotoxicity, as judged from the lower cell density (Fig. 1A) and
viability (Fig. 1B) than the untreated control. However, co-
treatment with GO at 50 pg/mL (a concentration sufficient to

induce autophagy in CT26 cells [11]) and either one of these drugs
did not further lower the viability. In contrast, CT26 cells were
resistant to CDDP as CDDP (200 pg/mL) alone only decreased the
cell viability to 82.0 + 4.8% (Fig. 1B). However, GO/CDDP co-
treatment led to a precipitous decrease of cell viability to
35.0 + 5.6% (Fig. 1B), indicating that GO (50 pg/mL) and CDDP
(200 pg/mL) synergistically enhanced the killing of CT26 cells. The
synergistic killing was also observed at low CDDP concentration
(25 pg/mL), albeit to a lesser extent (data not shown).

3.2. Combination of GO and CDDP enhanced the necrosis of CT26
cells

To evaluate the death mechanism induced by GO/CDDP, we
treated CT26 cells with GO (50 pg/mL), CDDP (200 pg/mL) or co-
treated cells with GO/CDDP for 24 h and measured necrosis/
apoptosis by Annexin V/7-AAD staining and flow cytometry. Fig. 2A
depicts that both GO and CDDP only induced slight necrosis and
apoptosis, whereas GO/CDDP resulted in 63.9 + 4.0% of necrotic
cells and 13.3 + 0.9% of apoptotic cells. Caspase-3 immunostaining
and ensuing image analysis attested that GO/CDDP provoked a low
percentage (16.1 + 2.2%) of apoptotic cells (Fig. 2B—C). Furthermore,
we performed immunofluorescence microscopy for high mobility
group B1 (HMGB1), which is a nuclear protein but is released into
cytosol and out of cells after necrosis [14,23—25]. Fig. 2D illustrates
that HMGB1 was released into the cytosol or out of cells in the GO/
CDDP group (arrows) but was mainly retained in the nuclei in other
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Fig. 1. Combination of GO and chemotherapy drugs for improved killing of CT26 cells. (A) Microscopic observation. (B) Cell viability measured by MTT assay. CT26 cells seeded to 6-
well plates (3.0 x 10° cells/well) were cultured overnight, washed with PBS and treated for 24 h in RPMI-1640 medium containing 10% FBS and the chemotherapy drug (50 pg/mL of
CPT-11, 5 pg/mL of DOX, 100 pg/mL of OXA or 200 pg/mL of CDDP), with or without 50 pg/mL of GO. Quantitative data represent the mean + S.D. of at least 3 independent culture

experiments.
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Fig. 2. Combination of GO and CDDP enhanced the necrosis of CT26 cells. CT26 cells were treated with GO (50 pg/mL) alone, CDDP (200 pg/mL) alone or co-treated with GO/CDDP
for 24 h and measured for necrosis/apoptosis by Annexin V/7-AAD staining and flow cytometry (A). The cells were subjected to immunofluorescence microscopy and image analysis
for active caspase 3 (B and C) and HMGB1 (D and E). For quantitative image analysis, 100—150 cells from 3 independent culture experiments were counted and the percentages of
cells with active caspase 3 and HMGB1 release were calculated as described in Materials and methods. Arrowheads indicate the nuclear HMGB1; arrows indicate the HMGB1

released into cytosol.

groups (arrowheads). Image analysis (Fig. 2E) further indicated that
up to 81.8 + 2.7% of cells released HMGB1 into cytosol after GO/
CDDP co-treatment. The Western blot (Fig. S1) also indicated that
GO/CDDP gave rise to the decrease of RIP1 and increase of RIP3
proteins, a hallmark of necrosis. These data collectively confirmed
that necrosis contributed to the GO/CDDP-induced cell death.

