

<p style="text-align: center;">3.1</p> <h1 style="text-align: center;">Determination of Forward and Futures Prices</h1> <h2 style="text-align: center;">Chapter 3</h2> <p style="text-align: center;"><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>	<p style="text-align: center;">3.2</p> <h3 style="text-align: center;"><u>Consumption vs Investment Assets</u></h3> <ul style="list-style-type: none"> • Investment assets are assets held by significant numbers of people purely for investment purposes (Examples: gold, silver) • Consumption assets are assets held primarily for consumption (Examples: copper, oil) <p style="text-align: center;"><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>
<p style="text-align: center;">3.3</p> <h3 style="text-align: center;"><u>Short Selling</u> (Page 41-42)</h3> <ul style="list-style-type: none"> • Short selling involves selling securities you do not own • Your broker borrows the securities from another client and sells them in the market in the usual way <p style="text-align: center;"><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>	<p style="text-align: center;">3.4</p> <h3 style="text-align: center;"><u>Short Selling</u> (continued)</h3> <ul style="list-style-type: none"> • At some stage you must buy the securities back so they can be replaced in the account of the client • You must pay dividends and other benefits the owner of the securities receives <p style="text-align: center;"><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>
<p style="text-align: center;">3.5</p> <h3 style="text-align: center;"><u>Measuring Interest Rates</u></h3> <ul style="list-style-type: none"> • The compounding frequency used for an interest rate is the unit of measurement • The difference between quarterly and annual compounding is analogous to the difference between miles and kilometers <p style="text-align: center;"><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>	<p style="text-align: center;">3.6</p> <h3 style="text-align: center;"><u>Continuous Compounding</u> (Page 43)</h3> <ul style="list-style-type: none"> • In the limit as we compound more and more frequently we obtain continuously compounded interest rates • \$100 grows to $\\$100e^{RT}$ when invested at a continuously compounded rate R for time T • \$100 received at time T discounts to $\\$100e^{-RT}$ at time zero when the continuously compounded discount rate is R <p style="text-align: center;"><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>

3.7

Conversion Formulas

(Page 44)

Define

 R_c : continuously compounded rate R_m : same rate with compounding m times per year

$$R_c = m \ln\left(1 + \frac{R_m}{m}\right)$$

$$R_m = m\left(e^{R_c/m} - 1\right)$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.8

Notation

S_0	Spot price today
F_0	Futures or forward price today
T	Time until delivery date
r	Risk-free interest rate for maturity T

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.9

Gold Example (From Chapter 1)

- For gold

$$F_0 = S_0(1 + r)^T$$

(assuming no storage costs)

- If r is compounded continuously instead of annually

$$F_0 = S_0 e^{rT}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.10

Extension of the Gold Example

(Page 46, equation 3.5)

- For any investment asset that provides no income and has no storage costs

$$F_0 = S_0 e^{rT}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

When an Investment Asset Provides a Known Dollar Income

(page 48, equation 3.6)

$$F_0 = (S_0 - I) e^{rT}$$

where I is the present value of the income

3.11

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.12

When an Investment Asset Provides a Known Yield

(Page 49, equation 3.7)

$$F_0 = S_0 e^{(r-q)T}$$

where q is the average yield during the life of the contract (expressed with continuous compounding)*Options, Futures, and Other Derivatives*, 5th edition © 2002 by John C. Hull

<p style="text-align: right;">3.13</p> <h2><u>Valuing a Forward Contract</u></h2> <p>Page 50</p> <ul style="list-style-type: none"> Suppose that <p>K is delivery price in a forward contract</p> <p>F_0 is forward price that would apply to the contract today</p> <ul style="list-style-type: none"> The value of a long forward contract, f, is $f = (F_0 - K) e^{-rT}$ Similarly, the value of a short forward contract is $(K - F_0) e^{-rT}$ <p><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>	<p style="text-align: right;">3.14</p> <h2><u>Forward vs Futures Prices</u></h2> <ul style="list-style-type: none"> Forward and futures prices are usually assumed to be the same. When interest rates are uncertain they are, in theory, slightly different: A strong positive correlation between interest rates and the asset price implies the futures price is slightly higher than the forward price A strong negative correlation implies the reverse <p><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>
<p style="text-align: right;">3.15</p> <h2><u>Stock Index</u> (Page 52)</h2> <ul style="list-style-type: none"> Can be viewed as an investment asset paying a dividend yield The futures price and spot price relationship is therefore $F_0 = S_0 e^{(r-q)T}$ <p>where q is the dividend yield on the portfolio represented by the index</p> <p><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>	<p style="text-align: right;">3.16</p> <h2><u>Stock Index</u> (continued)</h2> <ul style="list-style-type: none"> For the formula to be true it is important that the index represent an investment asset In other words, changes in the index must correspond to changes in the value of a tradable portfolio The Nikkei index viewed as a dollar number does not represent an investment asset <p><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>
<p style="text-align: right;">3.17</p> <h2><u>Index Arbitrage</u></h2> <ul style="list-style-type: none"> When $F_0 > S_0 e^{(r-q)T}$ an arbitrageur buys the stocks underlying the index and sells futures When $F_0 < S_0 e^{(r-q)T}$ an arbitrageur buys futures and shorts or sells the stocks underlying the index <p><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>	<p style="text-align: right;">3.18</p> <h2><u>Index Arbitrage</u> (continued)</h2> <ul style="list-style-type: none"> Index arbitrage involves simultaneous trades in futures and many different stocks Very often a computer is used to generate the trades Occasionally (e.g., on Black Monday) simultaneous trades are not possible and the theoretical no-arbitrage relationship between F_0 and S_0 does not hold <p><small>Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull</small></p>

Futures and Forwards on Currencies (Page 55-58)

- A foreign currency is analogous to a security providing a dividend yield
- The continuous dividend yield is the foreign risk-free interest rate
- It follows that if r_f is the foreign risk-free interest rate

$$F_0 = S_0 e^{(r-r_f)T}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.19

Futures on Consumption Assets (Page 59)

$$F_0 \leq S_0 e^{(r+u)T}$$

where u is the storage cost per unit time as a percent of the asset value.

Alternatively,

$$F_0 \leq (S_0 + U) e^{rT}$$

where U is the present value of the storage costs.

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.20

The Cost of Carry (Page 60)

- The cost of carry, c , is the storage cost plus the interest costs less the income earned
- For an investment asset $F_0 = S_0 e^{cT}$
- For a consumption asset $F_0 \leq S_0 e^{cT}$
- The convenience yield on the consumption asset, y , is defined so that

$$F_0 = S_0 e^{(c-y)T}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.21

Futures Prices & Expected Future Spot Prices (Page 61)

- Suppose k is the expected return required by investors on an asset
- We can invest $F_0 e^{-rT}$ now to get S_T back at maturity of the futures contract
- This shows that

$$F_0 = E(S_T) e^{(r-k)T}$$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.22

Futures Prices & Future Spot Prices (continued)

- If the asset has
 - no systematic risk, then $k = r$ and F_0 is an unbiased estimate of S_T
 - positive systematic risk, then $k > r$ and $F_0 < E(S_T)$
 - negative systematic risk, then $k < r$ and $F_0 > E(S_T)$

Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull

3.23