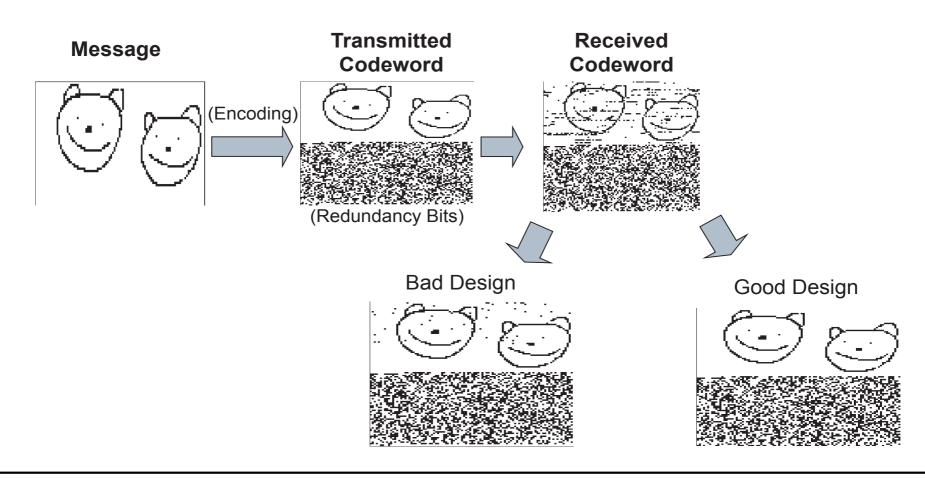
Lecture 1 : Linear block codes

Lecturer: Yen-Ming Chen, National Sun Yat-sen University.

★ Error correcting code:



★ Example: Repetition code for BSC channel

1	1	1	2	2	2	3	3	3
1	1	1	1	1	1	0	0	0

ſ		1					_	_	
	1	0	1	1	1	1	0	0	0

	1							
1	0	0	1	1	1	0	0	0

- \bigstar A binary block code of length n with 2^k codewords is called an (n,k) linear block code iff its 2^k codewords form a k dimensional subspace of the vector space V of all the n-tuples over GF(2).
- \bigstar For a binary (n,k) linear block code C, there exists k linear independent basis $\mathbf{g_0},\mathbf{g_1},\ldots,\mathbf{g_{k-1}}$ such that every codeword \mathbf{v} in C is a linear combination of these k linearly independent basis.
- ★ Example: Systematic (7,4) Hamming code

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \text{, For a length-4 message vector } \mathbf{u}, \text{ the}$$

corresponding codeword $\mathbf{v} = \mathbf{u} \cdot \mathbf{G}$

 \bigstar Let $\mathbf{u}=(u_0,u_1,...,u_{k-1})$ be the message to be encoded. The codeword $\mathbf{v}=(v_0,v_1,...,v_{n-1})$ for this message is given by $\mathbf{v}=u_0\mathbf{g_0}+u_1\mathbf{g_1}+\cdots+u_{k-1}\mathbf{g_{k-1}}$

$$=\mathbf{u}\cdotegin{bmatrix} \mathbf{g}_0\ \mathbf{g}_1\ dots\ \mathbf{g}_{k-1} \end{bmatrix}=\mathbf{u}\cdot\mathbf{G}$$

where
$$\mathbf{G} = \begin{bmatrix} \mathbf{g}_0 \\ \mathbf{g}_1 \\ \vdots \\ \mathbf{g}_{k-1} \end{bmatrix} = \begin{bmatrix} g_{0,0} & g_{0,1} & \dots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \dots & g_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ g_{k-1,0} & g_{k-1,1} & \dots & g_{k-1,n-1} \end{bmatrix}$$

is a generator matrix of C.