3.3. Induction of autophagy and nuclear import of LC3 and CDDP

Since GO at 50 ug/mL induces autophagy [10], we next explored
the extent of autophagy by treating CT26 cells as in Fig. 2 and
performing immunofluorescence microscopy. As shown in
Fig. 3A—B, GO or CDDP triggered co-localization of LC3 puncta and
p62 as well as co-localization of LC3 puncta and Lamp-2 in the
cytosol (indicated by arrows), which indicate the formation of

autophagosomes and autolysosomes, respectively. GO/CDDP also
elicited the co-localization of LC3/p62 and LC3/Lamp-2 in the
cytosol. Meanwhile, GO, CDDP and GO/CDDP all induced the con-
version of LC3-I to LC3-II (Fig. S2). Note, however, that only GO/
CDDP additionally evoked evident accumulation of LC3 puncta in
the nucleus (Fig. 3A—B) and these LC3 puncta did not co-localize
with p62 or Lamp-2 (arrowheads in Fig. 3A—B, Fig. S3).

The image analysis (Fig. 3C) further attested that GO alone led to
>60% of cells with LC3" autophagosomes (top panel) and autoly-
sosomes (middle panel) in the cytosol, but <25% of cells with LC3
puncta in the nucleus (lower panel). Compared to GO, CDDP led to
lower percentages of cells with LC3™ autophagosomes and auto-
lysosomes in the cytosol, and <20% of cells with LC3™ puncta in the
nucleus (lower panel). GO/CDDP, intriguingly, elicited moderate
percentages of cells with LC3™ autophagosomes and autolysosomes
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LC3*.

in the cytosol, but gave rise to >80% of cells with LC3 puncta in the
nucleus (lower panel in Fig. 3C and Fig. S4). Because LC3 is generally
considered a cytoplasmic protein [1], these data suggested that GO/
CDDP provoked nuclear import of LC3.

To examine whether GO was concomitantly transported to the
nucleus upon GO/CDDP treatment, we treated cells with rhoda-
mine 6G-conjugated GO (GO-R6G) alone or together with CDDP
(GO-R6G/CDDP), followed by immunolabeling of LC3 with the blue
fluorescence-emitting antibody. In the GO-R6G-treated cells (upper

panel, Fig. 4A) both LC3 and GO-R6G were mainly localized in the
cytosol. In the cells co-treated with GO-R6G/CDDP (lower panel,
Fig. 4A), abundant LC3 was translocated to the nucleus whereas
GO-R6G remained in the cytosol, indicating that GO/CDDP did not
induce the GO transport towards nucleus.

We next explored whether the platinum (Pt)-containing CDDP
was transported to the nucleus by treating CT26 cells as in Fig. 3 and
analyzing Pt concentrations in the nuclear fraction (Fig. 4B) and cell
lysate (Fig. 4C) by inductively coupled plasma mass spectrometry
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(ICP-MS). As shown, the nuclear Pt concentration was only
14.8 + 0.2 ppb in the CDDP-treated cells, but was significantly
(p < 0.05) elevated to 31.4 + 0.1 ppb in the GO/CDDP-treated cells
(Fig. 4B), indicating that GO/CDDP improved the nuclear import of
CDDP. Conversely, the Pt concentrations were statistically similar
(p > 0.05) in the whole lysates of the CDDP- and GO/CDDP-treated
cells (Fig. 4C), suggesting that GO/CDDP did not enhance the overall
CDDP uptake into the cells.

3.4. Essential events for nuclear import and necrosis

To elucidate the events essential for the enhanced nuclear
transport, we treated the cells with the inhibitors of phagophore
formation (3-methyladenine, 3-MA), autolysosome formation
(bafilomycin A1, BafA1) or importin-a/f (ivermectin, IVM [26]),
followed by GO/CDDP co-treatment. The immunofluorescence mi-
croscopy (Fig. 5A) and image analysis (Fig. 5B) demonstrated that
GO/CDDP treatment without any inhibitor (Control) still induced
the nuclear transport of LC3. BafA1 pretreatment hindered LC3/p62
and LC3/Lamp-2 co-localization, indicating the inhibition of auto-
phagy, but BafA1 did not significantly (p > 0.05) abrogate the nu-
clear translocation of LC3, as 65.0 + 14.1% of BafAl-treated cells
contained LC3 dots in the nucleus. Conversely, 3-MA treatment
remarkably inhibited the formation of LC3 puncta and ensuing
nuclear import, as the percentage of cells containing nuclear LC3

dropped to 17.5 + 3.5%. IVM treatment still allowed for the co-
localization of LC3/p62 and LC3/Lamp-2 in the cytosol (Fig. 5A),
but reduced the percentage of cells containing nuclear LC3 to
12.5 + 3.5% (Fig. 5B), indicating that inhibiting importin-a/f did not
completely abolish autophagy but suppressed the nuclear import of
LC3.

