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Measurement-based QC

 Prepare massively entangled state and use
adaptive single-qubit measurements
(strong, incoherent)
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Cluster state [1]

 Lattice of qubits in a highly entangled state

* Prepare N qubits In +)""and apply Ising-
type interaction (pair-wise CZ2)
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Cluster state [2]

 Formally defined by eigenvalue equations
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 Maximally connected: any 2 qubits can be
projected into Bell state

e Persistent: min. no. of local measurements
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Effect of X,Z measurements

e Z. removes qubits from computation

o X: transfers qubit state to adjacent site
(single-qubit teleportation)
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Simulating quantum gates [1]

 Minimal CNOT gate
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Simulating quantum gates [2]

« Arbitrary 1-qubit rotations
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Universality of cluster-state QC

e Quantum circuilt = Concatenated gates
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Quantum circuit simulation

« Scheme 1: Gategon C=C, uC,, UC,

‘Win>c, (jeCM®uCo‘ +>j) = (keC|®uCM ‘ Sk, >k)(UE’9U g ‘ Vin >Co )

 Scheme 2: Prepare cluster C; perform
seguence of adaptive measurements,
output from all measurement outcomes

 Resource upper bounds:
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Random outcomes

* By-product operator: reinterpret readout

what we have w/o Pauli errors
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* Projection of readout onto Z-basis:

1+ (=) z®
‘M>:H( +( 2) ]UZ‘I//out> S'i:SiC_DXi

=1

n (14 (—1)5*% 7 ) {x} U
=Uz]__l[[ “ )2 )\wm




Cluster state as a resource

* |Input qubits used pedagogically
e Consider 5-qubit linear cluster: no local info
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o Part of larger cluster: qubit 5 is ‘input’

Reduced density operator for every cluster qubit = maximally mixed state



Cluster state computing model

» Divide cluster into disjoint subsets Q;
 Measure In order t, w/ info flow vector I(t)
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Photonic cluster states [1]

* Nielsen: using prob. CZ w/ teleportation

Building up cluster states: [1] add KLM :CZ
single & double bonded qubits; [2] n?/(n+1)*

combine microclusters
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Photonic cluster states [2]

w(] < @H UV laser pulse (395 nm) makes 2
NN passes through BBO crystal to produce
?’}WP ! (including double pairs)
'“G ’ PBS
- +
T HWPss: HWP725° ‘(D >ab @ >Cd
Comp\
Incorrect phase in HHVV can be
corrected with HWP in mode a.
: Adjust relative coupling efficiency in 2
wl ;? passes to get equal amplitudes
RS 4 FBS Polarization measurements done in
/";i}wp modes 1-4 using QWP, linear
Al polarizers and single-photon detectors
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P.Walther, K.J.Resch, T.Rudolph, E.Schenck, H.Weinfurter, V.Vedral, M.Aspelmeyer,
A.Zeilinger, Nature 434 (2005) 169-176.



Conclusions

Cluster state: +/- eigenstate of stablilizer
generators; maximally connected

Cluster state QC: 1-qubit measurements +
classical feed-forward [Pauli errors]

Universal resource for QC (prepare any
state, simulate any circuit)

Computing model with time-ordered
measurements and info flow vector
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