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Abstract

We analytically investigate the ground state of a Bose-Einstein condensate of bosonic atoms

with two hyperfine structures inside an optical cavity within the cavity quantum electrodynamics

formalism. The system allows a series of quantum phase transitions. The critical coupling value at

the first quantum phase transition of the system is calculated and the maximum shared bipartite

entanglement of the condensate is studied numerically. We reveal the existence of a maximum

entangled multipartite qubit state, a W -state, for certain parameters at the first non-vacuum

phase region of the system due to finite size effects.
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Cavity quantum electrodynamics (cavity-QED), the study of atoms coherently interact-

ing with quantized field cavity modes, has proved a versatile and controllable platform in

quantum optics describing many interesting phenomena[1, 2]. The simplest light-atom sys-

tem, i.e. the Jaynes-Cummings model, describes the coherent interaction of a quantized

electromagnetic field with a single two-level atom [3]. As the number of two-level atoms

increases, i.e. the Dicke or Tavis-Cummings model, collective effects lead to an intriguing

many-body phenomena known as a superradiant phase [4, 5] where a state with photon and

atomic excitations has a lower energy than the vacuum field and ensemble ground state at

zero [6] and finite temperature [7, 8]. This quantum critical phenomenon has been associ-

ated with entanglement between the atomic ensemble and the field [9, 10] as well as bipartite

entanglement among atomic components due to finite-size effects [11–13]. Entanglement is

an essential resource for quantum information processing [14].

It is known that charge-only atomic ensembles in closed cavity-QED systems cannot yield

a superradiant quantum phase transition [15–18]. Several implementation proposals allowing

the Dicke superradiant phase transition have been presented, including open dynamical

systems involving semiconductor quantum wells or quantum dots [19, 20], open dynamical

cavity-QED systems with neutral atoms [21] and ions [22], and superconducting quantum

devices [23, 24]. Arrays of coupled cavities have extended the application of Dicke model to

the study of strongly interacting many-body systems in condensed matter physics [25–29].

Recently, substituting free atoms, weakly-interacting ultracold atoms in a Bose-Einstein

condensate have been loaded into high-finesse optical cavities [30, 31]. It has been shown

that, accounting for the center of motion of the atomic components, it is possible to realize

the Dicke model in these BEC-cavity-QED systems where the superradiant phase corre-

sponds to a periodical self-organized supersolid phase of the BEC [32, 33].

Motivated by the BEC-cavity-QED system, we study an extended Dicke Hamiltonian

related to the coupling of two hyperfine levels of a single atomic species BEC to a quantized

cavity field mode [30, 31]. Both the critical coupling and exact ground state are given

in analytical closed-form for the two-parameter phase space defined by the field-ensemble

coupling strength and the intra-atomic ensemble interaction parameter. For the sake of

completeness, we also show the first critical coupling values including counter-rotating terms

into the studied Hamiltonian and in the classical limit, i.e. infinitely large ensemble size.

Besides the existences of intra-ensemble maximum shared bipartite concurrence and field-
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ensemble entropy of entanglement [13], a finite probability of finding the ground state in a

W -state is revealed explicitly.

Since a multi-qubit W-state [34] maximizes pairwise entanglement of formation [35, 36]

and is a robust source of entanglement [37, 38], which retains bipartite entanglement when-

ever any of the qubits is traced out, the results presented in this manuscript show the

importance of BEC-cavity-QED systems for quantum information processing.

Within the two-mode approximation, we consider a single atomic species BEC with two

hyperfine levels coupled to a quantized cavity field mode, which can be described by an

extended Dicke Hamiltonian including intra-ensemble interactions [39], under the rotating

wave approximation, in units of ~ from now on,

Ĥ = ωfN̂ + ∆Ĵz + κĴ2
z +

λ√
Na

(âĴ+ + â†Ĵ−), (1)

where the total number of excitations operator is N̂ = â†â + Ĵz. The quantized cavity

field mode is described by the boson creation (annihilation) operators â (â†) and the field

frequency ωf , while the atomic ensemble system is represented by the transition frequency

ωa and the orbital angular momentum operators Ĵi, with i = x, y, z and Ĵ± = Ĵx± ıĴy. The

transition and field frequencies define a detuning given by ∆ = ωa − ωf . The interaction

parameter κ depends on the interaction between the two hyperfine-structure-defined modes

and can be tuned by modifying the s-wave scattering lengths of aforementioned modes. The

coupling strength λ is related to the coupling strength between one atom and the cavity

field mode. Note that the number of atoms in the system for this physical realization is

restricted by the two-mode approximation that sets the condition Naρ ≤ r0 [40], where the

parameters ρ and r0 are the typical scattering length of the atomic species and the radius

of the trap, in that order.

