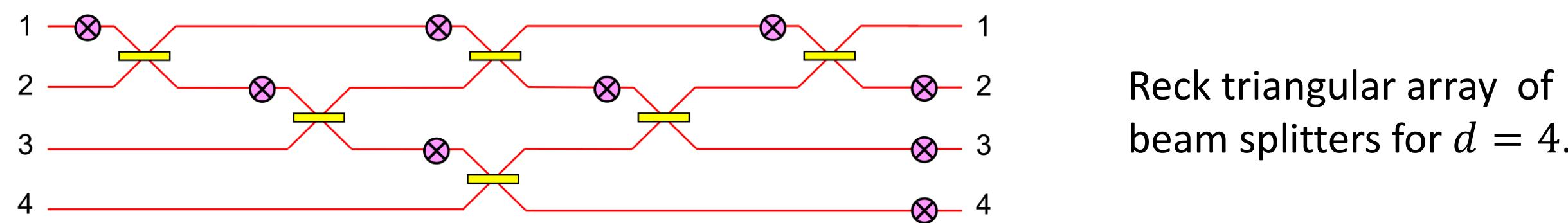


Gelo Noel M. Tabia

Institute of Computer Science, University of Tartu, Estonia

Motivation

It is known that any d -dimensional unitary can be achieved by a linear optical network with d modes and $O(d^2)$ gates.



However, for specific unitary families, we do not know what the optimal network is.

Main contribution

We provide matrix decompositions for quantum Fourier transforms and Grover inversion that operate on $2d$ modes using two copies of the same operation on d modes.

Preliminaries

The elementary gates are phase shifters and beam splitters. For a phase shifter with phase parameter θ ,

$$P_\theta = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \quad \begin{array}{c} \text{---} \\ \theta \\ \otimes \end{array}$$

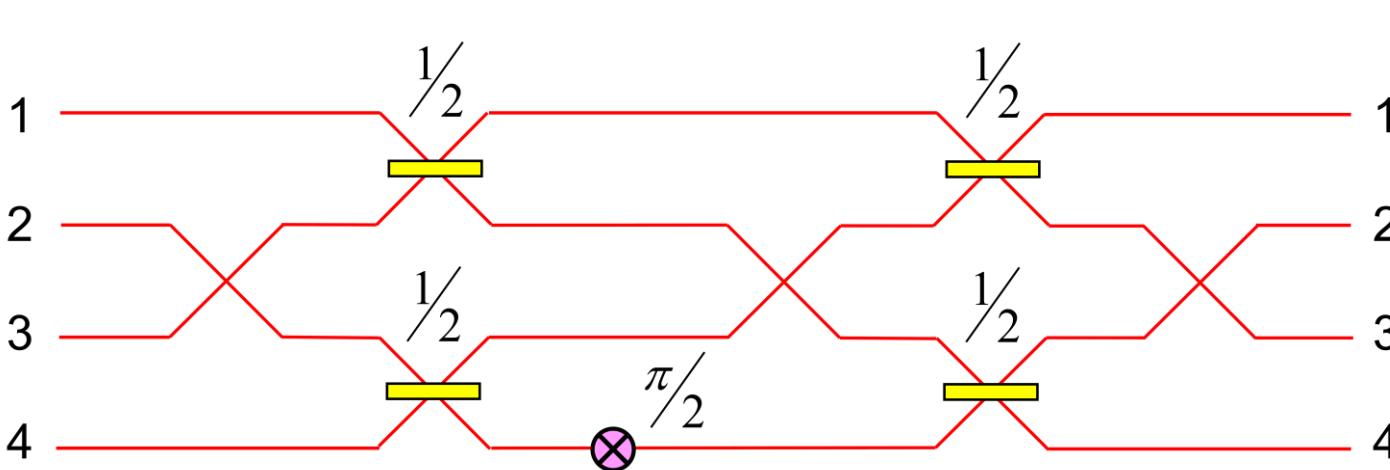
For a beam splitter with reflectivity ϵ ,

$$B_\epsilon = \begin{pmatrix} \sqrt{\epsilon} & \sqrt{1-\epsilon} \\ \sqrt{1-\epsilon} & -\sqrt{\epsilon} \end{pmatrix} \quad \begin{array}{c} \text{---} \\ \epsilon \\ \text{---} \end{array}$$

