Wet Etching

ESS4810 Lecture Fall 2010

Introduction

- Selective removal of specific materials
- Chemical process
- Isotropic etching
- Anisotropic etching
- Advantages
 - Simple, inexpensive
- Disadvantage
 - Poor process control

Wet Etching

- **1. Reactant transport to surface**
- 2. Selective and controlled reaction of etchant with the film to be etched
- 3. Transport of by-products away from the surface

Etching of Silicon

Isotropic Etching of Silicon

- HNA system
 - HNO₃
 - HF
 - CH_3COOH or H_2O (as a diluent)

 $HNO_3 + H_2O + HNO_2 \rightarrow 2HNO_2 + 2OH^- + 2H^+$

 $Si^{4+} + 4OH^- \rightarrow SiO_2 + H_2$

 $6HF + SiO_2 \rightarrow H_2SiF_6 + 2H_2O$

 $Si + HNO_3 + 6HF \rightarrow H_2SiF_6 + HNO_2 + H_2O + H_2$

Etching Profiles

Iso-Etch Curves HC₂H₃O₂ diluent H₂O diluent 20 HN03 HF (49. 169.51% 50 610 20 76 10 (11.5) µm/min 80 90 70 60 50 40 30 20 10 -Weight %. diluent

Masking Materials

Mask	Piranha (4:1, H ₂ O ₂ :H ₂ SO ₄)	Buffered HF (5:1 NH ₄ F:conc. HF)	HNA
Thermal SiO ₂		0.1 μm/min	300–800 Å/min; limited etch time, thick layers often are used due to ease of patterning
CVD (450°C) SiO2		0.48 µm/min	0.44 µm/min
Corning 7740 glass		0.063 µ/min	1.9 µ/min
Photoresist	Attacks most organic films	Okay for short while	Resists do not stand up to strong oxidizing agents like HNO ₃ and are not used
Undoped Si, polysilicon	Forms 30 Å of SiO ₂	0.23 to 0.45 Å/min	Si 0.7 to 40 μm/min at room temperature; at a dopant concentration <10 ¹⁷ cm ⁻³ (n or p)
Black wax			Usable at room temperature
Au/Cr	Okay	Okay	Okay
LPCVD Si ₃ N ₄		1 Å/min	Etch rate is 10–100 Å/min; preferred masking material

Anisotropic Etching of Silicon

• Alkali Hydroxide (KOH, NaOH, etc.)

 $\mathrm{Si} + 2\mathrm{OH}^- + 2\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_2^{2+} + 2\mathrm{H}_2.$

Ethylenediamine Pyrocatechol (EDP)

$$\begin{split} \mathrm{NH}_2(\mathrm{CH}_2)_2\mathrm{NH}_2 + \mathrm{H}_2\mathrm{O} &\to \mathrm{NH}_2(\mathrm{CH}_2)_2\mathrm{NH}_3^+ + \mathrm{OH}^-\\ \mathrm{Si} + 2\mathrm{OH}^- + 4\mathrm{H}_2\mathrm{O} &\to \mathrm{Si}(\mathrm{OH})_6^{2-} + 2\mathrm{H}_2\\ \mathrm{Si}(\mathrm{OH})_6^{2-} + 3\mathrm{C}_6\mathrm{H}_4(\mathrm{OH})_2 &\to [\mathrm{Si}(\mathrm{C}_6\mathrm{H}_4\mathrm{O}_2)_3]^{2-} + 6\mathrm{H}_2\mathrm{O}. \end{split}$$

Tetramethyl Ammonium Hydroxide (TMAH)

Formulation	°C	Etch Rate (µm/min)	(100)/(111) Etch Ratio	Masking Films (etch rate)
KOH (44 g) Water, Isopropanol (100 ml)	85	1.4	400:1	SiO_2 (1.4 nm/min) Si_3N_4 (negligible)
KOH (50 g) Water, Isopropanol (100 ml)	50	1.0	400:1	approx. as above
KOH (10 g) Water (100 ml)	65	0.25 to 1.0	-	SiO ₂ (0.7 nm/min) Si ₃ N ₄ (negligible)