Instead of solving the extended Dicke model in Eq.(1) in the large particle number regime

[39], we partition the corresponding Hilbert space into subspaces with a mean total exci-

tation number 〈N̂〉 = n − Na/2 for n = 0, 1, 2, . . . due to conservation of the total number

of excitations, [Ĥ, N̂ ] = 0. The ground state at the n-th subspace is given by |ψ(n)
g 〉 =∑n

k=0 c
(n)
k |k〉f |n−k−Na/2〉 such that Ĥ|ψ(n)

g 〉 = E
(n)
g |ψ(n)

g 〉 and E
(n)
g is the lowest eigenvalue

for the given subspace. The ket notation |n〉f refers to a Fock state of the field with n photons

and the shorthand notation |m〉 ≡ |Na/2,m〉, m = −Na/2, 1−Na/2, . . . , Na/2− 1, Na/2, is

used for the Dicke state corresponding to the normalized superposition of all possible combi-
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nations of Na atoms with (Na/2 +m) of them in the excited state and the rest, (Na/2−m),

in the ground state.

The ground state is found as the lowest eigenvalue for the set {H(n) = H
(n)
O + H

(n)
I } of

square matrices, with rank equal or less than (Na + 1), defined by the auxiliary matrices,

H
(n)
O = ωf (n−Na/2) Iñ, (2)(

H
(n)
I

)
i,j

= δi,jdi +
λ√
Na

(δi,j−1oj + δi,j+1oj+1) , (3)

where the identity matrix of rank d is given by Id, the row and column labels are in the range

i, j = ñ, ñ+ 1, . . . , n, where ñ = max(0, n−Na), for the photon number n = 0, 1, 2, . . . The

symbol δi,j stands for Kronecker delta and the diagonal and off-diagonal terms are defined

as,

dj = (n− j −Na/2) [∆ + κ(n− j −Na/2)] , (4)

oj = [j(Na + j − n)(n− j + 1)]1/2 . (5)

The auxiliary matrix H
(n)
I is a tri-diagonal symmetric real matrix with positive off-diagonal

terms, i.e. a Jacobi matrix, and its eigenvalues can be found analytically [41–44]. Further-

more, each and every phase transition can be located at the intersection of two ground state

energies belonging to contiguous subspaces.

The first phase, which will be called vacuum phase from now on, corresponds to the

vacuum field and the atomic ensemble ground state, |ψ(0)
g 〉 = |0〉| −Na/2〉.

The first phase transition is found at the critical coupling strength,

λc1 = {[ωa + (1−Na)κ]ωf}
1
2 , (6)

with the corresponding first non-vacuum state

|ψ(1)
g 〉 = c

(1)
0 |0〉

∣∣∣∣1− Na

2

〉
+ c

(1)
1 |1〉

∣∣∣∣−Na

2

〉
. (7)

In our case, the amplitudes are given by the expressions c
(1)
0 = h/(h2 + 1)1/2 and c

(1)
1 =

1/(h2 + 1)1/2 related to the amplitude parameter,

h =
(Na − 1)κ+ ∆− {4λ2 + [(Na − 1)κ−∆]2} 1

2

2λ
. (8)

Any extended Dicke model that conserves the total number of excitations has a first non-

vacuum phase of the form given by Eq.(7), which includes the ground state of the atomic
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ensemble in the W -state |1 − Na/2〉. The relevant characteristic of the studied extended

Dicke model is that as the amplitude parameter, Eq.(8), for a infinitely large interaction-

coupling strength parameters ratio, κ/λc → ∞, leads to the amplitude values c
(1)
0 ≈ 1 and

c
(1)
1 ≈ 1/|h| ≈ 0. Thus, there exists a finite probability of finding the ground state of the

atomic ensemble in theW -state. Note that for a large number of atoms, Na � 1∧Na � ∆/λ,

the amplitude parameter goes to zero, limNa�∆/λ h ≈ (Na − 1)κ − (Na − 1)κ = 0, and the

probability of finding the first non-vacuum ground state in a W -state is null.