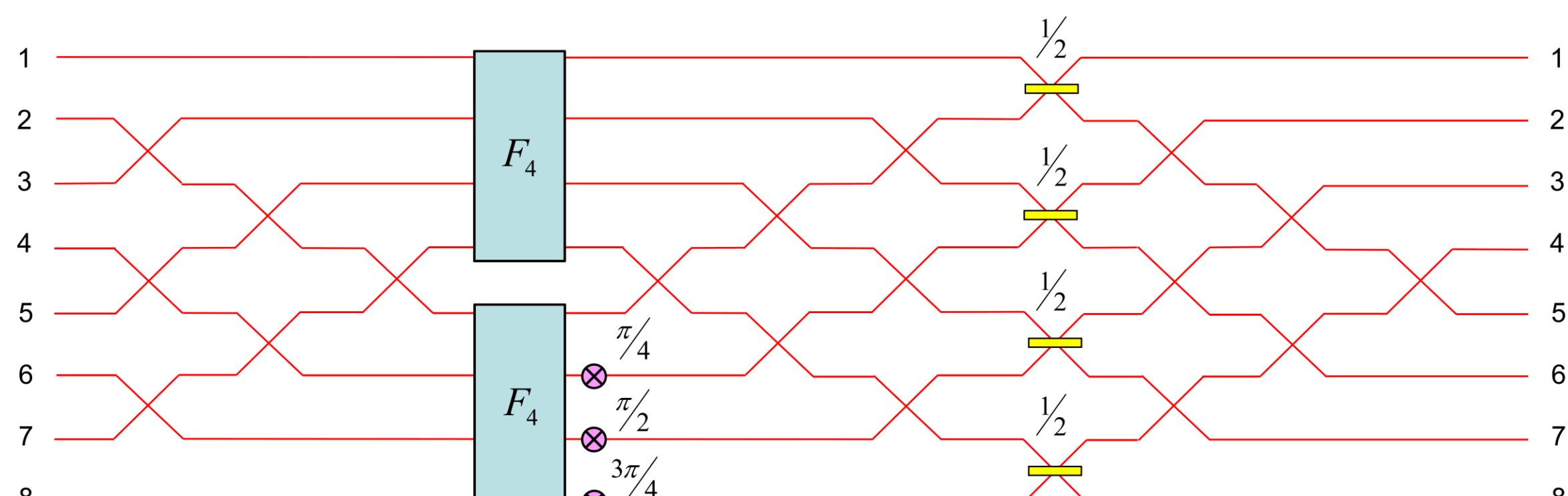
Let $P_\theta(j)$ be a phase shift θ on mode j . Let $B_\epsilon(i, j)$ denote a beam splitter with reflectivity ϵ on modes i and j . Note that B_0 is equivalent to a swap operation.

Quantum Fourier transforms

This is a discrete Fourier transform on quantum states used in algorithms such as phase estimation.

$$F_4 = \frac{1}{\sqrt{4}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \quad \begin{array}{c} \text{---} \\ \frac{1}{2} \\ \text{---} \end{array}$$


Below is the circuit for F_8 built using two copies of F_4 . It exhibits a pattern for the general case described in Box 1.

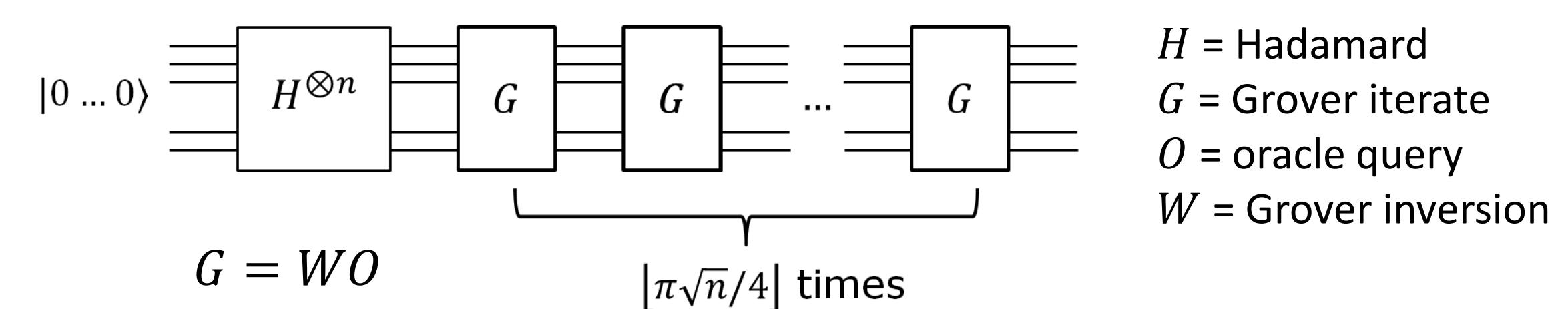


Let Σ_{2d} denote the permutation $(1, 2, \dots, 2d) \mapsto (1, d+1, 2, d+2, \dots, d, 2d)$. It uses $d(d-1)/2$ swap operations. Let Σ_{2d}^{-1} denote its inverse.