Meanwhile, the ICP-MS analysis (Fig. 5C) delineated similar
nuclear Pt concentrations in the BafA1 (44.7 + 8.7 ppb) and the
Control (40.1 + 4.6 ppb) groups. However, treatment with 3-MA or
IVM significantly lowered the nuclear Pt concentrations to
26.3 + 6.0 and 31.5 + 5.7 ppb, respectively.

Since GO/CDDP substantially enhanced the CT26 necrosis
(Fig. 2), we next assessed whether the necrosis was correlated with
the nuclear import. The bright field observation and HMGB1
staining (Fig. 5D) revealed that 3-MA or IVM, similar to the necrosis
inhibitor necrostatin 1 (Nec-1), alleviated the cytotoxicity and
mitigated the HMGB1 release to the cytosol. Fig. 5E further showed
that 3-MA and IVM significantly attenuated the GO/CDDP-induced
necrosis when compared with the Control and BafAl. Fig. 5 alto-
gether confirms that inhibiting the phagophore formation by 3-MA
and suppressing importin-c/ by IVM abolished the nuclear import
of LC3/CDDP and the GO/CDDP-induced necrosis. However, sup-
pressing autolysosome formation by BafAl neither remarkably
impeded the LC3/CDDP nuclear transport nor tremendously
attenuated necrosis.
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3.5. Combination of GO and CDDP synergistically enhanced
antitumor effects

We next evaluated the potential of GO/CDDP in colon cancer
therapy by injecting CT26 cells subcutaneously into BALB/c mice,
followed by intratumoral injections of PBS (n = 4), CDDP (n = 6), GO
(n = 4) or GO/CDDP (n = 6) at day O (when the tumor volume
reached =10 mm?) and day 6. In comparison with PBS, both GO
and CDDP slightly decelerated the tumor growth (left panel,
Fig. 6A) although the tumor volume at day 18 (right panel, Fig. 6A)
was not significantly smaller than that of the PBS group. None-
theless, GO/CDDP resulted in slower tumor growth and signifi-
cantly (p < 0.05) smaller tumor (212 + 98 mm?° at day 18) than PBS,
without compromising the body weight (Fig. S5).

For histology assessment, we repeated the aforementioned
experiment and removed the tumors at day 5 for sectioning and
analysis. As confirmed by Live/Dead assays as well as the LC3 and
HMGB1 immunostaining/quantitative analyses (Fig. 6B), GO alone
and CDDP alone induced significantly (p < 0.05) more pronounced
cell death, autophagy and necrosis than PBS. Furthermore, the GO/
CDDP group elicited significantly (p < 0.05) higher degrees of cell
death, autophagy and necrosis than all other groups.

Compared with PBS, both GO and CDDP significantly (p < 0.05)
stimulated the infiltration of macrophage, dendritic cells (DCs),
CD4" and CD8™ T cells into the tumor bed, albeit the lack of sta-
tistical significance between the GO and CDDP groups (Fig. 6C). GO/
CDDP also evoked the infiltration of immune cells and significantly
excelled in the infiltration of DCs and CD4™ T cells when compared
with GO alone and CDDP alone (Fig. 6C).

4. Discussion

Chemoresistance is one major obstacle to the success of
chemotherapy and is commonly attributed to the inability of cancer
cells to die by apoptosis. The development of anticancer modalities
that can induce other forms of cell death is therefore desired for
cancer therapy [27]. One overriding objective of this study was to
evaluate the potential of GO as a chemosensitizer. Among the 4
drugs, we uncovered that GO can sensitize the CDDP-mediated
killing of CDDP-resistant CT26 cells (Fig. 1). Of note, GO and CDDP
alone only elicited low degrees of apoptosis and necrosis (Fig. 2)
despite the induction of autophagy (Fig. 3), suggesting that GO and
CDDP alone did not evoke evident autophagy-associated death in
CT26 cells. In contrast, GO/CDDP-induced moderate levels of
autophagic flux (Fig. 3), but substantially potentiated the nuclear
import of LC3 (Fig. 3) and CDDP (Fig. 4) and enhanced the necrosis
(Fig. 2), without provoking the nuclear import of GO (Fig. 4).
Neither did the nuclear LC3 co-localize with the lysosomal mem-
brane protein Lamp-2 (Figs. 3 and 5), nor blocking autolysosome
formation significantly inhibited the nuclear import of LC3/CDDP
and alleviated cell necrosis (Fig. 5), indicating that autolysosome
formation (hence the completion of autophagic flux) was
dispensable for the nuclear trafficking of LC3/CDDP and necrosis.

