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Summary of This Work

The Theme: Use a convex analysis perspective to view
hyperspectral linear unmixing.

@ provide formulations & new interpretations for
- dimension reduction
- Craig's belief [Craig'94]
- Winter's belief [Winter'99]

@ Theory: prove that both Craig's & Winter's beliefs are optimal in
the pure-pixel case.

@ Algorithms: develop convex optimization based approximations for
Craig's & Winter's beliefs.



Problem Statement for Hyperspectral Unmixing

Image cube Signature matrix Abundance maps

Observed pixel vector: (linear mixing model)

x[n] = As[n] :Zsi[n]ai7 n=1,...,L (1)
i=1
@ A=ay,...,ay ] € RM*N a; is the ith endmember signature,
@ s[n] =[si[n],...,sn[n] |7 is the abundance vector of pixel n,

@ ) = no. of spectral bands, N = no. of endmember signatures, &
L = no. of pixels.



Problem Statement for Hyperspectral Unmixing

Image cube Signature matrix Abundance maps

Observed pixel vector: (linear mixing model)

Some general assumptions:

(A1) (Non-negativity) s;[n] > 0 for all 4 and n.

(A2) (Full-additivity) 32| s;[n] = 1 for all n.

(A3) min{L,M} > N and aj,...,ay are linearly independent.
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Affine Hull

The affine hull of {a;,...,ay} C RM is defined as:

N N
aff{ah'"aaN}:{szeiai HERN729,L:1}
=1 i=1

An affine hull can always be represented by

AC,d)2{x=Ca+d|acR”}

for some C e RV*P d e RN & P< N — 1.

Recall x[n] = Zfil si[n]a;. Under (A2) and (A3), we have
x[n] € aff{ay,...,an} = A(C,d), Yn=1,...,L,

with P =N — 1.



An Geometry lllustration for N = 3




An Geometry lllustration for N = 3




How to Get C,d?

Lemma 1 (Affine set fitting)
Under (A2) and (A3), we can show that

A(C,d) = aff{x[1],...,x[L]}.

Moreover, (C,d) can be obtained from x[1],...,x[L] by

h \

L
Z ‘h(UU B (I2(UUT)a o ~7¢IN71(UUT)]»

where U = [ x[1] —d,...,x[L] —d ] € RM*L and g;(R) denotes the
eigenvector associated with the ith principal eigenvalue of R.

@ In the presence of noise in the model, Lemma 1 is still optimal in
yielding the least squares approximation error in the fitting.



How to Get C,d?

Lemma 1 (Affine set fitting)
Under (A2) and (A3), we can show that

A(C,d) = aff{x[1],...,x[L]}.

Moreover, (C,d) can be obtained from x[1],...,x[L] by

h \

L
Z = [@(UU7), g2(UUY), ..., qn_1(UUT)],

where U = [ x[1] —d,...,x[L] —d ] € RM*L and ¢;(R) denotes the
eigenvector associated with the ith principal eigenvalue of R.

Relationship to principal component analysis (PCA) [Jolliffe’86]
@ The operations of affine set fitting are exactly the same as PCA.

@ But affine set fitting has no statistical assumption, it is an outcome
of (deterministic) convex geometry.



Dimension Reduction

Since x[n] € A(C,d), its affine representation is
x[n] = Cx[n] +d € RM.

Then the dimension-reduced pixel X[n] is given by
x[n] = CT(x Zsl [n]a; € RV,

where a; = CT'(a; — d) is the ith dimension-reduced endmember.

aj
(83

x[n] = CT(x[n] — d)

X[n] Dimension

Reduction

[e2]

a

RE space (high dim.) RN-1 space (dim. reduced)
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Convex Geometry

The convex hull of {a,...,an} C RM is defined as:
N N
conv{al,...,aN}:{x:ZHiai 050,201»:1}
i=1 i=1
A convex hull conv{ay,...,an} € RM is called a simplex if

M=N—-1& ay,...,ay are affinely independent.

Recall [n] = SV | s;[n]ey, si[n] > 0¥i,n, 30, sin] = 1.

Lemma 2 (Simplex geometry)

Under (A1), (A2), and (A3), all the x[1],...,X[L] are confined by a
simplex conv{ay,...,ay}:

%[n] € conv{ay,...,ay} C RV~ vn
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Simplex Geometry for Hyperspectral Unmixing

0% x([n]

a3

Question: Could we estimate a1, ...,y from X[1],...,X[L]?
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One Possible Approach— Craig's Belief

Formulation: Min. Volume Simplex Fitting

,311:111%1\, V(;Bla s 7ﬁN) (3)

s.t. X[n| € conv{B1,...,8n}, V n,

where V(B4,...,8n) is the volume of conv{v,...,vx}.

@ Inspired by Craig’s belief: find a minimum-volume simplex
enclosing all data points X[1],...,X[L]. [Craig'94].
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@ Craig's belief is sound intuitively. But can we prove some theoretical
guarantee of it?

@ We prove a sufficient condition for the min. volume simplex problem
as follows.
Pure pixel assumption:

(A4) Foreachi e {1,...,N}, there exists at least one pixel index ¢;
such that x[(;] = a;.