Formulation	°C	Etch Rate (µm/min)	(100)/(111) Etch Ratio	Masking Films (etch rate)
Ethylene diamine (750 ml) Pyrocatechol (120 g) Water (100 ml)	115	0.75	35:1	SiO ₂ (0.2 nm/min) Si ₃ N ₄ (0.1 nm/min) Au, Cr, Ag, Cu, Ta (negligible)
Ethylene diamine (750 ml) Pyrocatechol (120 g) Water (240 ml)	115	1.25	35:1	as above

	Alkali-OH	EDP (ethylene diamine pyrochat- echol)	TMAH (tetramethyl- ammonium hydroxide)
Etch Type	wet	wet	wet
Anisotropic?	yes	yes	yes
Availability	common	moderate	moderate
Si Etch Rate µm/min	1 to 2	0.02 to 1	≈ 1
Si Roughness	low	low	variable ²
Nitride Etch	low	low	1 to 10 nm/min
Oxide Etch	1 to 10 nm/min	1 to 80 nm/min	≈ 1 nm/min
Al Selective	по	no ⁴	yes ⁵
Au Selective	yes	yes	yes

	Alkali-OH	EDP (ethylene diamine pyrochat- echol)	TMAH (tetramethyl- ammonium hydroxide)
p++ Etch Stop?	yes	yes	yes
Electrochemical Stop?	ycs	yes	yes
CMOS Compatible? ⁶	no	yes	yes
Cost ⁷	low	moderate	moderate
Disposal	easy	difficult	moderate
Safety	moderate	low	high

Anisotropic Etching

Miller Indices

- [i, j, k]
 - a specific direction of a unit vector
- < i, j, k>
 - a family of equivalent directions
- (i, j, k)
 - a specific crystal plane
- {i, j, k}
 - a family of equivalent planes

Miller Indices

- Angles between planes
 - ∠ between [abc] and [xyz] given by
 - ax+by+cz = |(a,b,c)|*|(x,y,z)|*cos(⊖)

$$\theta_{(100),(111)} = Cos^{-1}((1+0+0)/(1)(\sqrt{3}))$$

- {100} and {110}: 45°
- {100} and {111}: 54.74°
- {110} and {111}: 35.26°, 90°, and 144.74°

Silicon Crystallography

- Silicon fold-up cube
 - Adapted from Profs. Kris Pister and Jack Judy
 - Print onto transparency
 - Assemble inside out
 - Visualize crystal plane orientations, intersections, and directions

Lateral Underetch

Figure 4.38 (A) Etch pattern emerging on a wagon-wheel-masked, <100>-oriented Si wafer after etching in an EDP solution. (B) Schematic cross section of a silicon test chip covered with a wagon-wheel-shaped masking pattern after etching. The measurement of w is used to construct polar diagrams of lateral underetch rates

Undercutting

 Convex corners bounded by {111} planes are attacked

5.0KV

EDP Etching

EDP etching solution stop at the buried p++ Si layer: Etylene diamine (750 ml) pyrochatechol(120g) Water(100ml) Etch rate 1.25 µm/min @115°C

Peterson (1982)

Electrochemical Etch Stop

- Electrochemical etch stop
 - n-type epitaxial layer grown on p-type wafer forms p-n diode
 - $p > n \rightarrow$ electrical conduction
 - p < n → reverse bias current
 - Passivation potential potential at which thin SiO₂ layer forms, different for p- and n-Si
- Set-up
 - p-n diode in reverse bias
 - p-substrate floating \rightarrow etched
 - n-layer above passivation potential → not etched

Electrochemical Etch Stop

- Electrochemical etching on preprocessed CMOS wafers
 - N-type Si well with circuits suspended from SiO₂ support beam
 - Thermally and electrically isolated
 - TMAH etchant, AI bond pads safe

Reay et al. (1994) Kovacs group, Stanford U.

Wet Etching of Thin Films

- Silicon dioxide
 - HF
 - Buffered HF (BHF)-10:1 HF/NH₃F "BOE"
- Silicon Nitride
 - Phosphoric acid
 - Selectivity $[Si_3N_4/SiO_2] = 40/1$
- Polysilicon
 - KOH, EDP, and TMAH

Wet Etching of Quartz

- Anisotropic etching by HF
 - with 10.9mol/I, Rate ~ 9.6 µm/hr
- Ammonium fluoride (NH₄F)
- Saturated ammonium bifluoride (NH₄HF₂)
- Require metal mask or oxide mask
- Amorphous Si or Poly Si can be used as mask for deep etching

References

- K.E. Petersen, "Silicon as a Mechanical Material," Proc. IEEE, vol. 70, pp. 420-457, May 1982
- G.T.A. Kovacs, N.I. Maluf, and K.E. Petersen, "Bulk Micromachining of Silicon," Proc. IEEE, vol. 86, pp. 1536-1551, August 1998

Etching Bias

- Bias = $d_f d_m$
- Complete isotropic etching B=2h_f
- Complete anisotropic etching B=0

Degree of Anisotropy

$$A_{f} \equiv 1 - \frac{|B|}{2h_{f}}$$
$$0 \le A_{f} \le 1$$

• $A_f = 0$: isotropic $B = 2h_f$

• $A_f = 1$: anisotropic |B=0|

Etching of Steps with a Slope

$$x_{1} = v_{v} \cdot t \cot \theta$$

$$x_{2} = v_{l} \cdot t$$

$$Let \ etching \ time = t$$

$$v_{v} = vertical \ etch \ rate$$

$$x_{1} = v_{v} \cdot t \cot \theta$$

$$y_{v} \cdot t \cot \theta$$

 $v_l = lateral \ etch \ rate$:. To minimize $x \Rightarrow make \ \theta \ large$

$$x = x_1 + x_2$$

= $(v_v \cot \theta + v_l) \cdot t$

Design Considerations for Etching

- Film thickness variation
- Film etching rate variation

etching around step
$$t = \frac{h_f(1+\delta)}{(1+\frac{h_1}{2})}$$

$$t_T = \frac{h_f(1+\delta)}{v_f \cdot (1-\phi_f)} \cdot (1+\frac{h_1}{h_2})$$

With mask erosion

$$\frac{W}{2} = \left(v_{m\perp} \cot \underline{\theta} + v_{m//}\right) \cdot t_T$$
$$= \left(\frac{v_{m\perp}}{v_f}\right) \cdot \underline{h_f} \cdot \frac{(1+\delta)(1+\Delta)}{(1-\phi_f)} \left[\cot \theta + \frac{v_{m//}}{v_{m\perp}}\right]$$

 $\begin{array}{c|c} & h_2 \\ \hline & h_2 \\ step \end{array} \begin{array}{c} & h_1 \\ \hline & h_2 \end{array}$

Bulk Micromachining of Silicon

ESS4810 Lecture Fall 2010

Introduction

- Purpose of bulk micromachining
 - Selectively remove significant amounts of silicon from a substrate
- Three categories
 - In terms of the state of the etchant
 - Wet, vapor, and plasma
- The majority of currently shipping silicon sensors are made using bulk etching

Purposes

- To undercut structures that are required to physically move
- To form membranes on one side of a wafer
- To make a variety of trenches, holes, or other structures

Possible Machined Structures

Possible Machined Structures

Possible Machined Structures

Comparison of Silicon Etchants

Comparison of Example Bulk Silicon Etchants							
	HNA (HF+HNO ₃ +Acetic Acid)	Alkali-OH	EDP (ethylene diamine pyrochat- echol)	TMAH (tetramethyl- ammonium hydroxide)	XeF ₂	SF ₆ Plasma	DRIE (Deep Reactive Ion Etch
Etch Type	wet	wet	wet	wet	dry ¹	dry	dry
Anisotropic?	no	yes	yes	yes	no	varies	yes
Availability	common	common	moderate	moderate	limited	common	limited
Si Etch Rate µm/min	1 to 3	1 to 2	0.02 to 1	≈ 1	1 to 3	≈1	> 1
Si Roughness	low	low	low	variable ²	high ³	variable	low
Nitride Etch	low	low	low	1 to 10 nm/min	?	low	low
Oxide Etch	10 to 30 nm/min	1 to 10 nm/min	1 to 80 nm/min	≈ 1 nm/min	low	low	low
Al Selective	no	no	no ⁴	yes ⁵	yes	yes	yes
Au Selective	likely	yes	yes	yes	yes	yes	yes
p++ Etch Stop?	no (n slows)	yes	yes	yes	no	no (some dopant effects)	no
Electrochemical Stop?	?	yes	yes	yes	no	no	no
CMOS Compatible?6	no	no	yes	yes	yes	yes	yes
Cost ⁷	low	low	moderate	moderate	moderate	high	high
Disposal	low	easy	difficult	moderate	N/A	N/A	N/A
Safety	moderate	moderate	low	high	moderate?	high	high

Etching Profile

[100]-oriented wafers

[110]-oriented wafer

Corner Compensation

Corner Compensation

Etch-Rate Modulation

- Highly p-doped silicon regions greatly attenuate the etch rate
- Selective doping can be used to define specific regions of the silicon that remain, while the bulk is etched away

Vapor Phase Etching of Silicon

Vapor-phase etchant XeF₂

 $2 \text{XeF}_{2(v)} + \text{Si}_{(s)} \rightarrow 2 \text{Xe}_{(v)} + \text{SiF}_{4(v)}$

- Set-up
 - Xe sublimes at room T
 - Closed chamber, 1-4 Torr
 - Pulsed to control exothermic heat of reaction
- Etch rates: 1-3 µm/min (up to 40), isotropic
- Etch masks: photoresist, SiO₂, Si₃N₄, Al, metals
- Issues
 - Etched surfaces have granular structure, 10 μm roughness
 - Hazard: XeF₂ reacts with H₂O in air to form Xe and HF

Xactix

Vapor-Phase Etching

Xenon difluoride etching

 $2 X e F_2 + Si \rightarrow 2 X e + Si F_4$

- Non-plasma, isotropic, and dry
- Very high selectivity for aluminum, silicon dioxide, silicon nitride, and photoresist

Vapor-Phase Etching

- Interhalogen etch chemistries
 - Avoid the extremely rough silicon surfaces that are formed using XeF₂ etching
 - Thermal silicon dioxide mask and various interhalogen gases (BrF₃ and CIF₃) with a xenon diluent
- Laser-driven vapor-phase etching

Laser-Driven Etching

Laser-Assisted Chemical Etching

- Laser creates CI radicals from CI₂; Si converts to SiCI₄.
- Etch rate: 100,000 μm³/s; 3 min to etch 500×500×125 μm³ trench
- Surface roughness: 30 nm RMS
- Serial process: patterned directly from CAD file

Laser-assisted etching of a 500 \times 500 μ m² terraced silicon well. Each step is 6 μ m deep.

Revise, Inc.

Deep Reactive Ion Etching

Deep Reactive Ion Etching

• Alternating between etching and protective polymer deposition

CMOS Integration

3

Isotropic SF6/O2 RIE Etch

Problem 6 – Etching (21%)

The (100) wafer shown below has nitride masks on its top and bottom surfaces.

- (1) With KOH, the etch selectivity between the {100} and {111} planes is 400:1 (use ∞:1 in your calculation), and the {100} etch rate is 1.4 µm/min.
- (2) With TMAH, the etch selectivity between the {100} and {111} planes is 40:1, and the {100} etch rate is 1.2 μm/min.
- (3) With HNA, the isotropic etch rate is 1 μm/min.

For anisotropic etching, assume that the nitride layers and all other silicon crystal planes are not etched. Sketch the wafer cross sections after 200 minutes of etching (3%) and determine the following dimensions after etching in the all three cases:

- (a) Silicon etch depth (3%)
- (b) Silicon etch width at top (6%)
- (c) Silicon etch width at bottom (3%)

(d) In case there is an elliptic opening B on the top nitride mask, what will be the final shape of the cavity after 200 minutes of KOH etching? (Sketch both the top and cross-sectional views.) (4%)

Lab 1 and 2

PR AZ 5214 (positive)

	S	
	3	

Part A	Part B
dry etching	wet etching
	Si

Lab 2-1: 1. Lithography (PR AZ 5214, mask #1 for bulk etching window)

Lab 2-2: 1.Break wafer into A and B 2.B: BOE wet etching A: RIE dry etching 3.PR strip, wafer cleaning

Lab 1 Cleaning and Thermal Oxidation

ESS 4810 Traveler

Step#	Process description	Parameters	Signature	Remarks
1	Identify wafer	p-type, ≤100> orientation, 4" diameter, 474-550 μm thickness, 2 wafers/group		
2	Scribe wafer	find sequential number, example: 05-01-01 (yr-gp-wf)		
3	Label and store wafer	label wafer with year, session day, group, and wafer number		
4	Establish traveler	initiate lab 1 traveler for this wafer		
5	Standard clean	Tweezers and wafer, Acetone squeeze bottle rinse, IPA squeeze bottle rinse, DI rinse 2 mins		
6	Piranha clean	Piranha bath: H ₂ SO ₄ :H ₂ O ₂ : 7:1, 90 °C 10 mins, DI rinse 5 mins, N ₂ blow/spin dry		
7	Thermal O ₂ growth	Thermal O2 furnace, grow thermal silicon dioxide $\sim 0.1~\mu m$		SiO ₂ thickness:

Lab 2 Lithography and Wet Etching

ESS 4810 Traveler

Step#	Process description	Parameters	Signature	Remarks
8	Standard clean	Tweezers and wafer, Acetone squeeze bottle rinse, IPA squeeze bottle rinse, DI rinse 2 mins		
9	Piranha clean	Piranha bath: H2SO4:H2O2: 7:1, 90 °C 10 mins, DI rinse 5 mins, N2 blow/spin dry		
10	DI rinse and air dry	DI rinse for at lease 5 mins and air shower dry		
11	Dehydration bake	120 °C hotplate, 5 mins		
12	HMDS vapor coating	place wafer into beaker containing ~ 10 ml HMDS (clear chemical) for 5 mins		
13	Wafer prespin	check wafer spin rate, time, set up for 3000 rpm and 30 seconds		
14	AZ 5214-EIR coat	dark chemical, 3000 rpm and 30 seconds for spinner, 1 full dropper, spin quickly		
15	Prebake photoresist	100 °C hotplate, 1 min, center of hotplate		Temp of hotplate:
16	Mask alignment	roughly align mask with wafer flat, exposure for 50mJ/cm ² , mask #1		Exposure time:
17	Development	AZ 400k developer: DI=1:5, approx 1 min, DI rinse 3 mins, N2 blow/spin dry		Development time:
18	Microscope inspection	inspect for good image transfer, alignment marks, exposure quality marks, TA check		Alignment quality: Exposure quality:
19	Protect finger part	paint PR5214 onto square area for finger pattern		
20	Hard bake	120 °C hotplate, 2 mins		
21	Back side protection	paint wafer back side with PR AZ 5214		PR thickness:
22	Break wafer	break wafers into part A: surface micromachining, part B: bulk micromachining		
	Process for Part B:			
23	BOE preparation	preparation 6:1 BOE (Buffered Oxide Etchant) for open 1 µm SiO2 windows		
24	Wet BOE etching	etching rate \sim 0.08-0.1 µm/min for wet oxide, need \sim 14 mins for 1 µm, hydrophobic		Etching time:
25	PR prestrip	acetone strip PR, IPA rinse, DI rinse		
26	Piranha clean	Piranha bath: H2SO4:H2O2: 7:1, 90 °C 10 mins, DI rinse 5 mins, N2 blow/spin dry		take pictures