The inclusion of counter-rotating terms yield

ĤCR = ωf ââ
† + ωaĴz +

κ

Na

Ĵ2
z +

2λ√
Na

(â+ â†)Ĵx. (9)

By using the unitary transformation,

Û = e−ıξ(â+â†)Ĵy , ξ =
2λ√

N(ωa + ωf )
, (10)

in the weak coupling regime, λ � ωa such that ξ � 1, it is possible to write the full

Hamiltonian, Eq.(9) ,up to first order in ξ, as

H̃CR = Û−1ĤCRÛ ,

≈ ωf â
†â+

[
ωa + ξλ(â+ â†)2

]
Ĵz + κĴ2

z − kξ(â+ â†)
{
Ĵz, Ĵx

}
+ ωfξ(âĴ+ + â†Ĵ−).(11)

Requiring weak intra-ensemble interaction, κ� ωa, it is possible to approximate

H̃CR ≈ ωf â
†â+ ωaĴz + κĴ2

z +
λ̃√
N

(âĴ+ + â†Ĵ−), (12)

where the auxiliary coupling strength is given by λ̃ = 2ωfλ/(ωa + ωf ). This is the original

Hamiltonian, i.e. the unitary transformation under weak coupling and intra-ensemble in-

teraction acts as a rotating wave approximation, which has a first phase transition at the

critical value on the weak coupling regime given by the expression,

λWCR1 =
(ωa + ωf )

2

[
ωa + (1−N)κ

ωf

] 1
2

. (13)

Note that on-resonance the expression for the first critical coupling in the weak coupling

regime, Eq.(13), is equal to the critical coupling in the rotating wave approximation, Eq.(6).

In the strong coupling regime, λ� ωa, it is possible to suppose the state of the system as

the superposition of coherent states, |α〉f |θ, φ〉a, with |θ, φ〉a = e−ıĴzφe−ıĴyθ |Na/2〉. Under
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this representation it is possible to write [45],

〈Ĵz〉 =

√
Na

2
sin θ, (14)

〈Ĵ±〉 =

[
Na

2

(
Na

2
+ 1

)
− Na

4
sin2 θ ±

√
Na

2
sin θ

] 1
2

[
BNa/2(θ)e±ıφ +

(
sin θ

2

)Na
]
, (15)

with the coefficient

Bj(β) =
∑
m

 2j

j +m

 1
2
 2j

j +m+ 1

 1
2 (

cos
β

2

)2j+2m+1(
sin

β

2

)2j−2m−1

. (16)

Minimizing the mean value energy for the three coherent parameters, {α, θ, φ}, to find the

critical coupling in the strong limit is beyond the scope of this manuscript.

In the classical limit, i.e. an infinitely large atomic ensemble interacting with a coher-

ent field, it has been shown that finite size and classical limit analysis for Hamiltonians

related to Dicke model yield identical critical couplings [11–13]. By using the Holstein-

Primakoff transformation [46], Ĵz = b̂†b̂ − Na/2, Ĵ+ =
√
Nab̂

†
(

1− b̂†b̂/Na

)1/2

, Ĵ+ = Ĵ†−,

and a Taylor expansion of the square root in terms of (1/Na), up to first order in (1/Na),(
1− b̂†b̂/Na

)1/2

≈ 1 − b̂†b̂/2Na, up to a constant energy term of Na(κNa − 2ωa)/2, the

Hamiltonian in Eq.(1) transforms into the expression,

Ĥ ≈ ωf â
†â+ (ωa − κNa)b̂

†b̂+ κ(b̂†b̂)2 + λ

[
âb̂†

(
1− b̂†b̂

2Na

)
+

(
1− b̂†b̂

2Na

)
â†b̂

]
. (17)

In a Fock basis, the problem transforms into diagonalizing the Hamiltonian in the one

excitation subspace spanned by the states {|0, 1〉 , |1, 0〉}. Thus, the ground state energy in

the classical regime for the first non-vacuum phase is given by the expression,

E
(1)
Cg =

1

2

[
ωa + ωf + (1−Na)κ−

{
4λ2 + [ωa − ωf + (1−Na)κ]2

} 1
2

]
. (18)

The first critical coupling can be found for E
(1)
g = 0 and yields a form identical to the exact

first critical coupling strength found above in Eq.(6),

λCC1 = {[ωa + (1−Na)κ]ωf}
1
2 . (19)

For the Hamiltonian with counter-rotating terms, Eq.(9), by using the Holstein-Primakoff

transformation and the expansion of the square root the Hamiltonian, as stated above, the
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following Hamiltonian is obtained,

ĤCR ≈ ωf â
†â+ (ωa − κNa)b̂

†b̂+ κ(b̂†b̂)2 + λ
(
â+ â†

) (
b̂+ b̂†

)
− λ

2Na

(
â+ â†

)
b̂†
(
b̂+ b̂†

)
b̂.