Conversely, treatment with 3-MA significantly impaired the
nuclear import of LC3/CDDP and alleviated the necrosis (Fig. 5).
Because 3-MA inhibits class I and class III Ptdins3Ks and hence
phagophore-mediated sequestration [28], the phagophore forma-
tion appeared to be crucial for the LC3 nuclear import. However, the
nuclear LC3 did not co-localize with p62 (Figs. 3 and 5), suggesting
that tethering of p62 to LC3 on the elongating phagophore was
dispensable. Meanwhile, IVM suppression of importin-a,/B, which is
essential for nuclear import of many molecules [29], mitigated the
nuclear import of LC3/CDDP and ablated the necrosis (Fig. 5),
thereby underscoring the importance of importin-associated nu-
clear import in the GO/CDDP-induced necrosis. These data

altogether suggested that, in addition to the complete autophagic
flux, GO/CDDP resulted in diversion of the LC3-containing phag-
ophore from engaging with p62. The diverted LC3 flux was directed
towards the nucleus in a way dependent on importin-o/B, which
occurred concomitantly with the CDDP nuclear import and necrosis
(Fig. S6).

These findings arouse several intriguing questions. First, auto-
phagy has long been considered an event occurring in the cytosol,
then how was LC3 transported into the nucleus after GO/CDDP co-
treatment? In this regard, in fact some researchers have observed
the presence of LC3 in the nucleus [30—33] despite the lack of
follow-up investigations. It was also unveiled that LC3 can shuttle
between the cytosol and nucleoplasm in COS-7 cells [34]. However,
the mechanisms and physiological roles of the LC3 nuclear trans-
port remain unknown. Nonetheless, LC3 can be incorporated into
intracellular protein aggregates [33] and exposure of cells (e.g. NIH-
3T3) to growth factor increases the interaction of extracellular
signal regulated kinase (ERK) cascade components with autophagy
proteins such as LC3 in the cytosol and nucleus [35]. These auto-
phagy proteins might have formed pre-autophagosomal structures
and interacted with ERK2 to regulate the ERK phosphorylation [35].
In light of these notions and the finding that the GO entry into CT26
cells elicits TLR4 and TLR9 responses [11], which signal through the
nuclear translocation of transcription factors, we propose that, in
addition to the LC3 destined to autolysosomes, GO/CDDP co-
treatment provoked the interaction of LC3 with other proteins
(e.g. transcription factors or signaling complexes) and re-routed the
LC3 flux towards nucleus with the aid of importin-a/f.

Second, why did GO/CDDP concomitantly enhance CDDP de-
livery into the nucleus? CDDP can be taken up into cells by passive
diffusion and copper transporters and acts on genomic DNA to
induce cell death, but little is known about its nuclear import
pathway [36,37]. Yet it is known that only =1-5% of intracellular
CDDP binds to DNA [36,37] and the remaining 75—85% of CDDP is
associated with other molecules such as metallothionein/gluta-
thione [36], microfilaments and proteins [38]. Of note, CDDP can be
transported to lysosomes for degradation [39,40]| and autophagy
may play roles in this delivery route [41,42]. As such, it is tempting
to speculate that CDDP-induced autophagy resulted in the CDDP
delivery into lysosomes for degradation, which at least partly
accounted for the resistance. GO/CDDP treatment might have
diverted the autophagic flux and hence reduced the autophagy-
mediated CDDP accumulation in the lysosome, thereby enabling
the delivery of more CDDP into the nucleus.