- \bigstar A code C can be regarded as the row space of G.
- \bigstar A generator matrix of a given (n,k) linear block code is not unique. Any choice of a basis of C gives a generator matrix of C. The rank of a generator matrix of C is equal to the dimension of C.
- ★ Since a binary (n, k) linear block code C is a k-dimensional subspace of the vector space \mathbf{V} of all the n-tuples over GF(2), its null (or dual) space, denoted C_d , is an (n-k)-dimensional subspace of \mathbf{V} given by $C_d = \{\mathbf{w} \in V : \mathbf{w}\mathbf{v}^\top = 0 \text{ for all } \mathbf{v} \in C\}$.
 - 1. C_d may be regarded as a binary (n, n k) linear block code and is called the dual code of C.
 - 2. Let $\mathbf{h_0}, \mathbf{h_1}, ..., \mathbf{h_{n-k-1}}$ be the n-k linearly independent codewords of C_d Form the following $(n-k) \times n$ matrix over GF(2).

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_0 \\ \mathbf{h}_1 \\ \vdots \\ \mathbf{h}_{n-k-1} \end{bmatrix}$$

$$= \begin{bmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,n-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n-k-1,0} & h_{n-k-1,1} & \dots & h_{n-k-1,n-1} \end{bmatrix}$$

Then **H** is a generator matrix of C_d .

$$\bigstar \mathbf{H} \cdot \mathbf{G}^{\top} = \mathbf{0}_{(n-k) \times k}$$

 \bigstar C is also unquely specified by the **H** matrix as follows:

$$C = \{ \mathbf{v} \in V : \mathbf{H}\mathbf{v}^{\top} = \mathbf{H}\mathbf{G}^{\top}\mathbf{u}^{\top} = \mathbf{0} \}$$

 ${f H}$ is called a parity-check matrix (PCM) of C and

C is said to be the null space of \mathbf{H} .

- ★ In general, encoding of a linear block code is based on a generator matrix of the code and decoding is based on a parity-check matrix of the code.
- ★ A parity-check matrix **H** is said to be a full-rank matrix if its rank is equal to the number of rows of **H**.
- \bigstar A linear systematic (n,k) block code is completely specified by a $k \times n$ generator matrix of the following form

$$\mathbf{G} = [\mathbf{I}_k \; \mathbf{P}_{k \times (n-k)}]$$

The P submatrix of G is called the parity submartix of G. A generator matrix in

this form is said to be systematic form.

- \bigstar Given a $k \times n$ generator matrix \mathbf{G}' of an (n,k) linear block code C' not in systematic form, a generator matrix \mathbf{G} in the systematic form can always be obtained by performing elementary row operations on \mathbf{G}' and then possibly taking column permutations. The $k \times n$ matrix \mathbf{G} is called a combinatorially equivalent matrix of \mathbf{G}' .
- \bigstar The systematic (n,k) linear block code $\mathbf C$ generated by $\mathbf G$ is called a combinatorially equivalent code of $\mathbf C'$. Two combinatorially equivalent (n,k) linear block codes give the same error performance.
- ★ If a generator matrix of an (n, k) linear block code \mathbf{C} is given by $\mathbf{G} = [\mathbf{I}_k \quad \mathbf{P}]$, then its corresponding PCM in systematic form is given by $\mathbf{H} = [\mathbf{P}^\top \quad \mathbf{I}_{n-k}]$. It can be easily shown that $\mathbf{H}\mathbf{G}^\top = \mathbf{0}$.

★ Example:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \Rightarrow \mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} = [\mathbf{I}_k \ \mathbf{P}_{k \times (n-k)}]$$

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = [\mathbf{P}_{(n-k)\times k}^{\top} \mathbf{I}_{n-k}]$$

★ Syndrom decoding:

Let
$$\mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}$$

Encoding:
$$\mathbf{v} = \mathbf{u} \cdot \mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

If one bit error happens under BSC channel, and the received signal vector

$$\mathbf{z} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} = \mathbf{v} + \mathbf{n} = \mathbf{v} + \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{H} \cdot \mathbf{z}^{\top} = \mathbf{H} \cdot (\mathbf{v} + \mathbf{n})^{\top} = \mathbf{H} \cdot \mathbf{G}^{\top} \cdot \mathbf{u}^{\top} + \mathbf{H} \cdot \mathbf{n}^{\top} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top}$$

 \Rightarrow the third column of H.