Theorem 1 (Endmember identifiability of Craig's belief)

Under (A1)-(A4), the globally optimal solution of the min. simplex
volume problem is exactly a1, ..., a, corresponding to the true
endmembers a; = Co; + d.
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Another Possible Approach— Winter's Belief

Formulation: Max. Volume Simplex Fitting

max V(vi,...,uN)
ul,..A,uNGRN_l (4)

s.t. v € conv{x[l],...,X[L]}, V1,

@ Inspired by Winter’s belief: find a maximum-volume simplex
enclosed by conv{x[1],...,X[L]} [Winter'99].

15/26



Theorem 2 (Endmember identifiability of Winter's belief)

Under (A1)-(A4), the globally optimal solution of max. simplex volume
problem is exactly a1, ..., ay, corresponding to the true endmembers
a; = Co; +d.

By Theorem 1 and Theorem 2, we can conclude that

Relation between Craig's and Winter's beliefs

Both the min. & max. simplex volume problems can perfectly identify
the endmembers in the pure pixel case.
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Solving the Max. Simplex Volume Problem
Formulation: Maximum Volume Simplex Fitting

max V(vi,...,uN)

s.t. vV, = 5(0,, 01 t O, 1%91 =1V ’i,

where X = [ %[1],...,%[L] ] € RW-DxL,

@ The maximum simplex volume problem is a nonconvex optimization
problem: The constraints are convex, but the objective

detq“f 8 V{VD‘/(N—l)!

V(Vl,...,VN) =

is nonconcave.

@ Maximizing V(v1,...,vN) w.r.t. each v; is however easy, with
convex optimization.
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Solving the Max. Simplex Volume Problem
Formulation: Maximum Volume Simplex Fitting

max V(vi,...,vN)

st. v;=X6;, 0;,>0, 116, =1V,

where X = [ %[1],...,%[L] | € ROWV=UxL,

@ By cofactor expansion,

V(vi,...,vn) o |b] v+ (=1)Ndet (V)| ,

where b; & V;; are variables dependent on vy, ...,v;_1,Vj41,
.., UN.
@ V(v1,...,vy) is absolute affine w.r.t. each v;.

@ Maximization w.r.t. v; can be globally optimally solved by two
linear programs (LPs).



Solving the Max. Simplex Volume Problem
Formulation: Maximum Volume Simplex Fitting

max V(v,...,vN)

s.t. V; = X@Z, 01 i O, 1,{91 =1V i,

where X = [ X[1],...,%[L] ] € RW-DxL,

Alternating Method

Repeat
solve  the jth partial maximization problem
(0;,0;) == arg max V(vi,...,vN)
v;,0;

st. v;=X60;, 6,0, 179,=1
by two LPs
update j := (j modulo N) + 1.
Until  some stopping rule is satisfied.
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Solving the Min. Simplex Volume Problem

Formulation: Minimum Volume Simplex Fitting

Let H=B ! e RV-DX(N-1) apnd g = B~18y € RN 1.
Then, s'[n] = B~}(x[n] — By) = HX[n] — g.

Then the problem can be transformed as [Li-Bioucas'08], [Chan'09]

We can use alternating linear programming again!
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Computer Simulations

@ 100 Monte Carlo runs were performed.

@ x[n]: 1000 synthetic pixels (L = 1000).

@ aj,...,ay: selected from USGS library (M = 417) [Clark'93].
@ s[n]: Dirichlet distribution [Nascimento'05].

@ Performence index: Root-mean-square spectral angle (error
performance measure) is defined as
ﬂ 2

)|

where Tl is the set of all the permutations of {1,2,.... N}.T

aTa
— min g arccos '
Gen = 10 \| ¥ [ <|az||||am

T
= min Z arccos
Pab = BN [ (|sz|||sm

e = [ s:[1],...,si[L] ]T denotes the ith abundance map, and &; and ; denote

the estimated a; and s;, respectively. -



Simulations for Data with Various Purity Levels

@ Six endmembers (N = 6) from USGS library were selected.

@ We generated seven data sets with different purity levels
p= 0.7,0.75,...,1 for performance evaluation.

Purity level

A data set with purity level p denotes a set of L observed pixels with all
the purities p1, ..., pr in the range [p — 0.1, p], where

]l <1

1
— < = |[s
\/J_V_pn |

is a purity measure for an observed pixel x[n](= Zfil si[n]a;). The
closer to unity the value of p,,, the more a single endmember a;
dominates in x[n].

= The generated data for p = 1 includes some highly pure pixels.
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Figure: Simulation results of the endmember estimates obtained by the various
algorithms under test for different purity levels (den ).

OVCA: Vertex component analysis [Nascimento'05]

MVC-NMF: Minimum volume constrained nonnegative matrix factorization [Miao'07]
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Figure: Simulation results of the abundance estimates obtained by the various
algorithms under test for different purity levels (¢as).

®MVSA: Minimum volume simplex analysis [Li-Bioucas'08]
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Conclusions

@ We have provided a convex analysis and optimization perspective to
hyperspectral unmixing, from dimension reduction, criteria, to
algorithms.

@ Open questions arising:

e theoretical endmember identifiability conditions without pure
pixels (positive by simulations, but a tricky analysis problem...)

o other possible formulations (using determinant as the objective
is not the only way out!)
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