A SHORT PROOF OF THE ERROR BOUND FOR THE
TRAPEZOIDAL RULE

YC

The approximation formula for the integral

/ £(#) (f(:co) +2f (@) + 2F () + oo+ 2f () + F(0).
We want to prove the error bound
|Error| < K(b——a)3

12n?
provided |f"(z)| < K. (i.e. f” has an upper bound K. )

Proof:

First, we divide the interval [a,b] by n-equal subintervals: a = g <
1 < . < Tpq < Ty, = b with x; — 2,21 = I’_T“ for any 1 = 1,2, ..n.
Since the error |Error| is the difference of the exact value and the
approximation value, we have

|Err0r|=|ii<b;a>< x””””) Z/ F(t)de]
(52 () [ )

For any 4, 0 <7 < n, we define

Li_bQ—na <f(x, 1 +fo> / (1)

and we observe that if the midpoint ¢; = % ,then we have
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We also have the observation by the integration by parts:

/ i(t —e)fd= [ -

i— i—1

— (s — &) f(w5) — (w1 — &) flwiy / 0

yb—a
2n

(s + fla) - / f(0)ds = L,
Therefore,
@) L= / (£ — ) f'(1)dt.

We can use the integration by parts again and the Fundamental The-
orem of Calculus,
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Thus, if |f”(t)| < K on the interval [a, b] we have

n

|Error| < Z | Li|
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and we have completed our proof. B
More questions:
Instead of the assumption for the second derivative |f”(z)| < K, if
we only know the upper bound of the first derivative |f’(z)|, we can
still have the estimate of the upper bound of the error. However, the
accuracy is related to (%) which is worse than the previous, (-5). In
fact, suppose |f'(x)| < M for all x € [a,b], by (2),

\Li| <M |t — ci|dt

Ti—1

T M b—
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This implies
|Error| < Z |L;| <

i=1