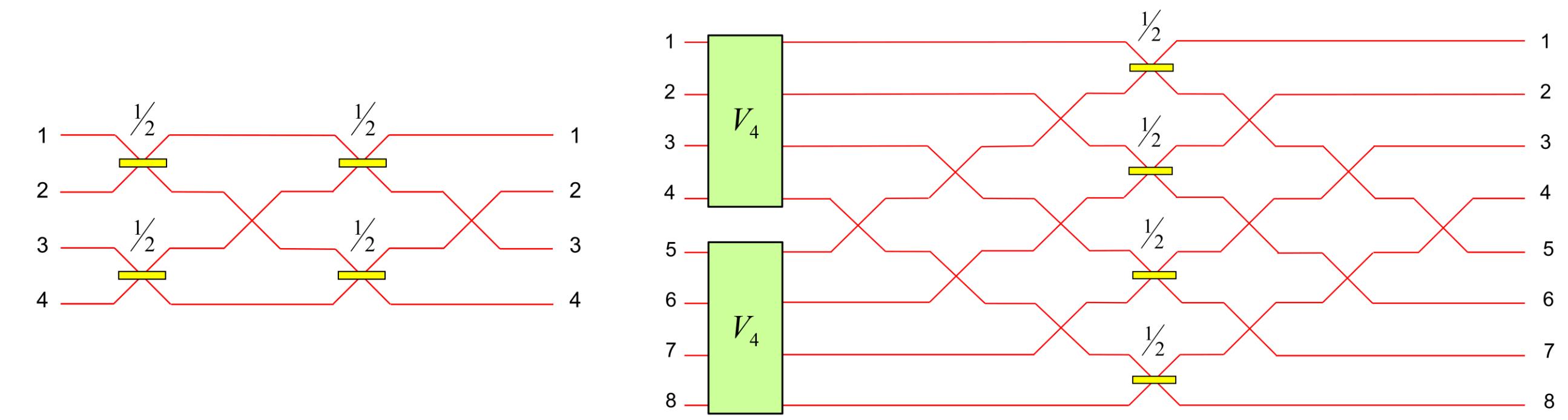
- 1) Apply the circuit for Σ_{2d}^{-1} .
- 2) Apply F_d on modes 1 to d and F_d on modes $d+1$ to $2d$.
- 3) Use the following phase shifters: $P_{\frac{\pi}{d}}(d+2), \dots, P_{\frac{\pi}{d}}(d+k+1), \dots, P_{\frac{\pi}{d}}(2d)$
- 4) Apply the circuit for Σ_{2d} .
- 5) Use the following beam splitters: $B_{1/2}(1,2), B_{1/2}(3,4), \dots, B_{1/2}(2d-1,2d)$
- 6) Apply the circuit for Σ_{2d}^{-1} .

Grover's algorithm

This is a quantum search on an unstructured database, which achieves a quadratic speedup over the classical case.