(20)

In order to find the phase transition, it is possible to use the coherent state basis |α〉a |β〉b,

such that the mean value for the energy is given by

〈ĤCR〉 ≈ ωf |α|2 + (ωa − κNa) |β|2 + κ |β|4 +

(
λ− λ

2Na

|β|2
)

(α + α∗) (β + β∗) (21)

Optimizing with respect to the coherent parameters α and β, assuming them to be real

numbers for the sake of simplicity, leads to a trivial solution and a non-trivial solution

that requires λ ≥ [(ωa−Naκ)ωf ]
1/2/2 for the coherent parameters to be real, thus a critical

coupling strength for the Hamiltonian including counter rotating terms in the classical regime

is found, as

λCCRC1 =
1

2
[(ωa −Naκ)ωf ]

1
2 . (22)

This critical coupling, λCCRC1, is half of the critical strength found for the case without

counter-rotating terms, λCC1, as (1−N) ≈ −N for N � 2. This is similar to what happens

for the Dicke model in the classical limit result where accounting for counter-rotating terms

halves the critical coupling found without the counter-rotating terms [47].

In order to verify our analytical results, in Fig. 1, we show a numerical phase diagram

defined by the coupling strength, λ, and interaction parameter, κ, for a finite size atomic

ensemble, Na = 5. The maximum shared bipartite concurrence following the entangled web

approach [35] and the field-ensemble entanglement probed through von Neumann entropy

of the reduced two-level ensemble, also known as entropy of entanglement [48] are shown

in Fig.(1) for the case within the rotating wave approximation and in Fig.(2) for the model

including counter-rotating terms. The first and second critical couplings shown in dashed

black lines in Fig.(1) are analytically exact obtained from the analysis presented above.

Likewise, in Fig.(2) the first critical coupling including counter-rotating terms is shown.

Analytical and numerical results are in agreement as shown in the figures.

A ground W -state is found for very small values of the coupling strength and near the

second non-vacuum phase for ensembles consisting of a few atoms. Figures 1(a) and 1(b)

show that it is possible to have a W -ground-state for a penta-partite ensemble. Even for five
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two-level systems, there exists a large parameter region at the first non-vacuum phase where

maximal value for the maximum shared bipartite concurrence, Cw = 2/5, is reached. This

value wanes subsequently as expected. The entropy of entanglement rises to a maximum

after the first zone, a behavior shared by all studied cases, Na ∈ [2, 6], to decay for very

large values of the coupling strength, λ� ωa.

In contrast to the Dicke model, where the first critical coupling is independent of the

ensemble size, in this extended Dicke model the interaction-coupling strength parameters

ratio at the first phase transition is found to be inversely proportional to the ensemble size,

e.g. Eq.(6). In the Dicke model the vacuum phase remains fixed as the first critical coupling

stays constant for an increasing number of atoms, while the phases beyond the vacuum

phase reduce to allow just the vacuum and classical superradiant phases for an infinitely

large atomic ensemble. In this BEC-cavity-QED model, the area of all the different phases

reduces as the ensemble size increases.

In conclusion, we have shown a striking feature, a heralded maximal entangled atomic

state, at the quantum phase transition of a experimentally feasible BEC-cavity-QED system

that might pave the way for quantum information processing.

We have analytically derived the exact critical coupling value and ground states at the first

quantum phase transition for a BEC-cavity-QED system in the rotating wave approximation,

including counter-rotating terms, and in the classical limit. The most interesting feature of

the finite-size ground states is the existence of a maximal entangled multi-qubit W -state,

as a finite-size effect, in a certain phase space region within the first non-vacuum phase.

Furthermore, the existence of such ground state is heralded by the presence of just the one

photon in the cavity. The existence of this maximal entangled atomic ensemble state survives

the addition of counter rotating terms. Numerical results for the maximum shared bipartite

concurrence, following the entangled web approach, and the field-ensemble entanglement,

probed through von Neuman entropy of the reduced two-level ensemble, were presented.

Agreement between the exact analytical and the numerical results was obtained.
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Figure 1: (Color online) The phase diagram of the finite size extended Dicke Hamiltonian for

the case of a penta-partite two-level ensemble, Na = 5, in the parameter space defined by the

field-ensemble coupling strength, λ, and the intra-ensemble interaction strength, κ. (a) Maximum

shared bipartite concurrence in the sense of entangled webs, Cw. (b) Entropy of entanglement, 〈Ŝ〉,

between the field and the atomic ensemble. The corresponding minima and maxima values for the

color legend are shown below it. The dashed lines show the two first exact critical couplings.

Figure 2: (Color online) Same as Fig.(1) but for the finite size extended Dicke Hamiltonian including

counter rotating terms. The dashed line show the first exact critical coupling in the weak coupling

regime.
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