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In this note, I describe a theoretical model for how a SIC-POVM might be realized with an
optical storage loop. This idea is based on the qutrit SIC-POVM experiment described in [I]. In
that experiment, the quantum state is encoded in the path and polarization modes. Here I find
it more convenient to describe a slightly different experiment that uses path-encoded qudits.

Consider some d-dimensional Weyl-Heisenberg SIC-POM with fiducial vector |¢). Let D;; =
79 X" Z7 be the displacement operators for i, j € {0,1,...,d — 1}, where 7 = —e'™/4 and X and
Z are the d-dimensional shift and phase operators, respectively.

Let |¢)o) € C? be a path-encoded qudit that we want to measure. Define the 2d-dimensional

unitary U, = Be ® 14, where
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Observe that U, describes beam splitters being applied between modes n and n + d, for n =
1,...,d. Here I make a simplifying assumption that the reflectivities for each pair of modes are
the same.

For example, if we use [¢)g) as an input for the first d modes of Uk,
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so in some very rough sense, U, creates 2 copies of |1y) on independent sets of modes but with
different norms.
A quantum circuit for a “repeating” component of the storage loop model is shown below:
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The idea is to have d? such components, one for each value of (ij), arranged sequentially in
a loop. Let |¢;) denote the state after the signal has encounted U exactly k times. The
box labeled |¢) is a binary measurement with projections |¢)(¢|, which corresponds to getting
outcome click;; = 1, and Ig — |¢)(¢|, which corresponds to getting outcome click;; = 0. The
output state |¢y41) becomes the input for the next component.

The idea for doing the measurement is to send a photon into the storage loop and trapping
it there. If € is small, just a small part of the state gets leaked onto the last d modes of Ue and
so only weak projections are performed on the initial state. Moreover, only the last d modes
are measured so the amplitudes on the first d modes remain the same whether or not a click is
registered in the measured modes.

Now I will compute outcome probabilities for the weak projections and show how they cor-
respond to the outcome probabilities expected for a SIC-POVM. Let us look at the component
(i7) again. Suppose the input state is ). Since
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the probability for getting a click when I measure |¢) at component (ij) is
2
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where |¢;;) = Djj|¢). This shows that the clicks are indeed related to projections onto the
elements of a SIC-POVM. From Eq. , I have ||[¢g)|| = (V1 — e)k SO

Pr[clicki; = 1][¢x)] = € (VI — &) [(o]éis)|, (5)

Now in order to get the total probability, we need to add up contributions for all the times the
signal passes through component (ij). If there are d> components in the loop, then we want to
sum for values of k in steps of d?. Fortunately, this calculation has a simple result when € — 0:
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Therefore,
. 2
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Note that if we compute the probability of getting a click,
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since the sum of those SIC projections is d times the identity operator. Finally, we obtain the
SIC-POVM probabilities g;; by normalizing, i.e., g;; = pi;/P.

It is worth noting that the model we have described gets a bit inefficient since the probability
of getting a click for any particular photon varies inversely with d. Furthermore, observe that
the experiment setup would also work for any symmetric quantum measurement that correspond
to geometrically uniform states |¢;) = Uj|¢), that is, a measurement with POVM elements
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