Third, why did GO/CDDP trigger necrosis, instead of apoptosis,
as the major form of cell death? For a long time, the antineoplastic
effects of CDDP have been ascribed to its ability to generate DNA
lesions, hence inducing either senescence or apoptosis [36,37].
However, lines of evidence have shown that CDDP triggers not
only apoptosis but also necrosis [43], especially in cancer cells
resistant to chemotherapy drugs [37,44]. The cytotoxic effects of
CDDP also arise from both nuclear and cytoplasmic signaling
pathways [40]. Although the molecular mechanisms that underlie
the cytotoxic potential of cytoplasmic CDDP remain poorly un-
derstood, it was likely that the enhanced nuclear import of CDDP
altered the distribution of CDDP in the cytosol and nucleus,
leading to the switch of death mechanisms. Meanwhile, GO
treatment of macrophages induces programmed necrosis in a TLR4
signaling-dependent manner [45]. Since GO triggers the TLR4 re-
sponses in CT26 cells [11], the TLR4 responses might have
orchestrated with the CDDP-induced responses to promote ne-
crosis of CT26 cells.

In vivo, antineoplastic chemotherapies are particularly effi-
cient when they elicit immunogenic cell death, which is medi-
ated by damage-associated molecular patterns (DAMPs) such as
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the exposure of calreticulin (CRT) on the cell surface, release of
HMGBI1 and secretion of adenosine triphosphate (ATP) [46]. The
binding of these DAMPs to receptors on the DCs triggers host
immune responses and promotes the antitumor effects [46].
However, not all chemotherapeutic agents can effectively induce
active emission of DAMPs by dying tumor cells [47]. For
instance, in the murine colon cancer models CDDP fails to elicit
CRT exposure and immunogenic cell death, which contributes to
the colon cancer resistance to CDDP [14]. In accord with this
notion, CDDP only conferred marginal antitumor effects
(Fig. 6A—B).

Conversely, autophagy is essential for the immunogenic release
of ATP from dying tumor cells and the recruitment of DCs and T
lymphocytes into the CT26-derived colon cancer bed after
chemotherapy [48]. GO/CDDP provoked potent autophagy, trig-
gered more pronounced cell death and HMGB1 release than GO
and CDDP in vitro (Fig. 2) and in vivo (Fig. 6B), suggesting that GO/
CDDP was able to improve the release of DAMPs to potentiate the
host immune response (e.g. immune cell infiltration). Further-
more, GO induced autophagy and TLR4 signaling upon exposure to
CT26 cells [11] and macrophages [10]. As such, one may envisage
that GO injection into the CT26 tumors not only acted on the tu-
mor cells, but also activated macrophages and TLR4 signaling,
thereby further enhancing host immune responses and imparting
adjuvant effects. These factors collectively contributed to the
enhanced infiltration of macrophages and CD4™" helper T cells into
the tumor bed and synergistic antitumor effects by GO/CDDP
(Fig. 6A and C).

5. Conclusions

We uncovered that GO in combination with CDDP enhanced
the nuclear import of LC3 and CDDP, potentiated the necrosis of
CT26 cells in vitro and synergistically substantiated the anti-
neoplastic effects in mice bearing the CT26 colon tumor. This
study unveiled a new mechanism (enhanced nuclear import of
chemotherapy drug) accounting for how nanomaterials may
sensitize chemoresistant cancer cells. Although whether this
mechanism is applicable to different nanomaterials, drugs and
cancer types remains to be established, we found that GO/CDDP
chemosensitized ovarian cancer cell SKOV3 and cervical cancer
cell HeLa as well, although GO/CDDP did not enhance the killing
of lung carcinoma cell A549 (Fig. S7). Therefore, this study may
pave a new avenue to using GO as a chemosensitizer for the
treatment of several cancers. It should be noted, however, that
the size of GO may affect the cellular responses it elicited [49],
caution should be used when preparing for the GO nanosheets
and interpreting the data. Finally, the use of novel combinations
of ‘old’ drugs for new indications has garnered significant inter-
est [50]. CDDP is one of the most common chemotherapy drugs
for a wide variety of cancers [36,44]|, but colorectal and non-
small cell lung cancers have intrinsic resistance to CDDP [44].
The combination of GO and CDDP may lead to the revival of CDDP
in colon cancer therapy, thereby offering another chemothera-
peutic regimen.
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