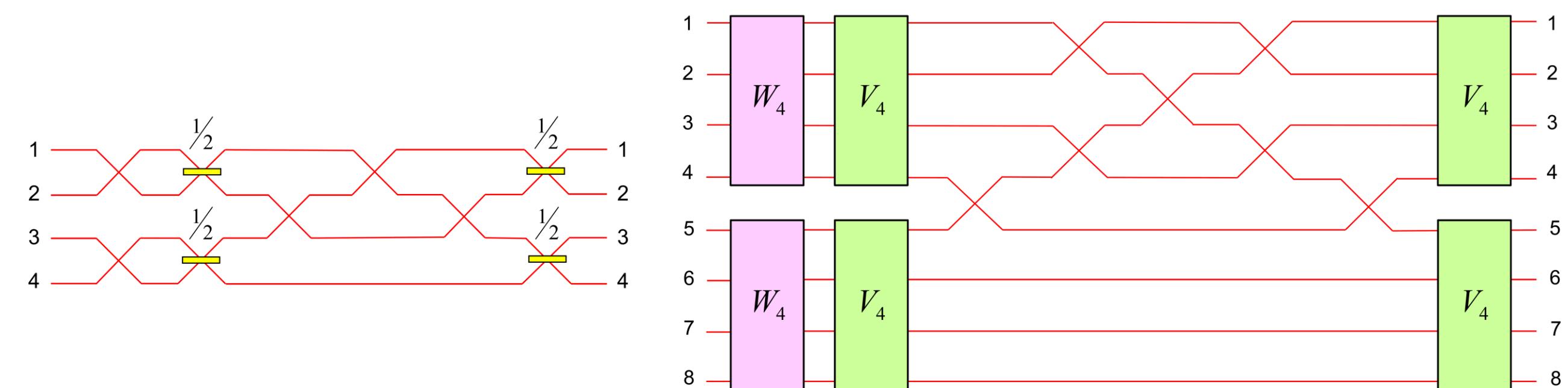


Here we describe a recursive circuit for W . To start, consider the unitary V_4 below and how it is used to construct V_8 . The recipe for V_{2d} given V_d is described in Box 2.



- 1) Apply V_d on modes 1 to d and V_d on modes $d+1$ to $2d$.
- 2) Apply the circuit for Σ_{2d} .
- 3) Use the following beam splitters: $B_{1/2}(1,2), B_{1/2}(3,4), \dots, B_{1/2}(2d-1,2d)$
- 4) Apply the circuit for Σ_{2d}^{-1} .

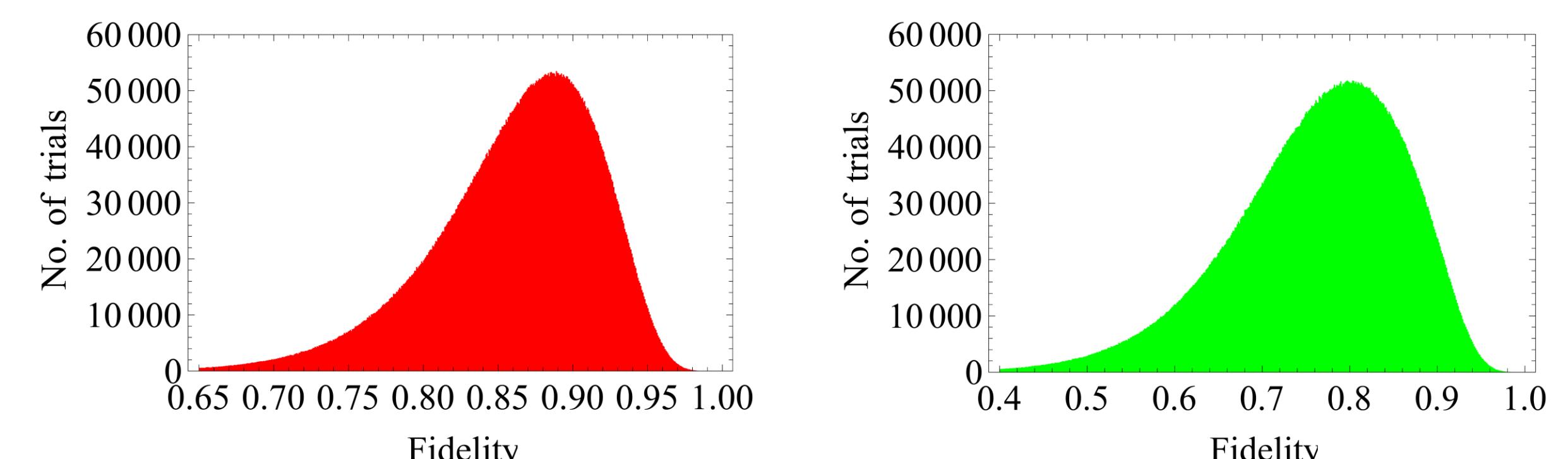
The following shows how W_8 is built using two copies of the circuit for V_4 and W_4 . The procedure for W_{2d} using V_d and W_d is described in Box 3.



- 1) Apply W_d on modes 1 to d and W_d on modes $d+1$ to $2d$.
- 2) Apply V_d on modes 1 to d and V_d on modes $d+1$ to $2d$.
- 3) Let Φ_{2d} denote the permutation that exchanges mode 1 and mode $d+1$. It uses $O(d^2/4)$ swap operations. Apply the circuit for Φ_{2d} .
- 4) Apply V_d on modes 1 to d and V_d on modes $d+1$ to $2d$.

Performance under realistic errors

The fidelity histograms for 3-qubit QFT (left) and 8-item Grover search (right) with 10^7 trials is given below.



Error model: 4% on beam splitter reflectivities and 5% absorption loss in phase shifters

Acknowledgement: This work is funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

Contact information: Gelo Noel Macuja Tabia (gelo.tabia@ut.ee)
Institute of Computer Science, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia