Wet Etching

ESS4810 Lecture Fall 2010

Introduction

- Selective removal of specific materials
- Chemical process
- Isotropic etching
- Anisotropic etching
- Advantages
	- Simple, inexpensive
- Disadvantage
	- Poor process control

Wet Etching

- 1. Reactant transport to surface
- 2. Selective and controlled reaction of etchant with the film to be etched
- 3. Transport of by-products away from the surface

Etching of Silicon

Isotropic Etching of Silicon

• HNA system

- $HNO₃$
- HF

- $CH₃COOH$ or $H₂O$ (as a diluent)

 $HNO₃ + H₂O + HNO₂ \rightarrow 2HNO₂ + 2OH^- + 2H^+$

 $Si^{4+} + 4OH^{-} \rightarrow SiO_2 + H_2$

 $6HF + SiO₂ \rightarrow H₂SiF₆ + 2H₂O$

 $Si + HNO_3 + 6HF \rightarrow H_2SiF_6 + HNO_2 + H_2O + H_2$

Etching Profiles

Iso-Etch Curves HC₂H₃O₂ diluent H₂O diluent $\overline{20}$ AND TO HE (49) **1993** 50 $\sqrt[\delta]{\mathfrak o}$ $\overline{3}$ 20 767 10 (11.5) μ m χ min $\overline{90}$ 80 70 60 50 40 $\overline{30}$ $\overline{20}$ $\overline{10}$ Weight %, diluent ⋍

Masking Materials

Anisotropic Etching

Miller Indices

- [i, j, k]
	- a specific direction of a unit vector
- \cdot < i, j, k>
	- a family of equivalent directions
- \bullet (i, j, k)
	- a specific crystal plane
- {i, j, k}
	- a family of equivalent planes

Miller Indices

- Angles between planes
	- ∠ between [abc] and [xyz] given by
	- $-$ ax+by+cz = $|(a,b,c)|^*|(x,y,z)|^*cos(\theta)$

$$
\theta_{(100),(111)} = Cos^{-1}((1+0+0)/(1)(\sqrt{3}))
$$

- {100} and {110}: 45°
- {100} and {111}: 54.74°
- {110} and {111}: 35.26°, 90°, and 144.74°

Silicon Crystallography

- Silicon fold-up cube \bullet
	- Adapted from Profs. Kris Pister and Jack Judy
	- Print onto transparency
	- Assemble inside out
	- Visualize crystal plane orientations, intersections, and directions

Lateral Underetch

(A) Etch pattern emerging on a wagon-wheel-masked, Figure 4.38 <100>-oriented Si wafer after etching in an EDP solution. (B) Schematic cross section of a silicon test chip covered with a wagon-wheelshaped masking pattern after etching. The measurement of w is used to construct polar diagrams of lateral underetch rates

Undercutting

Convex corners bounded by ${111}$ planes are attacked

 5.0

EDP Etching

EDP etching solution stop at the buried p++ Si layer: Etylene diamine (750 ml) pyrochatechol(120g) Water(100ml) Etch rate $1.25 \mu m/min$ @115°C

Peterson (1982)

Electrochemical Etch Stop

- Electrochemical etch stop \bullet
	- n-type epitaxial layer grown on p-type wafer forms p-n diode
	- electrical conduction $p > n$ \bullet \rightarrow
	- reverse bias current \cdot $p < n$ \rightarrow
	- Passivation potential potential at which thin $SiO₂$ layer forms, different for p- and n-Si
- Set-up
	- p-n diode in reverse bias
	- p-substrate floating \rightarrow etched
	- n-layer above passivation potential \rightarrow not etched

Electrochemical Etch Stop

- Electrochemical etching on preprocessed CMOS wafers $\ddot{}$
	- N-type Si well with circuits suspended from $SiO₂$ support beam
	- Thermally and electrically isolated
	- TMAH etchant, AI bond pads safe

Reay et al. (1994) Kovacs group, Stanford U.

Wet Etching of Thin Films

- Silicon dioxide
	- HF
	- Buffered HF (BHF)-10:1 HF/NH₃F "BOE"
- Silicon Nitride
	- Phosphoric acid
	- Selectivity $[Si₃N₄/SiO₂] = 40/1$
- Polysilicon
	- KOH, EDP, and TMAH

Wet Etching of Quartz

- Anisotropic etching by HF
	- with 10.9mol/l, Rate \sim 9.6 µm/hr
- Ammonium fluoride (NH₄F)
- Saturated ammonium bifluoride (NH₄HF₂)
- Require metal mask or oxide mask
- Amorphous Si or Poly Si can be used as mask for deep etching

References

- K.E. Petersen, "Silicon as a Mechanical Material," Proc. IEEE, vol. 70, pp. 420- 457, May 1982
- G.T.A. Kovacs, N.I. Maluf, and K.E. Petersen, "Bulk Micromachining of Silicon," Proc. IEEE, vol. 86, pp. 1536- 1551, August 1998

Etching Bias

- Bias = d_f d_m
- Complete isotropic etching $B=2h_f$
- Complete anisotropic etching $B=0$

Degree of Anisotropy

$$
A_f \equiv 1 - \frac{|B|}{2 h_f}
$$

$$
0 \le A_f \le 1
$$

• $A_f = 0$: isotropic $\begin{vmatrix} B = 2h_f \end{vmatrix}$

• $A_f = 1$: anisotropic $|B=0|$

Etching of Steps with a Slope

$$
x_1 = v_v \cdot t \cot \theta
$$
\n
$$
x_2 = v_l \cdot t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
v_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{vertical} \text{ et } -t
$$
\n
$$
y_v = \text{total} \text{ } -t
$$
\n
$$
y_v = \text{total} \text{ } -t
$$
\n
$$
y_v = \text{total} \text{ } -t
$$
\n
$$
y_v = \text{total} \text{ } -t
$$
\n
$$
y_v = \text{total} \text{ } -t
$$
\n
$$
y_v = \text{total} \text{ }
$$

 $x = x_1 + x_2$

 $= (v_v \cot \theta + v_l) \cdot t$

 \therefore To minimize $x \Rightarrow$ make θ large

 v_i = lateral etch rate

Design Considerations for Etching

- Film thickness variation
- Film etching rate variation $h_{f(max)} = h_f \cdot (1 + \delta)$
- Over-etching around step $v_{f(\min)} = v_f \cdot (1 - \phi_f)$

$$
t_T = \frac{h_f(1+\delta)}{v_f \cdot (1-\phi_f)} \cdot (1+\frac{h_1}{h_2})
$$

• With mask erosion["]

$$
\frac{W}{2} = (v_{m\perp} \cot \underline{\theta} + v_{m//}) \cdot t_T
$$

$$
= \left(\frac{v_{m\perp}}{v_f}\right) \cdot \underline{h_f} \cdot \frac{(1+\delta)(1+\Delta)}{(1-\phi_f)} \left[\cot \theta + \frac{v_{m//}}{v_{m\perp}}\right]
$$

Bulk Micromachining of Silicon

ESS4810 Lecture Fall 2010

Introduction

- Purpose of bulk micromachining
	- Selectively remove significant amounts of silicon from a substrate
- Three categories
	- In terms of the state of the etchant
	- Wet, vapor, and plasma
- The majority of currently shipping silicon sensors are made using bulk etching

Purposes

- To undercut structures that are required to physically move
- To form membranes on one side of a wafer
- To make a variety of trenches, holes, or other structures

Possible Machined Structures

Possible Machined Structures

Comparison of Silicon Etchants

Etching Profile

[100]-oriented wafers [110]-oriented wafer

Corner Compensation

Corner Compensation

Etch-Rate Modulation

- Highly p-doped silicon regions greatly attenuate the etch rate
- Selective doping can be used to define specific regions of the silicon that remain, while the bulk is etched away

Vapor Phase Etching of Silicon

Vapor-phase etchant XeF₂

 $2XeF_{2(\nu)} + Si_{(\alpha)} \rightarrow 2Xe_{(\nu)} + SiF_{4(\nu)}$

- Set-up
	- Xe sublimes at room T
	- Closed chamber, 1-4 Torr
	- Pulsed to control exothermic heat of reaction
- Etch rates: $1-3 \mu m/min$ (up to 40), isotropic
- Etch masks: photoresist, SiO_2 , Si_3N_A , Al, metals
- Issues
	- Etched surfaces have granular structure, 10 µm roughness
	- Hazard: $XeF₂$ reacts with H₂O in air to form Xe and HF

Xactix

Vapor-Phase Etching

• Xenon difluoride etching

 $2XeF_2 + Si \rightarrow 2Xe + SiF_4$

- Non-plasma, isotropic, and dry
- Very high selectivity for aluminum, silicon dioxide, silicon nitride, and photoresist

Vapor-Phase Etching

- Interhalogen etch chemistries
	- Avoid the extremely rough silicon surfaces that are formed using $XeF₂$ etching
	- Thermal silicon dioxide mask and various interhalogen gases (BrF $_3$ and CIF_3) with a xenon diluent
- Laser-driven vapor-phase etching

Laser-Driven Etching

Laser-Assisted Chemical Etching \bullet

- Laser creates CI radicals from $Cl₂$; Si converts to $SiCl₄$.
- Etch rate: $100,000 \mu m^3/s$; 3 min to etch $500\times500\times125$ µm³ trench
- Surface roughness: 30 nm RMS
- Serial process: patterned directly from CAD file

Laser-assisted etching of a 500×500 µm² terraced silicon well. Each step is 6 um deep.

Revise, Inc.

Deep Reactive Ion Etching

Deep Reactive Ion Etching

• Alternating between etching and protective polymer deposition

CMOS Integration

Anisotropic CHF₂/O₂ RIE Etch Metal 3

Isotropic SF₆/O₂ RIE Etch

Problem 6 – Etching (21%)

The (100) wafer shown below has nitride masks on its top and bottom surfaces.

- (1) With KOH, the etch selectivity between the $\{100\}$ and $\{111\}$ planes is 400:1 (use ∞ :1 in your calculation), and the {100} etch rate is 1.4 μ m/min.
- (2) With TMAH, the etch selectivity between the {100} and {111} planes is 40:1, and the ${100}$ etch rate is 1.2 μ m/min.
- (3) With HNA, the isotropic etch rate is 1 µm/min.

For anisotropic etching, assume that the nitride layers and all other silicon crystal planes are not etched. Sketch the wafer cross sections after 200 minutes of etching (3%) and determine the following dimensions after etching in the all three cases:

- (a) Silicon etch depth (3%)
- (b) Silicon etch width at top (6%)
- (c) Silicon etch width at bottom (3%)

(d) In case there is an elliptic opening B on the top nitride mask, what will be the final shape of the cavity after 200 minutes of KOH etching? (Sketch both the top and cross-sectional views.) (4%)

Lab 1 and 2

Lab 2-1: 1. Lithography (PR AZ 5214, mask #1 for bulk etching window)

Lab 2-2: 1.Break wafer into A and B 2.B: BOE wet etching A: RIE dry etching 3.PR strip, wafer cleaning

Lab 1 Cleaning and Thermal Oxidation

ESS 4810 Traveler

Lab 2 Lithography and Wet Etching

ESS 4810 Traveler

